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Abstract

We model secular trends and cyclical changes of the predictive density of US GDP growth. A
substantial increase in downside risk to US economic growth emerges over the last 30 years,
associated with the long-run growth slowdown started in the early 2000s. Conditional skew-
ness moves procyclically, implying negatively skewed predictive densities ahead and during
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1 Introduction

The Global Financial Crisis and the subsequent recession left policymakers with several new challenges.

In a world of persistently sluggish growth, subject to infrequent but deep recessions, the idea of central

bankers as ‘risk managers’ gained renewed popularity (see, e.g., Cecchetti, 2008). In this environment,

policy makers pursuing a ‘plan for the worst, hope for the best ’ approach rely on downside risk measures to

assess the distribution of risk around modal forecasts. Recently, the sharp contraction, and the subsequent

recovery in 2020 provided a sound reminder of the importance of accounting for tail events when assessing

macroeconomic risk. Yet, assessing the degree of asymmetry of business cycle fluctuations remains a

challenging task, and even more so it is to reliably gauge the time variation of downside risk. In addition,

sound economic policy should consider the evolution of secular macroeconomic trends in pursuing the long-

run goals of price stability and sustainable economic growth. Failure to account for permanent shifts in the

properties of GDP growth can, in turn, lead to ineffective policy (see, e.g., Edge et al., 2007). In this paper,

we introduce a generalised, comprehensive framework fit to provide policy guidance on the developments

of downside risks, based on secular movement and cyclical variations of business cycle fluctuations.

We provide novel evidence in support of the presence of conditional asymmetry of GDP growth’s dis-

tribution. Despite unconditional asymmetry remains unsupported by the data, conditional skewness, and

thus downside risk to economic growth, exhibits significant variation over time. Motivated by this evidence,

we introduce a novel, flexible methodology to model and forecast the conditional distribution of real eco-

nomic growth with a parametric skewed Student-t (Skew-t) distribution with time-varying location, scale,

and shape parameters. In order to fully capture the evolution of GDP growth’s predictive densities, our

framework accommodates secular trends and cyclical components for each parameter, with time variation

being driven by the scaled score of the predictive likelihood function (Creal et al., 2013; Harvey, 2013), as

well as by financial indicators. The latter allow us to explore to what extent downside risk to economic

growth reflects imbalances arising in financial markets (Giglio et al., 2016; Adrian et al., 2019).

The conditional distribution of GDP growth is characterized by procyclical skewness fluctuations around

a declining trend-skewness. At the onset of downturns, business cycle swings exhibit significant nega-

tive skewness, while expansions are characterized by positively skewed distributions. In turn, the well-

documented counter-cyclicality of GDP growth’s volatility (see Jurado et al., 2015, among others) largely

reflects increasing downside volatility during recessions. We document that the fall in macroeconomic

volatility since the mid-1980s, the so called Great Moderation (McConnell and Perez-Quiros, 2000; Stock

and Watson, 2002), mainly reflects a significant reduction of upside volatility, with downside volatility

remaining stable over the same period. During the last 30 years, skewness has decreased steadily implying

a higher exposure to downside risk, which partially accounts for the slowdown in long-run growth observed

since the early 2000s (see, e.g., Antolin-Diaz et al., 2017; Cette et al., 2016). Within our framework, the

extreme realizations of the pandemic quarters are captured through movements in volatility and skewness,
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allowing the model to remain remarkably stable, and suggesting that such outcomes were, to some extent,

tail events. When assessed on its out-of-sample performance, our model delivers well calibrated predictive

densities, improving upon competitive benchmarks in terms of point, density and tail forecasts, as well as

leading to timely predictions of the odds of forthcoming recessions.

Several measures of financial distress have been identified as relevant indicators for predicting economic

downturns.1 We show that the four subcomponents of the National Financial Condition Index (NFCI,

Brave and Butters, 2012), capturing risk, credit, leverage and nonfinancial leverage developments, help

predict different features of the GDP growth distribution. The slow building up of leverage emerges

as a key determinant of the scale of distribution, whereas skewness relates to all the subindices. We

document that financial deepening during the expansionary phase of the cycle is associated with positive

GDP growth’s skewness, whereas tightening of financial conditions, especially the build-up of household

debt, consistently predicts downside risk episodes. Similarly, financial conditions significantly improve the

out-of-sample forecasting accuracy of our model, in particular during recessions.

Although aggregate measures succeed in summarizing a large amount of data, concerns that information

relevant for assessing risk can remain undetected persist (see, e.g., Galvão and Owyang, 2018; Carriero

et al., 2020b). To address this question, we perform an out-of-sample variable selection exercise based on

the ‘shrink-then-sparsify ’ approach of Hahn and Carvalho (2015) using the full set of predictors feeding

into the NFCI.2 Indicators pertaining to the build up of leverage of financial institutions and households,

as well as credit conditions, receive the least shrinkage over the full sample. During the latest financial

crisis, the model selects indicators relating to developments in the shadow banking sector, credit spreads

and mortgage-backed securities issuance. This highlights that that information in the balance sheet of the

intermediary sector (Adrian and Shin, 2008), and the growing imbalances in the housing market (see, e.g.,

Gertler and Gilchrist, 2018) already provided considerable information about rising vulnerabilities in the

economy, and thus about increasing downside risks ahead and during the financial crisis. We find that

processing the signal from a large panel of financial predictors leads to substantial improvements in short

term predictions, with sizable gains associated with the ability of the model to capture the increase in the

downside risk ahead of the 2007-2009 Great Recession,3 and especially during the most recent pandemic

quarters.

Our results highlight the importance of accounting for asymmetric business cycle fluctuations. These

can emerge through nonlinearities in the transmission of Gaussian shocks (see, e.g., Fernández-Villaverde

and Guerrón-Quintana, 2020a), or alternatively reflect conditionally skewed shocks hitting the economy

1Among others, traditional spread measures (see, e.g., Rudebusch and Williams, 2009), credit and leverage growth
(Drehmann et al., 2010; Jordà et al., 2013), as well as the leverage position of financial intermediaries (Adrian and
Shin, 2008) received particular attention.

2Giannone et al. (2018) warn that sparsity can arise as an artefact of strong a priori beliefs. We approach sparsity
within the purely data-driven framework of Ray and Bhattacharya (2018) which is robust to this concern, as also
argued in Huber et al. (2020).

3The latter finding corroborates the evidence in Alessi et al. (2014), that the central banks’ failure to predict the
2007-2009 downturn can be ascribed to their inability to read the signals from deteriorating financial conditions.
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(as in Bekaert and Engstrom, 2017; Salgado et al., 2019). The procyclical skewness dynamics we document

is found to be associated with a dynamic correlation between the first and second moments, being positive

in expansions, and turning negative in recessions (in line with the empirical evidence in Carriero et al.,

2020a). This further reinforces the necessity of distinguishing between “good” and “bad” uncertainty,

which can potentially impact economic activity in opposite directions (Segal et al., 2015). Our findings

also emphasise the need to account for the nonlinear relationship between financial conditions and credit

availability, and the distribution of GDP growth (see, e.g., Fernández-Villaverde et al., 2019) for policy

monitoring and stabilization policy design (Gadea Rivas et al., 2020; Jordà et al., 2020). Lastly, over the last

three decades the fall in trend-skewness of economic fluctuations and the associated increase of downside

risk emerges as a salient feature of the data which needs to be accounted by theoretical macroeconomic

models (see, e.g., Jensen et al., 2020).

Related literature: This paper builds on the growing literature exploring the asymmetry characteriz-

ing business cycle fluctuations, and the relationship between real economic activity and financial conditions.

Giglio et al. (2016) and Adrian et al. (2019) uncover a significant negative correlation between financial

conditions and the lower quantiles of the conditional distribution of future economic growth by means of

quantile regressions. We introduce a novel approach based on the modeling of the parameters of a Skew-t

distribution. Out approach is based on a rich, yet parsimonious structure, and avoids the burdensome

necessity to fit the estimated quantiles to a distribution. In particular, our model features persistence

in the skewness of the distribution of GDP growth, in line with the term structure of the growth-at-risk

displaying stronger asymmetry for the short- than for the medium-run (Adrian et al., 2018), and consistent

with the pronounced skewness displayed by the Survey of Professional Forecasters’ short-term predictions

(Ganics et al., 2020). Differently to other contributions (see, e.g., Plagborg-Møller et al., 2020), we model

both secular and cyclical changes of the distribution of GDP growth. This is essential in order to recover

well-known stylized facts, such as the Great Moderation period (McConnell and Perez-Quiros, 2000; Stock

and Watson, 2002) and the fall in long-run GDP growth (Antolin-Diaz et al., 2017), as well as to uncover

an increasingly negatively skewed business cycle in the last part of the sample (Jensen et al., 2020).

A number of recent contributions have called into question the presence of asymmetry in business cycle

fluctuations, and have suggested alternative ways of capturing time variation in downside risk (see, e.g.,

Brownlees and Souza, 2020; Carriero et al., 2020a). Our approach allows for, but does not impose, skewness

in GDP growth. Yet, we document significant variation in the asymmetry of the conditional distribution of

GDP growth, which is associated with substantial gains in out-of-sample forecasts and downside risk pre-

dictions over standard volatility models whose competitiveness has recently been highlighted by Brownlees

and Souza (2020).

Existing models for conditional skewness rely on ad hoc law of motion for the time-varying parameters,

and the asymmetry is updated as a function of higher-order powers of the residuals (Hansen, 1994; Harvey
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and Siddique, 1999). In stead, we rely on the score-driven framework put forward by Creal et al. (2013) and

Harvey (2013), which has proven to be particularly suitable for accommodating parameters’ time variation

under different distributional assumptions (Koopman et al., 2016). Within our setting, parameters update

according to (highly) nonlinear functions of past prediction errors, depending, among other, on the shape

of the conditional distribution at the time of the update. Thus, not only the updating mechanism adapts

to the local properties of the data, but it is also robust to the presence of extreme realizations, contrary

to model updates based on higher-order powers of the residuals. Within the score-driven setting, to the

best of our knowledge, we are the first to rely on Bayesian estimation methods. This allows us to jointly

tackle parameters’ proliferation and incorporate estimation uncertainty when assessing the predictions of

the model.

Structure: The remainder of the paper is organized as follows. Section 2 provides evidence of time-

varying business cycle asymmetry. Section 3 presents the model, the estimation methodology and the

forecasting procedure. Section 4 illustrates the characteristics of the conditional distribution of GDP

growth, and how these relate to financial predictors. Section 5 reports the out-of-sample forecast and

downside risk prediction evaluation. In Section 6 we investigate the predictive ability of the large set of

financial indicators. Section 7 concludes.

2 Motivating evidence

Assessing the degree of skewness of GDP growth is notoriously challenging. When measured over the

1973-2020 (1973-2019) sample, we obtain a negative sample skewness of -2.58 (-0.42). Yet, due to the low

precision of this estimate over the full sample, we cannot reject the null of symmetry using the Bai and Ng

(2005) test. However, the absence of skewness in the unconditional distribution does not necessarily imply

the conditional distribution being symmetric as well (Carriero et al., 2020a). The difficulty in obtaining

significant skewness estimates can potentially reflect the dynamic nature of the asymmetry of economic

fluctuations. Using the Bai and Ng (2005) test over different rolling windows of 4 to 6 years, the test often

rejects the null of symmetry, with periods of significant negative and positive skewness detected over the

sample.4

Harvey (2013, Section 2.5) highlights that the Lagrange multiplier principle can be employed to con-

struct appropriate test statistics for the time variation of parameters. Within this framework, testing for

parameters’ variation requires starting from a benchmark model, under the null of no time variation of

the parameter(s) of interest. Here, we assume that GDP growth follows an AR(2) process with Skew-t

innovations, with a shape parameter pinning down the degree of asymmetry. We test for the time variation

of this parameter considering both the case of constant volatility and the more realistic case of time-varying

4See Figure H1 in Appendix H, for a summary of these results.
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Table 1: Score-based tests for time variation

time-varying time-varying
location location & scale

Q Q∗ N Q Q∗ N

Scale2 7.187∗∗∗ 7.296∗∗∗ 0.979∗∗∗
Shape 8.497∗∗∗ 8.626∗∗∗ 0.603∗∗ 22.608∗∗∗ 22.951∗∗∗ 1.053∗∗∗

Note: Q is the portmanteau test, Q∗ is the Ljung-Box extension and N corresponds to the Nyblom test. The lag
length for the Portmanteau and Ljung-Box tests are selected following Escanciano and Lobato (2009). The first two
tests are distributed as a χ2 with 1 degree of freedom, the Nyblom test statistics is instead distributed as a Cramer
von-Mises distribution with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p < 1%.

volatility.5 Table 1 reports the statistics for the Portmanteau (Q), Ljung-Box (Q∗) and Nyblom (1989)

(N) tests. The null hypothesis of a constant shape parameter is strongly rejected, against the alternative

of time variation. Moreover, the rejection of the Nyblom test, which under the alternative hypothesis

assumes the parameter to follow a martingale process, suggests that the shape parameter is likely to be

highly persistent.

Starting from this novel evidence, in the next Section we introduce a modeling framework that accom-

modates, but do not impose, the presence of time-varying asymmetry in the conditional distribution of

GDP growth. We will further show that, despite conditional skewness largely varying over the sample,

this does not prevent the model from generating unconditional symmetry in the sample distribution of

economic growth, consistently with what we find in the data.

3 A time-varying Skew-t model for GDP growth

Let yt denote the annualized quarter-on-quarter GDP growth at time t. We assume its conditional

distribution can be characterized by a Skew-t (Arellano-Valle et al., 2005; Gómez et al., 2007), with time-

varying location µt, scale σt, and shape %t parameters, and constant degrees of freedom ν:

yt = µt + εt, εt ∼ sktν(0, σ2
t , %t), (1)

with ν > 3, σt > 0, and %t ∈ [−1, 1]. The shape parameter fully characterizes the asymmetry of the

distribution, with 1−%t
1+%t

defining the ratio of the probability mass on the right, over the probability mass

on the left of the mode, µt. Therefore, positive (negative) values of %t imply negatively (positively) skewed

distributions. The conditional log-likelihood function of the observation at time t is:

`t = log p(yt|θ, Yt−1) = log C(η)− 1

2
log σ2

t −
1 + η

2η
log

[
1 +

ηε2
t

(1− sgn(εt)%t)2σ2
t

]
, (2)

5Appendix A provides additional details on the specifics of the tests, as well as alternative specifications for the
location and scale of GDP growth under the null Hypothesis, confirming the robustness of these results.
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with η = 1
ν being the inverse of the degrees of freedom, C(η) =

Γ

(
1+η
2η

)
√
π
η Γ
(

1
2η

) , Γ(·) is the Gamma function, and

sgn(·) is the sign function. The vector θ collects all the static parameters of the model, and Yt−1 = {yj}t−1
j=1

is the information set, up to time t − 1. For %t = 0 we have the symmetric Student-t distribution, for

η → 0 we retrieve the epsilon-Skew-Gaussian distribution of Mudholkar and Hutson (2000), whereas the

distribution collapses to a Gaussian density when both conditions hold.6 Thus, we allow for, but do not

impose, asymmetric innovation terms.

We model the time-variation of the parameters within the score driven framework of Creal et al. (2013)

and Harvey (2013). Let ft collect the vector of time-varying parameters of interest, the updating mechanism

is given by the autoregressive process

ft+1 = Aft +BXt + Cst, (3)

where A contains autoregressive parameters governing the persistence of the updating, B collects loadings

on a potential set of financial covariates Xt, and C collects the smoothing parameters adjusting the speed

of the updating, driven by an appropriate function of the prediction error. Specifically, the scaled score,

st, is defined as st = St∇t, where:

∇t =
∂`t
∂ft

, St = I−
1
2

t = E
(
− ∂2`t
∂ft∂f ′t

)− 1
2

, (4)

with ∇t being a vector of scores, namely the gradient of the likelihood function `t with respect to the

dynamic parameters, while the scaling matrix St is proportional to the square root of the Moore-Penrose

pseudo-inverse of the Information matrix, It. The resulting scaled score is a martingale difference sequence

with conditional variance equal to the identity matrix. Hence, the direction and magnitude of the updating

are dictated by the steepness and curvature of the likelihood function, to improve the local fit of the model.

The resulting model belongs to the class of observation-driven models, for which the trajectories of the

time-varying parameters are perfectly predictable given past information and the log-likelihood function is

available in closed form (Cox, 1981). The following Proposition provides the closed form expressions for

the gradient and the associated information matrix.

Proposition 1. Given the model specification in Equation (1) and the likelihood in Equation (2), the

elements of the gradient ∇t, with respect to location, scale and asymmetry, are:

∂`t
∂µt

= wt
ζt
σt
, ∂`t

∂σ2
t

=
(wtζ2t−1)

2σ2
t

, ∂`t
∂%t

= − sgn(εt)
(1−sgn(εt)%t)

wtζ
2
t , (5)

where wt = (1+η)
(1−sgn(εt)%t)2+ηζ2t

and ζt denotes the scaled prediction error, ζt = εt
σt
. The associated information

6As opposed to the Skew-t distribution of Azzalini and Capitanio (2003), the Skew-t distribution of Gómez et al.
(2007) retrieve an information matrix which is always non-singular, and can thus be inverted, provided that |%t| < 1.
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matrix reads as follows:

It =


(1+η)

(1+3η)(1−%2t )σ2
t

0 − 4C(1+η)
σt(1−%2t )(1+3η)

0 1
2(1+3η)σ4

t
0

− 4C(1+η)
σt(1−%2t )(1+3η)

0 3(1+η)
(1−%2t )(1+3η)

 . (6)

Proof. See Appendix B.

Proposition 1 highlights the central role of re-weighting the standardized prediction error (and its

square values) for updating of the time-varying parameters. Weights, wt, penalize extreme standardized

innovations depending on the thickness of the tails, as well as volatility and asymmetry estimated con-

ditional to time t − 1. The top left panel of Figure 1 displays the weights associated to the prediction

error, for alternative model parametrizations. In a Gaussian setting (black line) weights are constant and

equal to unity, implying no discounting. On the other hand, when the asymmetry parameter is zero (red

line), the weights display the classic outlier-discounting typical of the Student-t distributions (see, e.g.

Delle Monache and Petrella, 2017). When the distribution is positively (negatively) skewed, i.e., for %t < 0

(%t > 0), negative (positive) prediction errors, less likely in expectation, command a larger update of the

parameters. This asymmetric treatment of the signal of the prediction error is more pronounced as the

skewness of the distribution grows larger (i.e., |%t| → 1).

In order to ensure the scale σt to be positive and the shape %t to lie within the unit circle, we apply time-

invariant, invertible and twice differentiable “link functions” to these parameters. In practice, we model

γt = log(σt) and δt = arctanh(%t), such that the vector of time-varying parameters becomes ft = (µt, γt, δt)
′.

Moreover, we follow Lucas and Zhang (2016) in scaling the score only using the diagonal elements of the

information matrix. Therefore, the associated scaled score vector is

st = (J ′tdiag(It)Jt)−
1
2J ′t∇t =


sµt

sγt

sδt

 =


√

(1+3η)(1−%2t )
(1+η) wtζt√

(1+3η)
2 (wtζ

2
t − 1)

−sgn(εt)
√

(1+sgn(εt)%t)(1+3η)
3(1−sgn(εt)%t)(1+η)wtζ

2
t

 , (7)

where Jt =
∂(µt,σ2

t ,%t)
∂(µt,γt,δt)′

is the Jacobian matrix associated to the link functions.

The remainder of Figure 1 plots the scaled scores against the standardized innovations, for the location,

scale and shape parameters, respectively.7 The location updates in the direction of the prediction error. The

outlier discounting implied by the t distribution gives rise to the typical S-shaped influence function (see,

e.g. Harvey and Luati, 2014), which in our case adapts to the asymmetry of the conditional distribution.

The shape updates in the opposite direction of the prediction error, such that for negative prediction errors

(i.e. ζt < 0) the conditional distribution becomes more left skewed. On the contrary, updates of the

7These are akin to the news impact curves popularized by Engle and Ng (1993) in the context of the volatility
models. In our case, the “news” are measured in terms of scaled prediction errors, as compared to the raw errors.
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Figure 1: Prediction error and parameters’ updating
Note: The figures plot the weighting scheme implied by ωt, and the scaled scores, for different values of the scaled
prediction error ζt = εt/σt. We consider three values of the asymmetry parameter: -0.5 (blue), 0 (red) and 0.7
(green). The Gaussian case is reported in black. The scale parameter is set to 1, with 5 degrees of freedom.

scale do not depend on the sign of the innovations, but on their magnitude: the parameter increases for

weighted squared prediction errors greater than unity, ωtζ2
t > 1, and decreases otherwise. Notice that while

the (scaled) scores for the location and shape parameters are negatively correlated, updates of the scale

are (unconditionally) uncorrelated with revisions of the other parameters, as suggested by the Information

matrix in Equation (6). However, updates of the scale and shape parameters positively comove at the

onset of recession. Business cycle turning points are typically marked by large, negative prediction errors,

such that the conditional distribution of GDP growth features negative shifts in the location, increasing

dispersion and deepening negative skewness.

The updating mechanism associated with the score function in Equation (7) depends on the estimated

parameters at time t, and thus varies over time. For a given prediction error, the magnitude of the updates

are smaller when large errors are expected, i.e. when the conditional distribution features a large scale.

Most importantly, the asymmetry of the distribution plays a key role in the translation of the standardized

prediction error into a signal for the updates. When the distribution is left skewed (i.e. %t > 0) a positive
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(negative) prediction error leads to a more (less) pronounced update for the parameters, while the opposite

is true in the case of a positively skew distribution. This property of the updating function is a direct

consequence of the stark asymmetry in the weights. Hence, the model is faster to update the size and sign

of the asymmetry of the distribution whenever there is evidence for a change of sign, like the occurrence

of a large, negative prediction error. In our application, this allows the model to promptly detect shifts in

the skewness of GDP growth around business cycle turning points. In addition, the updating mechanism is

robust to the presence of outliers. For extreme values of the (scaled) prediction errors, parameters’ updates

become inelastic to the standardized innovations (see Appendix B.3). As a consequence, our model remains

well-behaved even in the face of extremely large realizations of the prediction error, as observed in the first

quarters of 2020.

Existing models that account for time-varying conditional skewness and asymmetric t innovations are

based on ad hoc updating mechanisms based on third-order powers of the prediction errors (see, e.g.,

Hansen, 1994; Harvey and Siddique, 1999). This type of updating presents two main drawbacks. First,

the implied mapping between prediction errors and time-varying parameters does not depend on current

estimates of the conditional distribution and remains constant over time. For instance, this framework does

not account for the higher probability of a negative prediction error when the conditional distribution of

the data is negatively skewed. Instead, it updates the parameters regardless of the local properties of the

distribution. Second, the introduction of higher-order powers of the innovations makes the time-varying

parameters inherently sensitive to large prediction errors, thus becoming unstable in the presence of outliers.

On the contrary, the score driven framework provides outlier robust and information theoretic optimal

updates. In fact, Blasques et al. (2015) show that score-driven updates reduce the local Kullback-Leibler

divergence between the true and the model-implied conditional density, even under severe misspecification.

3.1 Secular and cyclical variation of GDP growth’s distribution

When modelling the conditional distribution of GDP growth, it is important to allow for both cyclical

and secular movements of the central moments. Several papers have documented that over the sample

under analysis GDP growth has experienced significant changes in the long run mean (see, e.g. Antolin-

Diaz et al., 2017; Cette et al., 2016), as well as shifts in the volatility (McConnell and Perez-Quiros, 2000;

Stock and Watson, 2002), and skewness of the distribution (Jensen et al., 2020) from the late 1980s. At

the same time, Jurado et al. (2015) show that the volatility of GDP growth is countercyclical, while Giglio

et al. (2016) and Adrian et al. (2019) argue that the skewness of the cycle falls sharply during recessions.

To account for these features of the data, we postulate a two-component specification for the time-varying

parameters, in the spirit of Engle and Lee (1999). We posit a random walk updating for the permanent

components, where these are able to track both smooth variations and sudden breaks in the level of the

parameters. Moreover, we allow a set of predictors, Xt, to have a transitory impact on the parameters of

the distribution.
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The location parameter is a linear combination of a trend, µ̄t, and a stationary component, µ̃t:

µt+1 = µ̄t+1 + µ̃t+1, (8)

µ̄t+1 = µ̄t + ςµsµt, (9)

µ̃t+1 = φµ,1µ̃t + φµ,2µ̃t−1 + β′µXt + κµsµt, (10)

where the AR(2) specification for the cyclical component is able to recover the characteristic hump shaped

impulse response of the data (see, e.g. Chauvet and Potter, 2013). Following Engle and Rangel (2008), we

assume a multiplicative specification for the volatility, i.e. γt = log(σt) where:

γt+1 = γ̄t+1 + γ̃t+1, (11)

γ̄t+1 = γ̄t + ςγsγt, (12)

γ̃t+1 = φγ γ̃t + β′γXt + κγsγt. (13)

Similarly, we posit an additive specification for the unrestricted shape parameter, δt = arctanh(%t):

δt+1 = δ̄t+1 + δ̃t+1, (14)

δ̄t+1 = δ̄t + ςδsδt, (15)

δ̃t+1 = φδ δ̃t + β′δXt + κδsδt, (16)

that implies %t = tanh(δ̄t + δ̃t). Therefore, the resulting vector of time-varying parameters is equal to

ft = (µ̄t, µ̃t, γ̄t, γ̃t, δ̄t, δ̃t)
′, whose law of motion is described by a restricted specification of Equation (3), as

we show in Appendix B.

Plagborg-Møller et al. (2020) consider a time-varying Skew-t specification for GDP growth and specify

the time-varying parameters (location, log-scale and shape) as linear functions of a set of predictors. In

this case - which remains nested within our setting - the sole source of parameters’ variation stems from

the dynamics of the predictors. This modelling choice generates substantial variability in the underlying

parameters, and thus uncertainty around the estimates. In contrast, our specification allows for both secular

and transitory shifts in the parameters, where the autoregressive structure of the cyclical components makes

them functions of discounted values of all past predictors and scores (where these latter are themselves

nonlinear functions of past data). Specifically,

µt+1 = µ̄t+1 +

t−1∑
j=0

ψµ,j
(
β′µXt−j + κµsµt−j

)
(17)

γt+1 = γ̄t+1 +

t−1∑
j=0

φjγ
(
β′γXt−j + κγsγt−j

)
, (18)
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δt+1 = δ̄t+1 +

t−1∑
j=0

φjδ
(
β′δXt−j + κδsδt−j

)
(19)

where ψµ,j is a convolution of the autoregressive parameters φµ,1 and φµ,2, which decays to zero for j →∞,

and the long-run components are proportional to the cumulative sum of past scores. As a result, the time-

varying parameters we estimate are smoother and less affected by the noise of data.8

3.2 Estimation

The parameters of the model and the associated conditional distribution of GDP growth are estimated

using Bayesian methods. Maximum likelihood estimates are used to initialize an adaptive Random-Walk

Metropolis-Hastings (ARWMH) algorithm (Haario et al., 1999). Credible sets for both static and time-

varying parameters are obtained from the empirical distribution functions arising from the resampling.

We set Minnesota-type Normal priors for the AR coefficients of the cyclical parameters, centered

around high persistence values. For the location’s AR parameters, we also introduce a prior on the sum of

coefficients, in line with Doan et al. (1984). We assume Normal priors for the loadings associated to the

predictors. These coefficients are centered around zero, with tight scales in order to avoid overfitting of

the parameters, in the fashion of L2 (Ridge) regularization. The prior distribution of the score loadings is

inverse gamma, as we expect these parameters to be positive. Lastly, we assume an inverse gamma prior

for η. Appendix D provides an extensive description of the sampling algorithm as well as the details on

the exact prior specification for the parameters.

Monte Carlo exercise Appendix E investigates the small sample properties of the model through a

Monte Carlo analysis. The model successfully tracks parameters time variation for a variety of different

data generating processes. When the distribution is symmetric throughout the entire sample, the model

quickly estimates a null shape parameter, with limited variability over time. In particular, the model does

not confound any correlation between the time variation of the location and the scale (known to generate

unconditional skewness) for the presence of conditional asymmetry. We also simulated a model with a

one-time break in the shape parameter: the model correctly captures the break in the asymmetry, and the

two-component specification properly disentangles long- and short-lived fluctuations, so that the break is

tracked by the long-run component whereas the short-run component features low variability.

8In addition, our framework allows for non-linearities through the non-linear mapping of the predictors into the
scaled scores, and the non-linear link functions applied to the restricted parameters. This provides an automatic
down-weighting of the extreme fluctuations in the data. In Appendix C we highlight that these additional features
of the model turn out to be important to recover salient features of the distribution of GDP growth, such as the
Great Moderation, and significant cyclical variation of the conditional volatility and skewness.
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3.3 Forecasts

For any draw of the model parameters, θ, the last step of the the observation driven filter in Equation (3)

provides the optimal one-step-ahead prediction of the parameters of interest (Cox, 1981). These values can

then be used to retrieve the one-step-ahead prediction density for GDP growth, p(yT+1|θ) = sktν(fT+1(θ)),

which allows us to draw the forecast of interest as p(yT+1) =
∫
p(yT+1|θ)dθ.

For multiple-steps forecasts additional complications arise from the necessity to sample the score, and

the dependence of the forecasts on the predicted values of the conditioning variables. In Section 5, due to

the high persistence of the predictors we produce forecasts keeping these fixed to their last observations,

akin to assuming a random walk specification for their law of motion.9 As for the score vector, we follow

Koopman et al. (2018) and adopt a “bootcasting” algorithm to sample multiple h−1 dimensional vectors of

the scores from the (scaled) score vector obtained in the estimation, thus avoiding any assumption on the

distribution of the score. Therefore, for a given (bootstraped) draw of the score, and assuming XT+h = XT ,

the score filter (3) can be used to obtain fT+h, and thus compute p(yT+h|θ,XT+h = XT ). The h-step ahead

forecast reads p(yT+h) =
∫
p(yT+h|θ,XT+h = XT )dθ.

3.4 Data and alternative model specifications

We use US quarterly data over the period 1973Q1 to 2020Q4 on economic activity and financial con-

ditions. For the latter we consider the broad NFCI and its four subindices, tracking developments in

the credit, risk, leverage and non-financial leverage markets (Brave and Butters, 2012). We will consider

alternative models with either the NFCI or the disaggregated components. While the risk and credit com-

ponents closely track the dynamics of the NFCI, the leverage indicator, as well as the nonfinancial leverage

(NFL) index, provide important additional information. In particular, the is often regarded as an “early

warning” signal for economic downturns (Mian and Sufi, 2010).10

Table 2 investigates the goodness of fit of alternative models using the Deviance Information Crite-

rion (DIC, Spiegelhalter et al., 2002). We consider models of increasing complexity, featuring different

specifications for the time varying parameters. A simple Gaussian AR(2) model with stochastic volatility

underperforms with respect to models featuring skewness and fat tails. When we introduce time variation

in skewness, DIC scores substantially improve, especially around recessions, highlighting the relevance of

time-varying business cycle asymmetry. Allowing for two lags of the financial predictors, as well as slow-

moving, long-run components produces lower DIC values relative to simpler mean reverting specification

of the time varying parameters. Specifically, including the subcomponents of the NFCI improves the fit of

the model compared to using the aggregate index, in particular around recession.11 Based on these results,

9As an alternative, one could feed predictions for the explanatory variables into the model. The latter approach
produces results very similar to the one reported here.

10See Appendix F for a detailed discussion on the data.
11We do not explicitly account for lagged GDP growth among the predictors as the conditional score vector already

summarizes the relevant information of current GDP growth for updating the parameters. A model which includes

13



Table 2: Deviance Information Criterion for alternative specifications

Model DIC DIC Rec

Gaussian AR(2) + GARCH(1,1) 4.763 13.570
Skew-t AR(2) + GAS(1,1) with % fixed 4.630 12.784
One-Component Skew-t Model 4.692 7.951
One-Component Skew-t Model with NFCI 4.992 8.469
One-Component Skew-t Model with 4DFI 4.929 7.921
Two-Component Skew-t Model 4.703 7.894
Two-Component Skew-t Model with NFCI 4.627 7.406
Two-Component Skew-t Model with 4DFI 4.612 7.137

Note: The table reports the Deviance Information Criterion of Spiegelhalter et al. (2002) for different model spec-
ifications. We consider two AR(2) specifications, one with Gaussian GARCH(1,1) volatility and one with Skew-t
GARCH(1,1) volatility with constant asymmetry. Next, we include three different specifications of the time-varying
parameters Skew-t model with time-invariant long-run components and no predictors, lags of the NFCI and lags of
the four disaggregated financial indices. The last three models allow for time-varying long-run components. In the
column DIC Rec we evaluate the DIC measure during recession periods.

we now focus on the baseline specification including the four subindices of the NFCI.

4 Time variation in the distribution of GDP growth

Our model allows us to study the characteristics of the conditional distribution of GDP growth. Figure 2

reports the time-varying first and second moments of the distribution of GDP growth.12 The mean moves

along the business cycle and displays sharp contractions during recessions. Volatility features a marked

countercyclical behaviour, with peaks occurring during recessions. Focusing on the last year of the sample,

the model features a sharp increase in volatility and a quickly rebounding mean. Yet, these movements are

not as sharp as the ones observed over the Great Recession, suggesting that through the lenses of the model

Covid-quarters are, at least partially, characterized as tail events. On the same charts, we also report in

red the low-frequency components. That is, the moments of the distribution that would prevail in the

absence of cyclical variations of the parameters. The model neatly captures a fall in long-run growth, with

the expected value falling from roughly 4% in the 1970s, to roughly 2.3% at the end of the sample, in line

with the evidence in Antolin-Diaz et al. (2017). The Great Moderation is reflected in a visible reduction

in GDP growth’s volatility: starting in the mid-1980s, cyclical volatility fluctuations dampen down as the

impact of the consecutive recessions of the 1970s and 1980s fades away, and the long-run volatility is revised

downward by roughly 30%.

Time-varying skewness is reported in the left panel of Figure 3. This evolves in a distinctively procyclical

pattern, such that substantially negative skewness characterizes recessions, whereas expansions are marked

by positively skewed distributions. Interestingly, skewness tends to decrease in anticipation of recessions,

lagged GDP growth and financial indicators as predictors delivers DIC scores which are only marginally better than
the baseline model’s over the full sample, but are substantially worse when focusing on recessions. In Appendix H
we show that this specification does not improve the out-of-sample performance of the model.

12See Figure 2, in Appendix H for estimated time-varying parameters.
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Expected Value Standard Deviation

Figure 2: Time-varying mean and variance
Note: The plots illustrate the estimated time-varying mean and standard deviation (blue), along with the respective
long-run components, in red, and 90% confidence bands. Shaded bands represent NBER recessions.

Skewness Upside and Downside volatility

Figure 3: Time-varying asymmetry
Note: The left panel illustrates the estimated time-varying skewness (blue), along with its long-run component (red).
The right panel reports the upside and downside volatilities, in blue and red, respectively. Shadings correspond to
90% confidence bands. Shaded bands represent NBER recessions.

a feature which we show to be related to the information contained in the financial indicators, suggesting

that downside risk dominates ahead of, and during downturns. Over the long-run, skewness displays a

downward trend starting in the late 1980s, and falling markedly in the post-2000 sample. As a result,

business cycle fluctuations are characterized by decreasing, but positive, trend-skewness until the onset of

the financial crisis in 2007. In the aftermath of the subsequent recession, this long-term trend turns to

negative values, implying negatively skewed long-run conditional distributions. This signals the build-up

of vulnerabilities, resulting in the economy being increasingly exposed to downside risk episodes.

Upside and downside volatility Arellano-Valle et al. (2005) highlight that the Skew-t distribution
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can be easily rewritten as a two-piece Skew-t density by reweighting the scale by a function of the asymmetry

parameter. In line with the “good” and “bad” volatility decomposition proposed by Bekaert and Engstrom

(2017), one can define “upside” (V ol+ =
√
V ar(yt|yt ≥ µt)) and “downside” (V ol− =

√
V ar(yt|yt < µt))

volatility as:

V ol+ =
1− %t

2

√
V ar(yt|Yt−1), V ol− =

1 + %t
2

√
V ar(yt|Yt−1). (20)

These two volatility components are reported in the right panel of Figure 3. Downside volatility spikes

during recessions, whereas upside volatility displays only modest (pro-)cyclicality. Therefore, the marked

countercyclicality of aggregate volatility (see also Jurado et al., 2015) is largely a reflection of countercyclical

downside risk. Whereas the financial crisis of 2007-2008 appears as an episode of purely downside volatility,

the more recent Covid-recession is characterized by a spike in downside volatility in the first half of 2020

quickly receding in favor of upside volatility in the second half. Over the long-run, upside volatility features

a steep decline starting in the mid-1980s with small cyclical variations. On the other hand, downside

volatility has remained stable at around the same values observed in the aftermath of mid-1970s recession,

with sudden spikes occurring during recessions.

Expected value and variance decomposition The estimated model suggests that conditional

skewness fluctuations are a prominent feature of the predictive distribution of GDP growth, playing an

important role in determining the dynamics of the first and second moment.13 To see that, it is worth

noting that in our model:

E(yt|Yt−1) = µt − g(η)σt%t, g(η) =
4C(η)

1− η
, (21)

V ar(yt|Yt−1) = σ2
t

(
1

1− 2η
+ h(η)%2

t

)
, h(η) =

3

1− 2η
− g(η)2, (22)

Thus, the (time-varying) expected value and variance are equal to the location and scale of a standard

Student-t distribution, plus a component which is a function of the shape parameter. The latter is magnified

by larger values of σt, while it disappears for both moments when %t is equal to 0.

Figure 4 isolates the contribution of the asymmetry for both the first and second moment. The expected

value decomposition highlights how the location parameter (red line) is remarkably stable over the sample,

while most of the fluctuations reflect shifts in the shape of the distribution (blue line), with expansions

characterized by positive skewness and contractions associated with negative skewness. Interestingly, the

contribution of the asymmetry for positive expected values becomes more muted during the Great Moder-

ation, whereas the negative drag from the asymmetry remains of substantial importance during recessions.

13Although an expression for the skewness is not available in closed form, a Taylor expansion of the skewness
function attributes almost all of the variation to movements of the shape parameter, while remaining relatively
insensitive to location and scale.
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Expected value Variance

Figure 4: Expected value and variance decomposition
Note: The plot shows the decomposition of the expected value and variance of GDP growth. We report in red the
contribution of the moment estimator (e.g. location and scale), whereas the blue area identifies the contribution
of higher order moments. Central moments (black lines) are computed as per Equation (21)-(22). Shaded bands
represent NBER recessions.

In contrast, the effect of the shape parameter on the second moment is less pervasive, despite deepening

skewness during recessions accounts for a non-trivial share of the increase in variance.14

Equations (21) and (22) also highlight that procyclical variation in the skewness is reflected into a

time-varying correlation between the mean and the volatility of GDP growth. While the mean is always

negatively affected by shifts of the shape parameter (i.e. ∂E(yt|Yt−1)
∂%t

< 0, ∀%t), an increase of the latter is

associated with an increase in the variance when the distribution is negatively skewed, and a decrease in the

variance when the distribution is positively skewed, in that ∂V ar(yt|Yt−1)
∂%t

= 2h(η)σ2
t %t. Since h(η) > 0 for

ν > 3, changes in the asymmetry are associated with changes in the variance of the same sign as the level

of the shape parameter (and thus of opposite sign to the level of conditional skewness). The procyclicality

of skewness reduces volatility during expansions, whereas dispersion increases as skewness plummets to

negative values. This is reflected into a procyclicality in the correlation between mean and variance, which

is in line with findings in Carriero et al. (2020a). These nonlinearities in the interaction between uncertainty

and aggregate economic activity are consistent with findings in Segal et al. (2015), which highlight how

“positive uncertainty” (i.e. volatility in the procyclical phases of the business cycle) tends to be associated

with positive expected growth, whereas this correlation turns negative during contractionary phases of the

cycle.15

Accounting for the slowdown in long-run growth and the Great Moderation. Making

use of the expected value decomposition in Equation (21), we can assess to what extent shifts in long-run

14This is in line with the findings of Salgado et al. (2019) that a substantial fraction of the increase of the
cross-sectional dispersion for firms’ growth is associated with increasing negative dispersion.

15Fernández-Villaverde and Guerrón-Quintana (2020b) discuss the rationale for the presence of an expansionary
impact of increases in in uncertainty.
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Expected value Variance

Figure 5: Long-run GDP growth and volatility
Note: The plot shows the decomposition of the long-run expected value (black lines), akin to taking limh→∞ E[yt+h].
We report in red the contribution of the long-run location component µ̄t, whereas the blue area identifies the
contribution of higher order moments. σ̄t and %̄t refers to the secular components of scale and shape, respectively.
Shaded bands represent NBER recessions.

growth that we observe over the sample reflect a reassessment of (long-run) risk in GDP growth. Starting

in the late 1980s, the distribution of GDP growth featured decreasing positive skewness. This increase in

downside risk maps into a decline of the long-run growth, as shown in Figure 5, so that roughly two thirds

of the slowdown reflect a reassessment of risk. The downward trend in long-run growth is temporarily

reversed in correspondence of the IT productivity boom of the mid-1990s, when long-run growth is revised

upward by roughly 0.5%. Interestingly, we find that this upward revision reflects, to a large extent, a

shift in the risk of the upside, rather than the central tendency, of GDP growth’s distributions. Over the

post-2000 sample, the slowdown in long-run growth accelerates, and it is associated with a rebalancing of

risks towards the downside. In the aftermath of the Great Recession, the long-run component displays a

pronounced left tail, thus becoming a negative drag to long-term growth.

Similarly, we decompose long-run variance into the contributions of long-run upside (blue) and downside

(red) variance in the right panel of Figure 5. Upside variance decreases quite markedly over the Great

Moderation period, and by the end of the sample upside variance is half the level estimated for the 70s.

On the contrary, the downside component of the long-run variance has remained quite stable throughout

the sample. This evidence supports the findings in Jensen et al. (2020) and highlights that the Great

Moderation reflects a reduction of the upside risk not matched by an equal fall in downside risk.

Conditional vs. Unconditional skewness Figure 3 highlights that the skewness of the conditional

distribution displays a marked procyclicality: expansions are characterized by a right-skewed distributions,

whereas contractions are associated with deepening asymmetry, leading to negatively-skewed conditional

distributions during recessions. What does this mean for the unconditional distribution of GDP growth?

To answer this question, we use the estimated model to draw inference of the unconditional (a)symmetry
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1973-2020 

1973-2019 

Figure 6: Unconditional skewness
Note: The figure reports the distribution of unconditional skewness, along with its sample value, in red, and the
sample value excluding the last year of data, in blue

of the data. Specifically, we simulate 10000 alternative path of GDP growth from the model, and for each

of them we compute the associated (unconditional) skewness. The results of this exercise are summarized

in Figure 6. Negative skewness estimates of the unconditional distribution turn out to be 20% more likely

than positive estimates, despite conditional distributions displaying positive skewness for a large part of

the sample. As shown in the left panel of Figure 3, during expansions upside volatility is, on average,

15% higher than downside volatility, while downside volatility is almost double the upside volatility during

recessions. Thus, despite expansions being typically characterized by right-skewed conditional distributions,

the occurrence of tail events is impaired by lower dispersion. On the contrary, recessions are characterized

by more downside uncertainty, resulting in large negative observations being most likely. Excluding the

last year of observations, the sample skewness value of -0.42 lies close to the expected value of the empirical

distribution. However, the sample skewness of -2.58 due to the Pandemic-recession still lies well within the

95% interval.16 Performing the Bai and Ng (2005) test for unconditional skewness on simulated data fails

to find evidence of any degree of asymmetry, not rejecting the null of symmetry about 90% of the times.

The contribution of financial predictors To gauge the contribution of financial indicators to the

overall variation of the parameters, we exploit the moving average representation of the cyclical compo-

nents in Equations (18) and (19). In Figure 7, we decompose γ̃t and δ̃t into a “score-driven” component,

κγ
∑t−1

j=0 φ
j
γsγt−j and κδ

∑t−1
j=0 φ

j
δsδt−j , respectively, and a component reflecting the share of variation driven

by the predictors β′γ
∑t−1

j=0 φ
j
γXt−j and β′δ

∑t−1
j=0 φ

j
δXt−j . These latter are further decomposed so as to high-

light the contribution of each financial index, separately. Leverage is the largest contributor to the variation

of the scale parameter. Increases in leverage during expansions are associated with a reduction of the over-

all dispersion of the conditional distribution of GDP growth, whereas deleveraging during recessions maps

16In fact, repeating the same exercise leaving out the post 2019 sample would leave the distribution of the
unconditional skewness unchanged.
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Scale Shape

Figure 7: Predictive financial conditions
Note: The figures plot the decomposition of the “untransformed” short-term parameters (in black) into a “Score-
driven” (yellow) and a “Predictor-driven” component, for which we highlight all the subcomponents. Shaded bands
represent NBER recessions.

into higher uncertainty. Leverage is also an important determinant of the dynamics of the shape parameter,

and thus of the skewness of the conditional distribution. However, in this case it is nonfinancial leverage

that drives most of asymmetry’s variation. Consistently with the leverage-cycle narrative of Mian and Sufi

(2010) and Jordà et al. (2013), the build-up of the household leverage is identified as the main contributor

to the increase in downside risk in the fist half of the 2000s, and the deleveraging associated with a sub-

stantial fall in downside risk. Indicators of credit spread and credit risk instead mainly seem to be a good

indicator of the sharp increase in downside risk at the height of major recessions. Lower credit spreads

before the crash impaired a sharp increase of the asymmetry parameter, while as the crisis exploded their

higher values pushed the parameter towards further positive values, as argued by Krishnamurthy and Muir

(2017), contributing to determine the amount of asymmetry recessions are characterized by. The contribu-

tion of financial indicators is muted during the dot-com recession, in line with the weak link between this

recession and financial predictors, as highlighted by Stock and Watson (2003).

5 Out-of-sample evaluation

We further explore the importance of taking into account downside risk time variation, and its relation

to financial variables evaluating the (out-of-sample) forecasting performance of the model over the period

1980Q1-2020Q4, at the one-quarter and one-year horizon. Forecasts are obtained from real-time GDP

vintages and evaluated using the latest available release. For the one-year ahead forecasts, results are

reported in cumulated output growth over the next four quarters. We compare the performance of the

models for the entire out-of-sample period, as well as for the post-2000s, and for the recessive periods in

the forecasting sample. We do not include the pandemic-quarters within the recession sample to avoid
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forecast statistics being dominated by a single event.17

We assess the point forecast accuracy via the mean square forecast error (MSFE). Density fore-

casts accuracy is evaluated via the predictive log-score and quantile scores. The latter, put forward by

Gneiting and Ranjan (2011), reads as wQSt+h =
∫ 1

0 QS(α)ω(α)dα, where α represents the quantiles,

QS(α) = 2(I(yt+h < F−1(α)) − α)(F−1(α) − yt+h), with F−1(α) being the empirical quantile function

of the density forecast, and ω(α) is a weighting function. We consider two versions of this measure: i)

the Continuously Ranked Probability Score (CRPS, Gneiting and Raftery, 2007), which assigns equal

weight to each quantile of the empirical distribution function (i.e. ω(α) = 1) and ii) a scoring rule with

ω(α) = (1 − α)2 that assigns higher weights to the lower quantiles of the distribution function, thus em-

phasising the accuracy in predicting the left tail of the distribution. The latter assesses the ability of the

model to correctly characterize downside risk predictions. Similarly, when we evaluate the calibration of

the predictive densities by means of the probability integral transforms (PITs) (Diebold et al., 1998), we

explicitly consider the calibration of the the left side of the distribution. Last, we investigate the use of

the model in producing measures of downside risk and predicting recessions.

5.1 Point and density and downside risk forecasts

Asymmetry and the value of financial predictors. As a first step into our analysis, we aim

at evaluating the importance of accounting for the skewness of the distribution of GDP growth, as well

as assessing whether conditioning on financial predictors leads to forecast improvements. We consider a

Gaussian autoregressive model with GARCH innovations as a benchmark, which has been shown to deliver

competitive out-of-sample forecasts for GDP growth-at-risk (Brownlees and Souza, 2020). Table 3 reports

the predictive performance of alternative Skew-t models against the Gaussian benchmark, for one-quarter

and one-year ahead predictions. In particular, we produce forecasts from (a) a Skew-t model without any

financial predictors, (b) a Skew-t model that includes as predictor only the NFCI and (c) our baseline Skew-

t model, including the four disaggregate financial indices (4DFI ). For all the measures, we report ratios

with respect to the Gaussian benchmark, except for the log-score (logS) for which we report differences.

Values in parentheses report the p-values of the Diebold and Mariano (1995) test for equal predictive

accuracy with the small sample correction proposed by Harvey et al. (1997). Simply introducing fat tails

and asymmetry improves the forecast accuracy of the model with respect to the benchmark Gaussian

specification. However, further predictive accuracy is gained when conditioning on financial information.

Using the four subcomponents leads to additional gains during recessions. This is true for both the one-

quarter and one-year ahead forecasts, for which the improvements are in generally larger, irrespective of

the loss function. The gains over the benchmark Gaussian model are quite substantial, for instance, the

baseline Skt-4DFI model produces roughly 25% (35%) improvement in MSFE, and 10% (15%) and 12%

17In Section 5.3 we show that the results of the out-of-sample evaluations are robust to the exclusion of the data
from 2020, for both the full, and the post-2000s sample.
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Table 3: Forecasting performance

Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.842

(0.000)
0.817
(0.000)

0.812
(0.000)

0.122
(0.000)

0.140
(0.000)

0.060
(0.084)

Post ’00 0.809
(0.000)

0.804
(0.000)

0.793
(0.000)

0.181
(0.000)

0.211
(0.000)

0.167
(0.001)

Rec. 0.955
(0.315)

0.822
(0.067)

0.813
(0.067)

0.349
(0.006)

0.380
(0.007)

0.270
(0.081)

CRPS wQS
Full 0.964

(0.047)
0.941
(0.005)

0.952
(0.025)

0.960
(0.064)

0.926
(0.006)

0.926
(0.009)

Post ’00 0.934
(0.000)

0.912
(0.000)

0.918
(0.000)

0.919
(0.000)

0.894
(0.000)

0.891
(0.002)

Rec. 0.962
(0.265)

0.934
(0.183)

0.928
(0.156)

0.948
(0.189)

0.914
(0.104)

0.858
(0.025)

One-year ahead

MSFE logS
Full 0.720

(0.000)
0.716
(0.002)

0.694
(0.003)

0.486
(0.000)

0.585
(0.000)

0.518
(0.001)

Post ’00 0.723
(0.000)

0.699
(0.000)

0.731
(0.004)

0.814
(0.000)

0.934
(0.000)

0.895
(0.000)

Rec. 0.574
(0.000)

0.620
(0.030)

0.545
(0.005)

1.464
(0.000)

1.572
(0.001)

1.777
(0.001)

CRPS wQS
Full 0.912

(0.003)
0.902
(0.002)

0.883
(0.003)

0.778
(0.001)

0.747
(0.001)

0.766
(0.005)

Post ’00 0.846
(0.000)

0.831
(0.000)

0.831
(0.000)

0.731
(0.000)

0.709
(0.000)

0.726
(0.001)

Rec. 0.855
(0.003)

0.860
(0.006)

0.782
(0.004)

0.620
(0.000)

0.651
(0.002)

0.583
(0.002)

Note: The table reports the average forecast metrics relative to the Gaussian model. We use ratios for the MSFE,
CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score differences
indicate that the column-specific model performs better than the Gaussian benchmark. The p-values for Diebold
and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.
Values in bold are significant at the 10% level; gray shaded cells highlight the best score.

(23%) improvements in the CRPS and wQS, respectively, for the one-quarter (one-year) ahead forecasts.

Gains become even larger if one focuses on the post-2000s sample, or only considers recessions.

Comparison with Adrian et al. (2019) In Table 4 we report the comparison of the baseline

specification against the model of Adrian et al. (2019).18 Our baseline model specification is associated

with better point and density forecasts, and with significant values arising especially in the post-2000s

sample. In particular, it is worth noticing that the forecast gains that we document during recessions stem

from the adaptiveness of the score filter. This, as explained in Section 3, is due to the shape parameter

reacting promptly to turning points, thus implying timely and marked movements of the skewness of the

predictive distributions. As a consequence, forecast densities are characterized by longer left tails during

recessions as compared to those implied by the Skew-t model of Adrian et al. (2019).

Density calibration Table 5 evaluates the calibration of the density forecasts looking at the properties

of the PITs. In particular, we report the test statistic of Rossi and Sekhposyan (2019) for the Gaussian

AR(2) model, the model of Adrian et al. (2019) (ABG), and our Skew-t model with the four disaggregated

18For comparability, we follow exactly the procedure of Adrian et al. (2019), but re-estimating the model using
real-time vintages of GDP growth.
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Table 4: Forecast performance with respect to Adrian et al. (2019)

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.890
(0.000)

2.473
(0.000)

0.983
(0.221)

1.006
(0.599)

1.014
(0.561)

0.571
(0.000)

0.989
(0.426)

1.026
(0.670)

Post ’00 0.837
(0.000)

4.499
(0.000)

0.920
(0.000)

0.941
(0.006)

0.906
(0.133)

0.394
(0.002)

0.914
(0.073)

0.954
(0.269)

Rec. 1.110
(0.828)

0.841
(0.000)

1.030
(0.689)

1.005
(0.534)

1.048
(0.581)

1.387
(0.017)

0.900
(0.239)

0.943
(0.358)

Note: The table reports the average forecast metrics from the Skt-4DFI model relative to Adrian et al. (2019). We
use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of
the log-score differences indicate that the Skt4DFI model performs better than Adrian et al. (2019). The p-values
for Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in
parentheses. Values in bold are significant at the 10% level.

Table 5: Density calibration tests

Skt Skt
AR(2) ABG 4DFI AR(2) ABG 4DFI

One-quarter ahead One-year ahead
Dist. 2.102 1.925 0.883 4.865 2.306 1.162

Left tail 1.074 1.166 0.501 4.757 2.306 1.162

Note: The table reports the test statistics for the Rossi and Sekhposyan (2019) tests, based on the Kolmogorov-
Smirnov type tests. The left tail score is computed over the support [0, 0.25]. Values in bold indicate the rejection
of the null hypothesis of correct specification of the density forecast at the 10% confidence level. Critical values are
obtained by 1000 bootstrap simulations. Gray shaded cells indicate the lowest value of the statistic.

financial indices. The test rejects the null hypothesis of correct specification of the density forecast at the

10% critical value for both the Gaussian benchmark and for the model of Adrian et al. (2019), for the one-

quarter and one-year ahead forecasts. In contrast, the test fails to reject the null of well calibrated forecasts

for the entire density, as well as for the ‘left tail’ of the predictive distributions, capturing movements in

downside risk, for our baseline model.

5.2 Tail risk predictions

We now turn to the assessment of tail risk predictions, placing particular focus on the ability of the

model to anticipate the build up in downside risk ahead of the 2008 financial crisis, and its reduction during

the subsequent recovery. Measures such as Value at Risk (VaR), as well as the Expected Shortfall (ES) are

readily obtained within our framework. ESαt+h = α−1
∫ α

0 V aRat+h|tda describes the expected growth level

for yt+h < V aRαt+h, corresponding to the (100α)th percentile of the h-step ahead predictive distribution,

whereas the Expected Longrise (EL1−α
t+h = α−1

∫ 1
1−α V aR

a
t+h|tda) is the upper counterpart of the ES. In

order to highlight the different risk assessments associated to the models, the left hand panel of Figure 8

contrasts the 5% expected shortfall and the 95% expected longrise for the Gaussian model, the Skew-t

model without financial predictors and our baseline model, considering 10 years around the financial crisis.

The Gaussian model fails to capture the building-up of risk ahead of the Great Recession, predicting
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Expected longrise and shortfall Probability of recession

Figure 8: Expected Shortfall and Expected Longrise
Note: We report the ES and EL for α = 0.05. Shaded bands represent NBER recessions.

an expected shortfall around zero as the economy enters the recession. In addition, assuming a symmetric

distribution implies that a fall in the ES is often associated with peaks in the EL, in fact the minimum

ES corresponds to the maximum EL in 2009Q2. Allowing for Skew-t innovations alleviates both problems,

delivering more conservative risk measures with less erratic longrise figures, and anticipating the build-up

of downside risk ahead of the recession. Conditioning the forecasts on the available subindices of financial

conditions increases the timeliness of the prediction of risk, due to the prompt discounting of financial

overheating. The prediction of the ES falls to roughly −5% in the first quarter of the recessions, and

decreases consistently until the first quarter of recovery, when it is sharply revised upward. Moreover,

within the recession, the model delivers a downwarding longrise, predicting modest gains even for the most

optimistic scenario. The longrise is sharply revised upward already for the first post-trough quarter. These

results are mainly due to the fast updating of the asymmetry parameter, especially when the economy hits

a turning point. This induces a reduction in the mean and an increase in perspective downside risk.19

Brownlees and Souza (2020) argue that a GARCH model provides competitive out-of-sample forecasts

for the lower quantiles of the GDP growth distribution. Evaluating ES accuracy using the score metric pro-

posed by Taylor (2019) highlights that allowing for time varying asymmetry in the conditional distribution

of GDP growth produces large and significant gains with respect to the Gaussian model both in the full

sample and during recessions. For instance, the baseline model produces 25% improvements in one-quarter

ahead forecast during recessions, whereas more than 70% gains are found for the one-year ahead forecast.

Using different scores, such as the Fissler et al. (2016) loss function, or the tick loss function for the 5%

VaR proposed by Giacomini and Komunjer (2005), in Table 6 we document significant gains in tail risk

19In Figure H3, in Appendix H, we report the predictive densities generated by the Gaussian model and the
Skt-4DFI specification, in- and out-of-sample, for the quarters around the trough in Q4 of 2008. In Q1 of 2009,
the Sktmodel predicts a negative mean and substantial downside risk, whereas the Gaussian model predict only a
slightly negative growth, with a roughly symmetric assessment of the risk surrounding this prediction.
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Table 6: Tail risk scores

Skt Skt Skt Skt Skt Skt
no-X 4DFI no-X 4DFI no-X 4DFI

FZG ALS TLF

One-quarter ahead
Full 0.831

(0.040)
0.819
(0.028)

0.959
(0.111)

0.948
(0.028)

0.978
(0.246)

0.900
(0.003)

Post ’00 0.693
(0.002)

0.720
(0.003)

0.912
(0.012)

0.926
(0.038)

0.943
(0.066)

0.915
(0.040)

Rec. 0.641
(0.012)

0.526
(0.012)

0.846
(0.033)

0.749
(0.016)

0.858
(0.048)

0.666
(0.010)

One-year ahead
Full 0.241

(0.000)
0.310
(0.001)

0.397
(0.000)

0.424
(0.000)

0.692
(0.001)

0.622
(0.004)

Post ’00 0.208
(0.002)

0.170
(0.006)

0.435
(0.001)

0.395
(0.003)

0.690
(0.003)

0.475
(0.010)

Rec. 0.137
(0.000)

0.128
(0.001)

0.256
(0.000)

0.237
(0.001)

0.441
(0.001)

0.328
(0.005)

Note: The table reports the average downside tail risk scores, expressed as ratios relative to the Gaussian model.
Ratios smaller than 1 indicate that the column-specific model performs better than the benchmark. The p-values for
Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are reported
in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best score. FZG:
Fissler et al. (2016) loss function; ALS: Taylor (2019) loss function; TLF: Giacomini and Komunjer (2005) tick loss
function.

predictions.

Last, we investigate the ability of the model to predict recessions. The NBER Business Cycle Dating

Committee (BCDC) defines a recession as “[...] a significant decline in activity spread across the economy,

lasting more than a few months [...]”. Therefore, we define the one-year-ahead probability of recession

as the probability of observing any two consecutive negative forecasts in the next four quarters. The

right panel of Figure 8 highlights that combining the information on financial conditions and allowing

for asymmetry in the forecast densities produces a realistic assessment of recession risk. The implied

probability of recession stars picking up earlier as compared to the other measures, warning against an

imminent output contraction. Moreover, the probability of observing a recession within the forthcoming

year recedes sharply when the recession ends and is already below 5% just a quarter after the end of the

recession, as dated by the BCDC. In contrast, the Gaussian model, as well as the Skew-t model without

conditioning information, produce a reasonable probability of recession only toward the end of the recession

period, and they continue to perceive a substantial treat of recession many quarters after the formal end

of it. We evaluate the ability of the model to time recessions over the sample 1980-2020, using the Brier

score. Deviating from the Gaussian assumption provides gains of around 10%, and an additional 20% gain

can be directly ascribed to the inclusion of financial predictors.

Overall, these results underline the importance of allowing for time variation in the skewness of the

conditional distribution of GDP growth for predicting downside risk, both in terms of magnitude and

timing.
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5.3 Extensions

In this Section, we provide a summary of additional analysis regarding the forecasting performances of

the model. Detailed results are provided in Appendix G.

Lagged GDP growth as additional predictor Comparing the forecast performance of the

baseline model with the same version of the model augmented with past lags of GDP growth as predictors,

we find a generally weaker predictive ability in terms of point and density forecasts (see Table G1). These

results confirm that the scaled score already appropriately summarizes the necessary information supplied

by past realizations of the dependent variable, thus making the explicit use of lag of GDP growth redundant

to update the parameters.

How important is parameters’ uncertainty? To answer this question we produce forecasts

from our baseline model fixing the parameters to the (recursively re-estimated) modal estimates, and we

compare their performance with the baseline model’s (which integrate over the estimated parameters). We

find that the accuracy and calibration of density forecasts, especially over the medium horizon, are positively

affected by the presence of parameters’ uncertainty. In particular, explicitly accounting for parameter

uncertainty leads to sizable gains in terms of log-scores and weighted quantile scores, in particular during

recessions. Moreover, forecasts produced with the modal estimates of the model are found to understate

downside risk, in particular for one year ahead forecasts (see Tables G2 and G3).

Excluding 2020 from the forecast evaluation sample We also evaluate the forecasting

performances of the specifications taking out the last year of data and find that the results are generally in

line with those presented above. This highlights that the gains in forecasting performance are associated

with (a) the time variation of conditional asymmetry, and (b) the information of financial indicators (see

Tables G4–G6).

Conditional vs. unconditional skewness We also compare the predictive ability of our models

with respect to an AR(2) model with stochastic volatility and Skew-t innovations, where skewness is

considered as fixed. Model performances of the latter model are largely in line with those of the Gaussian

benchmark, reflecting the weak evidence in favour of unconditional skewness over the sample. As a result,

the baseline model, allowing for time-varying conditional skewness, is associated with substantial gains,

both in point and density forecasts, when compared to a specification with time varying mean and volatility,

but constant conditional skewness (see Tables G7 and G8).

NFCI: last vintage vs. real time data The pseudo-out-of-sample forecasting exercise presented

above relies on the latest vintages of the NFCI and its subcomponents. Real time vintages of these financial

indicators are only available from 2013, and have historically only experienced few, limited revisions.
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To evaluate whether the latest vintages provide an unfair advantage to the models, we compare these

forecasting performances to those from a pure real time out-of-sample exercise, starting in 2013. Results

point at some marginal improvements associated to the use of real time vintages, suggesting that the

evaluation based on the latest releases does not advantage our models (see Table G9).

6 Dissecting the Financial Condition Index

So far, we have documented the importance of financial condition indicators to predict future economic

growth. In this Section we explore the extent to which the predictive power of the model can be improved

considering the whole set of data that feeds into the NFCI. We, furthermore, identify which indicators are

better suited to predict downside risk.

We consider the full set of 105 (smoothed) indicators of financial activity that constitute the NFCI.20

As indicators enter the predictors’ set at different points in time, for each time t we only consider predictors

available for at least four years, and we start our forecasting exercise at the beginning of the 2000s. This

implies that the first forecast produced relies on about 70% of the total available indicators. As predictors’

availability steadily increases over the sample, forecasts of the 2007-2009 recession exploit 85% of the full

set of indicators.

6.1 Variables selection: “shrink-then-sparsify”

A potential concern of this exercise lies in the steep increase in the number of parameters our model

needs to accommodate. We tackle this dimensionality problem through a “shrink-then-sparsify” strategy

(see Hahn and Carvalho, 2015).21 Predictor loading shrinkage is achieved by means of Horseshoe (HS) priors

(Carvalho et al., 2010): bj ∼ N (0, λjτ), where the hyperparameters λj and τ control the local (coefficient

specific) and the global shrinkage, respectively. Specifically, λj ∼ HC+(0, 1) and τ ∼ HC+(0, 1), where

HC+(0, 1) denotes the standard Half-Cauchy distribution. Unlike other common shrinkage priors (e.g.

Ridge, Lasso), the HS priors are free of exogenous inputs, implying a fully adaptive shrinkage procedure.

To reduce the estimation uncertainty associated with the near-zero shrinkage coefficients, we apply the

Signal Adaptive Variable Selector (SAVS) algorithm of Ray and Bhattacharya (2018). This data-driven

procedure specifies the sparsification tuning parameter as mj = |b̂j |−2 such that each of the j variables

receives a penalization “ranked in inverse-squared order of magnitude of the corresponding coefficient” (Ray

and Bhattacharya, 2018). The sparsified coefficients are computed as

b∗j = sgn(b̂j)||Xj ||−2 max
{
|b̂j | · ||Xj ||2 −mj , 0

}
, (23)

20While these predictors are not available in real-time, we assume that at time t, the set of predictors corresponds
to the quarterly average of the financial indicators from the third week of the previous quarter to the second week
of the current quarter. This approach mimics the information set available to the econometrician who produces
real-time forecasts, and avoids dealing with overlapping quarters.

21Further details on this approach are provided in Appendix D.2.
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Table 7: Big Data forecast performance

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.185
(0.000)

0.223
(0.163)

0.655
(0.000)

0.657
(0.000)

0.434
(0.112)

0.222
(0.562)

0.833
(0.259)

0.776
(0.250)

Pre-2020 1.290
(0.087)

−0.108
(0.351)

1.109
(0.286)

1.191
(0.071)

1.157
(0.637)

−0.065
(0.785)

1.051
(0.736)

1.083
(0.706)

Rec. 0.408
(0.003)

0.357
(0.228)

0.679
(0.035)

0.708
(0.067)

0.649
(0.171)

0.664
(0.395)

0.591
(0.143)

0.449
(0.102)

Note: The table reports the average forecast metrics from the big data model relative to Skt4DFI. We use ratios for
the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score
differences indicate that the big data model performs better than Skt4DFI. The p-values for Diebold and Mariano
(1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses. Values in bold
are significant at the 10% level.

where ||·|| represents the Euclidean norm of the vector Xj . By applying the sparsification step at each draw

of the MCMC algorithm, this approach fully accounts for model uncertainty, akin to the idea of Bayesian

model averaging (Huber et al., 2020).

6.2 On the importance of financial indicators

The forecasting exercise highlights large improvements associated with the sparse modeling of the pre-

dictors’ design. Table 7 reports the forecasting performance of the “sparse” model against our baseline

specification (Skt-4DFI), over three different samples: the full sample (2000-2020), the same sample ex-

cluding the quarters of 2020, and the recession periods, excluding the pandemic recession.22 Over the

full sample, the sparse model realizes gains of up to 80% (35%) in point (density) forecast accuracy, at

the one-quarter-ahead. However, excluding 2020 shows that this model does not generally outperforms

the baseline. Therefore, the idiosyncratic indicators offers drastic improvements for the forecasts of the

pandemic-quarters. More generally, the sparse model substantially improves the forecasting performance

during recession periods. Over the short-term, the loss in point forecast is more than halved, and the

model delivers significant gains of roughly 30% in both density forecast and downside risk predictions,

evaluated by the CRPS and the wQS respectively. Despite the sparse model might still be prone to overfit

the data during expansions, closely monitoring signals of distress in financial markets can drastically affect

the assessment of macroeconomic downside risk ahead and during times of crisis, in line with the insights

of Alessi et al. (2014).

We illustrate the evolution over time of sparsity in the financial information set in Figure 9. Sparsity

tends to slightly decrease over time as financial indicators appear to be greatly informative for the asym-

metry parameter, while most of the information does not prove useful for predicting the scale parameter.

On average, about 7.5% of the predictors feed into the prediction of the asymmetry parameter, while only

about 2% contribute to the scale; towards the end of the sample, more than 10% of the indicators inform

22Therefore, the latter sample includes the 2001 recession, and the Great Financial crisis and the subsequent
recession.
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Figure 9: Sparsity
Note: The top panel reports the evolution of the financial predictors selected for the asymmetry parameter; the
bottom panel reports those for the scale parameter. Names in red indicate the 10 predictors with the highers
posterior probability (pip) of inclusion; names in bold indicates predictors with the highest pip around the Global
Financial Crisis.

the asymmetry parameter, while 5% relate to the scale. Moreover, the number of predictors of the shape

parameters increases during the financial crisis, highlighting the importance of monitoring developments

in financial markets to gauge the severity of the Great Recession.

By ranking predictors by their average posterior probability of inclusion, it emerges that indicators

pertaining to leverage markets provide most of the information relevant to predict the evolution of the

asymmetry parameter, along with credit conditions indicator and household debt.23 Credit spreads, in-

stead, appear most informative for the scale parameter. If we focus on the latest Great Recession, the

23Best predictors and full ranks are reported in Appendix H.
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size of the shadow-banking sector (as highlighted by Adrian and Shin, 2008), as well as the issuance of

commercial mortgage-backed securities, prove useful to gauge the increasing downside risk associated with

the crisis outburst.

7 Conclusions

The severity of the latest financial crisis and the ensuing recession has spurred the interest of both

academics and practitioners in developing models that allow us to better understand and predict downside

risk to economic growth. In this paper, we introduce a class of parametric models to fully characterize

the conditional distribution of GDP growth. Procyclical asymmetry is a strong feature of the data, with

business cycle fluctuations characterized by positive skewness in expansions and negative skewness in

recessions. As a result, the correlation between the mean and the variance of the conditional distribution

varies over business cycle phases, turning negative during recessions. These features become even more

prominent after we allow measures of financial conditions to drive time variation in the parameters. When

financial markets are overheating, future economic growth becomes more uncertain, and downside risk

arises reflecting the negative skewness of the predictive distributions of GDP growth. Leverage and credit

are important signals when assessing downside risk in GDP growth. In particular, non financial leverage

measures anticipate a fall in economic growth, driving the rising negative asymmetry of the 2007-2009

recession. Overall, our results point to the paramount importance of nonlinearities and non-Gaussianity

in capturing the dynamics of downside risk to economic growth, and for improving prediction accuracy.

Conditioning on large financial information sets further improves forecasts, accurately characterizing the

left tail of the predictive distribution, both at short- and medium-term projections.

Our model highlights how the statistical properties of GDP growth have dramatically changed over the

last 50 years. The fall in volatility observed since the mid-1980s is reflected into a substantial fall in upside

volatility, with downside volatility remaining relatively stable over the entire sample. The slowdown in

long-run growth observed over the last two decades largely reflects a reassessment of risk, pointing to an

increase in downside risk in the conditional distribution. We document that, since the Great Recession,

the long-run predictions of the distribution of GDP growth displays a marked negative skewness. This

suggests that in the last 10 years, the slow economic recovery took place in an environment characterized

by increasing downside risk to economic activity, well before the COVID-19 crisis.
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A Score-driven setting

Assume that the variable yt is generated by the observation density D(θ, ft), with θ collecting the

static parameters of the distribution. The score-driven setting postulates the dynamics of the time-varying

parameters, ft, being:

ft+1 = $ +

p−1∑
i=0

αist−i +

q−1∑
j=0

βjft−j , (A1)

which we refer to as GAS(p, q) dynamics.1 The scaled score st is a non-linear function of past observations

and past parameters’ values. For `t = logD(θ, ft), we define:

st = St∇t, ∇t = ∂`t
∂ft
, St = I−

1
2

t = −E
(

∂2`t
∂ft∂f ′t

)− 1
2

,

where ∇t corresponds to the gradient vector of the log-likelihood function, `t, and the scaling matrix

St−1 is proportional to the square-root generalized inverse of the Information matrix It−1.2 Within this

framework, the parameters are updated in the direction of the steepest ascent, in order to maximize the

local fit of the model.

A.1 Score-based tests for time varying asymmetry

In Section 2 we exploited properties of the score function to motivate the modeling of time-varying

parameters. The Lagrange multiplier principle can be employed to formally test for the time variation

of the parameter of interest (Harvey, 2013, Section 2.5).3 When the conditional distribution is available

in closed form, we can use the score of the log-likelihood function with respect to the parameter under

consideration to investigate its autocorrelation properties. In fact, the score incorporates information about

the level of time variation of the respective parameter, and local power arguments indicate that the resulting

test can be expected to be more powerful as the unconditional parameter moves away from zero. This is

not the case with the standard moment-based portmanteau test, which simply uses the cross-product of

standardized residuals (see, e.g. Bollerslev, 1990).

Given the law of motion in Equation (A1), and provided {|βj | < 1}q−1
j=0, we can recover the (infinite)

moving average representation of the filter:

ft+1 = $∗ +

∞∑
i=0

ψist−i, (A2)

equivalent to a GAS(∞, 0), with $∗ = $
(1−β1−β2−...−βq−1) . Tests can then be carried out using the score’s

autocorrelation function, rs(τ).

Assume the conditional distribution of yt being the Skew-t of Gómez et al. (2007), yt|Yt−1 ∼ sktν(µt, γ, δ),

with log-likelihood

`t(yt|θ, Yt−1) = log C(η)− 1

2
log σ2 − 1 + η

2η
log

[
1 +

ηε2
t

(1− sgn(εt)%)2σ2

]
, (A3)

1Creal et al. (2013) refer to the Generalized Autoregressive Score (GAS) model, while Harvey (2013) names it
Dynamics Conditional Score (DCS) model. We stick to the former notation throughout this appendix.

2Refer to Creal et al. (2013) for additional details on this choice.
3A similar testing approach is put forward by Calvori et al. (2017).
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log C(η) = log Γ

(
η + 1

2η

)
− log Γ

(
1

2η

)
− 1

2
log

(
1

η

)
− 1

2
log π,

where Γ(·) is the Gamma function, sgn(.) is the sign function, and η = 1/ν is the inverse of the degrees of

freedom. To ensure positive scale and bounded shape, we model γ = log σ, δ = arctanh(%), and the score

vector with respect to µ, γ, and δ (scaled by inverse square root of information matrix as described later

in details) will be equal to:
sµ,t

sγ,t

sδ,t

 =

√
(1 + 3η)

(1 + η)


√

(1− %2)wtζt√
(1+η)

2 (wtζ
2
t − 1)

−
√

(1−%2)
3

sgn(εt)
(1−sgn(εt)%)wtζ

2
t

 , (A4)

where

wt =
(1 + η)

(1− sgn(εt)%)2 + ηζ2
t

, ζt =
εt
σ
. (A5)

The scores in Equation (A4) can thus be used to test for the presence of time variation of the parameters.

First, we fix the scale and shape parameters to their maximum likelihood estimates, γ̂ and δ̂, respectively,

and let µt being the only time-varying parameter. Then, using the estimated parameters we recover the

time series of of the scores sγ and sδ, which we use to carry out the tests. Specifically, following Harvey and

Thiele (2016), which apply this methodology to test against the time variation of correlations, we employ

three different test specifications: the Portmanteau test, Q, the Ljung-Box test, Q∗, and the Nyblom (1989)

test. For all these test, the optimal lag-length is selected following the methodology of Escanciano and

Lobato (2009).

We apply the testing procedure to three different specifications for the dynamics of µt:

S1: µt = 0 and yt ∼ AR(2) with skew-t innovations sktν(0, σ, %) (see Section 2).

S2: µt ∼ GAS(1, 1) with a unit root (RW);

S3: µt ∼ RW +GAS(1, 2) with stationary roots;

For each case, we consider a specification with constant γ = log σ, and another with time-varying γt =

log σt, following a non-stationary GAS(1, 1) process. Tests’ results, using data on GDP growth from 1973

to 2020, are reported in Table 1 (Section 2) for S1, while Table A1 reports the results for S2 and S3.4

For all the cases and specifications we reject the null hypothesis of constant shape at the 1% confidence

level, for Q and Q∗. Similarly, the Nyblom specification rejects the null. While the first two tests leave the

alternative hypothesis unspecified, the latter tests for parameter constancy, against a random walk law of

motion.5 To make sure that statistical significance is not induced by the Covid-related observations, we

also report the same test over the 1973-2019 sample. Table A2 confirms that the evidence in favor of the

shape parameter being time-varying is robust to the inclusion of outliers.

4Horswell and Looney (1993) show that, when testing for skewness, omitting the presence of kurtosis might
deliver misleading results. Repeating the tests with Skew-Normal innovations delivers similar evidence.

5Harvey and Streibel (1998) argue that the Nyblom (1989) test can be used to test against stationary, but highly
persistent, alternative hypotheses.
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Table A1: Score-based tests for time variation

time-varying time-varying
location location & scale

Q Q∗ N Q Q∗ N

S2
Scale2 33.221∗∗∗ 33.724∗∗∗ 1.189∗∗∗
Shape 24.238∗∗∗ 24.60∗∗∗6 0.803∗∗∗ 11.565∗∗∗ 11.740∗∗∗ 1.468∗∗∗

S3
Scale2 48.028∗∗∗ 48.755∗∗∗ 0.982∗∗∗
Shape 38.668∗∗∗ 39.254∗∗∗ 1.009∗∗∗ 22.761∗∗∗ 23.106∗∗∗ 1.529∗∗∗

Note: Q is the portmanteau test, Q∗ is the Ljung-Box extension and N corresponds to the Nyblom test. The lag
length for the Portmanteau and Ljung-Box tests are selected following Escanciano and Lobato (2009). The first
two tests are distributed as a χ2 with 1 degree of freedom, the Nyblom test statistics is distributed as a Cramer
von-Mises distribution with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p < 1%.

Table A2: Score-based tests for time variation, 1973-2019 sample

time-varying time-varying
location location & scale

Q Q∗ N Q Q∗ N

S1
Scale2 3.432∗∗∗ 3.485∗∗∗ 1.489
Shape 5.199∗∗ 5.280∗∗ 0.559∗∗ 31.705∗∗∗ 32.196∗∗∗ 0.800∗∗∗

S2
Scale2 37.416∗∗∗ 37.995∗∗∗ 1.796∗∗∗
Shape 31.987∗∗∗ 32.482∗∗∗ 0.827∗∗∗ 33.737∗∗∗ 34.258∗∗∗ 1.642∗∗∗

S3
Scale2 48.937∗∗∗ 49.694∗∗∗ 1.536∗∗∗
Shape 52.172∗∗∗ 52.979∗∗∗ 0.727∗∗ 32.743∗∗∗ 33.249∗∗∗ 1.458∗∗∗

Note: Test scores relate to the 1973-2019 sample. Q is the portmanteau test, Q∗ is the Ljung-Box extension and
N corresponds to the Nyblom test. The lag length for the Portmanteau and Ljung-Box tests are selected following
Escanciano and Lobato (2009). The first two tests are distributed as a χ2 with 1 degree of freedom, the Nyblom test
statistics is distributed as a Cramer von-Mises distribution with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p <
1%.

B Derivation of the score-driven Skew-t model

In this appendix we provide details on the scaled scores for the Skew-t distribution of Gómez et al.

(2007), the use of the link functions and the matrix representation of the model.

B.1 Scaled scores

Differentiating the log-likelihood function in Equation (B11) with respect to location, scale and asym-

metry we obtain the gradient vector ∇t =
[
∂`t
∂µt

, ∂`t
∂σ2
t
, ∂`t∂%t

]′
, with elements:

∂`t
∂µt

=
1

σ2
t

[
(1 + η)σ2

t εt
(1− sgn(εt)%t)2σ2

t + ηε2
t

]
= wt

ζt
σt
, (B1)
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∂`t
∂σ2

t

=
1

2σ2
t

[
(1 + η)ε2

t

(1− sgn(εt)%t))2σ2
t + ηε2

t

− 1

]
=

(wtζ
2
t − 1)

2σ2
t

, (B2)

∂`t
∂%t

= − sgn(εt)

(1− sgn(εt)%t)

(1 + η)ε2
t

(1− sgn(εt)%t))2σ2
t + ηε2

t

= − sgn(εt)

(1− sgn(εt)%t)
wtζ

2
t . (B3)

The Fisher information matrix is computed as the expected values of outer product of the gradient

vector, for a fixed number of degrees of freedom:

It|t−1 = Et−1[∇t∇′t] =


(1+η)

(1+3η)(1−%2t )σ2
t

0 − 4c(1+η)
σt(1−%2t )(1+3η)

0 1
2(1+3η)σ4

t
0

− 4c(1+η)
σt(1−%2t )(1+3η)

0 3(1+η)
(1−%2t )(1+3η)

 . (B4)

Given we model γt = lnσt and δt = arctanh(%t), for the chain rule we have:

∂`t
∂γt

=
∂`t
∂σ2

t

∂σ2
t

∂γt
,

∂`t
∂δt

=
∂`t
∂%t

∂%t
∂δt

, (B5)

where ∂σ2
t

∂γt
= 2σ2

t and ∂%t
∂δt

= (1− %2
t ). We can thus define the vector of interest as ft = (µt, γt, δt)

′ with the

associated Jacobian matrix

Jt =
∂(µt, σ

2
t , %t)

∂f ′t
=


1 0 0

0 2σ2
t 0

0 0 1− %2
t

 . (B6)

As such the scaled score reads:

st = (J ′tdiag(It)Jt)−
1
2J ′t∇t =


sµt

sσt

s%t

 =


√

(1+3η)(1−%2t )
(1+η) wtζt√

(1+3η)
2 (wtζ

2
t − 1)

−sgn(εt)
√

(1+sgn(εt)%t)(1+3η)
3(1−sgn(εt)%t)(1+η)wtζ

2
t

 . (B7)

To prevent numerical instability, it is often the case to replace the scaling matrix Ṡt = (J ′tdiag(It)Jt)−
1
2

with its smoothed estimator, S̈t = (1− λ)S̈t−1 + λṠt, 0 < λ < 1.

B.2 Transformed parameters’ scores

Here we provide a proof of the equivalence between the the score vector arising from the restriction

imposed on the scale and shape parameters and that arising by imposing constraints on the two-component

specification. We will drop the time subscript for the sake of clarity.

Proof. Let consider γ = log σ being the log-scale, it follows that σ = exp γ, and the gradient is

∂`

∂γ
=

∂`

∂σ2

∂σ2

∂γ
=

∂`

∂σ2
2σ2.

Let now consider the multiplicative two-component counterpart σ = σ̄σ̃, such that γ = log σ = log σ̄ +
log σ̃ = γ̄ + γ̃. The gradient with respect to the first component reads

∂`

∂γ̄
=

∂`

∂σ2

∂σ2

∂γ

∂γ

∂γ̄
=

∂`

∂σ2
2σ2.

The same applies for the second component.
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Proof. For the shape parameter % = tanh δ, we model δ = arctanh % and the gradient is

∂`

∂δ
=
∂`

∂%

∂%

∂δ
=
∂`

∂%
(1− %2).

Consider the two-component counterpart δ = (δ̄ + δ̃), so that % = tanh(δ̄ + δ̃), it is easy to see that that

∂`

∂δ̄
=
∂`

∂%

∂%

∂δ

∂δ

∂δ̄
=
∂`

∂%
(1− %2).

The same applies for the second component.

B.3 Robustness to outliers

Here we consider the limiting behaviour of the Skt scaled scores. We show that for (standardized)

forecast errors approaching positive (negative) infinity, the scaled scores either converge to zero, implying

a trimming of the outliers, or converge to a positive (negative) constant, akin to Winsorizing extreme

observations (see, e.g., Caivano and Harvey, 2014). Specifically,

lim
ζ→±∞

sµt = 0, (B8)

lim
ζ→±∞

sσt =
1 + η

η

√
(1 + 3η)

2
, (B9)

lim
ζ→±∞

s%t = ∓1 + η

η

√
(1 + 3η)(1 + %t)

3(1 + η)(1− %t)
. (B10)

In line with results for the t distribution, the scaled score for the location trims outliers, preventing any

update of the parameter (Maronna et al., 2019). The limits of the scaled scores for the scale and shape

parameter, on the other hand, converge to constant factors. These are functions of the degrees of freedom

parameter, as well as the conditional asymmetry parameter at time t for the shape.

B.4 Matrix representation

Given the vector of time-varying parameters, ft, we can express the score-driven law of motion of

Equation (3) in matrix form.



µ̄t

µ̃t

µ̃t−1

γ̄t

γ̃t

δ̄t

δ̃t


︸ ︷︷ ︸
ft+1

=



1 0 0 0 0 0 0

0 φµ,1 φµ,2 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 φγ 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 φδ


︸ ︷︷ ︸

A



µ̄t−1

µ̃t−1

µ̃t−2

γ̄t−1

γ̃t−1

δ̄t−1

δ̃t−1


︸ ︷︷ ︸
ft

+



0 0 . . . 0

β1
µ β2

µ . . . β
k
µ

0 0 . . . 0

0 0 . . . 0

β1
γ β2

γ . . . β
k
γ

0 0 . . . 0

β1
δ β2

δ . . . β
k
δ


︸ ︷︷ ︸

B

Xt +



ςµ 0 0

κµ 0 0

0 0 0

0 ςγ 0

0 κγ 0

0 0 ςδ

0 0 κδ


︸ ︷︷ ︸

C


sµt

sγt

sδt


︸ ︷︷ ︸
st

,

with Xt being a k-dimensional vector of predictors, at time t.
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B.5 Derivations

Consider the log-likelihood function

`t(yt|θ, Yt−1) = log C(η)− 1

2
log σ2 − 1 + η

2η
log

[
1 +

ηε2
t

(1− sgn(εt)%)2σ2

]
, (B11)

log C(η) = log Γ

(
η + 1

2η

)
− log Γ

(
1

2η

)
− 1

2
log

(
1

η

)
− 1

2
log π,

where Γ(·) is the Gamma function, sgn(.) is the sign function, and η = 1/ν is the inverse of the degrees of

freedom.

Differentiating Equation (B11) with respect to location, scale and asymmetry we obtain the gradient

vector ∇t =
[
∂`t
∂µt

, ∂`t
∂σ2
t
, ∂`t∂%t

]′
. Recall that εt = yt − µt, ζt = εt

σt
and ωt = (1+η)

(1−sgn(εt)%t)2+ηζ2t
, and let

f(µt, σ
2
t , %t) = 1 +

ηε2
t

(1− sgn(εt)%)2σ2

=
(1− sgn(εt)%t)

2)σ2
t + ηε2

t

(1− sgn(ε2
t )%)2σ2

. (B12)

To avoid overburdening the notation, in what follows ∂f(x)
∂x = f ′x and a = −1+η

2η .

The score with respect to the location parameter reads

∂`t
∂µt

= wt
ζt
σt
.

Proof. Define
g(µt) = a log f(µt, σ

2
t , %t),

such that ∂`t
∂µt

= ∂g(µt)
∂µt

= a
f ′µt

f(µt,σ2
t ,%t)

. For

f ′µt =
2η

(1− sgn(εt)%)2σ2
εt,

it follows:

∂`t
∂µt

= −1 + η

2η

2η

(1− sgn(εt)%)2σ2
· εt ·

(1− sgn(εt)%)2σ2

(1− sgn(εt)%t)2)σ2
t + ηε2

t

=
(1 + η)

(1− sgn(εt)%t)2)σ2
t + ηε2

t

εt

= ωt
ζt
σt

.

The score with respect to the squared scale parameter reads

∂`t
∂σ2

t

=
(wtζ

2
t − 1)

2σ2
t

.

Proof. Define

g(σ2
t ) = − log σ2

2
+ a log f(µt, σ

2
t , %t),

such that ∂`t
∂σ2
t

=
∂g(σ2

t )

∂σ2
t

= − 1
2σ2
t

+ b
f ′
σ2t

f(µt,σ2
t ,%t)

.
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For

f ′σ2
t

= − ηε2
t

(1− sgn(εt)%t)2σ4
t

,

it follows:

∂`t
∂σ2

t

= − 1

2σ2
t

− η + 1

2η
·
[
− ηε2

t

(1− sgn(εt)%t)2σ4
t

· (1− sgn(ε2
t )%)2σ2

(1− sgn(εt)%t)2)σ2
t + ηε2

t

]
=

1

2σ2
t

(
(η + 1)ε2

t

(1− sgn(ε2
t )%)2σ2 + ηε2

t

− 1

)
=

(wtζ
2
t − 1)

2σ2
t

.

The score with respect to the shape parameter reads

∂`t
∂%t

= − sgn(εt)

(1− sgn(εt)%t)
wtζ

2
t .

Proof. Define
g(%t) = a log f(µt, σ

2
t , %t),

such that ∂`t
∂%t

= ∂g(%t)
∂σ2
t

= a
f ′%t

f(µt,σ2
t ,%t)

.
For

f ′%t =
2(sgn(εt)− %t)ηε2

t

(1− sgn(εt)%t)4σ2
t

,

it follows:

∂`t
∂%t

= −η + 1

2η
· 2(sgn(εt)− %t)ηε2

t

(1− sgn(εt)%t)4σ2
t

· (1− sgn(ε2
t )%)2σ2

(1− sgn(εt)%t)2)σ2
t + ηε2

t

=
η + 1

(1− sgn(εt)%t)2) + ηζ2
t

· (sgn(εt)− %t)ζ2
t

(1− sgn(εt)%t)2

= − sgn(εt)

(1− sgn(εt)%t)
ωtζ

2
t

.

Notes:

∂sgn(x)

∂x
=

0, x 6= 0

∞, x = 0

E[sgn(X)] = 1 · P (X > 0) + (−1) · P (X < 0)
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C On the importance of dynamic conditional moments

In this Section, we consider a restricted specification of the model in line with the work of Plagborg-

Møller et al. (2020). As noted in Section 3, when the autoregressive features of the model is dropped

out, and the information content of past prediction errors (condensed into the score) is ignored, the model

collapses to a parametric model for the distribution of GDP growth akin to the one in Plagborg-Møller

et al. (2020).6 Specifically, setting ςµ = φµ,1 = φµ,2 = κµ = ςγ = φγ = κγ = ςδ = φδ = κδ = 0, we obtain

µt+1 = µ̄+ β′µXt, (C1)

γt+1 = γ̄ + β′γXt, (C2)

δt+1 = δ̄ + β′δXt, (C3)

so that the parameters’ laws of motion become linear functions of predictors only.

We estimate the model above using as predictors the 4 disaggregated components of the NFCI, as

well as the factors used in Plagborg-Møller et al. (2020) (including in both cases lagged values of GDP

growth).7 Table C1 reports the Deviance Information Criterion associated to these two specifications.

Our baseline model strongly outperforms the two restricted specifications, both over the whole sample

and during recessions. Figure C1 reports the estimated volatility and skewness from the baseline model

(in blue) and the restricted specification (in red). For comparability purposes, both models are estimated

using the disaggregated components of the NFCI as predictors.8 The results of the restricted specification

are broadly in line with those reported by Plagborg-Møller et al. (2020). The estimated skewness from

their model is cyclical but displays large uncertainty, so that the 90% confidence bands only rarely excludes

the zero. Moreover, the simplified specification of the time-varying model does not display the well-known

reduction of the volatility occurred during the Great Moderation period.

Overall, comparing the restricted model to the baseline specification highlights the benefits associated

with a richer framework, including the score of the predictive likelihood, long-run components, and persis-

tent cyclical variations. In terms of volatility estimates, the presence of long-run components, as well as

the addition of the score (which for the volatility is a function of the squared prediction errors) as signal for

the updating, turn out to be of key importance to track the well-established stylized fact of a substantial

decline in volatility from the mid-1980s (McConnell and Perez-Quiros, 2000; Stock and Watson, 2002).

Persistent cyclical components, on the other hand, allow the model to recover significant variations of the

skewness coefficients. This is not surprising, as the unrestricted model implies that the time variation in

the parameters reflects current and past discounted variation of the predictors (as well as the information

in the scaled score). This implies that high frequency noisy variations of the predictors are averaged out

when incorporated into the time-varying dynamics. Moreover, while the skewness from both models set on

similar levels at the beginning of the sample and during the 1990s, the asymmetry implied by the restricted

specification becomes lower over the mid 1980s, while attaining higher values after the Global Financial

Crisis. This pattern supports the addition of secular components, able to track the declining trend of

business cycle skewness, as documented by Jensen et al. (2020).

6Note that Plagborg-Møller et al. (2020) consider the Skew-t of Azzalini and Capitanio (2003).
7For comparability purposes, we restrict the estimation sample to the 1973-2018 periods, as in Plagborg-Møller

et al. (2020).
8The mean GDP growth extracted from the two models displays less noticeable differences.
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Table C1: Deviance Information Criterion

Model DIC DIC Rec

Skt4DFI 4.367 2.347
Plagborg-Møller et al. (2020) with 4DFI 4.589 2.387
Plagborg-Møller et al. (2020) Financial Factor 4.503 2.376

Note: The table reports the Deviance Information Criterion of Spiegelhalter et al. (2002) for the Skt-4DFI speci-
fication, and the nested version of Plagborg-Møller et al. (2020), with the four disaggregated financial indices and
with the global and financial factors. In the column DIC Rec we evaluate the DIC measure during recession periods.

Standard Deviation
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Figure C1: Time-varying moments: Skt4DFI vs. Plagborg-Møller et al. (2020)
Note: The plots illustrate the estimated time-varying volatility (left panel) and skewness (right panel) with 95%
confidence bands. Results for the Skt-4DFI are reported in blue, while red lines report results for the nested version
of Plagborg-Møller et al. (2020)’s model. Shaded bands represent NBER recessions.

Furthermore, we investigate to what extent our results are affected by the different choice of financial

predictors. Re-estimating our baseline model using the two factors employed by Plagborg-Møller et al.

(2020), we recover very similar time-varying second and third moments to the one reported for our baseline

specification. Volatility displays a clear countercyclical dynamics, as well as a sharp fall in the mid-

1980s. Skewness exhibits pronounced cyclical variation, with recessions characterized by negatively skewed

conditional distributions, and expansions associated with positively skewed distributions. Again, one should

not be surprised by these broad similarities. The inclusion of the scaled score as a driver of the time-varying

parameters introduces a self-correction mechanism to the model, which allows the parameters to closely

track the most pronounced features of the data, regardless of the predictors included in the model. In

terms of DIC, the baseline specification with the disaggregated components of the NFCI continues to be

preferred with respect to the alternative factors included by Plagborg-Møller et al. (2020).

D Bayesian estimation

In this section we outline the Bayesian approach for the estimation of the models. We estimate the

vector of static parameters θ, and the time-varying parameters ft, through the following steps:
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( i ) Estimate θ∗ via ML and initialize the sampling algorithm with θ∗

( ii ) Sample θ and ft with the Adaptive Random-Walk Metropolis-Hastings (ARWMH)

(iii) Compute the statistics of interest as the percentiles of the empirical distribution function.

In the following subsections, we detail the prior specifications and the ARWMH algorithm.

D.1 Prior specification

Starting from Equations (9) and (16), let φ be a generic first-lag partial autocorrelation, while ς and

κ being generic score loadings for the long-run and short-run equations, respectively. Let βi ∈ B, be a

generic predictor loading for the parameter i, i = µ, σ, %, and let η be the inverse of the Skew-t degrees of

freedom. Prior specifications for these parameters read:

φ ∼ NID(µφ, σφ) · I(φ∈Φ); (D1) βi ∼ NID(µβ, σ
i
β), i = µ, σ, %; (D2)

ς, κ ∼ G−1(aj , bj), j = ς, κ; (D3) η ∼ G−1(aη, bη) · I(η∈H). (D4)

Prior specification D1 sets the prior distribution for the first autroregressive parameters: we target high

persistence, with µφ . 1, with a standard tightness of σµ = 0.2, in line with Bayesian Vector Autoregressive

models (see, e.g., Doan et al., 1984; Sims and Zha, 1998). We restrict the prior distribution to only span

the stationary region, Φ, by truncating the support, which gives rise to an improper prior distribution

as in Cogley and Sargent (2005). Predictor loadings are drawn from a Normal distribution with µβ = 0,

and standard deviations σβ are set to small values of 0.05, 0.2 and 0.1 for the location, scale and shape

parameters, respectively. These priors aim at preventing model overfitting, applying an L2 regularization,

akin to the shrinkage induced by a Ridge-type regression. We set inverse gamma priors for the score

loadings, such that they reflect the a priori expectation of small, but positive coefficients, in line with the

properties of the score-driven filters (for further discussion, see Blasques et al., 2014). We set aς = aκ = 4,

and bς = 3 and bκ = 10, to reflect the properties of the long- and the short-run components. Eventually,

we use an inverse gamma prior for η, the inverse of the degrees of freedom parameter, with aη = 2 and

bη = 10. In line with Juárez and Steel (2010), these values allow the distribution to explore a wide range

of feasible values, with a mean of 20 and a median of 10. In order to ensure the existence of, at least, the

first three moments, we restrict the support to the H = [0, 0.33] set.

We also target the stationarity of the cyclical component of the location through a prior on the sum

of the autoregressive coefficients (Sims and Zha, 1998). Let φS be the sum of two generic autoregressive

coefficients, φS = φ1 + φ2, we assume

φS ∼ N (µφS , σφS ) · I(φS∈Φ),

with µφ2 . 1 and and σsφ = 0.2.
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D.2 Horseshoe priors and SAVS

Consider the regression model:

yt = b′Xt + et, et ∼ iid(0, σ2
eIp) (D5)

the Horseshoe (HS) priors of (Carvalho et al., 2010) posit Ridge-type priors for the coefficients: bj ∼
N (0, λjτ), where the hyperparameters λj and τ control the local (coefficient specific) and the global

shrinkage, respectively. We follow the original paper in setting the hyperpriors as:9

λj ∼ HC+(0, 1), τ ∼ HC+(0, 1), (D6)

where HC+(0, 1) denotes the standard Half-Cauchy distributions with density function

p(z) =
2

π(1 + z2)
, z ∈ R+. (D7)

Unlike other common shrinkage priors (e.g. Ridge, Lasso), the HS priors is free of exogenous inputs,

implying a fully adaptive shrinkage procedure.

Known pitfalls of shrinkage operators account for parameters not being exactly set to zero (e.g. Ridge),

thus increasing parameter uncertainty, or weak selection performances when predictors are correlated (e.g.

Lasso). A common remedy to the first pathology is the sparsification of the near-zero elements. Let p be

the number of possible predictors, the sparsification problem can be cast as:

b∗ = argmin
b

[
1

2
||Xb̂−Xb||22 +

p∑
j=1

mj |bj |
]
, (D8)

where the sparse coefficients b∗ are obtained minimizing the Euclidean distance between Xb and the model

fit obtained from the shrinkage operator. Additional penalty for the non-zero parameters is controlled by

mj , which represents a variable specific tuning parameter, generally chosen on the basis of computationally

expensive methods (e.g. cross-validation). In their recent contribution, Ray and Bhattacharya (2018)

introduce a purely data-driven, and less burdensome solution to the choice of the parameter mj , proven to

be robust to correlated designs. They suggest to specify the tuning parameter as mj = |b̂j |−2 such that the

jth variable receives a penalization “ranked in inverse-squared order of the magnitude of the corresponding

coefficient” (Ray and Bhattacharya, 2018), an approach similar to the Adaptive Lasso of Zou (2006). The

Signal Adaptive Variable Selector (SAVS) algorithm can then be expressed as:

b∗j = sgn(b̂j)||Xj ||−2 max
{
|b̂j | · ||Xj ||2 −mj , 0

}
, (D9)

where || · || represents the Euclidean norm of the vector Xj .

D.3 Adaptive Metropolis-Hastings

Posterior estimates of the parameters are obtained via simulation by means of the Adaptive Metropolis-

Hastings algorithm proposed by Haario et al. (1999). Given that estimated parameters lie in bounded

9Makalic and Schmidt (2015) exploit the link between the scale mixture of Inverse Gamma distributions to
approximate the Half-Cauchy distributions to propose a tractable framework for posterior simulation via Gibbs
sampling. However, this hierarchy features twice as may parameters (auxiliary variables) compared to the original
specification.
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regions of the parameter space, we augment the algorithm with a rejection step to prevent numerical

instability due to invalid parameter draws. The algorithm works as follows: given the (d × 1) vector of

static parameters θ = (ς ′, κ′, φ′, η)′, we define θj as the draw of the parameters at the jth iteration of the

sampler, generated from the random walk kernel:

θj = θj−1 + σj,sε ε ∼ N (0,Σj
H), (D10)

where σj,s is a scale parameter that contributes to the stability of the adaptive algorithm. Σj
H is the

covariance matrix of the last H draws, that is, the covariance matrix updated to reflect the variability of

the last H iterations. Given these two elements, we postulate the following adaptive scheme: we compute

the local acceptance rate α̃s each s iterations; if the acceptance rate is significantly greater (smaller) than

the 25-35%target rate, we adjust the scale parameter according to a rescaling function r(α̃s)

r(α̃s) =


tanh(4α̃s + 0.24), α̃s < 0.25

1, 0.25 ≤ α̃s ≤ 0.35

0.88 + α̃s2, α̃s > 0.35

(D11)

such that σj+1,s = r(α̃s)σj,s. Figure D1 plots the shape of the rescaling function against the admissible

range of values for α̃s. Due to the asymmetry of the intervals before and after the 25-35% acceptance
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Figure D1: r(α̃s) rescaling function
Note: The figure plots the rescaling function we apply to the variance of the candidate distribution to target an
acceptance rate between 25% and 35%.

region, the two branches of the reshaping function features different slopes and curvatures.

In addition, every U ≤ H iterations, we use the last H draws to recalibrate the covariance matrix of the

proposal distribution: Σj
H = K̃√

H−1
, where K̃ is the (H × d) centered matrix of the last H draws, obtained

as K − E[K]; in this process we also reinitialize the scale parameter at the value of 2.38√
d
, as suggested
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by Gelman et al. (1996). According to the Metropolis-Hasting procedure, we accept θj with probability

p = min
{

1, exp(f(θj) − f(θj−1))
}
where f(θ) = log-likelihood × priors. Discarded draws are replaced by

the latest accepted draw. In order to prevent failures of the algorithm, we discard draws that do not lie

in the bounded region of the parameter space, replacing them as previously specified. We set the number

of iterations to 20000, of which we keep the last 40%. We reduce dependence between consecutive draws

by “thinning” each 2 realizations. Posterior distributions are eventually obtained from a sample of 4000

iterations. We adjust the scale parameter each hundred iterations (s = 100), while the adaptive step takes

place every U = 1500 iterations, considering H = 2500 past iterations.10 Markov Chain properties have

been checked by visual inspection, as suggested by Cowles and Carlin (1996). The algorithm results to be

rather efficient, and a complete chain from the baseline model in Section 4 can be obtained in less than 3

minutes, whereas for the large data model, a complete chain can be obtained in about 7 minutes.

Algorithm 1: Adaptive Random-Walk Metropolis-Hastings

for j=1,2,...,N do

Generate: θ∗ ∼ N (θj−1, σ2
j,sΣ

j
H) ;

if θ∗ ∈ Θ then

Evaluate: p = min
{

1, exp(f(θj)− f(θj−1))
}
;

Draw: u ∼ U [0, 1] ;

if u < p then

θj = θ∗, αj = 1 ;

else

θj = θj−1, αj = 0;

end

else

θj = θj−1, αj = 0;

end

if j( mod s) = 0 then
σj+1,s = σj,s ∗ r(α̃s)

end

if j( mod U) = 0 then
Σj+1
H = Cov({θi}Hi=j−H), σj,s = 2.38√

d

end

end

Note: the notation “a( mod b)” represents the modulo operation, while “−s” indicates the previous s draws.

10The adaptive process starts when j ≥ H, while the scale updating takes place from the 100th iteration
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E Monte Carlo Exercise

In this Section we outline a Monte Carlo exercise with the aim of illustrating the small-sample properties

of the Skew-t model described in Section 3. We are interested in the reliability of the estimates of the

asymmetry parameter and, in particular, whether the model is able to correctly disentangle the movements

in the asymmetry parameter from the movements in the location and scale parameters.

We simulate T=250 observations for the parameters of location, µt, scale, σt, and asymmetry, %t,

for every period t from the Sktν(µt, σt, %t) to obtain the series {Yt}Tt=1, then use to estimate the model

discussed in Section 3 (excluding explanatory variables). Therefore, regardless of the DGP considered we

always estimate a two component specification for all the three time-varying parameters. This approach

mimics the true estimation process carried out on real data, to approximate the conditional distribution of

the underlying GDP growth. We first consider ad-hoc specifications for the location and scale parameters

(AR(2) and AR(1), respectively). Then, we turn to DGPs that replicate closely the dynamic properties

of the time-varying parameters we estimate from the the data (and in particular replicate the correlation

between location and scale parameter that we observe in the data). For the shape parameter, we consider a

number of different DGPs, including no asymmetry, constant asymmetry, a single break in the asymmetry,

and cyclical asymmetry.

In the first DGP, data are simulated from a specification featuring symmetric distributions, with inde-

pendent, time-varying location and volatility, therefore aiming at checking that the model does not pick

up any asymmetry when this is not a feature of the data. The second DGP considers the case in which the

asymmetry parameter experiences a jump, from 0 to 0.5 after 100 observations, hence implying negatively

skewed distributions in the second part of the sample. This case sheds light on the adaptiveness of the

model, and provides a clear framework to illustrate the distinctive role played by the secular and transitory

components. The third and fourth DGPs consider a specification for the location and scale parameter

that replicate the basic features of the estimated location and scale parameters, e.g. a mildly negative

correlation, whereas the shape parameter is constant, either at zero or at a positive value.11 In the last

DGP, the asymmetry parameter varies over time, with cyclical fluctuations. To ensure that we replicate

the cyclical features of the parameters, we simulate the three parameters from a VAR(1), with parameters

estimated on the parameters obtained from the Skt-4DFI specification. For each DGP we perform N=500

replications and we estimate the parameters of the two-component model using the estimation approach

introduced in the main text, and detailed in Appendix D.

We simulate µt, γt = log(σt), and δt = arctanh(%t) from the following processes:

DGP1: (No asymmetry)

µt = 0.125 + 1.2µt−1 − 0.25µt−2 + εt, εt ∼ N(0, 0.05);

γt = 0.95γt−1 + εt, εt ∼ N(0, 0.025);

δt = 0.

11Specifically, we fit a VAR(1) to the location and log-scale parameters estimated from the data, and use these
estimates for the DGPs.
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DGP2: (Single break)

µt = 0.125 + 1.2µt−1 − 0.25µt−2 + εt, εt ∼ N(0, 0.05);

γt = 0.95γt−1 + εt, εt ∼ N(0, 0.025);

δt =

0, t ≤ 100

0.5, t > 100
.

DGP3: (Correlated location, scale and no asymmetry)[
µt

γt

]
=

[
0.29

−0.12

]
+

[
0.89 0.01

0.06 0.94]

][
µt−1

γt−1

]
+ εt, εt ∼ N(0,Ω),

where

Ω =

[
0.008 −0.001

−0.001 0.015

]
and δt = 0, ∀t.

DGP4: (Correlated location, scale and constant asymmetry)[
µt

γt

]
=

[
0.29

−0.12

]
+

[
0.89 0.01

0.06 0.94]

][
µt−1

γt−1

]
+ εt, εt ∼ N(0,Ω),

where

Ω =

[
0.008 −0.001

−0.001 0.015

]
and δt = 0.5, ∀t.

DGP5: (Cyclical asymmetry)
µt

γt

δt

 =


0.40

−0.38

−0.33

+


0.85 0.03 −0.06

0.17 0.88 0.13

0.14 −0.09 0.95



µt−1

γt−1

δt−1

+ εt, εt ∼ N(0,Ω),

where

Ω =


0.008 −0.001 −0.007

−0.001 0.015 0.008

−0.007 0.008 0.025


For all the DGPs, the model correctly picks up the time variation in the location and scale with great

precision, and the degree of freedom are estimated without bias. These results are not reported in the

interest of brevity, but are available upon request. Hence, in what follow we comment on the ability of the

model to track the underlying asymmetry of the distribution. For the first four DGPs, we report the true

asymmetry parameter and the 99, 95, 90 and 75 confidence bands for the estimated counterpart. For the

fifth DGP we consider the median difference between the estimated and the simulated parameters.

Figures E1 and E4 show that when the distribution is symmetric, the estimated median parameter, and

the associated confidence bands, remain close to zero with small variability. Therefore, the model clearly
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captures the symmetry of the underlying data generating process, and correctly disentangles the time

variations of the volatility for changes in the asymmetry of the distribution in simple settings (DGP1),

as well as when location and scale are correlated (DGP3). The filter is also able to detect the case with

constant negative skewness (DGP4), in spite of the dynamic correlation between location and scale. The

model does not confound variations of the first two moments of the data with variation of the asymmetry

(Figure E5). Interestingly, for all the cases where the asymmetry parameter is fixed at a positive value,

the cyclical components are always estimated to be approximately zero, suggesting that no variation at all

is captured. Whereas, the secular components show minimal variation, always around the true value.12

For this case we also investigate what happens when the initialization of the filter is away from the true

parameter. The filter neatly discovers the true level of asymmetry relatively quickly (i.e. after roughly 20

observations), and the parameter sets around the true value.

In Figure E2 we report the results for the case of a single break in the asymmetry parameter. Until

the jump takes place, the estimated asymmetry remains centered around zero, while it timely reacts to

the jump occurring on the 100th observation. Furthermore, due to the presence of a slow-moving trend

component, the model fully captures the extent of the asymmetry in the second part of the sample in just

50 observations. Within this case, we also investigate to what extent the model is able to recognize the

persistent nature of the shift in the asymmetry. Figure E3 reports the estimated secular and the cyclical

components, respectively. The long-run components picks up the jump in a timely manner, and contributes

to most of the variability of the estimated parameter. In addition, the first few observations after the jump

are partly captured by the model as short-lived movements, revering to zero soon after.

Lastly, we report in Figure E6 the difference, and the associate confidence set, between the simulated

and the estimated parameters. Despite co-movements in the location, scale and asymmetry parameters,

the model clearly captures the cyclical variations of the latter, reported in red. The estimated parameter

converges to the correct values after few observations, with small deviations, as suggested by the narrow

bounds. Key for the identification of parameters’ variation is that, as discussed in Section 4, shifts in the

shape parameter map into a time-varying correlation between the first and second moments of the data.

Therefore, in spite of the (dynamic) interaction between the key parameters of the distribution, the model

correctly identifies, in a timely manner, movements in the asymmetry of the distribution.

12These results are not reported but available upon request.
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Figure E1: DGP1 - No asymmetry.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.
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Figure E2: DGP2 - Single break in asymmetry.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.
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Long-run Short-run
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Figure E3: Secular and cyclical components for the DGP2 case.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.
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Figure E4: DGP3 - Correlated location, scale and no asymmetry.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.
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Figure E5: DGP4 - Correlated location, scale and constant negative skewness.
Note: The original parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th, 25th, 10th,
5th and 1st percentiles of the empirical distribution of the estimated parameter. The initial point for the estimation
is set to 0.75.
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Figure E6: DGP5 - Cyclical asymmetry.
Note: The plot reports the dispersion round the difference between the simulated and estimated skewness. The red
dashed line represents the perfect match while shades of blue represent the 99th, 95th, 90th, 75th, 25th, 10th, 5th and
1st percentiles of the empirical distribution of such difference.
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F Data

In this Appendix we provide additional details on the data sources. We focus on (real) GDP growth in

the US, and we measure financial conditions using the Chicago FED National Financial Condition Index

(NFCI), and its subcomponents (Brave and Butters, 2011). The NFCI is a weekly index tracking the

status of money markets, debt and equity markets, and the banking sector (comprehensive of the “shadow”

banking sector). The contribution of these sectors maps into three subindices, each of which gauges financial

conditions in terms of risk, leverage, and credit (refer to Brave and Butters, 2012, for further details). We

use quarterly data on economic activity and financial conditions over the period 1973Q1 to 2018Q4, where

the starting date for the analysis is dictated by the availability of the NFCI.

As new information is available, these indices are standardized. Thus, when an index takes a value

of 1 (-1), it signals that the financial conditions are one standard deviation tighter (looser) than their

historical average. Consistently with the concept of financial tightening, the measure relating to the risk

subcomponent positively contributes to the NFCI, reflecting increasing risk premia. In contrast, measures

of leverage and credit receive negative weights in response to lower asset values and declining liquidity in the

financial sector. The top panel of Figure F1 plots the NFCI against GDP growth, whereas the bottom panels

report the NFCI subcomponents. The NFCI (and the three subcomponents) spikes during recessions, as

indicated by the gray-shaded bands, and displays a clear negative correlation with GDP growth, suggesting

that periods of financial overheating coincide with severe economic troughs, as documented by Adrian et al.

(2019). The NFCI closely tracks the risk subcomponent, due to high weights being attached to some of

the risk variables, such as the VIX index. This is consistent with the observation that volatility of the

stock market is an accurate predictor of financial instability (see, e.g. Bekaert and Hoerova, 2014). The

leverage component shows strong procyclicality, and tends to pick up on high values before other indices,

consistently with the findings of Adrian and Shin (2010) and Jordà et al. (2013). Lastly, measures of credit

spread and credit risk are contained in the risk and credit components (Krishnamurthy and Muir, 2017).

Alongside these subindices, the Chicago FED also produces the nonfinancial leverage (NFL) index

(bottom right panel of Figure F1). This series tracks developments in the nonfinancial credit market

using data on household and nonfinancial business leverage. Household data receive weights roughly 1.5

times higher than the latter. Mian and Sufi (2010) argue that the build up of financial instability leading

to the Great Recession was mainly due to an “over-leveraged” household sector. Similarly, Jensen et al.

(2020) observe that increasing households and firms leverage anticipates a deepening of business cycle

skewness. A closer examination of the panel suggests that the massive deleveraging started in the early

2008 coincides with the beginning of the recession in the same year. This measure can thus be intended as

an “early-warning” signal for economic downturns. In addition, this index is a clear leading indicator of the

HP-filtered credit-to-GDP ratio measure, put forward as a leading signal of financial distress (Drehmann

et al., 2010; Jordà et al., 2017).13

Real-time data. In Sections 5 and 6 we evaluate the performance of our models, and compare them

to a number of alternatives, both in an in- an out-of-sample forecasting exercise. For these exercises, we

use real time data on GDP, provided by the Philadelphia FED’s Real Time Data Research Center. This

13Hasenzagl et al. (2020) extensively investigate the relation between the Nonfinancial leverage index and the
Credit-to-GDP ratio index for forecasting purposes.
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Figure F1: National Financial Condition Index and subcomponents
Note: The top panel illustrates the evolution of the NFCI and of GDP growth. Lower panels plot the risk, leverage,
credit and nonfinancial leverage subcomponents, respectively. Shaded bands represent NBER recessions.

dataset contains GDP observations available at a particular vintage date, that is, GDP values available

in the second week of the middle month of each quarter, as described in Croushore and Stark (2001).

GDP growth undergoes substantial revisions, in particular over the first releases, and even more so around

turning points (see, e.g. Croushore, 2011). Despite there is no consensus on what releases to use as “actual”

data for forecast evaluation (Croushore, 2006), we evaluate models using the latest release.14

While real time data are available for GDP, the same is not true for the NFCI and its subcomponents.

These are common factors in a broad panel of financial indicators, extracted using state-space methods.

As such, these indicators are always revised at any point in time, when new information arrives. To this

extent, we can only use a pseudo real-time dataset for the NFCI and its subcomponents. In Section 6,

we use the disaggregated contributions of all the financial indicators which form the basis of the NFCI, as

illustrated in Brave and Butters (2012).15 As GDP data are released about 45 days after the end of the

reference quarter, we assume that it is at that point in time that the forecaster estimates the model and

produces the forecasts. The weekly nature of these data allows us to include all the available information,

by averaging all the weeks within the reference quarter, meaning that we can use all the information made

available within the reference quarter. Despite still not being real-time, this method comes the closest to

mimic the available information set at the time of the forecasts.
14This choice implies that the forecast error produced by our models also accounts for a “measurement error”

component, induced by possible GDP measurement redefinitions, that took place over the considered forecast sample
(for further discussion, see Stark and Croushore, 2002). The results of our forecast exercise would be qualitatively
similar to the one reported if we were to target the ‘advanced’ (i.e. third) revision of GDP growth.

15We are grateful to the authors and the Chicago FED for making the full panel of weighted contribution of the
financial indicators available for this work.
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F.1 Main data sources and mnemonics

Data on quarterly real economic activity come from the Federal Reserve Bank of St. Louis FRED

dataset (mnemonic; GDPC1). The NFCI and the relative risk, leverage, nonfinancial leverage and credit

subcomponents are downloaded from the same source (mnemonic: NFCI, NFCIRISK, NFCILEVERAGE,

NFCINONFINLEVERAGE and NFCICREDIT). These latter are available at the weekly frequency, and

they are converted into quarterly figure by taking the quarterly average. Overlapping weeks are accounted

for in the averaging process: weekly values are computed in only one of the quarterly variables.16

F.2 Additional details on the disaggregated financial indicators

We are grateful to Scot Brave and the Federal Reserve Bank of Chicago for sharing the weighted

individual contribution to the NFCI. The dataset contains weekly time series of financial indicators that

feed into the factor model generating both the NFCI and its subcomponens, as illustrated by Brave and

Butters (2012). In Tables F1, F2, F3 and F4 we report all the indicators, their mnemonic, and the date

they become available for the index. Figure F2 provides a graphical illustration of the time schedule of the

availability of the predictors. The y-axis reports the years considered in our work in an ascending order

(e.g. most recent times are closer to the origins).

16See https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/
how-are-data-aggregated-when-periods-overlap/
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Table F1: Risk subindex components

Mnemonic Financial Indicator Starting date

ABCP 1-mo. Asset-backed/Financial commercial paper spread 05/01/2001
ABSSPREAD BofAML Home Equity ABS/MBS yield spread 05/07/1991
CBILL 3-mo. Financial commercial paper/Treasury bill spread 08/01/1971
CG Commercial Paper Outstanding 10/11/1995
CMBS BofAML 3-5 yr AAA CMBS OAS spread 02/01/1998
CPR Counterparty Risk Index (formerly maintained by Credit Derivatives Research) 13/09/2002
CTABS FTSE Russell US Global Markets ABS/5-yr Treasury yield spread 01/02/1991
CTERM 3-mo./1-wk AA Financial commercial paper spread 10/01/1997
CTF FTSE Russell US Global Markets Financial/Corporate Credit bond spread 31/01/1997
CTMBS FTSE Russell US Global Markets MBS/10-year Treasury yield spread 27/01/1989
FAILS Treasury Repo Delivery Fails Rate 07/10/1994
FAILSA Agency Repo Delivery Failures Rate 07/10/1994
FAILSC Corporate Securities Repo Delivery Failures Rate 05/10/2001
FAILSMBS Agency MBS Repo Delivery Failures Rate 07/10/1994
GVL FDIC Volatile Bank Liabilities 01/07/1994
LIBID 3-mo. Eurodollar spread (LIBID-Treasury) 08/01/1971
MLIQ10 On-the-run vs. Off-the-run 10-yr Treasury liquidity premium 04/01/1985
MMF Total Money Market Mutual Fund Assets/Total Long-term Fund Assets 28/12/1984
REPO Fed Funds/Overnight Treasury Repo rate spread 24/05/1991
REPOA Fed Funds/Overnight Agency Repo rate spread 24/05/1991
REPOGR Repo Market Volume (Repurchases+Reverse Repurchases of primary dealers) 07/10/1994
REPOMORT Fed Funds/Overnight MBS Repo rate spread 24/05/1991
RTERM 3-mo./1-wk Treasury Repo spread 24/05/1991
SPR210 10-yr/2-yr Treasury yield spread 20/08/1971
SPR23M 2-yr/3-mo. Treasury yield spread 08/01/1971
SWAP10 10-yr Interest Rate Swap/Treasury yield spread 03/04/1987
SWAP2 2-yr Interest Rate Swap/Treasury yield spread 03/04/1987
SWAP3M 3-mo. Overnight Indexed Swap (OIS)/Treasury yield spread 19/09/2003
TED 3-mo. TED spread (LIBOR-Treasury) 06/06/1980
TERM 1-yr/1-mo. LIBOR spread 10/01/1986
USD Advanced Foreign Economies Trade-weighted US Dollar Value Index 12/01/1973
VIX CBOE Market Volatility Index VIX 05/01/1990
VOL1 1-mo. BofAML Option Volatility Estimate Index 08/04/1988
VOL3 3-mo. BofAML Swaption Volatility Estimate Index 06/12/1996
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Table F2: Leverage subindex components

Mnemonic Financial Indicator Starting date

ABSI Nonmortgage ABS Issuance (Relative to 12-mo. MA) 29/12/2000
BDG Broker-dealer Debit Balances in Margin Accounts 29/01/1971
BONDGR New US Corporate Debt Issuance (Relative to 12-mo. MA) 01/01/1988
CITA Commercial Bank C&I Loans/Total Assets 02/03/1973
CMBSI CMBS Issuance (Relative to 12-mo. MA) 28/12/1990
COMMODLIQ COMEX Gold/NYMEX WTI Futures Market Depth 04/01/2008
CONTA Commercial Bank Consumer Loans/Total Assets 02/03/1973
CPH FRB Commercial Property Price Index 02/04/1971
D10 10-yr Constant Maturity Treasury yield 08/01/1971
DCOMM Commercial Bank Total Unused C&I Loan Commitments/Total Assets 29/06/1990
DNET Net Notional Value of Credit Derivatives 07/11/2008
EQUITYLIQ CME E-mini S&P Futures Market Depth 04/01/2008
FC Total Assets of Finance Companies/GDP 02/04/1971
FCORP Total Assets of Funding Corporations/GDP 02/04/1971
FINS S&P 500 Financials/S&P 500 Price Index (Relative to 2-yr MA) 06/09/1991
GSE Total Agency and GSE Assets/GDP 30/12/1983
INS Total Assets of Insurance Companies/GDP 02/04/1971
ITA Fed funds and Reverse Repurchase Agreements/Total Assets of Commercial Banks 30/03/1973
LPH CoreLogic National House Price Index 02/04/1976
MBONDGR New State & Local Government Debt Issues (Relative to 12-mo.h MA) 27/02/2004
MBSI Total MBS Issuance (Relative to 12-mo. MA) 29/12/2000
MCAP S&P 500, NASDAQ, and NYSE Market Capitalization/GDP 28/06/1985
OEQ S&P 500, S&P 500 mini, NASDAQ 100, NASDAQ mini Open Interest 24/09/1999
OINT 3-mo. Eurodollar, 10-yr/3-mo. swap, 2-yr and 10-yr Treasury Open Interest 23/06/1995
PENS Total Assets of Pension Funds/GDP 02/04/1971
RATELIQ CME Eurodollar/CBOT T-Note Futures Market Depth 01/02/2008
REIT Total REIT Assets/GDP 02/04/1971
RTA Commercial Bank Real Estate Loans/Total Assets 02/03/1973
SBD Total Assets of Broker-dealers/GDP 02/04/1971
STA Commercial Bank Securities in Bank Credit/Total Assets 02/03/1973
STKGR New US Corporate Equity Issuance (Relative to 12-mo. MA) 01/01/1988
STLOC Federal, state, and local debt outstanding/GDP 02/04/1971
TABS Total Assets of ABS issuers/GDP 30/12/1983
W500 Wilshire 5000 Stock Price Index 29/01/1971

Table F3: Nonfinancial Leverage subindex components

Mnemonic Financial Indicator Starting date

HH Household debt outstanding/PCE Durables and Residential Investment 02/04/1971
NFC Nonfinancial business debt outstanding/GDP 02/04/1971
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Table F4: Credit subindex components

Mnemonic Financial Indicator Starting date

A2P2 1-mo. Nonfinancial commercial paper A2P2/AA credit spread 10/01/1997
BAA Moody’s Baa corporate bond/10-yr Treasury yield spread 03/01/1986
CARSPREAD UM Household Survey: Auto Credit Conditions Good/Bad spread 24/02/1978
CBCAR Commercial Bank 48-mo. New Car Loan/2-yr Treasury yield spread 05/05/1972
CBPER Commercial Bank 24-mo. Personal Loan/2-yr Treasury yield spread 05/05/1972
CCDQ S&P US Bankcard Credit Card: 3-mo. Delinquency Rate 28/02/1992
CCG Consumer Credit Outstanding 29/01/1971
CCINC S&P US Bankcard Credit Card: Excess Rate Spread 31/01/1992
CILARGE FRB Senior Loan Officer Survey: Tightening Standards on Large C&I Loans 13/07/1990
CISMALL FRB Senior Loan Officer Survey: Tightening Standards on Small C&I Loans 13/07/1990
CRE FRB Senior Loan Officer Survey: Tightening Standards on CRE Loans 12/10/1990
CRG S&P US Bankcard Credit Card: Receivables Outstanding 28/02/1992
CWILL FRB Senior Loan Officer Survey: Willingness to Lend to Consumers 15/01/1971
DBC ABA Value of Delinquent Bank Card Credit Loans/Total Loans 26/02/1999
DCLOSE ABA Value of Delinquent Consumer Loans/Total Loans 26/02/1999
DHE ABA Value of Delinquent Home Equity Loans/Total Loans 26/02/1999
DOTH ABA Value of Delinquent Noncard Revolving Credit Loans/Total Loans 26/02/1999
DURSPREAD UM Household Survey: Durable Goods Credit Conditions Good/Bad spread 27/01/1978
FG Finance Company Owned & Managed Receivables 29/01/1971
HOUSSPREAD UM Household Survey: Mortgage Credit Conditions Good/Bad spread 24/02/1978
HY BofAML High Yield/Moody’s Baa corporate bond yield spread 07/11/1986
JINC 30-yr Jumbo/Conforming fixed rate mortgage spread 12/06/1998
LHY Markit High Yield (HY) 5-yr Senior CDS Index 07/01/2005
LIG Markit Investment Grade (IG) 5-yr Senior CDS Index 01/10/2004
MBOND 20-yr Treasury/State & Local Government 20-yr GO bond spread 08/01/1971
MDQ MBA Serious Delinquencies 30/06/1972
MG Money Stock: MZM 01/03/1974
MINC 30-yr Conforming Mortgage/10-yr Treasury yield spread 02/04/1971
MSWAP Bond Market Association Municipal Swap/20-yr Treasury yield spread 07/07/1989
NACMM NACM Survey of Credit Managers: Credit Manager’s Index 15/02/2002
NCL Commercial Bank Noncurrent/Total Loans 28/06/1985
RRE FRB Senior Loan Officer Survey: Tightening Standards on RRE Loans 12/10/1990
SMALL NFIB Survey: Credit Harder to Get 02/11/1973
SPCILARGE FRB Senior Loan Officer Survey: Increasing spreads on Large C&I Loans 13/07/1990
SPCISMALL FRB Senior Loan Officer Survey: Increasing spreads on Small C&I Loans 13/07/1990
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G Additional forecast results

In this Appendix we report a number of additional results related to the forecast exercise we described

in Section 5.

G.1 Lagged GDP growth as additional predictor

In this Section we show that adding past lags of the observable to the Sktspecifications does not lead

to any substantial gains in the forecasting accuracy of the models.

Table G1: Forecast performance with respect to 4DFI,Y

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.957
(0.004)

−0.018
(0.784)

0.971
(0.032)

0.987
(0.243)

0.740
(0.000)

0.104
(0.010)

0.988
(0.267)

0.938
(0.049)

Post ’00 0.959
(0.000)

−0.008
(0.617)

0.972
(0.006)

0.983
(0.097)

0.921
(0.012)

0.014
(0.378)

0.986
(0.205)

1.001
(0.513)

Rec. 0.994
(0.456)

−0.021
(0.639)

0.975
(0.256)

0.986
(0.376)

0.756
(0.001)

−0.023
(0.611)

1.015
(0.642)

1.007
(0.546)

Note: The table reports the average forecast metrics from the Skt-4DFI model relative to Skt-4DFI,Y . We use
ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the
log-score differences indicate that the Skt4DFI model performs better than Skt-4DFI,Y . The p-values for Diebold
and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.
Values in bold are significant at the 10% level; gray shaded cells highlight the best score.

G.2 How important is parameters’ uncertainty?

The following Tables we compare forecasts made with, and without account for parameter uncertainty.

Table G2: Forecast performance - Parameter uncertainty

One-quarter ahead One-year ahead

MSFE logS MSFE logS
Full 0.965

(0.000)
−0.001

(0.510)
0.845
(0.000)

0.105
(0.017)

Post ’00. 0.850
(0.004)

0.011
(0.445)

0.680
(0.006)

0.314
(0.052)

Rec. 0.959
(0.000)

0.046
(0.058)

0.770
(0.000)

0.073
(0.079)

CRPS wQS CRSP wQS
Full 0.983

(0.039)
0.986
(0.095)

1.010
(0.753)

1.023
(0.859)

Post ’00. 0.942
(0.048)

0.931
(0.064)

1.005
(0.552)

0.941
(0.109)

Rec. 0.964
(0.000)

0.955
(0.000)

1.005
(0.599)

0.950
(0.014)

Note: In this table we compare the forecast metrics of the baseline model, Skt4FDI, against a version of the same
model that does not account for parameter uncertainty (w/o P.U.). The table reports the average forecast metrics
relative to the w/o P.U. model. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios
smaller than 1, and positive values of the log-score differences indicate that the baseline model (which allows for
uncertainty) performs better than the model without parameters uncertainty. The p-values for Diebold and Mariano
(1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.

28



Table G3: Density calibration tests - Parameter uncertainty

w/ PU w/o PU w/ PU w/o PU
One-quarter ahead One-year ahead

Dist. 0.883 0.763 1.162 1.217
Left tail 0.501 0.615 1.162 1.217

Note: The table reports the test statistics for the Rossi and Sekhposyan (2019) tests, based on the Cramér-von
Mises type tests. The left tail score is computed over the support [0, 0.25]. Values in bold indicate the rejection of
the null hypothesis of correct specification of the density forecast, at the 10% confidence level. Critical values are
obtained by 1000 bootstrap simulations. Gray shaded cells indicate lowest value of the statistic.

G.3 Excluding 2020 from the forecast evaluation sample

In Sections 5.1 and 5.2, we excluded the 2020 quarters from the forecast evaluation of the recession

subsample. In this Appendix we report the results for the full and the post-2000s samples excluding the

pandemic period.

Table G4: Forecasting performance

Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.951

(0.120)
0.847
(0.002)

0.862
(0.004)

0.123
(0.000)

0.148
(0.000)

0.074
(0.032)

Post ’00 0.881
(0.000)

0.795
(0.000)

0.795
(0.000)

0.186
(0.000)

0.231
(0.000)

0.200
(0.000)

Rec. 0.955
(0.315)

0.822
(0.067)

0.813
(0.067)

0.349
(0.006)

0.380
(0.007)

0.270
(0.081)

CRPS wQS
Full 0.964

(0.088)
0.934
(0.009)

0.952
(0.043)

0.984
(0.290)

0.936
(0.016)

0.941
(0.028)

Post ’00 0.913
(0.001)

0.875
(0.000)

0.890
(0.001)

0.935
(0.037)

0.888
(0.001)

0.894
(0.006)

Rec. 0.962
(0.265)

0.934
(0.183)

0.928
(0.156)

0.948
(0.189)

0.914
(0.104)

0.858
(0.025)

One-year ahead

MSFE logS
Full 0.720

(0.000)
0.716
(0.002)

0.693
(0.004)

0.463
(0.000)

0.561
(0.000)

0.502
(0.002)

Post ’00 0.722
(0.000)

0.697
(0.000)

0.732
(0.005)

0.774
(0.000)

0.894
(0.000)

0.867
(0.000)

CRPS wQS
Full 0.913

(0.003)
0.902
(0.002)

0.883
(0.003)

0.779
(0.001)

0.746
(0.001)

0.765
(0.006)

Post ’00 0.844
(0.000)

0.829
(0.000)

0.829
(0.000)

0.729
(0.000)

0.705
(0.000)

0.723
(0.001)

Note: The table reports the average forecast metrics relative to the Gaussian model over the 1973-2019 sample. We
use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of
the log-score differences indicate that the column-specific model performs better than the Gaussian benchmark. The
p-values for Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997),
are in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best score.
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Table G5: Forecast performance with respect to Adrian et al. (2019)

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 1.073
(0.944)

0.212
(0.000)

1.021
(0.766)

1.043
(0.940)

1.024
(0.604)

0.560
(0.000)

0.994
(0.456)

1.032
(0.697)

Post ’00 0.905
(0.004)

0.078
(0.027)

0.951
(0.065)

0.962
(0.095)

0.917
(0.160)

0.371
(0.003)

0.918
(0.088)

0.959
(0.300)

Note: The table reports the average forecast metrics from the Skt-4DFI model relative to Adrian et al. (2019) over
the 1973-2019 sample. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller
than 1, and positive values of the log-score differences indicate that the Skt4DFI model performs better than Adrian
et al. (2019). The p-values for Diebold and Mariano (1995) tests, augmented with the small sample correction of
Harvey et al. (1997), are in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight
the best score.

Table G6: Forecast performance with respect to 4DFI,Y

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.958
(0.104)

0.002
(0.467)

0.974
(0.085)

0.991
(0.319)

0.737
(0.000)

0.124
(0.004)

0.985
(0.235)

0.931
(0.035)

Post ’00 0.977
(0.202)

0.032
(0.085)

0.979
(0.093)

0.989
(0.271)

0.926
(0.018)

0.051
(0.135)

0.981
(0.138)

0.990
(0.358)

Note: The table reports the average forecast metrics from the Skt-4DFI model relative to Skt-4DFI,Y over the
1973-2019 sample. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than
1, and positive values of the log-score differences indicate that the Skt4DFI model performs better than Skt-4DFI,Y
. The p-values for Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al.
(1997), are in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best
score.

G.4 Conditional vs. unconditional skewness

In this Section we assess the impact of accounting for unconditional skewness in the benchmark model.

Specifically, we assume that this is an AR(2) model for GDP growth with Sktν innovations with fixed shape

parameter.
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Table G7: Forecasting performance against Skt-fix

N Skt Skt Skt N Skt Skt Skt
AR NFCI 4DFI AR NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.958

(0.000)
0.807
(0.000)

0.783
(0.000)

0.778
(0.000)

−0.119
(1.000)

0.002
(0.464)

0.021
(0.230)

−0.059
(0.937)

Post ’00 0.951
(0.000)

0.770
(0.000)

0.764
(0.000)

0.754
(0.000)

−0.125
(1.000)

0.056
(0.054)

0.087
(0.004)

0.042
(0.155)

Rec. 1.003
(0.521)

0.957
(0.286)

0.824
(0.027)

0.815
(0.052)

−0.354
(0.992)

−0.005
(0.534)

0.026
(0.327)

−0.084
(0.799)

CRPS wQS
Full 0.982

(0.032)
0.947
(0.001)

0.924
(0.000)

0.935
(0.001)

1.010
(0.820)

0.969
(0.052)

0.935
(0.000)

0.935
(0.002)

Post ’00 0.977
(0.002)

0.913
(0.000)

0.891
(0.000)

0.897
(0.000)

1.034
(0.999)

0.951
(0.001)

0.925
(0.000)

0.921
(0.002)

Rec. 1.007
(0.590)

0.969
(0.212)

0.940
(0.120)

0.935
(0.182)

1.026
(0.838)

0.973
(0.271)

0.938
(0.088)

0.880
(0.045)

One-year ahead

MSFE logS
Full 1.075

(0.999)
0.774
(0.003)

0.770
(0.012)

0.746
(0.009)

−0.184
(1.000)

0.294
(0.005)

0.390
(0.000)

0.325
(0.009)

Post ’00 1.022
(0.971)

0.739
(0.000)

0.714
(0.000)

0.747
(0.009)

−0.307
(1.000)

0.507
(0.000)

0.627
(0.000)

0.587
(0.000)

Rec. 1.154
(0.922)

0.662
(0.000)

0.716
(0.029)

0.629
(0.008)

−0.783
(0.997)

0.681
(0.000)

0.789
(0.001)

0.994
(0.003)

CRPS wQS
Full 0.998

(0.853)
0.910
(0.003)

0.900
(0.001)

0.881
(0.003)

1.061
(1.000)

0.826
(0.008)

0.792
(0.002)

0.812
(0.014)

Post ’00 1.044
(1.000)

0.883
(0.000)

0.868
(0.000)

0.868
(0.001)

1.070
(1.000)

0.782
(0.000)

0.759
(0.000)

0.777
(0.007)

Rec. 1.033
(0.827)

0.884
(0.002)

0.889
(0.024)

0.808
(0.006)

1.120
(0.997)

0.695
(0.000)

0.729
(0.008)

0.653
(0.011)

Note: The table reports the average forecast metrics relative to the Gaussian model. We use ratios for the MSFE,
CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score differences
indicate that the column-specific model performs better than the Gaussian benchmark. The p-values for Diebold
and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.
Values in bold are significant at the 10% level; gray shaded cells highlight the best score.

Table G8: Downside risk scores against Skt-fix

Skt Skt Skt Skt Skt Skt
no-X 4DFI no-X 4DFI no-X 4DFI

FZG ALS TLF

One-quarter ahead
Full 0.831

(1.000)
0.819
(0.913)

0.959
(0.000)

0.948
(0.002)

0.978
(0.702)

0.900
(0.001)

Post ’00 0.693
(0.994)

0.720
(0.934)

0.912
(0.000)

0.926
(0.001)

0.943
(0.508)

0.915
(0.164)

Rec. 0.641
(0.998)

0.526
(0.135)

0.846
(0.941)

0.749
(0.080)

0.858
(0.382)

0.666
(0.017)

One-year ahead
Full 0.241

(0.001)
0.310
(0.002)

0.397
(0.000)

0.424
(0.002)

0.692
(0.010)

0.622
(0.010)

Post ’00 0.208
(0.016)

0.170
(0.019)

0.435
(0.012)

0.395
(0.031)

0.690
(0.052)

0.475
(0.020)

Rec. 0.137
(0.002)

0.128
(0.007)

0.256
(0.002)

0.237
(0.011)

0.441
(0.000)

0.328
(0.011)

Note: The table reports the average downside risk test scores, expressed as ratios relative to the Skt-fix model.
Ratios smaller than 1 indicate that the column-specific model performs better than the benchmark. The p-values
for Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are
reported in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best score.
FZG: Fissler et al. (2016) loss function; ALS: Taylor (2019) loss function; TLF: Giacomini and Komunjer (2005)
tick loss function.
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G.5 NFCI: last vintage vs. real time data

Here, we assess the difference in forecasting performance associated with the availability of real-time

vintages of the NFCI and its four subcomponents.

Table G9: Forecast comparison with real-time NFCI

Skt Skt Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI NFCI 4DFI NFCI 4DFI

One-quarter ahead One-year ahead

MSFE logS MSFE logS
2013-
2020

1.010
(0.019)

0.984
(0.000)

0.005
(0.945)

−0.085
(0.241)

0.942
(0.032)

1.030
(0.000)

0.056
(0.336)

−0.058
(0.250)

2013-
2019

0.900
(0.365)

0.985
(0.664)

0.067
(0.165)

−0.006
(0.782)

0.956
(0.025)

1.034
(0.000)

0.059
(0.378)

−0.041
(0.458)

CRPS wQS CRPS wQS
2013-
2020

0.979
(0.149)

0.986
(0.014)

0.968
(0.023)

0.976
(0.000)

0.949
(0.056)

1.012
(0.327)

0.937
(0.013)

1.011
(0.260)

2013-
2019

0.921
(0.182)

0.991
(0.557)

0.962
(0.327)

0.973
(0.146)

0.960
(0.112)

1.015
(0.256)

0.943
(0.069)

1.017
(0.232)

Note: The table compares forecast produced with real time vintages of the NFCI and its subindices. Average
forecast metrics are reported relative to the forecasts using the last release of the NFCI. The sample spans the
period from 2013Q1 to 2020Q4 to match the availability of real-time observations. We evaluate forecasts for the full
sample (’13-’20) and for a subsample excluding the pandemic (’13-’19). We use ratios for the MSFE, CRSP and
wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score differences indicate
that using real-time NFCI observations improves forecasts’ accuracy. The p-values for Diebold and Mariano (1995)
tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses. Values in bold are
significant at the 10% level.
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H Additional material

H.1 Additional tables

Table H1: Static parameters

µy µσ φy,1 φy,2 φµ,1 φµ,2 φγ̃ φδ̃

AR(2) 2.150
[2.024,2.282]

0.015
[0.013,0.017]

0.386
[0.330,0.440]

0.066
[0.019,0.120]

0.977
[0.971,0.983]

Skt-No-X 1.027
[0.914,1.155]

−0.227
[−0.366,−0.096]

0.728
[0.641,0.811]

0.770
[0.689,0.834]

Skt-NFCI 0.960
[0.846,1.085]

−0.127
[−0.257,0.001]

0.662
[0.571,0.744]

0.719
[0.612,0.806]

Skt-4DFI 0.885
[0.840,0.927]

−0.032
[−0.079,0.011]

0.588
[0.521,0.654]

0.621
[0.565,0.684]

ςµ κµ ςγ κγ ςδ κδ χ η

AR(2) 0.108
[0.099,0.121]

0.267
[0.166,0.362]

Skt-No-X 0.025
[0.019,0.034]

0.081
[0.058,0.111]

0.027
[0.020,0.039]

0.148
[0.110,0.198]

0.027
[0.021,0.037]

0.091
[0.072,0.118]

0.283
[0.147,0.395]

0.301
[0.273,0.321]

Skt-NFCI 0.025
[0.018,0.035]

0.089
[0.063,0.131]

0.028
[0.020,0.040]

0.117
[0.084,0.158]

0.026
[0.020,0.032]

0.064
[0.051,0.080]

0.229
[0.109,0.372]

0.300
[0.269,0.321]

Skt-4DFI 0.032
[0.021,0.046]

0.083
[0.063,0.111]

0.019
[0.015,0.024]

0.110
[0.086,0.136]

0.029
[0.023,0.036]

0.070
[0.055,0.091]

0.031
[0.014,0.064]

0.312
[0.294,0.327]

Note: The table reports the estimates of the static parameters for all the models: the Gaussian AR(2), the Sktno-X
without predictors, with lags of the NFCI (SktNFCI) and with lags of the subcomponents of the index (Skt4DFI).
Confidence intervals at the 68% level are in brackets.

Table H2: Predictor loadings

Skt Skt
NFCI 4DFI

NFCI Leverage NF Leverage Risk Credit

µt 0.001
[−0.006,0.007]

−0.001
[−0.008,0.005]

−0.000
[−0.006,0.005]

0.000
[−0.005,0.006]

0.003
[−0.005,0.010]

t σ2
t 0.118

[0.041,0.178]
0.051

[−0.001,0.098]
0.013

[−0.047,0.074]
−0.002

[−0.060,0.068]
0.126

[0.074,0.178]

%t 0.260
[0.198,0.324]

0.079
[0.037,0.125]

0.141
[0.087,0.195]

0.040
[−0.016,0.100]

0.206
[0.163,0.249]

µt 0.003
[−0.004,0.010]

−0.002
[−0.008,0.003]

0.002
[−0.003,0.007]

−0.000
[−0.006,0.005]

0.002
[−0.005,0.008]

t− 1 σ2
t −0.028

[−0.103,0.043]
−0.040

[−0.088,0.003]
−0.024

[−0.088,0.033]
0.106

[0.050,0.160]
−0.116

[−0.163,−0.068]

%t −0.209
[−0.278,−0.137]

−0.035
[−0.090,0.021]

−0.081
[−0.147,−0.028]

−0.054
[−0.110,0.006]

−0.163
[−0.206,−0.114]

Note: 90% confidence intervals are reported in brackets.
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H.2 Additional plots

Figure H1: Bai and Ng (2005) test for skewness
Note: We report the Bai and Ng (2005) test for skewness’ test statistic, for different rolling windows sizes of 1, 2, 3
and 5 years. The gray lines represent 90% (dotted) critical values. Shaded bands represent NBER recessions.
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Skt Skt-NFCI Skt-4DFI

Figure H2: Time-varying parameters
Note: The plots illustrate the estimated time-varying parameters (black) for the three model specifications. Long-run
components are reported in red (right scale). Shaded bands represent NBER recessions.
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Figure H3: Predictive densities around the GFC
Note: The panels show the predictive densities for 2008Q3 (blue), 2008Q4 (red) and 2009Q1 (green) from the
Gaussian AR(2) model (top panels) and from the Skt-4DFI specification (bottom panel). In-sample densities are
in the right panels, out-of-sample densities are in the left ones. Realizations of economic growth are denote by
diamonds, dot-dashed lines report expected values.
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Full sample GFC

Figure H4: Top 10 predictors
Note: The bar plots report the top 10 predictors for the location, scale and shape parameters, over the forecasting
sample and during the quarters of the Great Recession of 2008. The x-axis reports average posterior probability of
inclusion, expressed in percentage terms.
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