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Abstract

We use microdata on product prices linked to information on the producing

firms that set them to study to what extent the timing of price changes reacts to

changes in marginal cost. This self-selection of price-changes is a key feature in the

canonical Menu-Cost model a la Golosov and Lucas (2007), which may generate

near monetary neutrality (Golosov and Lucas, 2007, Karadi and Reiff, 2016), but

is absent in the Calvo (1983) model. We find that the microdata strongly favors

the Calvo (1983) model. Thus, upstream in the supply chain, price setting is best

characterized by a very low degree of self-selection into price changes.
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1 Introduction

In the canonical workhorse model of applied macroeconomics, the New Keynesian model,

nominal frictions are the keystone for generating monetary non-neutrality and a role for

monetary policy.1 A key simplifying assumption in this model, relying on the Calvo

(1983) price-setting model, is that the pricing decision faced by the firm is only about the

magnitude of the price change and not the timing of the price change.2 However, treating

the timing (as well as the magnitude) of price changes as a regular profit-maximizing

choice subject to a fixed cost of price changes as in the Menu-Cost model of pricing, can

have a dramatic effect on the degree of monetary non-neutrality; see Caplin and Spulber

(1987), Dotsey, King, and Wolman (1999), Golosov and Lucas (2007), Midrigan (2011)

and Karadi and Reiff (2016). The main driver behind this result is the self-selection

mechanism that mitigates the real effects of money. That is, firms that change price

in the Menu-Cost model of pricing are those that have the most to gain from it. This

increases the effect on the price level from a monetary shock relative to a model relying

on Calvo (1983) pricing and reduces the degree of monetary non-neutrality. Moreover,

this modeling choice also affects other properties of the model, such as determinacy under

a specific policy rule; see Dotsey and King (2005) for a discussion. Thus, whether self-

selection by firms into the price-changing group is a feature of observed firm behavior or

not is an important question for macroeconomic analysis and the policy advice derived

from it.

The key empirical challenge when assessing the empirical relevance of selection effects

is that we generally do not observe the price the firm would set if it had the opportunity

to re-optimize it’s price (i.e. the “reset price”). Due to the unobservability of reset prices

some authors have sought to infer the degree of selectivity in price changes with methods

that does not require a direct measure of the reset price.3 In contrast, a number of

studies relate individual pricing decisions to some measure of a firms reset price such as

the deviation from the price set by local competitors (e.g. Campbell and Eden, 2014) or

1See Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005).
2The tractability gain from making the firm’s pricing decision only about the magnitude of the price

change comes from the reduced dimensionality needed when describing the evolution of the aggregate
price level.

3See e.g. Caballero and Engel (1993a), Caballero and Engel (1993b), Bils, Klenow, and Malin (2012),
Gopinath and Itskhoki (2010), Gopinath and Itskhoki (2011), Gagnon, Mandel, and Vigfusson (2014),
Gagnon, López-Salido, and Vincent (2013), Klenow and Kryvtsov (2008). These are merely examples
from a vast literature and a more complete reference list is given in Klenow and Malin (2010).

1



a replacement cost measure of marginal cost (e.g. Eichenbaum, Jaimovich, and Rebelo,

2011). The latter strand of the literature focuses on data downstream in the supply

chain, i.e. the retail sector. In this paper, and as in Carlsson and Nordström Skans

(2012), the focus is instead on price-setting behavior upstream in the supply chain and

draws on very detailed annual Swedish data on product producer prices matched to a

rich data set containing information on the activity of the firms that set these prices. To

our knowledge, this is the first data set where such detailed quantitative price data have

been merged with detailed information on firm-level activity for a broad sample (702) of

industrial firms. Using the firm-level data, we construct a measure of marginal cost (i.e.

unit labor cost, ULC henceforth) consistent with the vast majority of DSGE models in

the literature, as well as, the price-setting models outlined below. In contrast to retail

replacement costs, unit labor cost is not affected by different marketing considerations in

consumer markets that may affect the inference.4

Relying on the same data set and measurement as employed here, Carlsson and Nord-

ström Skans (2012) established that the marginal cost measure (unit labor cost) is an

important driver of the magnitude of price changes and report empirical evidence in sup-

port of a nominal frictions interpretation of the data. Carlsson and Nordström Skans

(2012) is focused on studying the drivers of the magnitude of price changes, but does not

address the question of whether or not the timing of price changes is endogenous. To

handle this issue, they instead restrict the regression sample to observations where prices

change. In contrast, this paper explores to what extent price setting features important

selection effects or not. Importantly, the focus here is directly on firm behavior and

whether or not we observe economically significant selection effects on the micro level.

This is a necessary condition for this mechanism to play an important role in the degree of

monetary non-neutrality. Note, however, that the overall importance of selection effects

for monetary non-neutrality is driven by the interaction of the measure of marginal firms

lying close to the adjustment threshold and the size of the adjustment needs; see Karadi

and Reiff (2016) for a discussion.

To impose discipline on the empirical exercise at hand, we first outline and calibrate a

4For example, contracts between retailers and their suppliers that cause simultaneous changes in
retail prices and replacement costs measures of marginal cost are common and may lead researchers to
find counterfactually strong selection effects (see e.g. the discussion in Anderson, Nakamura, Simester
and Steinsson, 2014). Also, the smaller product offerings of producers, relative to retailers, brings the
empirical analysis on closer to the assumptions of standard pricing models.
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baseline Menu-Cost model to match key moments in the data (apart from the empirical

size of the selection effects). The Menu-Cost model we rely on is along the lines of

Golosov and Lucas (2007), but allows for fat-tailed idiosyncratic shocks to marginal cost

(akin to Midrigan, 2011) in order to better match the micro-data.5 Moreover, the model is

calibrated to a monthly frequency, which allows us to gauge the effect of time aggregation

in the annual data, both in terms of observed moments, as well as, in terms of the power

of the inference.

Aggregating the simulated data in the same way as the actual data is aggregated, we

find that time aggregation fills out the gap of very small price changes that is otherwise a

hallmark of the price-change distribution in menu-cost models. Actually, this type of data

filtering takes the Menu-Cost model a long way in replicating the observed annual price

change distribution. Thus, time aggregation is a complementary mechanism for generat-

ing small price changes in the Menu-Cost model to the economies of scope suggested by

Lach and Tsiddon (2007), Midrigan (2011) and Alvarez and Lippi (2014) or stochastic

menu costs as in Caballero and Engel (1999) and Dotsey, King, and Wolman (1999). In-

tuitively, pricing patterns where e.g. large positive and negative monthly changes within

a year nearly cancel one another out generates small overall price movements in the time-

aggregated data. Though, arguably the strength of the mechanism should increase with

the time span of aggregation, but the potential for this mechanism is shared with many

other data sets employed in the literature where the price is calculated from reported

values and volumes over a time period as in this paper; see Eichenbaum, Jaimovich, Re-

belo, and Smith (2014) for a discussion. Evaluating the importance of this mechanism in

time aggregated data with higher frequency is left for future research, but we note that,

any rebuttal of the Menu-Cost model using the data set at hand will not be due to its

inability to capture the frequency of small price changes in the observed data.

Next, we analyze the strength of the selection mechanism by running probability

models along the routes of what Cecchetti (1986), Buckle and Carlson (2000), Loupias

and Sevestre (2013) and others have done previously relying on aggregate/sectoral or

qualitative data to measure drivers of the reset price. Specifically, we investigate if the

absolute value of the accumulated change in the firm’s marginal cost, as well as the non-

5The Menu-Cost model of Golosov and Lucas (2007) builds in turn on work by Barro (1972) and
Sheshinski and Weiss (1977) amongst others.

3



accumulated version of the same, affects the probability of a price change. A test of the

Menu-Cost model is then provided by comparing the empirical results with the results

from synthetic time-aggregated data generated by the Menu-Cost model matched to key

moments in the data. We find an order of magnitude smaller effect on the probabil-

ity of a price change than expected if the Menu-Cost model was generating the data.

Moreover, when considering measurement issues pertaining to the classification of small

price changes in the data, the (small) positive estimates we find seems to be the result

of upward bias. Importantly, the sharp difference between the model prediction and the

data also confirms that time aggregation is not an issues for the inference in this exercise.

Thus, the data reject that the selection effects are anywhere near the size that is

expected from the Menu-Cost model. The question then is wether or not they are so

small that a Calvo (1983) model would fit the data or if the data is better described

by hybrid model including elements of both. To structurally quantify the regression

results we then fit a price-setting model that nests both the Calvo (1983) and the Menu-

Cost model to the data (i.e. a fat-tailed shocks version of the CalvoPlus model outlined

in Nakamura and Steinsson, 2010), which can generate an arbitrary degree of selection

effects in the simulated micro data from the model. Importantly, the procedure to fit the

model parameters can be constructed to be unaffected by the measurement issues that

may bias the regression results. When choosing parameters so that the model matches

key empirical moments as closely as possible, including the size of the empirical selection

effects from the probability regression from the observed data, the parameters are driven

very close to a standard Calvo (1983) model. This again implies that the selection effects

are not an important feature of the data. It is also interesting to see that the calibrated

CalvoPlus model does a good job in replicating the price change distributions, especially

in terms of the kurtosis and the overall shape.

Thus, overall, timing adjustments of price changes to marginal-cost developments do

not seem to be an important feature of observed price-setting behavior of goods-producing

firms and the timing behavior with respect to price changes of these firms does not imply

any potential for reducing monetary non-neutrality as in Golosov and Lucas (2007) or

Karadi and Reiff (2016). Moreover, we also find that a Calvo (1983) model seems to

provide a reasonable description of the price-setting behavior in our data. Note though

that it is not argued that the Calvo (1983) model is the true underlying model of micro-
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level price setting, but rather that in order to be aligned with the data, any successful

model of price setting in firms upstream in the supply chain needs to predict very small

selection effects with respect to marginal cost shocks.

Interestingly, Eichenbaum, Jaimovich, and Rebelo (2011) also links a measure of mar-

ginal cost, i.e. the replacement cost of the vended product, to the price set in data

drawn from a large US food and drug retailer and documents a high degree of selection

effects in pricing downstream in the supply chain.6 This indicates that there seems to

be considerable differences in pricing behavior along the supply chain.7 This is perhaps

not surprising given differences in conditions between consumer and business-to-business

markets, but this observation may provide important hints for future research on the

microfoundations of pricing behavior.

An additional intriguing question is how upstreams marginal-cost shocks feeds through

the pricing decision along the supply chain (see e.g. Nakamura, 2008). Although this

issue is not addressed here, it is worth noting that in a simple supply chain model, where

the price set by the upstreams firm represent marginal cost for the downstream firm, does

not need price-setting frictions on all levels in order to generate significant monetary non-

neutrality.8 In fact, frictions found in the downstream sector can only add to monetary

non-neutrality and given the results presented here, they are not instrumental for the

existence of sizable monetary non-neutrality.

This paper is organized as follows: Section 2 presents the data, Section 3 outlines

the Menu-Cost model used as a benchmark, Section 4 presents our results and, finally,

Section 5 concludes the paper.

2 Data

The data set consists of quantitative price data on the product level that have been

merged with information on the producing firm’s production level, inputs and costs for

6Especially when considering reference prices (and costs) - i.e. when abstracting from high frequency
variation such as sales commonly observed in consumer prices. As noted by Nakamura and Steinsson
(2008), sales seem to be uncommon in producer price data.

7With the caveat that the close relation between prices and replacement cost could be a feature of
how contracts are written between retailers and their suppliers as opposed to prima facie evidence of
state dependence in retail.

8See e.g. the canonical New Keynesian model (Smets and Wouters, 2003, or Christiano, Eichenbaum
and Evans, 2005).
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a broad sample of manufacturing firms. This data set combines information on detailed

product-prices drawn from the Swedish IVP (“Industrins Varuproduktion”) survey with

information on plant-level activity from the IS (“Industristatistiken”) survey.

The IVP micro data provides annual information on prices and quantities of products

for all Swedish industrial plants with at least 10 (20) employees for the years 1990−1996

(1997 − 2002) and a sample of smaller plants. The product classification is at the 8/9-

digit level of the Harmonized System (HS) for the years 1990− 1995 and the Combined

Nomenclature (CN) for the years 1996 − 2002. The data allow us to follow the same

product (or at least a very closely defined group of products) over time. The codes

are fairly exact; an example of a product code is 84181010 for “A combined freezer and

cooler with separate exterior doors with a volume exceeding 340 liters intended for use

in civilian aircrafts”. The (unit) price for each product code is calculated by dividing

the firms’yearly reported value for the product code with the accompanying volume (in

terms of the relevant measure, e.g. the number of products, cubic meters, metric tons,

etc.). The data are thus based on actual transaction prices and not list prices.

A key novelty is that the price data can be matched to data on activity for the

individual plant. The IS survey contains annual information on inputs and output for

all Swedish industrial plants with 10 employees or more and a sample of smaller plants.

We only use plants that are also a firm since pricing essentially is a firm-level and not a

plant-level decision and since there is some scope for transactions between plants within

a firm for tax reasons. In addition, we limit the analysis to firms that are in operation

throughout the sample period since we want to identify normal behavior.

Following Rotemberg and Woodford (1999), Carlsson and Nordström Skans (2012)

and others, we rely on unit labor cost as a measure of marginal cost.9 To construct unit

labor cost we use the IS survey data on the firms’wage bill divided by real output, where

the latter variable is obtained by deflating nominal output from the IS survey (the value

of total sales) using a firm-specific producer price index.10

Since the raw price data involve a few very large swings we apply a cleaning procedure

in which we split the individual price series and give them a new unique plant-price

9See Section 3.1 for a theoretical justification for this measure.
10The price index is constructed as a chained index with Paasche links combining the plant-specific

unit prices described above and the most detailed product/producer-price indices available. The
product/producer-price indices are used if the 8/9-digit unit value data are not available due to missing
data, changes in the firm’s product portfolio, or when there are large swings (over the 1.5/98.5 centiles).
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identifier whenever a large change in the growth rate appears in the raw data. The cut-

off levels are given by the 1.5 and 98.5 centiles of the full raw data distribution. We also

remove firms that are subject to large swings in the observed marginal cost. As with

prices, we use the full distribution of log changes in unit labor cost across all firms for

which this variable can be computed and remove firms with growth rates outside the

[1.5, 98.5] centiles in any one year of the sample period.

When merging data sets, we are left with 17, 282 price observations (where we at least

observe the price of a product for two consecutive periods) across 1, 610 unique product

codes, 3, 510 unique product/firm identities and 702 firms (as in Carlsson and Nordström

Skans, 2012). These industrial firms are mainly medium to small firms with an average

of 65 employees. See also Appendix A for more details on the data construction. There

we also present evidence on the robustness of the results to more generous cut-off levels.

In Figure 1, we plot the final data distribution of log price changes (for the 8/9-

digit unit price data). All in all, this comprises 13, 772 price-change observations. Each

bin in the histogram represents a log difference of 0.01. Note that since these prices

are calculated from reported values and volumes of sold products, there might be small

rounding errors in the data, motivating a focus on a zero bin rather than exactly zero price

changes.For example, survey respondents are asked to state the value of sold products

in thousands of SEK, which will lead to rounding errors in calculated prices and thus

small erroneous price changes in the data.11 ,12 As can be seen in Figure 1 there is a

substantial spike for the bin centered around zero. In fact, 13.6 percent of the price-

change observations are confined within the ±0.5 percent interval.

The observation that a substantial fraction of price spells remain fixed across years

is well in line with existing survey evidence. When surveying 626 Swedish firms in 2002,

Apel, Friberg, and Hallsten (2005) found that about 70 percent of the firms adjust their

price once a year or less. Moreover, for the approximately 15, 000 European firms surveyed

11Note that the median value of sold products across product codes for the firms in our sample is
SEK 6.1 million. Thus, at the median, the implied maximum potential span of rounding error in the
price stemming from rounding values to nearest thousand of SEK is 0.0164 (= (1000/6100000) ∗ 100)
percentage units.
12Changes in the composition of buyers who pay different prices are another reason for small measure-

ment errors when computing prices by dividing value with volume. Although common in retail prices,
see Eichenbaum, Jaimovich, Rebelo, and Smith (2014), some of the price-setting practices in that sector,
like discount coupons, two for one offers, and so on, are less likely to be prevalent in producer price
setting. Also, Nakamura and Steinsson (2008) notes that sales seem to be uncommon in producer price
data.
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Figure 1: Histograms of data. The left-hand panel describes the distribution of log price
changes across 13, 772 observations (for 1, 610 different products across 702 firms). The
right-hand panel describes the distribution of log unit labor cost changes across 8, 424
observations (for 702 firms). Bin size 0.01.
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in the EurosystemWage Dynamics Network, Druant et. al. (2012) reports that about half

of the firms on average change their price once a year or less. Using the spike to calculate

a crude measure of the price-change probability we arrive at a monthly probability of

0.08. This is lower than the median monthly frequency of price changes of 0.108 reported

by Nakamura and Steinsson (2008) for US micro producer-price data.13 However, it is

important to note that Nakamura and Steinsson (2008) reports substantial heterogeneity

across sectors in the monthly frequency of price changes (from 0.013 to 0.875) and, in

light of this dispersion, the finding here does not stand out as very low.14

In the right-hand panel of Figure 1, we plot the distribution of log changes in unit

labor cost for the 702 firms (all in all 8, 424 observations). As can be seen in the figure,

there is no corresponding spike at the zero unit labor cost change bin.15 The shapes of

the two distributions is thus indicative of nominal price rigidities in the sense that the

spike in the price change distribution is not matched with a spike in the marginal-cost

change distribution.

3 A Baseline Menu-Cost Model

To obtain a benchmark for what micro-level selection effects to expect in the empirical

work if the data where generated from a Menu-Cost model, we rely on a standard partial

equilibrium Menu-Cost model along the lines of Golosov and Lucas (2007), which in turn

builds on work by Barro (1972) and Sheshinski and Weiss (1977). The notation and

presentation here is, however, closest to the Menu-Cost model outlined in Nakamura and

Steinsson (2008).

As documented by Carlsson and Nordström Skans (2012), idiosyncratic variation

strongly dominates any common variation in the data we use and there are no signs of

bunching, or spikes, in the price-change distribution apart from the zero spike. Moreover,

time dummies makes no difference for the results when estimating the probability models

13To our knowledge, no similar study has been performed on the Swedish micro data underlying
producer-price index calculations.
14Vermeulen et. al. (2007) also report a substantial degree of heterogeneity across sectors when

studying price-setting behavior on monthly micro data on producer prices for six European countries.
Interestingly, the mode of the monthly price-change distribution reported by Vermeulen et. al. (2007)
(0.09) is close to what is reported above for the average monthly price-change frequency (0.08) although,
once more, the distribution shows outliers with a very high frequency of price changes.
15In fact, there are only three observations with exactly zero growth in marginal cost, whereas the

corresponding number for price changes is 529.
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discussed below. All, in all, this makes us focus on only idiosyncratic factors when trying

to explain the firm-level price-change distribution. Moreover, motivated by the finding in

Carlsson, Messina, and Nordström Skans (2014) for Swedish manufacturing plants that

they face a downward sloping demand function, when relying on idiosyncratic variation

for identification and employing the IV methodology of Foster, Haltiwanger, and Syverson

(2008), we assume that the (single plant) firm operate in monopolistically competitive

environment. Also, the model outlined below focuses on idiosyncratic marginal cost (or

equivalently, as the model is formulated, technology) shocks as the driver of reset prices.

In general, the reset price of a firm depends on factors that influences marginal cost, as

well as, the optimal markup. Thus, opening up for any idiosyncratic shock that changes

the scale of operations to have an effect via these two channels. Here we shut down

these two channels by assuming a constant elastic demand function (implying a constant

desired flex-price markup), as well as, a constant returns to scale technology (implying

a flat marginal-cost schedule). These two assumptions is motivated by two sets of re-

sults. First, results from probability regressions on qualitative data (see e.g. Loupias and

Sevestre, 2013), as well as surveys (see e.g. Fabiani et. all., 2006) indicate that variations

in demand has a limited impact on the likelihood of changing prices. Secondly, Carlsson

and Nordström Skans (2012) finds an essentially flat firm-level marginal-cost schedule

in the same data as used in this paper. Similar results is also reported by Gagnon and

López-Salido (2014) for U.S. data. Assuming that firm-level marginal cost is independent

from any decisions taken by the firm that affects the scale of production also motivates

modeling marginal cost as an exogenous process. All, in all, the assumptions made here

implies that we stay close to the vast majority of the theoretical literature and, in turn,

makes the model affi ne to the Menu-Cost model of Nakamura and Steinsson (2008).

Finally, we explicitly consider the effects of the time aggregation of our data by cali-

brating and simulating an underlying monthly Menu-Cost model from which we generate

synthetic annual data by time aggregating the synthetic monthly data in the same way

as our annual data are constructed.
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3.1 The Menu-Cost Model

Let firm j produce according to the following technology

yjt = AjtLjt, (1)

where yjt denotes the output of the firm in period t and Ajt is the labor force productivity

of the firm in period t. Let firm j’s product demand at time t, cjt, be given by

cjt = p−θjt , (2)

where pjt = Pjt/Pt is the relative price of firm j and θ(> 1) is the (negative) of the

price elasticity of demand. To change the nominal price, Pjt, κ units of labor is needed.

To derive the real wage of the economy, we make a flexible price approximation as in

Nakamura and Steinsson (2008). Given (2), the optimal price for the individual firm is

given as a markup over nominal marginal cost

Pjt =
θ

θ − 1
MCjt. (3)

Marginal cost is given by

MCjt =
∂Costjt
∂Ljt

∂Ljt
∂yjt

=
∂(WtLjt)jt

∂Ljt

1

Ajt
=
Wt

Ajt
, (4)

where Wt denotes the nominal market wage in time t. Notice thus that the last equality

above together with equation (1) implies that nominal marginal cost can be measured by

unit labor cost, i.e. WtLjt/yjt. Focusing on a symmetric equilibrium, normalizing average

productivity to unity, and using (3) and (4), the constant real wage in the economy is

given by

Wt/Pt =
θ − 1

θ
. (5)

Using (1), (2) and that markets clear, the firm’s real profit can then be written as

Πjt = p−θjt (pjt −mcjt)− κ
(
θ − 1

θ

)
Ijt, (6)
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where mcjt is the real marginal cost of firm j, and Ijt is an indicator that takes the value

one if the nominal price is changed, i.e. Pjt 6= Pjt−1, and zero otherwise. The log of real

marginal cost follows an AR(1) process

lnmcjt = λ+ ρ lnmcjt−1 + εjt, (7)

where λ = (1 − ρ) log((θ − 1)/θ) so that the expectation of long-run real marginal cost

converges to the real wage. Moreover, εjt ∼ Laplace(0, σε/
√

2), implying a standard

deviation of εjt equal to σε. The assumption of a Laplace distribution (with fatter tails

than a normal distribution) is motivated by the non-normal shape of the observed an-

nual marginal cost change distribution (when controlling for time dummies the kurtosis

(skewness) coeffi cient equals 3.95 (0.01) and a standard test (D’Agostino, Belanger and

D’Agostino, 1990) rejects the null of normality on the one-percent level due to the rel-

atively high kurtosis). This assumption is also in line with the fat-tails assumption of

Midrigan (2011). The log of the price level drifts with the rate µ16

logPt = µ+ logPt−1. (8)

Assuming that the firm discounts profit streams at a constant rate β and denoting

the relative price the firm enters the period with as p−jt = Pjt−1/Pt, the value function of

firm j can be written as

V (p−jt,mcjt) = max
Pjt

[Πjt + βEtV (p−jt+1,mcjt+1)], (9)

where Et is the expectations operator. Following Nakamura and Steinsson (2008) we

solve this problem by value-function iterations on a grid, using the method of Tauchen

(1986) to approximate the mcjt process.17

The optimal decision rule, solving this problem, implies a region of inaction where

the accumulated change in marginal cost is too small to warrant any adjustment in

16Nakamura and Steinsson (2008) models the log of the price level to follow a random walk with drift.
Adding an i.i.d. normally distributed shock to (8) calibrated to match the monthly PPI series does not
change the results to any noticeable degree and we leave it out of the exercise presented here.
17Since the model presented here is just a slightly rewritten version of the model

in Nakamura and Steinsson (2008) we rely heavily on their MATLAB code available at
http://www.columbia.edu/~js3204/papers/MenuCostModelCode.zip.
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the price given the size of the fix adjustment cost. However, when the accumulated

change in marginal cost is large enough to cross the adjustment threshold, the firm will

adjust the price. Thus, running a probability model with Ijt as the dependent variable

and the accumulated (log) change in marginal cost will yield a positive slope parameter,

reflecting that firms self-select into price changes. There are however two degenerate cases,

were the menu cost is either zero (implying a completely flexible pricing-model without

selection effects) or the menu cost is high enough to rule out any price adjustments for a

given marginal cost process (implying a completely rigid model with no selection effects),

which would yield a zero slope parameter. To rule out these two uninteresting cases it is

important to condition the model on matching other key moments in the data, as done

below.

In contrast, the Calvo (1983) model implies a zero slope in the probability model

outlined above since the firms that are allowed to costlessly adjust their price are drawn

independently of their marginal cost developments.

The prediction of a positive slope parameter in the probability model outlined above

for the canonical Menu-Cost model is shared with many other recent advances of price-

setting models and it thus serves as natural benchmark model for the analysis in this

paper. In fact, any price-setting models featuring a region of inaction in price setting,

generated by a menu-cost or some other mechanism such as e.g. trembling-hand price

setters as in Costain and Nakov (2015), will share this prediction. Moreover, the multi-

product extension of Midrigan (2011) and Karadi and Reiff (2016) also predicts a positive

slope parameter.18 In this sense, the empirical analysis estimating the slope parameter

in the probability model also encompasses these models.

Also, testing the prediction of a positive slope parameter in the probability model

also has bearing on the recent debate wether or not self-selection can generate near non-

neutrality to nominal shocks as in Golosov and Lucas (2007) and Karadi and Reiff (2016)

or not as in Midrigan (2011). The overall importance of selection effects for monetary

non-neutrality is driven by the interaction of the measure of marginal firms lying close

18The multi-product extension of Midrigan (2011) and Karadi and Reiff (2016) with separate, but
correlated marginal-cost process, implies that price-changes are correlated with high menu-cost changes,
which is what is needed to predict a positive slope parameter in the probability model. Aggregating
the marginal-cost measure to a firm-wide measure, as in the empirical analysis below, does not change
this conclusion. As a robustness exercise, we also present empirical results for single-product firms in
Appendix D.
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Table 1: Menu-Cost Model Calibration
Parameter Value

µ Inflation Drift 0.00138
β Discounting 0.961/12

θ Price elasticity of demand 3
ρ Real marginal cost persistence 0.921
σε S.D. real marginal cost shock 0.0676

κ(θ−1)
θ

Menu Cost 0.0791

to the adjustment threshold and the size of the adjustment needs; see Karadi and Reiff

(2016) for a discussion. Importantly, though, a prerequisite for any such mechanism to

be able to generate near non-neutrality, as in Golosov and Lucas (2007), Karadi and Reiff

(2016), is that firms’self-select into price changes in the first place, which is the focus of

the analysis below.

3.2 Monthly Calibration

To calibrate the model, we first estimate the drift parameter of the inflation process to

(µ) to 0.00138 using monthly data on the Swedish industrial producer-price index for

the period 1990:1 to 2002:12. This implies an annualized average inflation rate of 1.7

percent, which is very close to the annual mean price change in the data (1.8 percent).

We set β = 0.961/12 to generate an annualized real interest rate of about 4 percent. We

set θ = 3 which is in line with the firm-level estimate for the Swedish manufacturing

sector reported in Carlsson, Messina, and Nordström Skans (2014).

To calibrate the remaining parameters, we set ρ, σε and κ so as to match the annual

data in terms of (i) the persistence of log real marginal cost estimated in Carlsson and

Nordström Skans (2012) (0.542), (ii) the standard deviation of the log real marginal

cost change distribution (0.145) and (iii) the size of the zero bin in the log price change

distribution (0.136). The statistics for real marginal cost variables derived from the unit

labor cost data controls for time fixed effects.19 This procedure removes any aggregate

or common factors (including deflating the nominal data).

As noted above, the prices are calculated from reported values and volumes of sold

19The estimate of the annual persistence of log real marginal cost in Carlsson and Nordström Skans
(2012) actually controls for time interacted by two-digit sector code (NACE). Using this procedure for
the standard deviation of the log real marginal cost change distribution yields a very similar estimate to
what is used here (0.142 vs.145).
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products, which will lead to small rounding errors. In contrast, there are no measurement

errors in the synthetic data from the model. This difference motivates calibrating the

model to match the zero bin rather than to the share of observation that are exactly zero

in the data. That is, as long as any measurement error is small enough to be confined

within the zero bin, misclassification should not matter for the moment-matching exercise.

Also, judging from the continuous shape of the log price change distribution on both sides

surrounding the zero bin, there is no reason to believe that a wider band than the zero

bin should be warranted.

3.3 Time Aggregation

To match annual statistics, we time-aggregate the monthly data using monthly output

weights consistently with the annual data we observe. The annual unit price of firm j is

constructed as

Pjt =
Annual Salesjt
Annual V olumejt

=

∑
m P

m
jt Y

m
jt∑

m Y
m
jt

=

= P 1jt
Y 1
jt∑

m Y
m
jt

+ ...+ P 12jt
Y 12
jt∑
m Y

m
jt

, (10)

where m denotes month. Similarly we can write

ULCjt =
Annual Wage Billjt
Annual V olumejt

=

∑
mW

m
jt L

m
jt∑

m Y
m
jt

=

=
W 1
jtL

1
jt

Y 1
jt

Y 1
jt∑

m Y
m
jt

+ ...+
W 12
jt L

12
jt

Y 12
jt

Y 12
jt∑
m Y

m
jt

=

= ULC1t
Y 1
t∑

m Y
m
t

+ ...+ ULC12t
Y 12
t∑
m Y

m
t

, (11)

which motivates the use of monthly output weights.

The full calibration is presented in Table 1 and implies that the model needs a sizable

menu cost, about 23 percent of the average monthly real gross profits, in order to match

annual moments.20

20That is the ratio of κ(θ − 1)/θ and the average of p−θjt (pjt −mcjt) in the simulated monthly data.
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4 Results

In this section we first present the simulation results for the Menu-Cost model calibrated

to key data moments. We then compare the empirical strength of the selection effects

in the micro data to what is expected from the Menu-Cost model, outlined above, using

probability regression methods. We also discuss whether these results can be interpreted

as true selection effects. In a final step, we structurally quantify the regression results in

a model that can generate an arbitrary degree of selection effects in the simulated data

(i.e. the CalvoPlus model of Nakamura and Steinsson, 2010).

4.1 Simulation Results

In Figure 2 we plot the monthly log price/marginal cost change distributions for 100, 000

simulated monthly observations. For clarity we have omitted the spike at zero which

contains 92 percent of the observations. Here we see that the high menu cost generates

the usual price change distribution with no mass in a region around zero price adjustment.

In Figure 3 we plot the observed and the simulated annual data from the model,

focusing on the interval [−0.5, 0.5] log points. A first observation is that the log marginal

cost change distribution is well replicated from the simulation. In terms of the similarity

of the dispersion of the distributions this is no big victory since the standard deviation

of the log real marginal cost change distribution is a target moment when fitting the

model combined with a constant inflation rate in the model. Importantly, however, the

kurtosis of the actual data (3.82) is not far from that of the simulated distribution (3.24).

Turning to the log price change distribution, a key observation is that we find no regions

of inaction in the time aggregated synthetic data, although we do see some difference in

the observed log price change data and the time-aggregated synthetic data in that there

is a lack of mass around the spike at the zero bin. Moreover, the simulated distribution

is not dispersed enough, the observed/simulated standard deviations are 0.19 vs. 0.13

and the kurtosis of the actual data (8.62) is much higher than that of the simulated

distribution (3.39). However, time aggregation gives a lot of mileage in replicating the

observed log price change distribution with a stylized Menu-Cost model and provides a

complementary mechanism for generating small price changes in the Menu-Cost model

to the economies of scope suggested by Lach and Tsiddon (2007), Midrigan (2011) and
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Figure 2: Histograms of simulated monthly data from the Menu-Cost model. The log
price change distribution (left panel) omits the zero bin.
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Figure 3: Histograms of actual annual data (top panel) and simulated data from the
Menu-Cost model time aggregated to the annual frequency (bottom panel). Bin size
0.01.
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Alvarez and Lippi (2014) or stochastic menu costs as in Caballero and Engel (1999) and

Dotsey, King, and Wolman (1999). Intuitively, pricing patterns where e.g. large positive

and negative monthly changes within a year nearly cancel one another out generates small

overall price movements in the time-aggregated data.21 Though, arguably the strength of

the mechanism should increase with the time span of aggregation, but the potential for

this mechanism is shared with many other data sets employed in the literature. In scanner

data e.g., the price is seldom recorded, but instead calculated from reported values and

volumes of sold products, as pointed out by Eichenbaum, Jaimovich, Rebelo, and Smith

(2014). One example of this is the data used in Eichenbaum, Jaimovich, and Rebelo

(2011). This is the same method as used in this paper to measure the price, although

in scanner data it is done over a shorter time span like a week or a month. Evaluating

the importance of this mechanism in data time aggregated data with higher frequency is

left for future research, but we note that, any rebuttal of the Menu-Cost model using the

data set at hand will not be due to its inability to capture the frequency of small price

changes in the observed data.

4.2 Probability Regression Results

To compare the relative strength of the selection effects in the Menu-Cost model vs.

the data, we run price-change probability regressions as outlined in Section 3.1, and

as previously done by Cecchetti (1986), and later by e.g. Buckle and Carlson (2000),

Loupias and Sevestre (2013) and others. Due to data limitations these papers have to

rely on aggregate/sectoral or qualitative data to measure drivers of the reset price. Here,

instead we can compute a quantitative firm-specific measure of marginal cost change.

We first define an indicator for price changes outside the zero bin as

IOZBgt =

{
1 if (|d lnPg,t| > 0.005)
0 otherwise

, (12)

where Pg,t denote the price of good g (produced by firm j) at time t. Next, we regress the

absolute value of the accumulated change in (log) marginal cost change (|ds lnMCj,t|),

where ds denotes the accumulated change since the last price change, on this indicator,

21Note also that other price-change patterns can give rise to small price changes in time-aggregated
data. For example, a price change early in the first period followed by a constant price gives rise to a
small time-aggregated price change.
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i.e.

IOZBgt = γ0 + γ1 |ds lnMCj,t|+ ηgt, (13)

where γ0 and γ1 are coeffi cients to be estimated and ηgt is a goods-specific error term.

That is we run a linear probability model to try to determine whether or not movements

in the forcing variable of the reset price (i.e. the accumulated marginal costs change since

the last price change) have an impact on the price-change probability, or in other words,

the timing of the price change. To account for the fact that |ds lnMCj,t| varies on the

firm level and not the goods level we correct the standard errors by clustering on the firm

level, which handles any type of error-term dependence within the firm over time. Also,

in Appendix D we show that the findings are robust to only relying on single-product

firms. This result does not only speak to the issue of classical measurement errors, but

also implies that any differences in observed pricing patterns between single- and multi-

product producers, emphasized in empirical work by Bhattarai and Schoenle (2014), and

implied by the multi-product extension of the menu-cost model by Midrigan (2011) and

Karadi and Reiff (2016) are not important for the overall conclusions of this paper.

Looking at a small band around zero (instead of the zero point) in the price change

distribution is very useful when relying on annual data since it increases the variation in

the dependent variable and also renders potential misclassification of small price changes

a non-issue for the results when comparing the model to the data. Note, however, that

this estimate is likely to be an upward-biased estimate of the true selection effects, since

absent any such effects we are still likely to obtain a positive estimate. This is because

even in the Calvo (1983) model small price changes (within the band) are associated

with small accumulated marginal cost changes.22 Here, the main focus is to evaluate the

structural model with respect to fitting data moments and for this purpose this bias does

not matter since it should also be captured by the model. Below, however, we will try to

evaluate the size of this potential bias in the regression model.

In Table 2, we present summary statistics of the data used in the probability regres-

sions. In the top panel of Table 2 we see that the mean of IOZBgt (0.884) in the regression

sample indicate that we have 11.6 percent of the observations in the zero bin and that

22Or, in other words, if we erroneously redefine observations in the dependent (dummy) variable to
zero that at the same time have values on the independent variable that are below its mean, the estimate
of the slope parameter from the probability model will be upward-biased.
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Table 2: Summary Statistics of Regression Data
Variable Obs Mean Std. Dev. Min Max

IOZBgt 9, 694 0.884 0.320 0 1
|ds lnMCjt| 9, 694 0.104 0.138 0 0.694

IOZBgt 13, 772 0.864 0.343 0 1
|d lnMCjt| 13, 772 0.105 0.091 0 0.521

Note: |ds lnMCj,t| and |d lnMCjt| are weighted as in the regres-
sions.

there is a sizable variation in |ds lnMCjt| (s.d. of 0.104). However, since we cannot start

computing the accumulated change since the last price change until we actually observe

a price change in the previous period, we lose 4, 078 observations relative to the full

sample of price and marginal-cost changes. This is also a reason for running regressions

on the absolute value of marginal cost change, |d lnMCjt|, (i.e. without any accumula-

tion) where we can use the full sample of 13, 772 price changes. Although less directly

interpretable from theory, the Menu-Cost model also has comparable predictions in this

dimension of the data. In the bottom panel of Table 2 we present the summary statistics

for this version of the regression model. As can be seen in the table, there is a slightly

higher share of the observations in the zero bin (13.6 percent - as in the price-change

distribution in Figure 1), but a slightly lower, but still sizable, variation in the explana-

tory variable |d lnMCjt| (s.d. of 0.091) as also reflected in the log unit labor cost change

distribution of Figure 1.

In the first column of the top panel of Table 3 we present the results from running the

linear probability model as outlined in (13). The estimated marginal effect is 0.071 (s.e.

0.05) and statistically insignificant on the five-percent level. Also, the point estimate

indicate a very small effect, a standard deviation change in |ds lnMCjt| implies only a 1

percentage point higher probability of the firm changing price. This should be compared

to the results from doing the same exercise on simulated and time-aggregated data from

the Menu-Cost model presented in the first column in the bottom panel of Table 3. Here,

we use the monthly Menu-Cost model to generate panels of simulated, time-aggregated

annual data on price and marginal-cost changes consisting of 3, 510 price identities (as in

the data) observed for five years (the average number of observations per price identity is

4.92 years in the data). The average estimate of the linear probability model across 200
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Figure 4: Kernel regressions of price-change dummy on the absolute accumulated change
in log marginal cost. The left-hand panel present results from data. Gray area depicts
the 95-percent confidence band. The right-hand panel presents results from simulated
data from the Menu-Cost model.
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Table 3: Estimation and Simulation Results
(1) (2) (3)

Data

|ds lnMCjt| 0.071
(0.050)

|d lnMCjt| 0.129∗ 0.114∗

(0.053) (0.053)
|d lnMCjt−1| −0.014

(0.072)

Simulation - Menu-Cost Model

|ds lnMCjt| 0.959∗∗

[0.032]
|d lnMCjt| 1.076∗∗ 1.067∗∗

[0.031] [0.033]
|d lnMCjt−1| 0.308∗∗

[0.035]

Notes: Dependent variable takes on a value of one if the price change is outside the
zero bin and zero otherwise. Data panel: Superscript **, * and + denote estimates
significantly different from zero at the one-, five- and ten-percent level, respectively.
Robust standard error clustered on the firm level is inside the parenthesis. The number
of observations (by columns) is 9,694, 13,772 and 12,292, respectively. Simulation
panel: The coeffi cent denotes the average across 200 panel simulations. The standard
deviation of the point estimate across 200 panels is inside the square bracket.

simulated panels is presented in the first column in the bottom panel of Table 3 together

with the standard deviation of the point estimate across all repetitions. As can be seen

from the table the point estimate does not move much across simulations and the mean,

0.96, is more than 13 times larger than found in actual data, implying that a standard

deviation increase in |ds lnMCf,t| should increase the probability of price adjustment by

13.2 percentage points points. Another way to see the sharp difference between the data

and the model predictions is depicted in Figure 4, where kernel regressions are used to

illustrate the dramatic discrepancy between the relationship in the data (left hand panel)

and the predicted relationship from the Menu-Cost model (right-hand panel).23

In the second column of the top panel of Table 3, the results from using the non-

accumulated absolute change of log marginal cost as the driver of price-changes are pre-

sented. The estimated marginal effect in this case is 0.13 (s.e. 0.05) and statistically

significant on the five-percent level. Thus, taking the estimate at face value and disre-

garding any biases, this result indicate the presence of selection effects in the sense that

23In Appendix C we also present the results of running a kernel-regression on the accumulated log
marginal cost change distribution, but without taking the absolute value. This gives rise to a slightly
U-shaped relationship where both ends of the kernel behaves as expected.
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the timing of the pricing decision is state-dependent. However, in an economic sense, the

estimate is still very small and comparable to when using absolute accumulated changes;

a standard deviation change in |d lnMCjt| implies only a 1.2 percentage points higher

probability of the firm changing price. Moreover, as compared to the bottom panel, the

Menu-Cost model predicts an eight times higher effect.

In column 3 of Table 3 we also include lagged changes in marginal cost, i.e. |d lnMCjt−1|.

In a Menu-Cost model we would also expect lagged changes to matter due to pent-up

adjustment incentives (otherwise captured in the accumulation of changes). As can be

seen in the second column of the bottom panel of Table 3, this prediction is confirmed in

the simulated and time-aggregated data with a mean point estimate of 0.31 (s.d. of 0.03)

on |d lnMCjt−1|. However, we do not see this effect in the observed data. The point esti-

mate is very close to zero −0.01 (s.e. 0.07) and naturally statistically and economically

insignificant.

Importantly, the sharp difference between the (time aggregated) predictions of the

Menu Cost model and the empirical results presented in Table 3 and Figure 4 dispels any

concerns that time aggregation and the use of annual data may drive the inference in this

exercise.

Appendix B present evidence of that the conclusions are robust to using Probit and

Logit estimators instead of the linear probability model and also to controlling for a vari-

ety of real-world features not included in the model such as time dummies, which control

for any common variation and firm-fixed effects, which control for any heterogeneity in

average price-change probabilities across firms, as well as the combination of the latter

two. Thus, across models, we get the same message that the timing adjustments of price

changes in response to marginal-cost developments do not seem to be an important fea-

ture of observed price-setting behavior of goods-producing firms. Moreover, in Appendix

C we present evidence of that even the small positive point-estimates found here is likely

to be due to the upward bias discussed above. Next, however we turn to a structural

evaluation of these regression results, which can be done regardless of the presence of any

bias in the regression results.
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4.3 Structural Evaluation Results - The CalvoPlus Model

As noted above, the Menu-Cost model generates selection effects that are much too strong.

The question then is whether or not they are so small that a Calvo (1983) model would

fit the data or if the data is better described by hybrid model including elements of both.

In order to structurally quantify the selection effects implied by the regression results

above, we fit a price-setting model that nests both the Calvo (1983) and the Menu-Cost

model and thus can generate an arbitrary degree of selection effects. To this end we use

the CalvoPlus model outlined in Nakamura and Steinsson (2010). As compared with the

Menu-Cost model outlined in section 3, the firms now get an opportunity with probability

(1 − α) to change price at a low cost κL, and to a high cost κH otherwise. Thus, this

model nests the standard Calvo (1983) model with κL = 0 and κH → ∞, as well as the

baseline Menu-Cost model presented above with α = 1 (or 0) or κL = κH .

The firm’s real profit in the CalvoPlus economy can be written as

ΠCP
jt = p−θjt (pjt −mcjt)−

(
κL
(
1− IHjt

)
+ κHIHjt

)(θ − 1

θ

)
Ijt, (14)

where IHighjt is an indicator that takes on the value one if the the firm faces the high menu

cost and zero otherwise. The value function can be written as,

V CP (p−jt,mcjt, I
H
jt ) = max

Pjt
[ΠCP

jt + βEtV
CP (p−jt+1,mcjt+1, I

H
jt+1)], (15)

where

IHjt+1 ∼ Bernoulli(α), (16)

and subject to the processes (8) and (7) above. We solve the model by value func-

tion iterations on a grid, using the method of Tauchen (1986) to approximate the mcjt

process.24

To fit this model, we again set µ = 0.00138, β = 0.961/12 and θ = 3. To keep

computations feasible we set ρ and σε to the same values as for the Menu-Cost model.

The remaining parameters, κH , κL and α are set so as to minimize the criterion function

M′M where

24Again, we rely heavily on the MATLAB code written by Emi Nakamura and Jon Steinsson available
at http://www.columbia.edu/~js3204/papers/MenuCostModelCode.zip.
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Table 4: CalvoPlus Model Calibration
Monthly Calibration

Parameter Value

µ Inflation drift 0.00138
β Discounting 0.961/12

θ Price elasticity of demand 3
ρ Real marginal cost persistence 0.921
σε S.D. real marginal cost shock 0.0676

κH(θ−1)
θ

Menu cost (High State) 4.733
κL(θ−1)

θ
Menu cost (Low State) 0.000153

α Calvo probability 0.892

Annual Moments Match
Moment Model Data (S.E.)

Persistence of log real marginal cost 0.544 0.542 (0.042)
S.D. log real marginal cost change distribution 0.143 0.145 (0.002)
Price spike ĪIZB 0.135 0.136 (0.008)
Parameter |d lnMCjt| 0.173 0.114 (0.053)
Parameter |d lnMCjt−1| 0.122 −0.014 (0.072)

Note: Robust standard error clustered on the firm-level within parenthesis in the moments-match
panel.

M =

 (I
IZB

Model − Ī
IZB

Data)/σ(Ī
IZB

Data)
(γ1,Model − γ1,Data)/σ(γ1,Data)
(γ2,Model − γ2,Data)/σ(γ2,Data)

 , (17)

and ĪIZB is the average of 1 − IOZBgt and γ1,Data and γ2,Data denote the coeffi cients on

contemporaneous and lagged |d lnMCjt|, respectively, presented in column 3 of the top

panel of Table 3, which is used since we need two additional moments to match the model

to.25 Finally, σ denotes the standard errors of the observed data moments (clustered on

the firm level).26 The resulting parameter values, as well as observed and synthetic data

moments, for the CalvoPlus model are presented in Table 4. The data wants a menu-cost

setup that is in line with the standard Calvo (1983) model with a very high menu cost

in the high cost state (about 14 months of average monthly real gross profits) and a very

low menu cost in the low cost state (about 22 minutes of average real gross profits for

a continuously operating firm). In fact, setting κL = 0 and κH = 150 in the CalvoPlus

25Note that the Menu-Cost model could be calibrated to exactly match the data moments used for
that model. Thus, any sensible weighting of the moments would return the same parameters.
26To find the minimum of the weighted squared deviations we use a combination of a global min-

imization method (the ga algorithm in MatLab), to rule out local minimums, and a simplex method
(fminsearch in MatLab). To make computations feasible, the number of grid points for the state space
as well as the number of simulated panels of firms is gradually increased in this process.
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model gives rise to nearly identical results for the model to those presented in the bottom

panel of Table 4. Thus, this exercise speaks against any important selection effects in the

data or that the timing behavior with respect to price changes of these firms imply any

potential for reducing monetary non-neutrality as in Golosov and Lucas (2007) or Karadi

and Reiff (2016). Moreover, the data wants a Calvo parameter, α = 0.89, that is not

too far from estimates from macro-data studies. Adolfson, Laséen, Lindé, and Villani

(2008) present a quarterly estimate of α of 0.84 using Swedish data, which translates into

a monthly Calvo parameter of 0.94. Moreover, Carlsson and Nordström Skans (2012)

presents estimates of 0.562 (s.e. of 0.165) on current marginal cost and 0.364 (s.e. of

0.154) on expected future marginal cost when estimating the first-order condition for

pricing in the standard Calvo (1983) model on the same data as used in this paper.

Interestingly, solving for these coeffi cients using the first-order condition from the Calvo

(1983) model and setting α = 0.89 and β = 0.961/12 yields expected coeffi cients of 0.763

on current marginal cost and 0.181 on expected future marginal cost, which is well within

the 95-percent confidence interval of the reduced form estimates.27

In the bottom panel of Table 4 the model moments are compared to their targets in

the annual observed data (with standard errors clustered on the firm level). Although the

model is not able to exactly match the targets, it does a good job when considering the

confidence bands for the observed moments and notably so when it comes to replicating

the regression estimates as compared to the coeffi cients obtained from the canonical

Menu-Cost model. Next, in Figure 5, we plot the implied annual log price/marginal

change distributions and compare them to both the observed data and the simulated data

from the Menu-Cost model. As compared to the dispersion generated by the Menu-Cost

model (s.d. of 0.13), the dispersion of the simulated log price-change distribution (s.d.

of 0.08) is actually further away from the observed dispersion (s.d. of 0.19). However,

what is clear from the figure is that the CalvoPlus model is better at capturing the

high kurtosis observed in the data (8.62) and the overall shape of the log price change

distribution The kurtosis of the log price change distribution of the CalvoPlus model is

4.71 as compared to 3.39 from the Menu-Cost model. Importantly, the results presented

here support the view that the CalvoPlus model provides a sensible basis for a structural

27These coeffi cients are given by (1−αβ) ·
∑11
m=0(αβ)

m and (1−αβ) ·
∑23
m=12(αβ)

m, respectively (see,
e.g., equation (8) in Carlsson and Nordström Skans, 2012).
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Figure 5: Histograms of actual data (top panel), simulated data from the Menu-Cost
model (middle panel) and simulated data from the CalvoPlus model (bottom panel). Bin
size 0.01.
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investigation of the data. Note, however, that by this is not meant that the matched

CalvoPlus model, relying on enormous costs of price change in 89 percent of the months,

is literary a good model of the microfoundations of price setting. But as a short-hand for

some more realistic model featuring very small selection effects in response to marginal

cost shocks it does a good job in replicating the observed price-change distribution in

upstream firm-level data.

5 Concluding Discussion

We use detailed Swedish micro data on product producer prices linked to a detailed

data set containing information on the firms that set these prices to test the empirical

relevance of selection effects in micro-level producer pricing. To impose discipline on the

empirical exercise at hand, we first outline and calibrate a baseline Menu-Cost model to

match key moments in the data. The Menu-Cost model we rely on is along the lines of

Golosov and Lucas (2007), but allows for fat-tailed idiosyncratic shocks to marginal cost

(akin to Midrigan, 2011) in order to better match the micro-data. Moreover, the model is

calibrated to a monthly frequency, which allows us to gauge the effect of time aggregation

in the annual data, both in terms of observed moments, as well as, in terms of the power

of the inference. Aggregating the data the same way as actual data is aggregated, we

find that time aggregation gives a lot of mileage in replicating the observed price change

distribution with a stylized Menu-Cost model. This is because the time aggregation filter

fills out the gap of small price changes otherwise expected in the price-change distribution

from an Menu-Cost model. Thus, time aggregation is a complementary mechanism for

generating small price changes in the Menu-Cost model to the other mechanisms proposed

in the literature. Intuitively, price patterns where e.g. large positive and negative monthly

changes within a year nearly cancel one another generates small price movements in the

time-aggregated data. Though, arguably the strength of the mechanism should increase

with the time span of aggregation, but the potential for this mechanism is shared with

many other data sets employed in the literature where the price is calculated from reported

values and volumes over a time period as in this paper; see Eichenbaum, Jaimovich,

Rebelo, and Smith (2014) for a discussion. Evaluating the importance of this mechanism

in data time aggregated data with higher frequency is left for future research, but we
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note that, any rebuttal of the Menu-Cost model using the data set at hand will not be

due to its inability to capture the frequency of small price changes in the observed data.

To analyze the strength of the selection effects we investigate if the absolute accumu-

lated value of the change in the firm’s marginal cost, as well as a non-accumulated version

of the same, affects the probability of a price change. A test of the Menu-Cost model is

then provided by comparing the empirical results with the results from synthetic time-

aggregated data generated by the Menu-Cost model matched to key moments in the data.

We find much smaller effects on the probability of a price change than we would expect

in the Menu-Cost model. Moreover, when considering measurement issues pertaining to

the classification of small price changes in the data, the (small) positive estimates we find

seems to be the result of upward bias. Importantly, the sharp difference in predictions

and results also confirms that time aggregation is not an issues for the inference in this

exercise.

To structurally quantify the regression results we also fit a price-setting model that

nests both the Calvo (1983) and Menu-Cost model to the data (i.e. a fat-tailed shocks

version of the CalvoPlus model outlined in Nakamura and Steinsson, 2010), which can

generate an arbitrary degree of selection effects in the simulated micro data from the

model. Importantly, the procedure to fit the model parameters can be constructed to

be unaffected by the measurement issues that may bias the regression results. When

choosing parameters so that the model matches empirical moments as closely as possible,

the parameters are driven very close to a Calvo (1983) model. This suggests, in agreement

with the previous results, that selection effects are not being an important feature of the

data.

Thus, overall, timing adjustments of price changes in response to marginal-cost de-

velopments do not seem to be an important feature of observed price-setting behavior of

goods-producing firms, which, in turn, speaks against the mechanism reducing monetary

non-neutrality emphasized in Golosov and Lucas (2007) or Karadi and Reiff (2016). Note

though that it is not argued that the Calvo (1983) model is the true underlying model

of micro-level price setting, but rather that in order to be aligned with the data, any

successful model of price setting in firms upstream in the supply chain needs to predict

low selection effects.

Interestingly, Eichenbaum, Jaimovich, and Rebelo (2011) also link a measure of mar-
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ginal cost, i.e. the replacement cost of the vended product, to the price set in data drawn

from a large US food and drug retailer (downstream in the supply chain) and documents

a high degree of selection effects in pricing. This indicates considerable differences in pric-

ing behavior along the supply chain.28 This is perhaps not surprising given differences

in conditions between consumer and business-to-business markets, but it may provide

important leads for future research on the microfoundations of pricing behavior.

A related question of interest is how upstreams marginal-cost shocks feeds through

the pricing decision along the supply chain (see e.g. Nakamura, 2008). Although this

issue is not addressed here, it is worth noting that in a simple supply chain model, where

the price set by the upstreams firm represent marginal cost for the downstream firm, does

not need price-setting frictions on all levels in order to generate significant monetary non-

neutrality.29 In fact, frictions downstream can only add to monetary non-neutrality and

given the results presented here, they are not instrumental for the existence of sizable

monetary non-neutrality.
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Appendices

A Data

The data we use are drawn from the Industristatistiken (IS) survey for plant-level data

and the Industrins Varuproduktion (IVP) survey for the 8/9-digit price data, which can

be linked to the producing plant.

The IVP survey provides plant-level information on prices and quantities for the years

1990 − 2002 at the finest (i.e. 8/9 digit) level of the Harmonized System (HS) for the

years 1990 − 1995 and according to the Combined Nomenclature (CN) for the years

1996 − 2002. Although these two coding systems are identical only down to the 6-digit

level, the change means that we have no overlap in the raw data at the most detailed

level between 1995 and 1996. To avoid throwing away too much information, we need to

merge spells across these two coding systems while minimizing the risk of creating spells

of price observations for non-identical products. Thus, we take a very cautions approach

by only merging price spells for products produced by firms that only produce a single

product in 1995 and 1996 and whose product code is identical between 1995 and 1996 at

the 6-digit level.

In the left-hand panel of figure 6, we plot the raw data distributions of log price changes

(for 8/9-digit unit value data) for all price changes that we can match to the firms in the IS

data (including the merged price spells in 1995/1996). All in all, this comprises 18, 878

observations for 2, 059 unique product codes and 4, 385 unique product/firm identities

across 934 firms. Each bin represents a log difference of 0.01. As can be seen in the

figure, there is a substantial spike for the bin centered around zero. About 13.2 percent

of the price-change observations are confined within the ±0.5 percent interval (with 714

observations identically equal to zero, i.e. 3.8 percent).

Since the raw price data involve quite a few large swings (Max/Min. in the log price

change distribution is 7.08/−7.65) we apply a cleaning procedure for the data used in

the analysis. We are concerned with two types of errors in the price data. First, there

may be measurement errors (of some magnitude) which show up as a zigzag pattern in

the growth rate of the price and, second, there may be significant changes in, say, the

quality of a product within a 8/9-digit product group, which will show up as a large
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Figure 6: Histograms of raw data of log changes truncated at ±1.1. The left-hand
panel describes the distribution of log price changes across 18, 878 observations (for 2, 463
different products across 943 firms). The right-hand panel describes the distribution of
log unit labor cost changes across 17, 760 observations (for 1, 480 firms). Dashed lines
indicate truncation limits. Bin size 0.01.
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one-period increase in the difference. To remove the impact of this type of observations

on the results, we split the individual price series and give them a new unique plant-price

identifier whenever a large change in the growth rate appears in the data. We use the

full distribution of log price change and determine the cut-off level as given by the 1.5

and 98.5 centiles of this distribution, depicted in the left-hand panel of figure 6. We also

correct the firm-specific producer price index used to compute real output in unit labor

cost by not using unit-value data in them for these observations. Moreover, price spells

with holes in them are given separate unique plant-price identifiers for each separate

continuous spell.

For the data from the IS database we start out with standard data quality check-

ing, removing obviously erroneous observations like negative sales or a zero wage bill.

Moreover, after constructing the firm-level variables needed, we remove firms which are

subject to large swings in unit labor cost, since we aim at capturing normal behavior and

not firms in extreme circumstances. In the right-hand panel of figure 6, we plot the log

changes in firm-level unit labor cost for all firms (1, 480) for which we can compute this

measure in the IS data, in sum, 17, 760 observations. The distribution is much less spread

out as compared to the price change distribution with the Max/Min at 3.52/−3.79. Sim-

ilarly, as with prices, we only keep firms that have unit labor cost changes that are inside

the 1.5 and the 98.5 percentile of this distribution in all years (the limits are depicted by

dashed lines in the right-hand panel of figure 6).

All in all, this then leaves us with 702 firms with at least one price spell that is

longer than one period. The sample of industrial firms is dominated by small to medium

sized firms with an average of 65 employees. The firms are distributed across 22 two-

digit sectors (NACE). The four industries with most firms represented are industry 28

(Fabricated metal products, except machinery and equipment), industry 20 (Wood and

products of wood and cork), industry 15 (Food products and beverages) and industry 29

(Machinery and equipment) with altogether 422 firms (out of the 702). The four smallest

sectors, industry 14 (Other mining and quarrying products), industry 23 (Coke, refined

petroleum products and nuclear fuels), industry 32 (Radio, television and communication

equipment and apparatus) and industry 37 (Secondary raw materials), only have one firm.

When experimenting with more generous cut-off rules for prices and unit labor cost,

we find the regression results presented in the top panel of Table 3 in the main text to
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Table 5: Robustness Estimation Results
(1) (2) (3) (4) (5) (6)

Estimator OLS Probit Logit OLS OLS OLS
Time Dummies No No No Yes No Yes
Firm-Fixed Effects No No No No Yes Yes

|ds lnMCjt| 0.071 0.073 0.073 0.075 0.153∗∗ 0.158∗∗

(0.050) (0.053) (0.054) (0.049) (0.052) (0.050)

|d lnMCjt| 0.114∗ 0.118∗ 0.120∗ 0.100∗ 0.167∗∗ 0.158∗∗

(0.053) (0.057) (0.058) (0.051) (0.056) (0.052)
|d lnMCjt−1| −0.014 −0.014 −0.014 −0.032 −0.012 −0.018

(0.072) (0.072) (0.072) (0.071) (0.061) (0.059)

Notes: Dependent variable takes on a value of one if the price change is outside the zero bin
and zero otherwise. Superscript **, * and + denote estimates significantly different from zero
at the one-, five- and ten-percent level, respectively. In the Probit and Logit columns (3 and 4)
marginal effects at the mean are presented. Robust standard error clustered on the firm level is
inside the parenthesis. The number of observations is 9,694 (top panel) and 12,292 (bottom panel),
respectively.

be very similar. More specifically, we tried using the 1 and 99 centiles instead, leaving us

with an estimation sample of 767 firms and 14, 990 price-change observations in the final

sample (751 firms and 13, 368 price-change observations when also including a lag in the

regression).

B Specification and Estimator Variations

In Table 5 we first present various variations on the baseline regressions presented in the

main text. Column (1) replicate the baseline results from Table 3. Columns (2)-(6) show

that the baseline results are robust to using a Probit or a Logit estimator instead of a linear

probability model, the inclusion of time dummies, firm-fixed effects and the combination

of the latter two. Although the statistical significance varies across variations, in an

economic sense, the estimated effects are still very small across all variations. Thus, non-

linearities or common factors over time or firm-specific factors constant over time do not

seem to be important drivers of the results.30

30Finding that including time dummies does not change the results is of special interest since the data
covers 1990-2002 and Sweden faced macroeconomic turbulence in the beginning of that period with a
financial crisis starting in 1990 in commercial real estate, culminated in 1992, followed by a recovery and
then normal business cycle fluctuations from 1995 and onwards. Also starting the sample in 1995 yields
very similar estimates as compared to the baseline regression (p.e. of 0.084 [s.e. 0.065]).

39



C Selection Effects and Estimation Bias

As discussed in the main text, the small positive point estimates we find in the regression

exercise may be due to the way we define the zero band. Note that shrinking the IIZB

band in the analysis will have two consequences in that it reclassifies true price changes

as price changes in the data and potentially reclassifies true non-changing observations

as price changes in the data. First, reclassifying small true price changes as price changes

in the data would reduce the positive bias discussed above and drive down the point

estimate in the probability regression. Second, to the extent there are small rounding

errors in the price data, shrinking the IIZB band creates misclassified price changes in

the data. In a Calvo (1983) model this will not bias the point estimate in the probability

model since the probability of being stuck with the old price and the measurement error

in prices are independent of marginal cost. However, in a Menu-Cost model, firms that

do not change the price do so because they typically had small changes in marginal costs.

Thus, reclassifying true non-changing observations as price changes will bias the point

estimate downwards if the data is generated by a Menu-Cost model. For this reason,

comparing the baseline regression results with those obtained when shrinking the band

towards only including exactly zero price changes yields an interval within which the true

selection effect lies.

Comparing column (1) and (2) in the top-left panel of Table 6, we see that narrowing

the band lowers the point estimate from 0.071 to −0.020 as expected. In this formulation

the IIZBgt = 1 observations constitute 2.6 percent of the sample (as compared to 11.6

percent in the baseline formulation in column (1)). But note that the standard error

actually shrinks in the latter case (0.050 vs. 0.025), thus not indicating any precision

problems when shrinking the band (also using a Probit or Logit estimator yields very

similar results quantitatively). Also, in columns (1) and (2) in the bottom-left panel we

present a very similar effect of shrinking the band when using the absolute value of the

non-accumulated changes.

In columns (3) and (4) of Table 6 we redo the experiment above on synthetic data

from the Menu-Cost model. Here, we still expect a positive estimate when using only

exactly zero price-change observations since in the Menu-Cost model firms choose not to

change price due to small changes in marginal cost and vice versa. Comparing the results

in columns (4) and (5), we see that the point estimate falls slightly with 0.128 when
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Table 6: Estimation and Simulation Results - Band Size
(1) (2) (3) (4) (5) (6)

Band Size: Base Zero Base Zero Base Zero
Data Menu Cost CalvoPlus

|ds lnMCjt| 0.071 −0.020 0.959∗∗ 0.831∗∗ 0.143∗∗ −0.031
(0.050) (0.025) [0.032] [0.031] [0.034] [0.030]

|d lnMCjt| 0.114∗ −0.001 1.067∗∗ 0.948∗∗ 0.173∗∗ 0.009
(0.053) (0.035) [0.033] [0.031] [0.033] [0.026]

|d lnMCjt−1| −0.014 −0.060 0.308∗∗ 0.334∗∗ 0.122∗∗ 0.017
(0.072) (0.071) [0.035] [0.031] [0.036] [0.030]

Notes: The dependent variable takes on a value of one if the price change is outside the zero
band defined in the first row above and zero otherwise. Superscript **, * and + denote estimates
significantly different from zero at the one-, five- and ten-percent level, respectively. The number
of observations in the data panel is 9,694/10,071 (top) and 12,292/12,292 (bottom), respectively.
Robust standard error clustered on the firm level insiden the parenthesis. In the simulation
panel the coeffi cent denotes the average across 200 panel simulations. Standard deviation of
the point estimate across 200 panels is inside the square bracket.

going from using the zero bin to exactly zero price change observations in the probability

regression (average point estimates across simulations are 0.959 vs. 0.831). Since there

are no measurement errors and thus no associated cases of misclassified price changers

in the synthetic data, this result gives a measure of the size of the positive bias from

misclassifying small true price changes when relying on the baseline definition of IIZB.

In columns (5) and (6) we do the same experiment in the calibrated CalvoPlus model.

The point estimate drops from 0.143 to −0.031 when shifting the dependent variable from

the baseline zero bin to only looking at exactly zero price changes. The intuition is that

since the data want a calibration of the CalvoPlus model that is, for all relevant aspects,

a standard Calvo model, there are no selection effects. This exercise thus confirms that

the time aggregation does not affect the basic intuition for the mechanisms at work.

Moreover, the difference between the estimates, 0.174, gives a slightly larger estimate of

the positive bias from including small positive price changes in the IIZB definition as

compared to the Menu-Cost model. In Figure 7 we present a kernel regression exercise,

which graphically illustrates the results discussed above. Comparing the top-left panel

with the bottom-left panel of Figure 7 we see that the positive slope disappears when

changing the zero-bin definition to only include exactly zero price-change observations.

Comparing the top-right panel with the bottom-right panel, we see that not using the

absolute value (of the accumulated log marginal cost change) leads to an expected U-
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Figure 7: Kernel regressions of the baseline (top panels) and the exactly zero (bottom
panels) price-change dummy on the absolute (left-hand panels) and regular (right-hand
panels) accumulated change in log marginal cost. Gray area depicts the 95-percent con-
fidence band.

shaped relationship that disappears once only relying on exactly zero price changes in

the zero bin.

In the bottom panels of Table 6 we redo the exercises outlined above using the absolute

value of the non-accumulated change.31 As can be seen in the two bottom rows of Table

6, results are qualitatively unchanged from this extension. Also, comparing the results in

columns (3) and (4) we see that the lagged effect in the Menu-Cost model is qualitatively

unchanged from using the baseline zero bin or only the observations that are exactly

zero. Moreover, Figure 8 repeats the exercise the exercise of Figure 7, but using the

non-accumulated change, with very similar results.

The results suggest that the difference between estimated selection effects in the data

when comparing the baseline with the results from relying on only the exactly zero obser-

vations is well in line with the bias estimates from the simulated data. In fact the point

31The small differences between the results in the bottom panel of column (5) and the bottom panel of
Table 4 stems from that here we average point estimates from each panel, whereas in the bottom panel
of Table 4 we first stack all data and then run the regression.
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Figure 8: Kernel regressions of the baseline (top panels) and the exactly zero (bottom
panels) price-change dummy on the absolute (left-hand panels) and regular (right-hand
panels) change in log marginal cost. Gray area depicts the 95-percent confidence band.
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Table 7: Robustness Single-Product Firms / Band Size
(1) (2) (3) (4)

Band Size: Base Zero Base Zero
Sample Baseline Single-Product Firms

|ds lnMCjt| 0.071 −0.020 0.172 0.028+

(0.050) (0.025) (0.113) (0.016)

|d lnMCjt| 0.114∗ −0.001 0.297∗∗ 0.045+

(0.053) (0.035) (0.095) (0.025)
|d lnMCjt−1| −0.014 −0.060 0.104 −0.023

(0.072) (0.071) (0.094) (0.033)

Notes: The dependent variable takes on a value of one if the price change is outside
the zero band defined in the first row above and zero otherwise. Superscript **, * and
+ denote estimates significantly different from zero at the one-, five- and ten-percent
level, respectively. The number of observations are, by column (top/bottom panel) 9,694
(12,292), 10,071 (12,292), 898 (1,144), 955, (1,144). Robust standard error clustered on
the firm level inside the parenthesis.

estimate of the drop (0.091) when shrinking the band is actually smaller than in the

models, thus pointing away from the hypothesis that the estimate when only relying on

exactly zero observation in the data is downward-biased due to misclassification of price

changes in combination with state dependence in price-setting. Moreover, the results

from fitting the CalvoPlus model, which indicate very little state dependence, suggests

that the estimates in column (2) of Table 6 are more or less an unbiased estimates of the

true selection effects. Thus, taken together, the results presented here lend support to

the Calvo (1983) interpretation of the data and the view that the (small) positive point

estimates reported in Table 3 is the result of upward bias from including small price

changes in the zero bin.

D Single-Product Firms

In Table 7 we present the results from only relying on the 264 firms in the sample identified

as single-product firms from the IVP survey (in accordance with the 8/9 digits HS/CN

codes). First, column (1) reproduces the results from the baseline sample. Compared to

these results, we see that when relying only on single-plant firms, column (3) of Table

7 leads to somewhat higher point estimates. Confidence intervals overlap on regular

significance levels, however, and, even taken at face value, the findings remain consistent

with a much weaker selection effects than implied by a standard menu-cost models.
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Higher point estimates are to be expected if there are measurement errors that at-

tenuates the estimates from the full sample. However, when looking at the results from

only relying on exactly zero price change observations in the definition of the price-

change dummy, column (2), we see quantitatively similar results as compared to the

multi-product results, column (4). Thus, the likely explanation for the somewhat higher

point estimates in the single-product sample is that the upward bias in the point esti-

mates from using an interval definition of the price-change dummy (see the discussion in

Appendix C) is stronger in the single-product sample than in the full sample. All, in all,

we conclude that we do not find any important differences in observed pricing patterns

between single- and multi-product producers in the dimensions studied in this paper.
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