
Bayesian Semiparametric estimation of
structural VAR models with stochastic

volatility∗

Matteo Iacopini† Luca Rossini‡

September 30, 2021

Abstract

This paper extends the existing fully parametric Bayesian literature on struc-
tural VAR models with stochastic volatility (SVAR-SV) by introducing an innova-
tive Bayesian semiparametric framework to model high-dimensional time series of
financial returns. A Bayesian nonparametric (BNP) approach based on a Dirich-
let process mixture is used to flexibly model the returns distribution by also ac-
counting for skewness and kurtosis, while the dynamics of each series volatility
is modeled with a parametric structure. Our hierarchical prior overcomes over-
parametrization and over-fitting issues by clustering the coefficients into groups
and shrinking the coefficients of each group toward a common location. An effi-
cient Markov chain Monte Carlo sampling scheme is designed to perform inference
in high-dimensional settings and provide a full characterization of parametric and
distributional uncertainty. The proposed semiparametric approach is used to in-
vestigate returns predictability of the financial series.
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1 Introduction

High dimensional models have been introduced and developed in the last period when
the availability of large dataset in economics and finance has increased. In particu-
lar, large datasets in macroeconomics help to improve forecast, while in finance these
datasets have been used to analyse and detect financial crisis, contagion effects, and
their impact on the real economy.

The main technique used to deal with multivariate time series is the Vector au-
toregressive (VAR) model (see Sims, 1980), a multivariate extension of the univariate
AR model. Large VAR models have been widely used to analyse and forecast high-
dimensional macroeconomic data (e.g., McCracken and Ng, 2016, 2021) and financial
panels (e.g., Barigozzi and Brownlees, 2019). Another typical application of VAR mod-
els is related to the assessment of the impact and spread of external shocks (i.e. to
perform impulse-response analysis), the estimation of Granger-causal networks from
observed data, and the study of systemic risk and financial contagion (e.g., Diebold and
Yilmaz, 2009; Billio et al., 2012; Barigozzi and Brownlees, 2019; Bianchi et al., 2019).

Despite being a potentially very flexible statistical tools, the high number of param-
eters and the typical limited length of standard macroeconomic datasets make unre-
stricted inference daunting as the cross-sectional size increases. The problem of over-
parametrization has been extensively studied and the most commonly used solutions
rely on penalized regression and Bayesian prior regularization methods. Specifically,
within the Bayesian VAR literature, a plethora of different prior distributions have
been proposed to reduce the dimensionality of the parameter space or for shrinking
to zero the value of irrelevant coefficients. Starting from the well-known Minnesota
prior (see Doan et al., 1984; Litterman, 1986), several parametric approaches have been
developed exploiting hierarchical structures and finite mixtures (e.g., Gefang, 2014; Hu-
ber and Feldkircher, 2019; Cross et al., 2020; Huber et al., 2021). Another interesting
stream of the literature deals with Bayesian nonparametric techniques to work with
high dimensional models and to cluster coefficients. However, Bayesian semiparamet-
ric techniques, despite having become popular in different fields (such as statistics and
machine learning), have been scarcely used in econometrics and related fields.

On the other side, the interest of the macroeconomic and financial literature in time-
varying parameter (TVP) models has steadily increased over the last decades. Generally
speaking, this class includes all the models where the coefficients evolve over time in
a discrete (e.g., change point, Markov-switching, and threshold models) or continuous
(e.g., autoregressive processes) manner. As an example, Primiceri (2005) uses TVP
structural VAR (SVAR) models for studying monetary policy application, Dangl and
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Halling (2012) forecast equity returns by mean of TVP models, and Belmonte et al.
(2014) study the European inflation via time-varying models. Besides, in a recent
contribution, Huber et al. (2021) and Bitto and Frühwirth-Schnatter (2019) show that
the flexibility of TVP models has an advantage in capturing gradual changes.

We propose a novel prior specification for time-varying parameters vector autoregres-
sive models (TVP-VAR) with stochastic volatility (SV). The proposed prior has been
employed on time variation in both contemporaneous and lagged coefficients through two
different components, a Bayesian semiparametric and a dynamic shrinkage component.
Based on the semiparametric part we capture both zero and nonzero coefficients, while
using the dynamic shrinkage prior allows to capture fully constant, fully time-varying
and their combinations in the coefficients. The proposed Bayesian semiparametric prior
can be used in economic, financial and climate change literature to capture the impact
of covariates, such own lagged observations, that switch from being irrelevant (sparse
coefficients) to being relevant (non-sparse coefficients) during time. In the literature the
use of dynamic shrinkage prior as been used only in univariate or multivariate cross-
section models but the proposed prior is the first one that combine dynamic shrinkage
and semiparametric in multivariate models and in particular in econometrics.

In this paper we combine the ideas behind time-varying parameters models and the
Bayesian semiparametric techniques to model complex phenomena in a flexible and effi-
cient manner. Following the recent literature on TVP models (e.g., Frühwirth-Schnatter
and Wagner, 2010; Huber et al., 2021), we exploit the non-centered parametrization
which relies on a suitable transformation of the time-varying coefficients, and we also
allow the coefficients to be sparse, meaning that only a fraction of the time-varying
parameters have significant effects. To achieve these goals, we define a shrinkage prior
on the SVAR coefficients by means of a Bayesian semiparametric prior. This prior can
be consider as a spike-and-slab prior characterized by a (parametric) Gaussian spike
distribution and a (semiparametric) slab distribution, for which we assume a Bayesian
nonparametric Lasso prior as in Billio et al. (2019).

This spike-and-slab prior is different from the usual global-local shrinkage prior (see
Cross et al., 2020; Huber et al., 2021) as it groups the time-varying SVAR coefficients
into clusters and shrinks the coefficients within a cluster toward common location. Fol-
lowing Billio et al. (2019), our hierarchical prior overcomes over-parametrization and
overfitting issues by clustering the SVAR coefficients into groups and by shrinking the
coefficients of each group toward a common location. This hierarchical prior allows to
contemporaneously estimate the (potentially) sparse time-varying causal structure and
to cluster the corresponding coefficients. The research in macroeconomics has also shown
that accounting for time-varying volatility or heteroschedasticy in macroeconometric
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models is an important aspect that leads to strong gains in estimation and forecasting.
Consequently, we include stochastic volatility (SV) in the TVP-SVAR model.

One main pitfall of the majority of TVP models is the rigid assumption made on
the dynamics of the coefficients, which are most frequently assumed to alternate be-
tween different levels, thus implying a piece-wise constant trajectory (as in the case of
Markov-switching models), or continuously vary in a random fashion (as in random walk
processes). We take a step forward and consider a more general approach and assume
a dynamic shrinkage process for the TVP coefficients via the Dynamic Horseshoe prior
(DHS) (Kowal et al., 2019). Essentially, this consists in assuming a (autoregressive)
time-varying log-variance for the latent time-varying coefficients and allows to learn
from the data, at each point in time, whether a coefficient should stay fixed at a con-
stant value or move according to an autoregressive process. This approach has been
recently applied in univariate time varying models (e.g., Huber and Pfarrhofer, 2021),
but not in a SVAR context.

The remainder of this article is organized as follows: Section 2 illustrates the pro-
posed TVP-VAR model with centered and non-centered representation and introduces
the dynamic HS prior on the variance coefficients. Section 3 presents the novel semipara-
metric prior and the details of the Bayesian approach to inference. Section 4 investigates
the performance of our method using simulated data. Section 5 shows preliminary re-
sults of a macroeconomic application. Section 6 concludes the article and a technical
appendix provides further details on the posterior simulation algorithms.

2 TVP-SVAR-SV

Let us define yt = (y1,t, . . . , yn,t) as the vector of n variables available at time t and we
consider the structural VAR (SVAR) model with 1 lag and with stochastic volatility as

Ayt = B0 +B1yt−1 + εt, εt ∼ N (0, Ht), (1)

hj,t = µh,j + φh,j(hj,t−1 − µh,j) + ηj,t, ηj,t ∼ N (0, σ2
h,j), (2)

where B1 is a n × n matrix of coefficients, B0 is a vector of constants, A is an n × n
lower-triangular matrix with ones on the diagonal and εt is an n × 1 vector of i.i.d.
noise, N (0, Ht) denotes a multivariate Gaussian distribution with covariance matrix
Ht = diag(eh1,t , . . . , ehn,t). For the time-varying variance ehj,t , j = 1, . . . , n, we assume
its logarithm follows an autoregressive AR(1) process, as shown in Equation 2, where µh,j
is the unconditional mean, φh,j is the persistence parameter and σ2

h,j is the error variance
of the log-volatility process. Following Chan and Eisenstat (2018), we reformulate the
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SVAR-SV model as

yt = Xtβ +Wtγ + εt = Ztθ + εt, εt ∼ N (0, Ht), (3)

where Wt contains the contemporaneous endogenous variables in the appropriate posi-
tion, Zt = (Xt,Wt) is an n × kθ matrix, and θ = (β′,γ ′)′ is a kθ-dimensional vector,
with kθ = kβ + kγ, kβ = n(n + 1), and kγ = n(n− 1)/2. Finally, β = vec([B0, B1]) is a
kβ × 1 vector of coefficients associated to the lagged observations, with kβ = n(n + 1),
γ is a kγ × 1 vector of the coefficients, with kγ = n(n − 1)/2, that characterize the
contemporaneous dependence among the endogenous variables and consists of the free
elements of A stacked by rows.

Starting from Equation 3, we include temporal variation of the coefficients by assum-
ing the elements of the coefficient vector θ follow independent random walk processes.
We thus obtaining a time-varying parameter (TVP) SVAR-SV model with centered
parametrization given sby

yt = Ztθt + εt, εt ∼ N (0, Ht),

θt = θt−1 + ωt, ωt ∼ N (0, V ), (4)

ht = µh + diag(φh)(ht−1 − µh) + ηt, ηt ∼ N (0,Σh), (5)

Notice that all definitions are the same as in Equation 2 and 3 except that θt are
dynamic (time-varying) regression coefficients which follow a random walk with ωt being
a Gaussian innovation vector with zero mean and diagonal covariance matrix V =

diag(v1, . . . , vkθ). Each vj, j = 1, . . . , kθ, is a process innovation variance associated
with the j-th coefficient and controls the amount of time-variation in θjt. Finally,
the noise covariance matrix of the log-volatility process is Σh = diag(σ2

h,1, . . . , σ
2
h,n).

Defining
√
V = diag(

√
v1, . . . ,

√
vkθ) allows us to derive the corresponding non-centered

parametrization (Frühwirth-Schnatter and Wagner, 2010) of the TVP model as

yt = Ztθ0 + Zt
√
V θ̃t + εt, εt ∼ N (0, Ht),

θ̃t = θ̃t−1 +$t, $t ∼ N (0, Ikθ), (6)

ht = µh + diag(φh)(ht−1 − µh) + ηt, ηt ∼ N (0,Σh),

where the j-th element of θt is given by θjt =
θjt−θj0√

vj
and θ̃0 = 0.

We now extend the non-centered parameterization of the TVP-VAR-SV model in
Equation 6 by considering a dynamic shrinkage process for the the time-varying coef-
ficients. Specifically, we consider a dynamic Horseshoe prior (DHS) as in Kowal et al.
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(2019), which is obtained by assuming an AR(1) process for the log-variance of the latent
states, with precision hyper-parameter following a Pólya-Gamma distribution (Polson
et al., 2013), denoted PG(a, b). From Equation 4, the model in centered form can be
reformulated as

yt = Ztθt + εt, εt ∼ N (0, diag(exp(h1,t), . . . , exp(hn,t))),

θt = θt−1 + ωt, ωt ∼ N (0, diag(exp(v1,t), . . . , exp(vn,t))),

ht = µh + diag(φh)(ht−1 − µh) + ηt, ηt ∼ N (0, diag(σ2
h,1, . . . , σ

2
h,n)), (7)

vt = µv + diag(φv)(vt−1 − µv) + ζt, ζt ∼ N (0, diag(ξ−11,t , . . . , ξ
−1
k,t )),

ξi,t ∼ PG(1, 0),

where vt follows an AR(1) process similar to the one described in Equation 2. The main
difference is that the error variance, ξ−1j,t , is random but i.i.d. across time and is assumed
to follow a Pólya-Gamma distribution. This corresponds to the choice α = β = 1/2

in Kowal et al. (2019) to which we refer for further details on this construction. Let
√
Vt = diag(

√
v1,t, . . . ,

√
vk,t) and recall the maps linking the centered and the non-

centered parametrizations as

θt = θ0 +
√
Vtθ̃t, θ̃t =

θt − θ0√
V t

, t = 1, . . . , T.

Thus, Equation 6 corresponds to the non-centered form

yt = Ztθ0 + Zt
√
Vtθ̃t + εt, εt ∼ N (0, diag(exp(h1,t), . . . , exp(hn,t))),

θ̃t = θ̃t−1 +$t, $t ∼ N (0, Ik),

ht = µh + diag(φh)(ht−1 − µh) + ηt, ηt ∼ N (0, diag(σ2
h,1, . . . , σ

2
h,n)), (8)

vt = µv + diag(φv)(vt−1 − µv) + ζt, ζt ∼ N (0, diag(ξ−11,t , . . . , ξ
−1
k,t )),

ξi,t ∼ PG(1, 0).

3 Bayesian Inference
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3.1 A Semiparametric Prior specification

Concerning the initial value of the TVP vector, θ0, we assume a mixture prior indepen-
dently for each coefficient θj,0, j = 1, . . . , kθ, as follows

P (θ0) =

kθ∏
j=1

P (θj,0|µj, τj, π, λ0)

θj,0|µj, τj, π ∼ πN (θj,0|0, λ0) + (1− π)DE(θj,0|µj, 1/
√
τj), (9)

where DE(x|a, s) denotes a Double Exponential (DE) distribution1 with a equal to the
location and s equal to the scale(MacLehose and Dunson, 2010). This mixture prior
can be considered as a spike-and-slab distribution, with Gaussian spike and Double
Exponential slab, which allows for shrinkage to zero of the (irrelevant) coefficients.
Exploiting the Gaussian scale-mixture representation of the DE distribution, one obtains
a (conditional) mixture of Gaussians

θj,0|µj, λj, π, λ0 ∼ πN (θj,0|0, λ0) + (1− π)N (θj,0|µj, λj) (10)

λj ∼ Exp(λj|2/τj). (11)

A standard approach in Bayesian nonparametrics relies on the specification of a
Dirichlet Process (DP, see Ferguson, 1973) prior for the distribution of the parameters of
interest. We adopt a semiparametric approach and assume a Dirichlet Process Mixture
(DPM, see Lo, 1984) prior for the location and scales of the Double Exponential slab
distribution, µj, τj, as follows2

(µj, τj)|P ∼ P,

P ∼ DP (α, P0)

P0(µj, τj) ∼ N (µj|c, d)Ga(τj|a1, b1)

(12)

1The Double Exponential (or Laplace) distribution is a (exponential) scale mixture of Normals

x|λ ∼ N (x|µ, λ), λ ∼ Exp(λ|2τ2) =⇒ x ∼ DE(x|µ, τ),

and has probability density function

x ∼ DE(x|µ, τ) ⇐⇒ p(x|µ, τ) = 1

2τ
exp

(
− |x− µ|

τ

)
.

2We use the shape-scale parametrisation of the Gamma distribution (thus, if x ∼ Ga(x|a, b), then
E[x] = ab and V[x] = ab2). The exponential distribution is obtained when a = 1, that is Exp(x|b) =
Ga(x|1, b).
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where α and P0 are the DP concentration parameter and base measure, respectively.
Moreover, c and d are the hyperparameters of the Gaussian distribution representing
the mean and the standard deviation and a1.b1 are the hyperparameters of the Gamma
distribution.

The hierarchical prior structure for the coefficients θj,0, j = 1, . . . , kθ, is completed
by assuming standard prior distributions for the remaining hyperparameters, and can
be summarized as follows

θj,0|µj, λj, π ∼ πN (θj,0|0, λ0) + (1− π)N (θj,0|µj, λj)

λ0|τ0 ∼ Exp(λ0|2/τ0)

τ0 ∼ Ga(τ0|a0, b0)

λj|τj ∼ Exp(λj|2/τj)

(µj, τj)|P ∼ P, (13)

P ∼ DP (α, P0),

P0(µj, τj) ∼ N (µj|c, d)Ga(τj|a1, b1)

π ∼ Be(1, η0),

where π is the mixing probability parameter, which assumes a Beta distribution. Ob-
viously the parameter of the spike component have some hyperparameters to be con-
sidering, which are a0 and b0 for the Gamma distribution. Note that the specification
of DP prior for a random probability measure P allows for clustering of the variables
drawn from that distribution, µj and τj in our case.

For the parameters governing the stochastic volatility processes for the observa-
tions, we follow the common practice in the literature (e.g., see Kastner and Frühwirth-
Schnatter, 2014) and assume

µh,j ∼ N (0, σ2
h,jB0),

φh,j − 1

2
∼ Be(ah, bh), σ2

h,j ∼ IG(ch, dh). (14)

Finally, for the dynamic shrinkage prior for the time-varying volatility, we build on
Kowal et al. (2019) and assume the following prior structure for the parameters driving
the log-variance process of the TVP parameters

µv,j|ξµ,j ∼ N (m0, ξ
−1
µ,j),

φv,j − 1

2
∼ Be(av, bv), ξj,t ∼ PG(1, 0), ξµ,j ∼ PG(1, 0).

(15)
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3.2 Posterior approximation via MCMC

Since the joint posterior distribution is not tractable and it is complex to be sample from,
Bayesian estimator cannot be obtained analytically. In this paper, we rely on simulation
based inference methods, and develop a Gibbs sampler algorithm for approximating the
posterior distribution.

To deal with the mixture provided by the spike-and-slab prior and the infinite mix-
ture given by the DPM, we exploit a data augmentation approach. For each j = 1, . . . , kθ

we introduce two sets of allocation variables, γj, dj; a set of stick-breaking variables,
w = {wi : i = 1, 2, . . .} and a set of slice variables, uj. The allocation variables, γj,
select between the spike and slab components of the mixture for θj,0, whereas the al-
location variable dj selects the component of the Dirichlet Process Mixture to which
each single coefficient θj,0 is allocated to. The sequence of stick-breaking variables, w,
defines the mixture weights, whereas the slice variable, uj, allow to deal with the infi-
nite mixture components by identifying a finite number of stick-breaking variables to
be sampled and an upper bound for the allocation variables dj.

Let (µ, τ ) = {(µk, τk) : k = 1, . . . , k∗} denote the atoms, where k ranges from 1 to
the number k∗ of allocated DP components, λ = (λ1, . . . , λkθ). Define the collection of
latent variables as follows: V = (v1, . . . ,vT ), H = (h1, . . . ,hT ), u = (u1, . . . , ukθ), d =

(d1, . . . , dkθ), γ = (γ1, . . . , γkθ). Then, denote the collection of all parameters and latent
variables with ϑ = (θ0,θ1, . . . ,θT , π,µ, τ ,λ, τ0, λ0,V,µv,φv,Ξ, ξµ,H,µh,φh,σ

2
h). We

obtain the following joint posterior distribution

P (ϑ|Y) ∝ L(Y|θ,θ0,H) ·
k∗∏
k=1

P (µk)P (τk) ·
∏
i=1

P (ui|wi)P (wi)

· P (π)

kθ∏
j=1

P (θj,0|π, λj,µ)P (λj|τ )P (dj|wj, uj)P (γj|π)

· P (µh,φh,σ
2
h)

T∏
t=1

P (ht|ht−1,µh,φh,σ2
h)

· P (µv,φv,Ξ)
T∏
t=1

P (vt|vt−1,µv,φv,Ξ)P (θt|θt−1,vt),

(16)

Due to the intractability of the joint posterior distribution, we design an Markov Chain
Monte Carlo (MCMC) algorithm based on a Gibbs sampler to approximate the pos-
terior distribution. The Gibbs sampler is based on the algorithm of Hatjispyros et al.
(2011) and on the slice sampler approach (Walker, 2007; Kalli et al., 2011) for esti-
mating the weights and locations of each random measure P . The re-sampling of the
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time-varying coefficients, (θ,θ0), using alternatively the non-centered and the centered
parametrization helps improving the mixing of the MCMC. Hereafter, we show the it-
erative steps by using the conditional independence between variables, for k = 1, . . . , k∗

and j = 1, . . . , kθ:

(1) the slice and stick-breaking variables uj and wi are updated given [dj, γj];
(2) the latent scale variables λj are updated given [µ, τ , θj,0, dj, γj];
(3) the parameters of the stick-breaking locations (µk, τk) are updated given [λ,θ0,d,γ];
(4) the allocation variables dj, γj are jointly updated given [µk, τk, θj,0, uj, wi, π];
(5) the mixing probability π of having sparse coefficients is updated given [(γj)j];
(6) the path of the SVAR coefficients θ̃ = (θ̃1, . . . , θ̃T ) is jointly updated given

[H,V,θ0,Y], in the non-centered parametrization following Chan and Jeliazkov
(2009);

(7) the initial value of the SVAR coefficients θ0 is updated given [µ, τ ,λ,H,d,γ,θ1,Y],
in the non-centered parametrization;
• let

√
Vt = diag(

√
v1,t, . . . ,

√
vkθ,t) and move to the centered parametrization: θt =

θ0 +
√
Vtθ̃t;

(8) the path of the SVAR coefficients (θ1, . . . ,θT ) is re-sampled jointly given [H,V,θ0,Y],
in the centered parametrization following Chan and Jeliazkov (2009);

(9) the path of (v1, . . . ,vT ) is jointly updated given [µv,φv,Ξ,θ0,θ] following Kowal
et al. (2019);

(10) the parameters driving the log-variance of the TVP coefficients, µv,φv,Ξ, given
[v] from their full conditional distributions (using a slice sampler for drawing φv);

(11) the initial value of the SVAR coefficients θ0 is re-sampled jointly given [µ, τ ,λ,H,d,γ,θ1,Y],
in the centered parametrization;
• let

√
Vt = diag(

√
v1,t, . . . ,

√
vkθ,t) and move to the non-centered parametrization:

θ̃t = (
√
Vt)
−1(θt − θ0);

(12) the path of observations’ stochastic volatility (h1, . . . ,hT ) is sampled jointly given
[µh,φh,σ

2
h,θ0,θ,Y];

(13) the parameters driving the observations’ stochastic volatility, µh,φh,σ2
h, given [h]

from their full conditional distributions (using a slice sampler for drawing φh);

The detailed Gibbs sampler is described in the Appendix.

4 Evidence using Artificial Data

In this section, we test the ability of the model proposed in Section 2 to recover the path
of time-varying parameters on synthetic data generated from different TVP-VAR-SV
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models. Across the different data generating processes (DGP), the path of the time-
varying coefficients follows different specifications: constant; time-varying with piece-
wise constant trajectory, and time-varying with alternating random walk and constant
trajectory. Before presenting the results, we describe the three different setting used for
generating the data:3

(i) n = 3, T = 150;
(ii) n = 6, T = 200;
(iii) n = 12, T = 200.

We start by considering a small-dimensional TVP-VAR-SV model, with n = 3 and
T = 150 observations. Figure 1 shows the estimated path of the stochastic volatility
process, h. We find that the true value is always within the 90% credible interval (C.I.),
and most of the time even within the 67% C.I.. Figure 2 reports the same type of plots
for a subset of the time-varying coefficients, θ. Several comments are in order. Overall,
we find evidence of good performance of the proposed model in recovering the true
path of the variables. Specifically, this is the case when the true coefficient is constant
(e.g., see the plot in row 1, column 2), time-varying with piece-wise constant trajectory
(plot in row 1, column 3), or time-varying with alternating random walk and constant
trajectory (plot in row 2, column 2).

We replicate the exercise for a TVP-VAR-SV model with n = 6 and T = 200 ob-
servations. Again, Figure 3 highlights the correct estimation of the stochastic volatility
process, h. More interestingly, Figure 4 confirms the previous results in terms of the
ability of the model to recover the path of the time-varying coefficients, θ, in presence of
constant true coefficient (e.g, see plot in row 1, column 1), time-varying with piece-wise
constant trajectory (plot in row 2, columns 2), random walk behavior (plot in row 1,
columns 3-4), or time-varying with alternating random walk and constant trajectory
(plot in row 3, columns 2-3).

Figures 5 and 6 shows the results for the TVP-VAR-SV model with n = 12 and
T = 200. As in previously DGP, the results for the stochastic volatility process and for
the time-varying parameters are in line with the previous results and thus confirm the
goodness of the proposed prior.

3The computing time for a single iteration in the setting n = 12, T = 200 is 0.89 seconds, using
MATLAB on a laptop MacBookPro 3,1 GHz Intel Core i7.
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Figure 1: Path of the observations’ log-volatility process, h: true value (black line), posterior median (red
line), 90% and 67% credible interval (light and dark red shading, respectively). Dataset: n = 3, T = 150.

Figure 2: Path of selected time-varying coefficients’, θ: true value (black line), posterior median (blue line),
90% and 67% credible interval (light and dark blue shading, respectively). Dataset: n = 3, T = 150.

Figure 3: Path of the observations’ log-volatility process, h: true value (black line), posterior median (red
line), 90% and 67% credible interval (light and dark red shading, respectively). Dataset: n = 6, T = 200.
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Figure 4: Path of selected time-varying coefficients’, θ: true value (black line), posterior median (blue line),
90% and 67% credible interval (light and dark blue shading, respectively). Dataset: n = 6, T = 200.
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Figure 5: Path of the observations’ log-volatility process, h: true value (black line), posterior median (red
line), 90% and 67% credible interval (light and dark red shading, respectively). Dataset: n = 12, T = 200.
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Figure 6: Path of selected time-varying coefficients’, θ: true value (black line), posterior median (blue line),
90% and 67% credible interval (light and dark blue shading, respectively). Dataset: n = 12, T = 200.
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5 Real Data Application

In this section, we present some preliminary results from an exercise using U.S. quarterly
macroeconomic data taken from the FRED-QD dataset (see McCracken and Ng, 2016).
The data spans from 1959Q1 to 2019Q4 and we focus on GDP, inflation (based on
the GDP deflator), and the Fed Funds rate (FFR). All the variables considered are
standardized and we consider a TVP-VAR-SV model with 1 lag.

Figure 8 shows the estimated path of the time-varying coefficients, θ jointly with
the 95% and 67% credible intervals. The main findings concern (i) the time variation
of almost all the coefficients and (ii) the significance of only some of the coefficients
across time (as given by the C.I. not including the 0). The results show different path
across the coefficients, with some of them varying across the time, while other remaining
constant or close to zero, thus providing signal for sparsity.

Figure 7: Path of the observations’ log-volatility process, h: posterior median (red line), 90% and 67%
credible interval (light and dark red shading, respectively). FRED dataset, with n = 3, T = 238.
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Figure 8: Path of selected time-varying coefficients’, θ: zero value (black-dashed line), posterior median
(blue line), 90% and 67% credible interval (light and dark blue shading, respectively). FRED dataset, with
n = 3, T = 238.

6 Conclusions

Time-varying parameters models have increased the popularity in economics and fi-
nance although they deal with over-parametrization issues. In the current literature,
different prior specifications, such as global-local shrinkage prior have proposed to in-
duce sparsity. In this paper we have defined a new semiparametric TVP-SVAR model
with stochastic volatility that is able to recover several types of trajectories for the
time-varying (contemporaneous and lagged) coefficients, including constant, piecewise
constant, random walk, and their combinations. Differently from the standard choice
of prior distributions, our proposed prior allows to shrink the coefficients to zero and
to cluster them. Moreover, the use of a dynamic horseshoe prior for the time-varying
coefficients allows to capture a wide range of possible trajectories, including (piece-wise)
constant and random walk behaviours. The performance of the model has been tested
in several experiments on synthetic data.
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