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Abstract

Pseudo Marginal Metropolis-Hastings (PMMH) is a general approach to

carry out Bayesian inference when the likelihood is intractable but can be

estimated unbiasedly. Our article develops an efficient PMMH method for

estimating the parameters of complex and high-dimensional state space mod-

els and has the following features. First, it runs multiple particle filters in

parallel and uses their averaged unbiased likelihood estimate. Second, it com-

bines block and correlated PMMH sampling. The first two features enable our

sampler to scale up better to longer time series and higher dimensional state

vectors than previous approaches. Third, the article develops an efficient aux-

iliary disturbance particle filter, which is necessary when the bootstrap filter

is inefficient, but the state transition density cannot be expressed in closed

form. Fourth, it uses delayed acceptance to make the make the sampler more

efficient. The performance of the sampler is investigated empirically by apply-

ing it to Dynamic Stochastic General Equilibrium models with relatively high

state dimensions and with intractable state transition densities. Although our

focus is on applying the method to state space models, the approach will be

useful in a wide range of applications such as large panel data models and

stochastic differential equation models with mixed effects.

Keywords: Averaged likelihood estimate; block PMMH; Correlated PMMH; Delayed acceptance;

Dynamic Stochastic General Equilibrium (DSGE) model
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1 Introduction

The pseudo-marginal Metropolis-Hastings (PMMH) (Andrieu and Roberts, 2009)

approach is a standard method for conducting Bayesian inference in a wide range of

challenging statistical models having an intractable likelihood which can be estimated

unbiasedly. Our article develops a PMMH sampling method for estimating param-

eters of the complex and high-dimensional state space models that is efficient and

scalable (relative to current methods) in the number of observations and the latent

states and can handle state transition densities that cannot be expressed in closed

form; for example, many dynamic stochastic general equilibrium (DSGE) models,

which are popular class of macroeconomic time series state space models, do not

have closed form transition densities.

A key issue in efficiently estimating statistical models using a PMMH approach

is that the variance of the log of the estimated likelihood grows with the number

of observations and the dimension of the latent states (Deligiannidis et al., 2018).

Pitt et al. (2012) show that to obtain a balance between computational time and the

mixing of the Markov chain Monte Carlo (MCMC) chain, the number of particles

used in the particle filter should be such that the variance of the log of the esti-

mated likelihood is in the range 1 to 3, depending on the efficiency of the proposal

for θ, and that the efficiency of PMMH schemes deteriorates exponentially as that

variance increases. In many complex statistical applications, it is computationally

very expensive ensuring that the variance of the log of the estimated likelihood is

within the required range. Deligiannidis et al. (2018) propose a more efficient PMMH

scheme, called the correlated pseudo-marginal (CPM) method, which correlates the

random numbers used in constructing the estimated likelihoods at the current and

proposed values of the parameters. This correlation induces a correlation between

the estimated likelihoods and reduces the variance of the difference in the logs of the

estimated likelihoods which appears in the Metropolis-Hastings (MH) acceptance ra-

tio. They show that the CPM scales up with the number of observations compared to

the standard pseudo marginal method of Andrieu et al. (2010) if the state dimension

is moderate.

Tran et al. (2016) propose an alternative approach, called the block pseudo

marginal (BPM) method, which divides the random numbers into blocks and then up-

dates the parameters jointly with one randomly chosen block of the random numbers

in each MCMC iteration; this induces a positive correlation between the numerator
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and denominator of the MH acceptance ratio, similarly to the CPM. They showed

that for large samples the correlation of the logs of the estimated likelihoods at the

current and proposed values is close to 1− 1/G, where G is the number of blocks in

the blocking approach.

Our paper proposes a new PMMH sampler, which we call the mixed PMMH

algorithm (MPM); it builds on, and extends, the CPM method of Deligiannidis et al.

(2018) and the BPM method of Tran et al. (2016). The important innovations of the

MPM sampler compared to block and correlated PMMH are that: (a) the unbiased

likelihood estimator is an average of the likelihood estimators obtained by multiple

independent particle filters (PFs) which lowers its variance; these PFs can be run in

parallel. (b) The unknown parameters, and only the random numbers used in one

of the PFs, are updated jointly. Section 3.3 provides the implementation details.

Sections 4.2 and 4.4 show that the MPM sampler is able to maintain the correlation

between the logs of the estimated likelihoods for relatively high dimensional state

space models compared to the BPM and CPM. (c) In many applications of state space

models, such as DSGE models, it is difficult to estimate the likelihood efficiently

because the bootstrap filter is very inefficient while it is difficult to construct an

auxiliary particle filter because the state transition density does not have a closed

form. We follow Murray et al. (2013) and Hall et al. (2014) and use the disturbance

particle filter (DPF), which works on the disturbances rather than the states. An

improved disturbance PF (IDPF) algorithm is proposed to improve the performance

of the standard disturbance particle filter. Section 3.5 discusses this further. (d)

The delayed-acceptance version (Christen and Fox, 2005) of the MPM algorithm

is also developed to speed up the computation for non-linear state space models.

The motivation for the delayed acceptance algorithm is to minimize the expensive

computation of the likelihood or its estimate when it appears likely that the proposal

will be rejected. See Section 3.4 for details.

We illustrate the MPM sampler empirically, and compare its performance to the

BPM and CPM methods, using a standard linear Gaussian state space model and two

Dynamic Stochastic General Equilibrium (DSGE) models, using simulated and real

data. We also compare the performance of the improved disturbance particle filter

(IDPF) to the tempered particle filter (TPF) proposed by Herbst and Schorfheide

(2019); however, we note that Herbst and Schorfheide (2019) only apply the TPF to

linear (first order) DSGE models. Sections 4.2 to 4.5 show that: (1) the IDPF is much

more efficient than the standard bootstrap particle filter (BPF) and the tempered

particle filter (TPF); (2) the MPM, which runs multiple independent particle filters

and only updates the random numbers used in one particle filter, maintains the

correlation between the logs of the estimated likelihoods much better than both
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CPM and BPM. The BPM method of Tran et al. (2016), which runs a single particle

filter and updates a block of random numbers for all time periods in the particle filter

algorithm, is unsuitable for time-series state space model; (3) the delayed acceptance

version of the MPM sampler is much more efficient than the standard MPM sampler.

Our work in estimating non-linear DSGE models is also related to Fernández-

Villaverde and Rubio-Ramı́rez (2007) and Hall et al. (2014) who use standard PMMH

methods. We note that the MPM sampler will also be useful for other complex

statistical models, such as partially observed diffusions models, panel data models,

and stochastic differential equation mixed effects models.

The rest of the article is organised as follows. Section 2 introduces the state space

model and gives some examples. Section 3 discusses the MPM sampler. Section 4

presents results from both simulated and real data. Section 5 concludes with a

discussion of our major results and findings. The paper has an online supplement

containing some further technical and empirical results.

2 State Space Models

2.1 General State Space Models

We use the colon notation for collections of variables, i.e., ar:st := (art , ..., a
s
t) and

for t ≤ u, ar:st:u := (ar:st , ..., a
r:s
u ). Consider the stochastic process {(Zt, Yt)}, with

parameter θ, where the Yt are the observations and the Zt are the latent state vectors;

random variables are denoted by capital letters and their realizations by lower case

letters. We consider the state space model with p (z0|θ) the density of Z0, p (zt|zt−1, θ)
the density of Zt = zt given Z0:t−1 = z0:t−1 for t ≥ 1, and p (yt|zt, θ) is the density of

Yt = yt given Z0:t = z0:t, Y1:t−1 = y1:t−1.

The stochastic volatility model is an example of a popular non-linear and non-

Gaussian state space model. It is described by

yt = exp (zt/2) ηt (t ≥ 1) ,

zt+1 = µ+ φ (zt − µ) + τεt+1 (t ≥ 0) , with z0 ∼ N

(
µ,

τ 2

1− φ2

)
;

{zt} is the latent volatility process, θ := (µ, τ, φ) is the vector of unknown parame-

ters, with the persistence parameter φ satisfying |φ| < 1 to ensure stationarity; the

sequence (ηt, εt)
> ∼ N (0, I) is independent for all t.
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2.2 State space representations of DSGE models

Our article illustrates the proposed methods using Dynamic Stochastic General Equi-

librium (DSGE) models; however, they apply more generally to nonlinear state space

models.

We start by describing the state space representation of DSGE models and then

highlight the specific source of nonlinearity we tackle in our applications. In the

article we deal with DSGE models having a state transition equation of the form

zt+1 = F (zt, εt+1, ζ; θ), (1)

such that {εt} is an independent N(0,Σε) sequence; ζ is a perturbation parameter

and θ is a vector of the unknown parameters of the DSGE model.

For most applications, the function F (·) in Eq. (1) is analytically intractable

and is approximated using local solution techniques. We use first and second order

Taylor series approximations around the deterministic steady state zs with ζ = 0 to

approximate F ; zs satisfies zs = F (zs, 0, 0; θ).

A first order-accurate approximation, around the deterministic steady state, to

Eq. (1) is

zdt+1 = F1(θ)z
d
t + F2(θ)εt+1 (2)

where zdt = (zt− zs). For Eq. (2) to be stable, it is necessary that all the eigenvalues

of F1(θ) are less than 1 in absolute value. The initial value zd0 = 0 because we

work with approximations around the deterministic steady state. For a given set of

parameters θ, the matrices F1(θ) and F2(θ) can be solved using existing software.

Our applications use Dynare.

The second order accurate approximation (around the deterministic steady state)

to Eq. (1) is

zdt+1 = F0(θ)ζ
2+F1(θ)z

d
t +F2(θ)εt+1+F11(θ)P (zdt )+F12(θ)(z

d
t ⊗εt+1)+F22(θ)P (εt+1);

(3)

where zdt = (zt − zs) and for any vector x := (x1, . . . , xm)>, we define P (x) :=

vech(xx>), where vech(xx>) is the strict upper triangle and diagonal of xx>, such

that

vech(xx>) := (x21, x1x2, x
2
2, x1x3, ..., x

2
m)>. The term F0(θ)ζ

2 captures the level cor-

rection due to uncertainty that arises from taking a second-order approximation. For

the scope of our analysis we normalize the perturbation parameter ζ to 1. As before,

for a given set of parameters θ the matrices F1(θ), F2(θ), F11(θ), F12(θ), F22(θ) can be

solved using Dynare.
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The measurement (observation) equation for the DSGE model and its approxi-

mations is

yt = Hzt + ηt, ηt ∼ N (0,Ση) , (4)

where H is a known matrix; {ηt} is an independent N (0,Ση) and sequence and it

is also independent of the {εt} sequence. The matrix Ση is usually unknown and

estimated from the data.

Although it is possible to apply the bootstrap filter for the second order solution,

the resulting estimated likelihood is too variable to be useful in a PMMH scheme.

Instead, we use an auxiliary disturbance particle filter because the transition density

of the second order DSGE models is usually intractable.

We do not use Eq. (3) as the state space transition equation because it can

generate explosive solutions for the variables in the model. Instead, this problem is

solved by modifying the state transition equation using the pruning approach of Kim

et al. (2008), as in Section S6.1 of the supplement. Such a pruned representation can

substantially increase the size of the state vector; if zt in Eq. (S8) is d dimensional,

then the pruned state vector is 2d+d(d+1)/2 dimensional. The pruned state vector

is then also likely to be substantially greater than the dimension of the disturbances

{εt}, thus giving a further motivation for using the disturbance filter.

3 Bayesian Inference

3.1 Preliminaries

The objective in Bayesian inference is to obtain the posterior distributions of the

model parameters θ and the latent states z0:T , given the observations y1:T and a

prior distribution p (θ); i.e.,

p (θ, z0:T |y1:T ) = p (y1:T |θ, z0:T ) p (z0:T |θ) p (θ) /p (y1:T ) , (5)

where

p (y1:T ) =

� �
p (y1:T |θ, z0:T ) p (z0:T |θ) p (θ) dz0:Tdθ (6)

is the marginal likelihood. The likelihood

p (y1:T |θ) =

�
p (y1:T |θ, z0:T ) p (z0:T |θ) p (θ) dz0:T
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can be calculated exactly using the Kalman filter for the linear Gaussian state space

model (LGSS) and hence for the linear (first order) approximation. The posterior

samples can then be obtained using a MCMC sampling scheme. However, the like-

lihood cannot be computed exactly if a higher-order approximation is used, such as

Eq. (S10), for the evolution of the state and other non-linear and non-Gaussian state

space models. In this case, the likelihood can only be estimated.

The bootstrap particle filter of Gordon et al. (1993) provides an unbiased estima-

tor of the likelihood for a general state space model. Andrieu and Roberts (2009) and

Andrieu et al. (2010) show that it is possible to use this unbiased estimator of the

likelihood to carry out full Bayesian inference for the parameters of the general state

space model. They call this MCMC approach pseudo marginal Metropolis-Hastings

(PMMH).

The non-linear (second-order) DSGE models we consider lie within the class of

general non-linear state space models whose state transition density is difficult to

work with or cannot be expressed in closed form. In such cases, it is useful to express

the model in terms of its latent disturbance variables as they can be expressed in

closed form. The posterior in Eq. (5) becomes

p (θ, ε1:T |y1:T ) ∝
T∏
t=1

p (yt|ε1:t, θ) p (εt) p (θ) , (7)

which Murray et al. (2013) call the disturbance state-space model. The standard

state space model can be recovered from the disturbance state space model by using

the deterministic function F (zt−1, εt; θ) → zt. This gives us a state trajectory z0:T

from any sample (ε1:T , z0), where z0 = 0. In the disturbance state-space model the

target becomes the posterior distribution over the parameters θ and the latent noise

variables ε1:T , rather than (θ, z0:T ).

3.2 Standard Pseudo Marginal Metropolis-Hastings

This section outlines the standard PMMH scheme which carries out MCMC on an

expanded space using an unbiased estimate of the likelihood. Our paper focuses

on estimating the posterior density of the parameters θ, but not of the states. Let

u consist of all the random variables required to compute the unbiased likelihood

estimate p̂N (y|θ, u), with p(u) the density of u; let p (θ) be the prior of θ. The joint

posterior density θ and u is

p (θ, u|y1:T ) = p̂N (y1:T |θ, u) p (θ) p (u) /p (y1:T ) ,
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so that

p (θ|y1:T ) =

�
p (θ, u|y1:T ) du = p (y1:T |θ) p (θ) /p (y1:T )

is the posterior of θ and
�
p̂N (y1:T |θ, u) p (u) du = p (y1:T |θ) because the likelihood

estimate is unbiased. We can therefore sample from the posterior density p (θ|y1:T )

by sampling θ and u from p (θ, u|y1:T ). The subscript N indicates the number of

particles used to estimate likelihood.

Let q
(
θ
′|θ
)

be the proposal density for θ′ with the current value θ and q
(
u
′|u
)

the proposal density for u
′

given u. We always assume that the q
(
u
′|u
)

satisfies the

reversibility condition

q
(
u
′ |u
)
p (u) = q

(
u|u′

)
p
(
u
′
)

; (8)

it is clearly satisfied by the standard PMMH where q
(
u
′|u
)

= p
(
u
′)

. We generate

a proposal θ
′

from q
(
θ
′|θ
)

and u
′

from q
(
u
′ |u
)
, and accept both proposals with

probability

α
(
θ, u; θ

′
, u
′
)

= min

(
1,
p̂N
(
y|θ′ , u′

)
p
(
θ
′)
p
(
u
′)
q
(
θ|θ′
)
q
(
u|u′

)
p̂N (y|θ, u) p (θ) p (u) q (θ′|θ) q (u′|u)

)

= min

(
1,
p̂N
(
y|θ′ , u′

)
p
(
θ
′)
q
(
θ|θ′
)

p̂N (y|θ, u) p (θ) q (θ′|θ)

)
. (9)

The expression in Eq. (9) is identical to a standard Metropolis-Hastings algorithm

except that estimates of the likelihood at the current and proposed parameters are

used. Andrieu and Roberts (2009) show that the resulting PMMH algorithm has

the correct invariant distribution regardless of the variance of the estimated like-

lihoods. However, the performance of the PMMH approach crucially depends on

the number of particles N used to estimate the likelihood. The variance of the log

of the estimated likelihood should be between 1 and 3 depending on the quality of

the proposal for θ; see Sherlock et al. (2015) and Doucet et al. (2015) for further

details. In many applications of the non-linear state space models considered in this

paper, it is computationally very expensive to ensure that the variance of the log of

the estimated likelihood is within the required range. Section 3.3 discusses the new

PMMH sampler, which we call the mixed PMMH algorithm (MPM), that builds on

and extends, the CPM of Deligiannidis et al. (2018) and BPM of Tran et al. (2016).
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3.3 Mixed PMMH (MPM)

This section discusses the proposed mixed PMMH (MPM) method that uses mul-

tiple particle filters to obtain the unbiased estimate of the likelihood, similarly to

the approach of Sherlock et al. (2017b), and uses a combination of the BPM and

CPM methods to induce a high correlation between successive logs of the estimated

likelihoods. Suppose that G particle filters are run in parallel. Let p̂N (y|θ, ug) be

the unbiased estimate of the likelihood obtained from the gth particle filter, for

g = 1, ..., G. We now define the joint target density of θ and ũ = (u1, ..., uG) as

p (θ, ũ|y1:T ) ∝ p̂N (y|θ, ũ) p (θ)
G∏
g=1

p (ug) , (10)

where p̂N (y|θ, u) =
∑G

g=1 p̂N (y|θ, ug) /G is the average of the G unbiased likelihood

estimates and hence it is also unbiased (Sherlock et al., 2017b). We update the

parameters θ jointly with a randomly selected block ug in each MCMC iteration,

with Pr (G = g) = 1/G for any g = 1, ..., G. The selected block ug is updated using

u
′
g = ρuug+

√
1− ρ2uηu, where ρu is the non-negative correlation between the random

numbers ug and u
′
g and ηu is a standard normal vector of the same length as ug. Using

this scheme, the acceptance probability is

α
(
θ, ũ; θ

′
, ũ
′
)

= min

(
1,
p̂N
(
y|θ′ , ũ′ =

(
u1, ..., ug−1, u

′
g, ug+1, ..., uG

))
p
(
θ
′)
q
(
θ|θ′
)

p̂N (y|θ, ũ = (u1, ..., ug−1, ug, ug+1, ..., uG)) p (θ) q (θ′|θ)

)
.

(11)

It is important that the logs of the likelihood estimates evaluated at the cur-

rent and proposed values of θ and ũ are highly correlated to reduce the variance of

log p̂N
(
y|θ′ , ũ′

)
− log p̂N (y|θ, ũ) which helps the Markov chain to mix well. However,

the resampling step in the particle filter introduces discontinuities even when θ and θ
′

are close, where θ is the current value and θ
′
is the proposed value of the parameters.

Section 3.5 discusses this discontinuity issue and the proposed correlated disturbance

particle filter algorithm, which helps to maintain the correlation. Algorithm S3 in

Section S2 of the Supplement gives the MPM algorithm.

3.4 Delayed Acceptance PMMH

We propose the delayed acceptance version of the MPM algorithm, which we call

delayed acceptance mixed PMMH (DA-MPM), to speed up the computation. The

motivation for the delayed acceptance sampler (Christen and Fox, 2005) is to avoid

the computation of the expensive likelihood estimate if it is likely that the proposed
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draw will ultimately be rejected. A first accept-reject stage uses a cheap (or deter-

ministic) approximation to the likelihood instead of the expensive likelihood estimate

in the MH acceptance ratio. Then, the particle filter is used to estimate the likelihood

only for a proposal that is accepted in the first stage; a second accept-reject stage

ensures that detailed balance is satisfied with respect to the true posterior. We use

the likelihood obtained from the central difference Kalman filter (CDKF) proposed

by Norgaard et al. (2000) in the first accept-reject stage of the delayed acceptance

scheme. We chose the CDKF for the first staqe rather than the extended Kalman

Filter (EKF) because it frequently outperforms the EKF for general non-linear and

non-Gaussian state-space models (Andreasen, 2013). Section S4 of the Supplement

gives further details.

3.5 The Disturbance Particle Filter

This section discusses the disturbance particle filter we use to obtain the unbiased

estimates of the likelihood in the MPM sampler described in Section 3.3. Suppose

that z1 = Φ (z0, ε1; θ), where z0 is the initial state vector; for t ≥ 2, zt = F (zt−1, εt; θ),

where εt is a ne × 1 vector of normally distributed latent noise with density p (εt) .

Murray et al. (2013) express the standard state-space model in terms of the latent

noise variables ε1:T , and call

εt ∼ p (εt) , yt|ε1:t ∼ p (yt|ε1:t, x0; θ) = p (yt|zt; θ) , t = 1, ..., T,

the disturbance state-space model. We note that the conditional distribution of yt

depends on all the latent error variables ε1:t. The disturbance particle filter provides

an unbiased estimate of the likelihood.

For the MPM sampler described in Section 3.3 to work efficiently, the logs of the

likelihood estimates evaluated at the current and proposed values of (θ, ũ) need to be

highly correlated. However, the standard resampling step in the (disturbance) parti-

cle filter introduces discontinuities and breaks down the correlation between the logs

of the likelihood estimates at the current and proposed values even when the current

parameters θ and the proposed parameters θ
′

are close. Sorting the particles from

smallest to largest helps to preserve the correlation between the logs of the likelihood

estimates at the current and proposed values (Deligiannidis et al., 2018). However,

such sorting is unavailable for multidimensional state particles. Deligiannidis et al.

(2018) use the Hilbert sorting method of Skilling (2004) to order multidimensional

state particles. Our article uses a simpler and faster method proposed by Choppala

et al. (2016) and given in Section S3 of the Supplement. Algorithm S1 in Section S1
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of the Supplement outlines the correlated disturbance particle filter algorithm used

by the MPM algorithm described in Section 3.3.

Improved Disturbance Particle Filter (IDPF)

Our article uses the mixture proposal density

m (εt|uε,t, θ) = πp (εt|θ) + (1− π)q (εt|θ, y1:T ) ; (12)

0 ≤ π ≤ 1. If π = 1, then m (εt) = p (εt) is the bootstrap disturbance particle filter.

However, the empirical performance of this bootstrap filter is usually poor because

the resulting likelihood estimate is too variable. In practice, we take 0 < π << 1 and

q (εt|θ, y1:T ) = N
(
εt|µ̂t, Σ̂t

)
. The methods to obtain µ̂t and the covariance matrix

Σ̂t are now discussed. First, the G disturbance particle filters are run in parallel.

Second, the ancestral tracing algorithm given in Section S5 of the Supplement is

used to obtain G trajectories of εg,1:T . Third, the mean µ̂t and the covariance matrix

Σ̂t are set as the mean and the covariance matrix of these G trajectories of εg,1:T at

each time t. Applying additional ancestral tracing step for each disturbance particle

filter gives the particle trajectories from the smoothing distribution p(ε1:T |θ, y1:T ),

that is the conditional distribution of disturbances given the parameters θ and all

available data up to time T . The proposal defined in Eq. (12) is generated without

much additional computational cost because the G disturbance particle filters are

needed to be run at each MCMC iteration to compute the unbiased estimate of

the likelihood and the ancestral tracing method is fast to compute. The proposal

density in Eq. (12) is in the form of the defensive mixture approach of Hesterberg

(1995) which guarantees the boundedness of the weights in the disturbance particle

filter algorithm defined in Eq. (S2) of Section S1 of the Supplement, given that the

observation density p (yt|zt, θ) is bounded which is satisfied for all models defined in

Section 2.2. We set π = 0.05 in all our examples in Section 4.

4 Examples

Section 4.1 discusses the inefficiency measures we use to compare the performance of

different particle filters or PMMH samplers. Section 4.2 investigates empirically the

ability of the proposed mixed PMMH (MPM) sampler to maintain the correlation

between successive log-likelihood estimates using a high-dimensional linear Gaussian

state space model. Section 4.3 discusses the linear small-scale DSGE example used

by Herbst and Schorfheide (2019). Section 4.4 discusses a non-linear Real Business
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Cycle (RBC) using simulated datasets. Section 4.5 applies the MPM sampler to

estimate a non-linear small scale DSGE model.

4.1 Definitions of Inefficiency

We define the time normalised variance (TNV) of a particle filter method

TNVPF := V̂ (log p̂ (y|θ))× CT,

as the measure of inefficiency of the method that takes computing time into account;

CT is the computing time to obtain a single log of the estimated likelihood in seconds,

and V̂ (log p̂ (y|θ)) is the estimated variance of the log of the likelihood estimate. The

relative time normalised variance (RTNV) of a particle filter method is defined as

RTNVPF := TNVPF/TNVIDPF .

We use the inefficiency factor (IF)

IFψ := 1 + 2
∞∑
t=1

ρψ (t) ,

to measure the inefficiency of a PMMH sampler at estimating the posterior expecta-

tion of a univariate function ψ (θ) of θ; here, ρψ (t) is the jth autocorrelation of the

iterates ψ (θ) in the MCMC chain after it has converged to its stationary distribution.

We estimate the IACT using the CODA R package of Plummer et al. (2006). A low

value of the IACT estimate suggests that the Markov chain mixes well. Our measure

of the inefficiency of a PMMH sampler that takes computing time into account for

a given parameter θ based on IFψ is the time normalised inefficiency factor (TNIF)

is defined as TNIFψ := IFψ × CT. The estimate of TNIF is the estimate of the IF

times the computing time (CT). For a given sampler, let IACTMAX and IACTMEAN

be the maximum and mean of the IACT values over all the parameters in the model.

4.2 Performance for the Linear Gaussian State Space Model

This section examines empirically the ability of the following methods to maintain

the correlation between successive values of the log of the estimated likelihood for

a linear Gaussian state space model: (1) the block PMMH (BPM) of Tran et al.

(2016), (2) the correlated PMMH (CPM) of Deligiannidis et al. (2018), and (3) the

mixed PMMH (MPM).

We consider the model discussed in Guarniero et al. (2017) and Deligiannidis

12



et al. (2018), where {Xt; t ≥ 1} and {Yt; t ≥ 1} are Rd valued with

Yt = Xt +Wt,

Xt+1 = AθXt + Vt+1,

with X1 ∼ N (0d, Id), Vt ∼ N (0d, Id), Wt ∼ N (0d, Id), and Ai,jθ = θ|i−j|+1; the true

value of θ is 0.4. We use the state based bootstrap filter so that the proposal density

is the state transition density of the particle filter for all methods. The experimental

setup is now discussed. The simulated data is generated from the model above with

T = 100 and T = 1000 time periods and d = 5, 10, 20, 50, 100 dimensions. The

correlation parameter in the CPM is set to ρu = (0.5, 0.75, 0.8, 0.9, 0.99) and the

number of blocks in the BPM is set to G = (2, 4, 5, 10, 100). We use the same

number of blocks for the MPM as in the BPM and set the correlation coefficients

ρu = 0 and ρu = 0.99.

There are important implementation differences between the BPM of Tran et al.

(2016), the CPM of Deligiannidis et al. (2018) and the proposed MPM method. The

BPM updates a block of random numbers for all time periods in the particle filter

algorithm and runs a single particle filter; e.g. suppose N = 100 particles, one block

of the particles is updated for all time periods, with the other 99 block of particles

unchanged for all time periods. The CPM method correlates all the random numbers

used in the particle filter using u
′

= ρuu+
√

1− ρ2uηu, where ρu is the non-negative

correlation between the random numbers u and u
′

and ηu is a standard normal

vector of the same length as u, and runs a single particle filter. The MPM method

updates the random numbers in one particle filter, keeping the random numbers in

the other G − 1 particles filters unchanged. The selected block ug is updated using

the correlated approach u
′
g = ρuug +

√
1− ρ2uηu. Given those random numbers, the

MPM then runs G particle filters in parallel.

We ran the CPM, BPM, and MPM approaches for 100 iterations holding the

parameter θ fixed at the true value. At each iteration we generated the u(s) and u(s)
′

and obtained log p̂N
(
y|θ, u(s)

)
and log p̂N

(
y|θ, u′(s)

)
, for s = 1, ..., 100, for the BPM

and CPM; we then computed their sample correlation. Similarly, we generated ũ,

where ũ = (u1, ..., uG) and ũ
′

and obtained log p̂N
(
y|θ, ũ(s)

)
and log p̂N

(
y|θ′ , ũ(s)′

)
for the MPM approach and computed their sample correlation.

Figures 1 and 2 report the correlation estimates of log p̂N (y|θ, u) and log p̂N
(
y|θ, u′

)
for the BPM and CPM approaches and log p̂N

(
y|θ, ũ(s)

)
and log p̂N

(
y|θ′ , ũ(s)′

)
for

the MPM approach for T = 100 and 1000, respectively. The figures show that: (1)

the correlation estimates for the BPM approach are close to zero for all the reported

number of blocks and dimensions, supporting the observation made by Tran et al.
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(2016) that the BPM approach is unsuitable for time series state space models; (2)

when the correlation between random numbers u and u
′

is set to 0.99 in the CPM

approach, the estimated correlations between the log of the estimated likelihoods are

0.73, 0.59, 0.59, 0.55, and 0.47 for T = 100 and 0.66, 0.51, 0.52, 0.51, and 0.53 for

T = 1000 for d = 5, 10, 20, 50, 100, respectively. The estimated correlations seem to

be slightly worse when T = 1000. The higher the dimension of the latent state vari-

ables, the lower is the estimated correlation between the log of estimated likelihoods.

Section 4.4 shows that the estimated correlation between the log of the estimated

likelihoods gets worse for the non-linear model; (3) the MPM method maintains a

high correlation between the logs of the estimated likelihoods even for d = 100 di-

mensions and T = 1000 time periods. The estimated correlations between logs of the

estimated likelihoods when the number of blocks G is 100 and d = 100 dimensions

are 0.99 for both T = 100 and 1000. This supports the result in Tran et al. (2016)

that shows that the correlation of the logs of the estimated likelihood at the current

and proposed values is close to 1− 1/G = 1− 1/100 = 0.99.

In summary, this example suggests that: (1) the BPM of Tran et al. (2016) is

ineffective for time series state space models because it is unable to maintain the

correlation between the logs of the estimated likelihoods in successive iterates; (2)

the correlation estimates between the logs of the estimated likelihoods obtained from

the CPM deteriorate as the dimension of the state variables and the length of time

series increase; (3) the MPM approach maintains a high correlation even when the

dimension of the state variables is 100. There is no noticeable difference between

setting ρu = 0 or 0.99 for the MPM approach in this example. It is therefore

sufficient to set the correlation ρu = 0.

4.3 Linear Small Scale DSGE Model

This section investigates empirically the performance of the proposed improved dis-

turbance particle filter (IDPF), the bootstrap particle filter (BPF), and the tempered

particle filter (TPF) of Herbst and Schorfheide (2019) based on the variance of the

log of the estimated likelihood for each estimator. Thus, an estimator is better than

a second estimator if the variance of the log of the first estimator is smaller than

that of the second. We compare the variances using the linear small scale DSGE

model considered by Herbst and Schorfheide (2019), and described in Section S7 of

the Supplement. A linearised DSGE model (with normally distributed innovations)

leads to a linear Gaussian state-space representation, making it feasible to compute

the likelihood using the Kalman filter instead of estimating the likelihood by the

particle filter. The likelihood estimated using Kalman filter is treated as the ground

14



Figure 1: The estimated correlation of log of the estimated likelihoods obtained
using the four approaches: (1) Block PMMH (BPM), (2) Correlated PMMH (CPM),
(3) Mixed PMMH (MPM) with ρu = 0, and (4) Mixed PMMH (MPM) with ρu = 0.99
for T = 100 and d = 5, 10, 20, 50, 100 dimensions

Figure 2: The estimated correlation of log of the estimated likelihoods obtained
using the four approaches: (1) Block PMMH (BPM), (2) Correlated PMMH (CPM),
(3) Mixed PMMH (MPM) with ρu = 0, and (4) Mixed PMMH (MPM) with ρu = 0.99
for T = 1000 and d = 5, 10, 20, 50, 100 dimensions
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truth for comparing the accuracy of different particle filter methods.

The small scale DSGE model has three observables (output growth, inflation,

and the federal funds rate). Herbst and Schorfheide (2019) augment the observation

equations by independent measurement errors ηt, whose standard deviations are fixed

at 20% of the standard deviations of the observables yt. We augment similarly, but

set the standard deviations at 10% of the standard deviation of the observables,

making the estimation more challenging as the signal to noise is higher. The real

dataset used in this section is obtained from Herbst and Schorfheide (2019), using

data from 1983Q1 to 2002Q4, a total of 80 observations for each series1.

The variance of the log of the likelihood estimate is obtained by computing the

sample variance of the log of the estimated likelihood for each particle filter method

using Nrun = 100 independent runs holding the parameters fixed at the values given

in Table S1 in Section S8 of the Supplement. The fixed parameter values are those

used by Herbst and Schorfheide (2019). The proposal for the IDPF is estimated

from the collection of particles generated by the G particle filters running in parallel.

These particle filters are run once and the same proposal is kept for different numbers

of particles N . The tuning parameters of the TPF are set to the default values given

in Herbst and Schorfheide (2019). All the particle filters are implemented in Matlab.

The TPF Matlab code is obtained from the website2 of Frank Schorfheide.

Table 1 reports the variance of the log of the estimated likelihoods using the BPF,

TPF, and IDPF for the linear small scale DSGE model with T = 80 time periods and

N = 10, 20, 50, 100, 250, 500, 1000, and 2000 particles evaluated at the parameter

values given in Table S1 of Section S8 of the Supplement. Section 3.5 shows that there

is no additional computational cost in constructing the IDPF proposal because it is

obtained from the collection of particles generated by the G particle filters running

in parallel at each MCMC iteration, but the IDPF computing time in Table 1 is

set to twice of the computing time to obtain a single estimate of the likelihood to

account for the time spent constructing the proposal.

In this example, the exact log-likelihood obtained from the Kalman filter is

−296.45. In general, the IDPF is much more efficient than BPF and TPF for all N .

For example, the IDPF is 350 times more efficient than BPF and 2855 times more

efficient than TPF for N = 500. The log of the likelihood estimate obtained from the

IDPF is very close to the exact value even with N = 20. The BPF fails to provide

reasonable values of the of the likelihood estimate even with N = 2000 and the TPF

requires N = 500 particles to obtain the value of the log of the likelihood estimate

1The standard deviations of the measurement errors are 0.057 for output growth, 0.147 for
inflation, and 0.223 for the interest rates. The DSGE model in this section is solved using the
GENSYS software.

2https://web.sas.upenn.edu/schorf/publications/
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that is close to the exact value. In addition, in Table 1, we note that for all three

estimators log p̂N (y|θ, u) increases as N increases and seems to converge to the log

of the likelihood obtained by the Kalman filter. This can be explained heuristically

as follows. Suppose that E(X) = a, σ2
X = var(X) and |X − a|/|a| is small. Then

E(logX) ≈ log a− σ2
X

a2
≤ log a

and logX monotonically increases to log a as σ2
X tends to 0.

4.4 Non-Linear Real Business Cycle Models

This section reports the results of three studies using data generated from the non-

linear Real Business Cycle (RBC) model described in Section S10 of the Supplement.

The true values of the parameters are set to β = 0.95, δ = 0.025, α = 0.90, σ = 2,

ρa = ρe = 0.8, σe = σa = 0.5. The measurement error covariance matrix is set to

Ση =

[
0.0135 0

0 0.0137

]
,

which corresponds to a large signal to noise ratio (SNR). We simulated three data

series of T = 50, 100, and 200 observations. These numbers of observations are

chosen because they are roughly the same size as standard (T = 50 and 100) and

large (T = 200) macroeconomic time series. The particle filters and the parameter

samplers are implemented in Matlab. All the computations are done on a single

desktop computer with 6-CPU cores.

The first study compares variance of the log of the estimated likelihoods for

the improved disturbance particle filter (IDPF), the block particle filter (BPF) and

the tempered particle filter (TPF) using Nrun = 100 independent runs holding the

parameters fixed at the true values. The proposal for the IDPF is estimated from the

collection of particles generated by the G particle filters running in parallel. These

particle filters are run once and the same proposal is kept for different numbers of

particles N . The tuning parameters of the TPF are set to the default values given

in Herbst and Schorfheide (2019).

Table 2 reports the variance of the log of the estimated likelihood for the BPF,

TPF, and IDPF methods for the non-linear RBC model with T = 50, 100, 200 time

periods and N = 100, 250, 500, 1000, and 2000 particles. In general, the IDPF is

much more efficient than BPF and TPF for all T and N , for the non-linear RBC

model. For example, the IDPF is 5373 times more efficient than BPF and 294020

times more efficient than TPF when the number of particles N = 500 and T = 200
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time periods.

The second study compares the ability of the CPM of Deligiannidis et al.

(2018), and the MPM methods to maintain the correlation between successive log-

likelihood estimates for the non-linear RBC model; the TPF is not used in the CPM

method because it is not straightforward to correlate all the random numbers, espe-

cially with the random walk Metropolis-Hastings mutation steps and the adaptive

tempering iterations. The correlation parameter in the CPM approach is set to

ρu = (0.5, 0.75, 0.8, 0.9, 0.99, 0.9999, 0.999999). The number of blocks in the MPM

approach is set to G = (2, 4, 5, 10, 100) and the correlation coefficient ρu is set to

0.99. Two different sorting methods are considered. The first sorts the state parti-

cles and the second sorts the disturbance particles. We ran the CPM and the MPM

approaches for Nrun = 100 iterations holding the parameters fixed at the true values.

Figure 3 reports the correlation estimates between successive values of the log

of the estimated likelihood for the CPM method with disturbance sorting and state

sorting. It shows that: (a) the correlation estimates are quite low even when the

correlation between the random numbers are set to be very close to 1; (b) the cor-

relation estimates with the states sorted are 0.49, 0.28, 0.29 when the correlation

between random numbers is set to 0.999999, for T = 50, 100, 200, respectively; (c)

sorting the state particles gives similar results to sorting the disturbance particles.

Figure 4 reports the correlation estimates between the log of the estimated like-

lihoods for four different methods: (i) the MPM with the BPF and disturbance

sorting, (ii) the MPM with the IDPF and disturbance sorting, (iii) the MPM with

the BPF and state sorting, and (iv) the MPM with the IDPF and state sorting. The

figure shows that: (a) the correlation estimates are 0.98, 0.99, 0.98 when the number

of blocks is set to 100, for T = 50, 100, 200, respectively, when sorting the state

particles and the IDPF are used. This suggests that the proposed MPM sampler

is able to maintain high correlations between the logs of the estimated likelihoods

in scenarios where the other methods fail. (b) Sorting the disturbances gives big-

ger correlation estimates than sorting the states, especially when T = 200. This is

because the dimension of the disturbances is smaller than that of the states.

The third study compares the performance of the following PMMH samplers in

estimating the parameters of the non-linear RBC model for T = 200: (i) The delayed

acceptance mixed PMMH (DA-MPM) with the improved disturbance particle filter

(IDPF), disturbance sorting, and the correlation between random numbers used in

estimating the log of estimated likelihoods set to ρu = 0.99; (ii) the DA-MPM with

the IDPF, state sorting, and the ρu = 0.99; (iii) the DA-MPM with the bootstrap

particle filter (BPF), disturbance sorting, and the ρu = 0.99; (iv) the DA-MPM with

the IDPF, disturbance sorting, and ρu = 0, (v) the MPM with the IDPF, disturbance
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Figure 3: The estimated correlation of log of the estimated likelihoods(
log p̂N (y|θ, u) , log p̂N

(
y|θ, u′

))
obtained using the two approaches: (1) CPM with

disturbance sorting, (2) CPM with state sorting for T = 50, 100, 200

Figure 4: The estimated correlation of the log of the estimated likelihoods,

log p̂
(s)

N (y|θ, ũ) and log p̂
(s)

N

(
y|θ′ , ũ′

)
obtained using 4 approaches: (1) MPM with

the BPF and disturbance sorting, (2) MPM with the IDPF and disturbance sorting,
(3) MPM with the BPF and state sorting, and (4) MPM with the IDPF and state
sorting, for T = 50, 100, 200.
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sorting, and the ρu = 0.99; and (vi) the delayed acceptance correlated PMMH (DA-

CPM) with ρu = 0.99 and the BPF. The samplers ran for 25000 iterations, with

the initial 5000 iterations discarded as burn-in. All the samplers are initialized at

the posterior means from a second order approximation of the model obtained from

the central difference Kalman Filter (CDKF) proposed by Norgaard et al. (2000).

We chose this initialisation method because the variance of the log of the estimated

likelihood increased significantly in some areas of the support of θ away from the

true values, making it difficult for the MCMC sampler to converge. We use the

adaptive random walk proposal of Roberts and Rosenthal (2009) for q
(
θ
′|θ
)

and use

the adaptive scaling approach of Garthwaite et al. (2015) to tune the Metropolis-

Hastings acceptance probability to 20%. The covariance matrix of the proposals is

fixed to the estimates from the preliminary run of the MCMC. We fix β, δ, α, and

σ and estimate the four parameters ρa, ρe, σe, σa. This gives a smaller number of

parameters so that we can focus on the comparisons of different PMMH samplers.

All the samplers ran on a single desktop computer with 6-CPU cores.

Table 3 reports the inefficiency factors for each parameter and the relative time

normalised inefficiency factor (RTNIV) of a PMMH sampler relative to the DA-

MPM with the IDPF, disturbance sorting, and ρu = 0.99 for the non-linear RBC

models with T = 200 time periods. The computing time reported in the table is

the time to run a single particle filter for the CPM and G particle filters for the

MPM approach using a single desktop computer with 6 cores. The table shows

that: (a) the DA-MPM sampler with the IDPF, disturbance sorting, ρu = 0.99, and

N = 100 particles is much more efficient than the CPM with 2000 particles in terms

of R̂TNIFMAX and R̂TNIFMEAN; (b) the time taken for running the MPM method

with G = 100 particles filters each with N = 100 particles is similar to the CPM with

N = 1000 particles. The MPM method can be much faster than the CPM method

if it was run using high-performance computing with a large number of cores. This

also shows that the multidimensional sorting algorithm is quite expensive for a large

number of particles and long time periods; (c) the MPM sampler allows us to use of

a much smaller number of particles for each independent PF and these multiple PFs

can be run in parallel; (d) the performance of DA-MPM with IDPF, disturbance

sorting, and ρu = 0.99 is 4.49 and 2.66 times more efficient than the DA-MPM

method with state sorting method when N = 250 and it has similar performance

to the DA-MPM approach with IDPF, disturbance sorting, and ρu = 0; (e) the

delayed acceptance MPM is much more efficient than the standard MPM approach.

The delayed acceptance algorithm is 5 times faster on average because the target

Metropolis-Hastings acceptance probability is set to 20% using the Garthwaite et al.

(2015) approach.
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4.5 Nonlinear Small Scale DSGE Model

This section reports on how well a number of PMMH samplers of interest estimate the

parameters of the nonlinear small scale DSGE model described in Section S7 of the

Supplement, using the same data as in Section 4.3. The PMMH samplers considered

are: (a) the MPM sampler with the IDPF, disturbance sorting, and ρu = 0.99; (b)

the MPM sampler with the IDPF, disturbance sorting, and ρu = 0; and (c) the

CPM sampler with the BPF, disturbance sorting, and ρu = 0.99. Each sampler ran

for 55000 iterations, with the initial 5000 iterations discarded as burn-in. All the

samplers are initialized at the posterior means from a second order approximation

of the model obtained from the central difference Kalman Filter (CDKF) proposed

by Norgaard et al. (2000). We use the adaptive random walk proposal of Roberts

and Rosenthal (2009) for q
(
θ
′|θ
)

and the adaptive scaling approach of Garthwaite

et al. (2015) to tune the Metropolis-Hastings acceptance probability to 20%. The

covariance matrix of the proposals is fixed to the estimates from the preliminary run

of the MCMC. Section S7 of the supplement gives details on model specifications

and model parameters.

Table 4 reports the inefficiency factors for each parameter and the relative time

normalised inefficiency factor (RTNIV) of a sampler relative to the DA-MPM with

the IDPF, disturbance sorting, and ρu = 0.99 with T = 80 time periods. The

computing time reported in the table is the time to run a single particle filter for the

CPM and G particle filters for the MPM approach using a single desktop computer

with 6 cores. The table shows that: (a) the DA-MPM sampler with the IDPF,

disturbance sorting, ρu = 0.99, and N = 250 particles has similar performance to

the DA-MPM approach with IDPF, disturbance sorting, and ρu = 0; (b) the time

taken to run MPM with G = 100 particles filters each with N = 250 particles is

similar to the CPM with N = 2000 particles. The MPM method can be much

faster than the CPM method if it runs using high-performance computing with a

large number of cores. In addition, the multidimensional sorting algorithm is quite

expensive for a large number of particles; (c) Figure 5 shows the trace plot of some

of the parameters for the last 10000 iterations estimated using the CPM method

with N = 2000, 3000 particles. The CPM still gets stuck and does not converge even

with N = 3000 particles. Section S9 of the supplement provides further analysis

comparing the linear and non-linear small scale DSGE models.
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Table 4: Small scale DSGE model using a real dataset with T = 80. Sampler I: DA-
MPM (ρu = 0.99, disturbance sorting, and IDPF), Sampler II: DA-MPM (ρu = 0,
disturbance sorting, and IDPF), Sampler III: DA-CPM (ρu = 0.99, disturbance
sorting, and BPF). We also report the time normalised inefficiency factor (TNIV),
the relative time normalised inefficiency factor (RTNIV), and the computation time
(CT) per iteration in second, defined in Section 4.1. The symbol NA means the
Markov chain got stuck and did not converge. σmr , σmg , and σmm are the measurement
error variances.

Param I II III

N 250 250 2000 3000

π(A) 139.24 157.92 NA NA

τ 206.79 244.24 NA NA

ψ1 169.58 169.89 NA NA

ψ2 269.15 214.37 NA NA

γ(Q) 158.96 148.30 NA NA

r(A) 171.73 156.14 NA NA

ρr 385.22 275.34 NA NA

ρg 203.93 239.14 NA NA

ρm 334.20 516.61 NA NA

σr 292.06 206.95 NA NA

σg 318.61 433.34 NA NA

σm 177.47 172.45 NA NA

σm
r 193.66 202.54 NA NA

σm
g 190.19 197.82 NA NA

σm
m 187.61 222.94 NA NA

ÎACTMAX 385.22 516.61 NA NA

T̂NIFMAX 2037.81 2732.87 NA NA

R̂TNIFMAX 1 1.34 NA NA

ÎACTMEAN 226.56 237.20 NA NA

T̂NIFMEAN 1198.50 1254.79 NA NA

R̂TNIFMEAN 1 1.05 NA NA

Time 5.29 5.29 6.25 14.04
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Figure 5: The trace plots of some of the parameters of the non-linear (second
order) small scale DSGE models estimated using DA-CPM with disturbance sorting,
ρu = 0.99, N = 2000 particles (top) and N = 3000 particles (bottom).

5 Summary and conclusions

Our article proposes a general particle MCMC approach (MPM) for estimating the

posterior density of the parameters of complex and high-dimensional state-space

models. It is especially useful when the bootstrap filter is inefficient, while the

auxiliary particle filter cannot be used because the state transition density is com-

putationally intractable. The MPM method is a general extension of the PMMH

method and consists of four parts; (a) it is based on an average of unbiased likeli-

hood estimators; (b) it combines block and correlated PMMH methods; (c) a delayed

acceptance proposal is used to speed up the computation, when estimating the likeli-

hood is expensive; (d) an auxiliary disturbance particle filter sampler is proposed to

estimate the likelihood. The MPM methodology is then applied to complex DSGE

models with many latent state variables.

Our empirical results suggest that: (i) the improved disturbance particle filter

(IDPF) is much more efficient than the standard bootstrap particle filter (BPF) and

the tempered particle filter (TPF); (ii) the MPM maintains the correlation between

logs of the estimated likelihoods in successive iterates much better than the CPM and

BPM; (iii) the delayed acceptance version of the MPM sampler is much more efficient

than the standard MPM sampler; (iv) the MPM with disturbance sorting is more

efficient than the MPM with state sorting; (v) the performance of the MPM just

using block sampling is as efficient as that using both block sampling and correlated

sampling.

Finally, we believe that the methods in the paper will be very useful for many

other models where particle alternative sophisticated methods, such as the particle
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Gibbs, are either inefficient or impossible to use; e.g., partially observed diffusions

and large panel data models. Future research will also consider developing better

proposals for the parameters θ.
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S1 The Disturbance Particle Filter Algorithm

This section discusses the disturbance particle filter algorithm. Let u be the random

vector used to obtain the unbiased estimate of the likelihood. It has the two com-

ponents u1:Nε,1:T and u1:NA,1:T−1; u
i
ε,t is the vector random variable used to generate the

particles εit given θ. We can write

εi1 ∼ m
(
εi1|uiε,1, θ

)
, zi1 = F

(
z0, ε

i
1; θ
)

and εit ∼ m
(
εit|uiε,t, θ

)
, zit = F

(
z
ait−1

t−1 , ε
i
t; θ
)
, t ≥ 2,

(S1)

where m
(
εit|uiε,t, θ

)
is the proposal density to generate εit, and z0 is a vector of ze-

ros. Denote the distribution of uiε,t as ψεt (·). For t ≥ 2, let uA,t−1 be the vector

of random variables used to generate the ancestor indices a1:Nt−1 using the resampling

scheme M
(
a1:Nt−1|w1:N

t−1, z
1:N
t−1
)

and define ψAt−1 (·) as the distribution of uA,t−1. Com-

mon choices for ψεt (·) and ψAt−1 (·) are iid N (0, 1) and iid U (0, 1) random variables,

respectively.

The algorithm takes the number of particles N , the parameters θ, the random

variables used to generate the disturbance particles u1:Nε,1:T , and the random variables

used in the resampling steps u1:NA,t−1 as the inputs; it outputs the set of state particles

z1:N1:T , disturbance particles ε1:N1:T , ancestor indices A1:N
1:T−1, and the weights w1:N

1:T . At

t = 1, the disturbance particles ε1:N1 are obtained as a function of the random numbers

u1:Nε,1 using Eq. (S1) in step (1a) and the state particles are obtained from zi1 =

F (z0, ε
i
1; θ), for i = 1, ..., N ; the weights for all particles are then computed in steps

(1b) and (1c).

Step (2a) sorts the state or disturbance particles from smallest to largest using the

simple Euclidean sorting procedure of Choppala et al. (2016) to obtain the sorted

disturbance particles, sorted state particles and weights. Algorithm S2 resamples

the particles using multinomial resampling to obtain the ancestor index a1:Nt−1 in the

original order of particles in steps (2b) and (2c). Step (2d) generates the disturbance

particles ε1:Nt as a function of the random numbers u1:Nε,t using Eq. (S1) and the state

particles are obtained from zit = F
(
z
ait−1

t−1 , ε
i
t; θ
)

, for i = 1, ..., N ; we then compute

the weights for all particles in step (2e) and (2f).

The disturbance particle filter provides an unbiased estimate

p̂N (y|θ, u) :=
T∏
t=1

(
N−1

N∑
i=1

wit

)
,
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of the likelihood, where

wit =
p (yt|zit, θ) p (εit)

m (εt|uε,t, θ)
for t = 1, ..., T, and wit =

wit∑N
j=1w

j
t

. (S2)

Algorithm S1 The Correlated Disturbance Particle Filter

Input: u1:Nε,1:T , u1:NA,t−1, θ and N
Output: ε1:N1:T , z1:N1:T , A1:N

1:T−1, and w1:N
1:T

For t = 1

• (1a) Generate εi1 from m
(
εi1|uiε,1, θ

)
and set zi1 = F (z0, ε

i
1; θ) for i = 1, ..., N

• (1b) Compute the unnormalised weights wi1, for i = 1, ..., N

• (1c) Compute the normalised weights wi1 for i = 1, ..., N .

For t ≥ 2

• (2a) Sort the state particles zit−1 or disturbance particles εit−1 using the Eu-
clidean sorting method of Choppala et al. (2016) and obtain the sorted index
ζi for i = 1, ..., N , and the sorted state particles, disturbance particles, and

weights z̃it−1 = zζit−1, ε̃
i
t−1 = εζit−1 and w̃

i

t = wit−1, for i = 1, ..., N .

• (2b) Obtain the ancestor indices based on the sorted state particles ã1:Nt−1 using
the correlated multinomial resampling in Algorithm S2.

• (2c) Obtain the ancestor indices based on original order of the particles ait−1
for i = 1, ..., N .

• (2d) Generate εit from m
(
εit|uiε,t, θ

)
and set zit = F

(
z
ait−1

t−1 , ε
i
t; θ
)

, for i = 1, ..., N

• (2e) Compute the unnormalised weights wit, for i = 1, ..., N

• (2f) Compute the normalised weights wit for i = 1, ..., N .
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Algorithm S2 Multinomial Resampling Algorithm

Input: uA,t−1, sorted states z̃1:Nt−1 , sorted disturbances ε̃1:Nt−1, and sorted weights w̃
1:N

t−1
Output: ã1:Nt−1

1. Compute the cumulative weights

F̂N
t−1 (j) =

j∑
i=1

w̃
i

t−1

based on the sorted state particles
{
z̃1:Nt−1 , w̃

1:N

t−1

}
or the sorted disturbance par-

ticles
{
ε̃1:Nt−1, w̃

1:N

t−1

}
2. set ãit−1 = min

j
F̂N
t−1 (j) ≥ uiA,t−1 for i = 1, ...N . Note that ãit−1 for i = 1, ..., N

is the ancestor index based on the sorted states or the sorted disturbances.
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S2 The Mixed PMMH (MPM) Algorithm

Algorithm S3 The Mixed PMMH (MPM) algorithm

• Set the initial values of θ(0) arbitrarily.

• Sample ug ∼ N (0, I) for g = 1, ..., G, and run G particle filters to compute

an unbiased estimate of likelihood p̂N (y|θ, ũ) = 1
G

∑G
g=1 p̂N (y|θ, ug), and run

ancestral tracing algorithm in Supplement S5 after each particle filter algorithm
to obtain the initial G trajectories of εg,1:T . The mean µ̂t and the covariance

matrix Σ̂t of the proposal defined in Section 3.5 are set as the mean and the
covariance matrix of these G trajectories of εg,1:T at each time t.

• For MCMC iteration i, i = 1, ...,M ,

– Sample θ
′

from the proposal density q
(
θ
′ |θ
)
.

– Choose index g with probability 1/G, sample ηu ∼ N (0, I), and set u
′
g =

ρuug +
√

1− ρu2ηu.
– Run G particle filters to compute the unbiased estimate of likelihood
p̂N
(
y|θ′ , ũ′

)
– Run ancestral tracing algorithm in Supplement S5 after each particle filter

algorithm to obtain G trajectories of ε
′
g,1:T .

– With the probability in Equation (11), set p̂ (y1:T |θ, ũ)(i) = p̂
(
y1:T |θ

′
, ũ
′)

,

ũ(i) = ũ
′
, θ(i) = θ

′
, and ε

(i)
g,1:T = ε

′
g,1:T ; otherwise, set p̂ (y1:T |θ, ũ)(i) =

p̂ (y1:T |θ, ũ)(i−1), ũ(i) = ũ(i−1), θ(i) = θ(i−1), and ε
(i)
g,1:T = ε

(i−1)
g,1:T .

– The mean µ̂t and the covariance matrix Σ̂t are set as the mean and the
covariance matrix of these G trajectories of ε

(i)
g,1:T at each time t.

S3 Multidimensional Euclidean Sorting Algorithm

This section discusses the multidimensional Euclidean sorting algorithm used to

sort the particles in Algorithm S1. Let xit be nx-dimensional particles at a time

t, xit =
(
xit,1, ..., x

i
t,nx

)>
. Let d

(
xjt , x

i
t

)
be the Euclidean distance between two mul-

tidimensional particles. Algorithm S4 gives the multidimensional Euclidean sorting

algorithm to generate sorted particles and weights with associated sorted indices.

The first sorting index is the index of the particle having the smallest value along its

first dimension. The other particles are chosen in a way that minimises the Euclidean

distance between the last selected particle and the set of all remaining particles.
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Algorithm S4 Multidimensional Euclidean Sorting Algorithm

Input: x1:Nt , w1:N
t

Output: sorted particles x̃1:Nt , sorted weights w̃
1:N

t , sorted indices ζ1:N
Let χj = {1, ..., N} be the index set.
When j = 1,

• Obtain the index ζ1 = minix
i
t,1, ∀i ∈ χj

For j = 2, ..., N

• Set x∗t = xj−1t

• Update the index χj by removing ζj−1 from the index set.

• Obtain the index ζj = mini d (x∗t , x
i
t) ,∀i ∈ χj.

Sort the particles and weights according to the indices ζ1:N to obtain the sorted

particles x̃1:Nt , and sorted weights w̃
1:N

t .

S4 Delayed Acceptance Mixed PMMH (DA-MPM)

Delayed acceptance MCMC can used to speed up the computation for models with

expensive likelihoods (Christen and Fox, 2005). The motivation in delayed accep-

tance is to avoid computing of the expensive likelihood if it is likely that the pro-

posed draw will ultimately be rejected. A first accept-reject stage is applied with the

cheap (or deterministic) approximation substituted for the expensive likelihood in

the Metropolis Hastings acceptance ratio. Then, only for a proposal that is accepted

in the first stage, the computationally expensive likelihood is calculated with a sec-

ond accept-reject stage to ensure detailed balance is satisfied with respect to the true

posterior. This section discusses the delayed-acceptance mixed PMMH (DA-MPM)

algorithm.

Given the current parameter value θ, the delayed acceptance Metropolis-Hastings

(MH) algorithm proposes a new value θ
′

from the proposal density q
(
θ
′ |θ
)

and uses

a cheap approximation p̂c
(
y|θ′
)

to the likelihood in the MH acceptance probability

α1

(
θ, ũ; θ

′
, ũ
′
)

= min

(
1,
p̂c
(
y|θ′
)
p
(
θ
′)
q
(
θ|θ′
)

p̂c (y|θ) p (θ) q (θ′|θ)

)
. (S3)

As an alternative to particle filtering, Norgaard et al. (2000) develop the central

difference Kalman filter (CDKF) for estimating the state in general non-linear and

non-Gaussian state-space models. The CDKF frequently outperforms the extended
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Kalman Filter (EKF) for general non-linear and non-Gaussian state-space models

Andreasen (2013). We use the likelihood approximation, p̂c(y|θ), obtained from the

CDKF in the first stage accept-reject in Equation (S3).

A second accept-reject stage is applied to a proposal that is accepted in the first

stage, with the second acceptance probability

α2

(
θ, ũ; θ

′
, ũ
′
)

= min

(
1,
p̂N
(
y|θ′ , ũ′

)
p̂c (y|θ)

p̂N (y|θ, ũ) p̂c (y|θ′)

)
. (S4)

The overall acceptance probability α1

(
θ, ũ; θ

′
, ũ
′)
α2

(
θ, ũ; θ

′
, ũ
′)

ensures that detailed

balance is satisfied with respect to the true posterior. If a rejection occurs at stage

one, then the expensive evaluation of the likelihood at the second stage is unnecessary

(Sherlock et al., 2017a). Algorithm S5 describes the Delayed Acceptance MPM

algorithm.
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Algorithm S5 The Delayed Acceptance Mixed PMMH (DA-MPM) algorithm

• Set the initial values of θ(0) arbitrarily

• Sample ug ∼ N (0, I) for g = 1, ..., G, and run G particle filters to compute

an unbiased estimate of likelihood p̂N (y|θ, ũ) = 1
G

∑G
g=1 p̂N (y|θ, ug), and run

ancestral tracing algorithm in Supplement S5 after each particle filter algorithm
to obtain the initial G trajectories of εg,1:T . The mean µ̂t and the covariance

matrix Σ̂t of the proposal defined in Section 3.5 are set as the mean and the
covariance matrix of these G trajectories of εg,1:T at each time t.

• For MCMC iteration i, i = 1, ...,M ,

– (1) Sample θ
′

from the proposal density q
(
θ
′ |θ
)
.

– (2) Compute the likelihood approximation p̂c
(
y|θ′
)

using the central dif-
ference Kalman filter (CDKF).

– (3) Accept the first stage proposal with the acceptance probability in
Equation (S3). If the proposal is accepted, then go to step (4), otherwise
go to step (8)

– (4) Choose index g with probability 1/G, sample ηu ∼ N (0, I), and set
u
′
g = ρuug +

√
1− ρ2uηu.

– (5) Run G particle filters to compute an unbiased estimate of likelihood
p̂N
(
y|θ′ , ũ′

)
.

– (6) Run ancestral tracing algorithm after each particle filter algorithm to
obtain G trajectories of ε

′
g,1:T .

– (7) Accept the second stage Metropolis-Hastings with acceptance proba-

bility in Equation (S4). If the proposal is accepted, then set p̂N (y|θ, ũ)(i) =

p̂N
(
y|θ′ , ũ′

)
, p̂c (y|θ)(i) = p̂c

(
y|θ′
)
, ũ(i) = ũ

′
, ε

(i)
g,1:T = ε

′
g,1:T and θ(i) = θ

′
.

Otherwise, go to step (8).

– (8) Otherwise, p̂N (y|θ, ũ)(i) = p̂N (y|θ, ũ)(i−1), p̂c (y|θ)(i) = p̂c (y|θ)(i−1),
ũ(i) = ũ(i−1), ε

(i)
g,1:T = ε

(i−1)
g,1:T and θ(i) = θ(i−1)

– (9) The mean µ̂t and the covariance matrix Σ̂t are set as the mean and

the covariance matrix of these G trajectories of ε
(i)
g,1:T at each time t.

S5 Ancestral Tracing

The simplest way of sampling from the particle approximation of p (ε1:T |y1:T , θ) is

called ancestral tracing (Kitagawa, 1996). This consists of sampling one particle tra-

jectory from the particle filter. The method is equivalent to sampling an index J = j

with probability wjt , tracing back its ancestral lineage bj1:T

(
bjT = j and bjt−1 = a

bjt
t−1

)
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and choosing the particle trajectory εj1:T =
(
ε
bj1
1 , ..., ε

bjT
T

)
. The selected particle tra-

jectory is used to generate the IDPF proposal in Section 3.5.

S6 Overview of DSGE models

This section presents a brief overview of DSGE models. To make it self-contained,

we repeat the solution and the state space representation explained in Section 2.2.

The equilibrium conditions for a wide variety of DSGE models can be summarized

by

EtG(zt+1, zt, εt+1; θ) = 0; (S5)

Et is the mathematical expectation conditional on date t information and G :

R2n+m 7→ Rn; zt is an n × 1 vector containing all variables known at time t; εt+1 is

an m × 1 vector of serially independent innovations. The solution to Eq. (S5) for

zt+1 can be written as

zt+1 = F (zt, εt+1, ζ; θ) (S6)

such that

EtG(F (zt, εt+1, ζ; θ), zt, εt+1; θ) = 0 for any t.

For our applications, we assume that εt ∼ N(0, ζ2Σε), where ζ is a scalar perturbation

parameter. Under suitable differentiablity assumptions, and using the notation in

Kollmann (2015), we now describe the first and second order solutions.

For most applications, the function F (·) in Eq. (S6) is analytically intractable

and is approximated using local solution techniques. We use first and second order

Taylor series approximations around the deterministic steady state with ζ = 0 to

approximate F . The deterministic steady state zs satisfies zs = F (zs, 0, 0; θ).

A first order-accurate approximation, around the deterministic steady state is

zdt+1 = F1(θ)z
d
t + F2(θ)εt+1, zd0 = 0. (S7)

For Eq. (S7) to be stable, it is necessary for all the eigenvalues of F1(θ) to be less than

1 in absolute value. The initial value zd0 = 0 because we work with approximations

around the deterministic steady state. For a given set of parameters θ, the matrices

F1(θ) and F2(θ) can be solved using existing software; our applications use Dynare.

The second order accurate approximation (around the deterministic steady state)

is

zdt+1 = F0(θ)ζ
2+F1(θ)z

d
t +F2(θ)εt+1+F11(θ)P (zdt )+F12(θ)(z

d
t ⊗εt+1)+F22(θ)P (εt+1);

(S8)
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where zdt = (zt − zs) and for any vector x := (x1, . . . , xm)>, we define P (x) :=

vech(xx>), where vech(xx>) is the strict upper triangle and diagonal of xx>, such

that

vech(xx>) := (x21, x1x2, x
2
2, x1x3, ..., x

2
m)>. The term F0(θ)ζ

2 captures the level cor-

rection due to uncertainty that arises from taking a second-order approximation.

For our analysis we normalize the perturbation parameter ζ to 1. As before, for

a given set of parameters θ the matrices F1(θ), F2(θ), F11(θ), F12(θ), F22(θ) can be

solved using Dynare.

The measurement (observation) equation for the DSGE model and its approxi-

mations is

yt = Hzt + ηt, ηt ∼ N (0,Ση) , (S9)

where H is a known matrix; {ηt} is an independent N (0,Ση) and sequence and it

is also independent of the {εt} sequence. The matrix Ση is usually unknown and

estimated from the data.

S6.1 Pruned State Space Representation of DSGE Models

To obtain a stable solution we use the pruning approach recommended in Kim et al.

(2008); for details of how pruning is implemented in DSGE models, see Kollmann

(2015) and Andreasen et al. (2018). The pruned second order solution preserves only

second order accurate terms by using the first order accurate solution to calculate

P (z
(2)
t ) and (z

(2)
t ⊗ εt+1); where P (·) is defined below. That is, we obtain the solution

preserving only the second order effects by using P (z
(1)
t ) instead of P (z

(2)
t ) and

(z
(1)
t ⊗ εt+1) instead (z

(2)
t ⊗ εt+1) in Eq. (S8). We note that the variables are still

expressed as deviation from steady state; however, for notational simplicity, we drop

the superscript d. For a vector x = (x1, . . . , xq)
>

P (x) := vech(xx>) = ((x1)
2, (x1(x2)), .., (x1(xq)), (x2)2, (x2(x3)), .., (x2(xq)), ..,

(xq−1)
2, (xq−1(xq)), .., (xq)

2).

The evolution of P (z
(1)
t ) is

P (z
(1)
t+1) = K11P (z

(1)
t ) +K12(z

(1)
t ⊗ εt+1) +K22P (εt+1)

with K11, K12, K22 being functions of F1 and F2 respectively. A consequence of using

pruning in preserving only second order effects is that it increases the state space.
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The pruning-augmented solution of the DSGE model is given by z
(2)
t+1

P (z
(1)
t+1)

z
(1)
t+1

 =

F0ζ
2

0

0

+

F1 F11 0

0 K11 0

0 0 F1


 z

(2)
t

P (z
(1)
t )

z
(1)
t

+

F2

0

F2

 εt+1+

F12

K12

0

 (z
(1)
t ⊗εt+1)+

F22

K22

0

P (εt+1).

The augmented state representation of the pruned second order accurate system

is therefore

z̃t+1 = g0 +G1z̃t +G2εt+1 +G12(z
(1)
t ⊗ εt+1) +G22P (εt+1),

where z̃t = [z
(2)
t , P (z

(1)
t ), z

(1)
t ]>. We can now summarize the state transition and the

measurement equations for the pruned second order accurate system as

yt+1 = Hz̃t+1 + ηt+1, ηt+1 ∼ N (0,Ση)

z̃t+1 = g0 +G1z̃t +G2εt+1 +G12(z
(1)
t ⊗ εt+1) +G22P (εt+1), εt+1 ∼ N

(
0, ζ2Σε

)(S10)

The matrix H selects the observables from the pruning augmented state space

representation of the system. If dim(z
(2)
t ) = n × 1 and dim(εt) = m × 1 then

dim(P (z
(1)
t ) = n(n + 1)/2 × 1 and dim(z̃t) = [n + n(n + 1)/2 + n] × 1. If ny ≤ n

denotes the number of observables then the selection matrix

H = [Hny; 0]

where dim(Hny) = ny × [n + n(n + 1)/2 + n]) and dim(0) = (n − ny) × [n + n(n +

1)/2 + n]). The selection matrix Hny consists only of zeros and ones.

S7 Description: Small scale DSGE model

The specification of the small scale DSGE model follows Herbst and Schorfheide

(2015), and is also used by Herbst and Schorfheide (2019).

Households Time is discrete, households live forever, the representative household

derives utility from consumption Ct relative to a habit stock (which is approximated

by the level of technology At)
3 and real money balances Mt

Pt
and disutility from hours

3This assumption ensures that the economy evolves alonga balanced growth path even if the
utility function is additively separable in consumption, real money balances and hours.
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worked Nt. The household maximizes

E0

∞∑
t=0

βt
[(Ct

At

)1−τ − 1

1− τ
+ χM log

Mt

Pt
− χNNt

]
subject to the budget constraint

PtCt +Bt +Mt + Tt = PtWtNt +Rt−1Bt−1 +Mt−1 + PtDt + PtSCt;

Tt, Dt and SCt denote lump-sum taxes, aggregate residual profits and net cash inflow

from trading a full set of state contingent securities; Pt is the aggregate price index,

and Wt is the real wage; β is the discount factor, τ is the coefficient of relative risk

aversion, χM and χN are scale factors determining the steady state money balance

holdings and hours. We set χN = 1. At is the level of aggregate productivity.

Firms Final output is produced by a perfectly competitive representative firm

which uses a continuum of intermediate goods Yt(i) and the production function

Yt =

(� 1

0

Yt(i)
1−νdi

) 1
1−ν

,

with ν < 1. The demand for intermediate good i is

Yt(i) =

(
Pt(i)

Pt

)− 1
ν

Yt,

and the aggregate price index is

Pt =

(� 1

0

Pt(i)
ν−1
ν di

) ν
ν−1

.

Intermediate good i is produced using the linear production technology

Yt(i) = AtNt(i);

At is an exogenous productivity process common to all firms, and Nt(i) is the labor

input of firm i. Intermediate firms set prices (Pt(i)) and labor input (Nt(i)) by

maximizing the net present value of future profit. Nominal rigidities are introduced
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through price adjustment costs following Rotemberg (1982).

Et

∞∑
s=0

βsQt,t+s

[Pt+s(i)
Pt+s

Yt+s(i)−Wt+sNt+s(i)− ACt+s(i)
]

with

ACt(i) =
φ

2

(
Pt(i)

Pt−1(i)
− π

)2

Yt(i)

The parameter φ governs the extent of price rigidity in the economy and π is the

steady state inflation rate associated with the final good. In equilibrium, households

and firms use the same stochastic discount factor Qt,t+s where

Qt,t+s =
(Ct+s
Ct

)−τ( At
At+s

)1−τ
(S11)

In a symmetric equilibrium all firms choose the same price.

Monetary and Fiscal Policy The central bank conducts monetary policy follow-

ing an interest rate feedback rule given by

Rt = R∗t
1−ρRRρR

t−1ε
R
t

where εRt ∼ IID(0, σr) is an iid shock to the nominal interest rate, R∗t is the nominal

target and (1− ρR) captures interest rate smoothing in the conduct of policy,

R∗t = rπ∗
( πt
π∗

)ψ1
( Yt
Y ∗t

)ψ2

;

πt := Pt
Pt−1

is the gross inflation rate and π∗ is the target inflation rate. Y ∗t is the

output in the absence of nominal rigidities. The parameters ψ1 and ψ2 capture the

intensity with which the central bank responds to inflation and output gap in the

model. Government expenditure accounts for a fraction υt ∈ [0, 1] of final output

such that Gt = υtYt. The government budget constraint is

PtGt +Rt−1Bt−1 +Mt−1 = Tt +Bt +Mt

Aggregation Combining the household budget constraint with the government

budget constraint gives

Ct +Gt + ACt = Yt

where in equilibrium, ACt = φ
2
(πt − π)2Yt.
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Exogenous Processes Aggregate technology grows at the rate γ and mt is the

shock to aggregate demand such that

logAt = log γ + logAt−1 + logmt

logmt = (1− ρm) logm+ ρm logmt−1 + εmt

with εmt ∼ IID(0, σm). We define gt := 1/(1− υt) and gt evolves as

log gt = (1− ρg) log g + ρg log gt−1 + εgt

with εgt ∼ IID(0, σg). We summarize the nonlinear equilibrium conditions after

detrending Ct, Yt, Gt by deterministic technology i.e define X̃t := Xt/At.

1 = βEt

[(C̃t+1

C̃t

)−τ
zt
Rt

πt+1

]
(S12)

1 = φ(πt − π)
[(

1− 1

2ν

)
πt +

π

2ν

]
− φEt

[(C̃t+1

C̃t

)−τ
Ỹt+1

Ỹt
(πt+1 − π)πt+1

]
+

1

ν

[
1−

(
C̃t

)τ]
(S13)

Rt = R∗t
1−ρRRρR

t−1 exp εRt (S14)

R∗t = rπ∗
( πt
π∗

)ψ1
( Ỹt
Ỹ ∗t

)ψ2

(S15)

C̃t + G̃t +
φ

2
(πt − π)2Ỹt = Ỹt (S16)

logAt = log γ + logAt−1 + logmt (S17)

logmt = (1− ρm) logm+ ρm logmt−1 + εmt (S18)

log gt = (1− ρg) log g + ρg log gt−1 + εgt (S19)

After detrending, the steady state solution of the model is π = π∗, R̃ = γπ
β
, C̃ =

(1− ν)
1
τ and Ỹ = gC̃ = ỹ∗.

Equations (S12)-(S19) can now be rewritten as

EtG(zt+1, zt, εt+1) = 0,
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where

zt = [C̃t, Ỹt, G̃t, Rt, R
∗
t , At,mt, gt] and εt = [εRt , ε

m
t , ε

g
t ],

and solved using the methods in Section S6 of the Supplement.

We solve the model in log deviations from steady state, i.e. x̂t := log
(
X̃t
X̃

)
using Dynare. The small scale DSGE model therefore consists of a consumption

Euler equation, a new Keynesian Philip curve, a monetary policy rule, fiscal policy

rule, three exogenous shock processes, and eight endogenous latent variables. We

estimate the model using both first and second order approximations to assess the

performance of our proposed method relative to existing methods. As explained, the

source of nonlinearity in our case stems from taking a second order approximation

of the equilibrium conditions.

The observables used in estimating the model consist of per capita GDP growth

rate (Y GRt), annualized quarter on quarter inflation rate (Inflt) and annualized

nominal rates (Intt). The observed data is measured in percentages, and, after

applying a log transformation to the endogenous variables, the measurement equa-

tions for our system using the transformed endogenous variables given by (a hatted

variable denotes the log transformation).

Y GRt = γ(Q) + 100(ŷt − ŷt−1 + m̂t), (S20)

Inflt = π(A) + 400π̂t, (S21)

Intt = π(A) + r(A) + 4γ(Q) + 400R̂t. (S22)

Here, ŷt = log
(
Ỹt
Ỹ

)
, π̂t = log

(
πt
π

)
, R̂t = log

(
Rt
R

)
and m̂t = log

(
mt
m

)
= logmt since

log(m) = 0 in steady state as evident from Equation (S18).

The model has 15 parameters:{
υ, ν, φ, τ, π(A), r(A), γ(Q), ψ1, ψ2, ρr, ρg, ρm, σr, σg, σm

}
.

We calibrate the parameters characterizing the share of fiscal expenditure in GDP

υ = 0.2, the elasticity of substitution across varieties 1/ν = 11 and the parameter

guiding the extent of nominal rigidities, φ = 100. The remaining parameters along

with the measurement errors in the observation equation are estimated. The steady-

state inflation rate, π, in the model relates to the estimated parameter for annualized

inflation π(A) such that π = π(A)/400 and the discount factor β to the estimated

parameter for annualized interest rate r(A) such that β =
(

(1 + r(A))/400
)−1

. The

sample used for estimation is 1983Q1-2002Q4. The data set and the variables are
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identical to those used in Herbst and Schorfheide (2019).4

S8 Additional Tables

Table S1: The parameter values used in Section 4.3

Param. θ Param. θ
τ 2.09 κ 0.98
ψ1 2.25 ψ2 0.65
ρr 0.81 ρg 0.98
ρm 0.93 r(A) 0.34
π(A) 3.16 γ(Q) 0.51
σr 0.19 σg 0.65
σm 0.24

Table S2: Marginal prior distribution for each model parameter for the non-linear
small scale DSGE model in Section 4.5. Param (1) and Param (2) list the means and
the standard deviation for truncated normal (TN) and Normal distribution; v and s
for the inverse gamma (IG) distribution. The domain R+ is (0,∞). TN(0,∞) is the
normal distribution lies within the interval (0,∞). TN(0,1) is the normal distribution
lies within the interval (0, 1). σmr , σmg , and σmm are the measurement error variances.

Param. Domain Density Param (1) Param (2)

r(A) R+ TN(0,∞) 0.7 0.5
π(A) R+ TN(0,∞) 3.12 0.5
γ(Q) R N 0.60 0.5
τ R+ TN(0,∞) 1.50 0.5
ψ1 R+ TN(0,∞) 2.41 0.5
ψ2 R+ TN(0,∞) 0.39 0.5
ρr [0, 1] TN(0,1) 0.5 0.2
ρg [0, 1] TN(0,1) 0.5 0.2
ρm [0, 1] TN(0,1) 0.5 0.2
σr R+ IG 5 0.5
σg R+ IG 5 0.5
σm R+ IG 5 0.5
σmr R+ TN(0,∞) 2 2
σmg R+ TN(0,∞) 2 2
σmm R+ TN(0,∞) 2 2

4Data on all three observables are sourced from FRED. Per capita GDP growth rate is calcu-
lated using data on real gross domestic product (FRED mnemonic ‘GDPC1’) and Civilian Non-
institutional Population (FRED mnemonic ‘CNP16OV’ / BLS series ‘LNS10000000’), Annualized
Inflation is calculated using CPI price level (FRED mnemonic ‘CPIAUCSL’), the Federal Funds
Rate (FRED mnemonic ‘FEDFUNDS’).
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Table S3: Marginal prior distribution for the RBC model parameters discussed in
Section 4.4. Param (1) and Param (2) list the means and the standard deviation
for truncated normal (TN) and Normal distribution; the shape parameter v and the
scale parameter s for the inverse gamma (IG) distribution. The domain R+ is (0,∞).
TN(0,1) is the normal distribution lies within the interval (0, 1).

Param. Domain Density Param (1) Param (2)
ρa [0, 1] TN(0,1) 0.8 0.05
ρe [0, 1] TN(0,1) 0.8 0.05
σa R+ IG 5 0.5
σe R+ IG 5 0.5

S9 Further Results for the Non-Linear Small Scale

DSGE Models

Table S4 reports the posterior estimates when the measurement error is fixed to 50%

of the variance of the corresponding observable. Table S5 reports the estimates when

the measurement errors are also estimated.

Estimation results – posterior estimates: We compare the parameter esti-

mates obtained from the linear model (first order approximation) estimated using

the Kalman filter and the nonlinear model (second order approximation) when the

measurement error variances are fixed to 50% of the variance of the observables and

when the measurement error variances are estimated. Tables S4 and S5 show that

the model solved using a second order approximation produces different estimates

from that taking a first order approximation.
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Table S4: Mean, 5%, and 95% quantiles of the posterior distributions of each
of the parameters in the small scale DSGE model estimated using Kalman Filter
(linear model) and DA-MPM (second order approximation). The measurement error
variances are fixed to 50% of the variance of the observables. Param (1) and Param
(2) list the means and the standard deviation for truncated normal (TN) and Normal
distribution; v and s for the inverse gamma (IG) distribution. The domain R+ is
(0,∞). TN(0,∞) is the normal distribution lies within the interval (0,∞). TN(0,1) is
the normal distribution lies within the interval (0, 1)

Prior Posterior

Parameters Distribution Param(1) Param(2)
Mean
(1st Order)

5
Percent

95
Percent

Mean
(2nd Order)

5
Percent

95
Percent

τ TN(0,∞) 1.5 0.5 1.638 1.005 2.346 1.049 0.807 1.436
ψ1 TN(0,∞) 2.41 0.5 2.309 1.677 2.956 2.371 1.790 3.046
ψ2 TN(0,∞) 0.39 0.5 0.541 0.062 1.164 0.254 0.006 0.793

π(A) TN(0,∞) 3.12 0.5 3.575 3.06 4.089 2.922 2.514 3.317

r(A) TN(0,∞) 0.7 0.5 0.621 0.234 1.031 0.711 0.225 1.242

γ(Q) N 0.6 0.5 0.769 0.545 1.001 0.433 0.293 0.574
ρr TN(0,1) 0.5 0.2 0.592 0.374 0.766 0.193 0.037 0.392
ρg TN(0,1) 0.5 0.2 0.557 0.216 0.923 0.576 0.241 0.899
ρm TN(0,1) 0.5 0.2 0.975 0.941 0.997 0.934 0.889 0.971
σr IG 5 0.5 0.081 0.046 0.131 0.072 0.043 0.112
σg IG 5 0.5 0.1 0.049 0.187 0.096 0.050 0.171
σm IG 5 0.5 0.135 0.104 0.17 0.076 0.050 0.110

Table S5: Mean, 5%, and 95% quantiles of the posterior distributions of each of
the parameters in the small scale DSGE model estimated using Kalman Filter (lin-
ear model) and DA-MPM (second order approximation). The measurement error
variances are estimated. Param (1) and Param (2) list the means and the standard
deviation for truncated normal (TN) and Normal distribution; v and s for the in-
verse gamma (IG) distribution. The domain R+ is (0,∞). TN(0,∞) is the normal
distribution lies within the interval (0,∞). TN(0,1) is the normal distribution lies
within the interval (0, 1)

Parameters
Mean
(1st Order)

5
Percent

95
Percent

Mean
(2nd Order)

5
Percent

95
Percent

τ 1.627 0.99 2.342 0.891 0.868 0.915
ψ1 2.576 2.094 3.107 3.417 2.890 3.972
ψ2 0.566 0.084 1.219 1.199 0.651 1.822

π(A) 3.96 3.601 4.32 4.000 3.574 4.371

r(A) 0.666 0.267 1.072 1.600 1.060 2.101

γ(Q) 0.961 0.812 1.114 0.909 0.707 1.075
ρr 0.695 0.574 0.801 0.534 0.404 0.670
ρg 0.524 0.218 0.837 0.563 0.224 0.842
ρm 0.989 0.971 0.999 0.998 0.995 0.999
σr 0.066 0.044 0.09 0.046 0.032 0.069
σg 0.091 0.05 0.151 0.108 0.046 0.182
σm 0.132 0.106 0.16 0.118 0.100 0.140
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S10 Description of the Real Business Cycle (RBC)

model

This section describes a simple RBC model without labor and estimates it using the

simulated data in Section 4.4. The model assumes that households live infinitely and

choose consumption and capital stock by maximizing the CRRA utility function,

subject to the budget constraint, production function, law of motion of capital and

exogenous processes guiding the evolution of technology and preferences. The utility

function is

Ut = Et

[
∞∑
s=0

βset
c1−σt+s − 1

1− σ

]
,

where et is a preference shock, modeled as

log et+1 = ρe log et + εe,t+1 (S23)

with εe,t+1 ∼ NID (0, σ2
e). The budget constraint is

ct + it = yt, (S24)

where it is investment and yt is total income (= total production) at time t. Pro-

duction is carried out using

yt = atk
α
t , (S25)

where kt is the capital stock in the economy and at is the exogenously given level of

technology. The law of motion for capital is

kt+1 = (1− δ) kt + it. (S26)

Finally, we let

log at+1 = ρa log at + εa,t+1, (S27)

where εa,t+1 ∼ NID (0, σ2
a). The optimality conditions of the model are given by

c−σt et = Et[βc
−σ
t+1et+1(αat+1k

α−1
t+1 + 1− δ)] (S28)

ct + kt+1 = atk
α
t + (1− δ)kt (S29)

Equations (S23), (S27)– (S29) summarize the equilibrium conditions of the model

and can be expressed as

EtG(zt+1, zt, εt+1) = 0,
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where

zt = [ct, kt, it, et, at] and εt = [εa,t, εe,t];

they are solved using the methods described in Section S6 of the Supplement. We

solve the model in log deviation from steady state i.e. x̂t := log(Xt
X

). The parameters

of the model are calibrated as follows: β = 0.95, δ = 0.025, α = 0.90, σ = 2,

ρa = ρe = 0.8, σe = σa = 0.5.
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