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Abstract

This paper looks at changes in the correlations of daily returns between
the four major banks in Australia. Revelations from the analysis are of im-
portance to investors, but also to government involvement, due to the large
proportion of the highly concentrated financial sector relying on the stability
of the Big Four. For this purpose, a methodology for building Multivariate
Time-Varying STCC–GARCH models is developed. The novel contributions
in this area are the specification tests related to the correlation component,
the extension of the general model to allow for additional correlation regimes,
and a detailed exposition of the systematic, improved modelling cycle required
for such nonlinear models. There is an R-package that includes the steps in
the modelling cycle. Simulations evidence the robustness of the recommended
model building approach. The empirical analysis reveals an increase in corre-
lations of the Australia’s four largest banks that coincides with the stagnation
of the home loan market, technology changes, the mining boom, and Basel II
alignment, increasing the exposure of the Australian financial sector to shocks.
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1 Introduction

The Australian banking market is an oligopoly dominated by four banks. Listed in
the descending order of market share, they are the Commonwealth Bank of Australia
(CBA), Westpac Banking Corporation (WBC), National Australia Bank (NAB) and
Australia and New Zealand Banking Group (ANZ), commonly called the Big Four.
They currently represent 19% of the market value of the ASX200 share index (see
Figure 1) and hold about 80% of the home loan market in Australia. Consequently,
the banking sector is a major component for many Australian superannuation and
other investment funds. This is due not only to its size but also to its relative secure
status. The latter originated from the so-called Four Pillars Policy established by
the government in 1990 and the extensive government support over the past three
decades.

Correlations between the banks are important because they make up a large
percentage of the ASX200 market cap. But perhaps even more importantly, the
Big Four are systemically important in Australia’s financial system. Over the past
decade they represent over 60% of the ASX200 Financials Index. They are also
highly interconnected which means that financial contagion is likely to occur be-
tween the four banks and hence the failure of any one of these banks would have
a significant impact on the other three institutions as well as on individuals and
company that borrow from (i.e. have loans with), lend to (i.e. have deposits with)
these banks, as well as shareholders of the banks. This is essentially the ‘too big
to fail’ argument that was bandied around during the GFC. Hence, having a bet-
ter understanding the correlation of these banks over time is crucial for Australia’s
financial system.

From the investors’ point of view the Big Four is therefore an important object
of study. For instance, many large superannuation funds have the banking sector
as a major component in their portfolios. Because of this and the role of the Big
Four in the Australian economy in general, analysing their stock return volatility
and correlations between returns is of considerable interest. Our interest lies in
investigating long run movements in both of them in the Big Four framework.

As to the Big Four daily returns, their volatilities cannot automatically be as-
sumed stationary. Furthermore the correlations, even when time-varying, cannot a
priori be assumed to fluctuate around a constant level, which is one of the assump-
tions in many popular multivariate GARCH models. For these reasons, a model
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Figure 1: The market capitalisation of the Big Four as percentage of ASX200 (left)
and of ASX200 Financials Index (right).

with deterministically time-varying component that describes the smoothly chang-
ing dispersion in univariate GARCH models is required. In addition, this feature
has to be combined with a correlation matrix in which the time-varying correlations
are not restricted to fluctuating around a constant level. The modelling frame-
work we adopt here is based on earlier work by Silvennoinen and Teräsvirta (2021).
Their Multiplicative Time-Varying Smooth Transition Correlation GARCH model,
MTV for short, places the emphasis on smooth long-run movements in correlations
which are the main object of study in this application. Statistical inference within
the MTV model framework is based on the asymptotic results in Silvennoinen and
Teräsvirta (2021). The focus in that paper is on maximum likelihood estimation
of the parameters of the MTV model. Here we add to that work by concentrating
on specification and evaluation of the model. Before actually estimating an MTV
model, the model builder has to make a number of data-driven decisions while spec-
ifying the structure of the model. After estimation, the structure has to be tested
to reveal its potential weaknesses.

To accompany the aforementioned modelling cycle, we have built an R-package
that can assist in applying the MTV model in practice. The package includes the
estimation routines, as well as the specification and evaluation stage tests. It should
be noted that the modelling process is data driven. It requires user input and
consists of several steps. An automated general approach is not feasible for the
highly nonlinear MTV family of models if reliable estimates are desired.

The plan of the paper is as follows. The broad strokes of the Australian landscape
for superannuation, housing markets, and the Big Four are, up to their relevance
to the topic of the paper, provided in Section 2. The MTV model is introduced
in Section 3, followed by details of the stages and procedures related to the model
building in Section 4. Model specification is considered in Section 5, estimation
in Section 6 and evaluation in Section 7. Section 8 is devoted to the estimation
results in relation to the correlations between the Big Four and the implications
of the findings on the investor risk profile. Conclusions can be found in Section 9.
There are also appendices containing material such as details of the test statistics,
simulation results, details of the estimation algorithm and estimated equations.
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2 Background information and data

In 1990 the Australian government adopted an intervention policy called ‘six pil-
lars’. It covered the four biggest Australian banks and two insurers (AMP and
National Mutual) and stated that further mergers of these institutions would not
be accepted. The basic idea was to ensure a competitive banking market. In 1997
the policy became ‘four pillars’ as the insurers were left outside the arrangement.
The policy has mostly enjoyed the bipartisan support since its establishment, and
the proponents of the policy have argued it has contributed to the stability and
strength of the Australian financial sector. The government also had sympathetic
policy settings, which allowed the banks to recapitalize in the 1990s and 2000s. Dur-
ing this period there were financial losses at WBC ($1.6bn loss in 1992 and close
to insolvency), ANZ (poorly executed international expansions) and subsequently
with NAB (purchase of the US mortgage originator and servicer Homeside led to
a $2.2bn in losses 2002). Larger financial concentration due to mergers with other
financial institutions is seen as acceptable: in 2008 WestPac and CBA acquired St.
George and BankWest, then the fifth and sixth largest banks, respectively. The
impact can be seen in Figure 1 as the Big Four’s share of the ASX200 Financials
Index increased drastically.

The recent history of the pillars policy coincides with a few major incidents and
changes. These include the dot-com boom in the late 1990s and early 2000s, and
the global financial crisis nearly ten years later, but also events that have had more
localised impacts, such as a number of regulatory changes (Basel guidelines), the
most recent mining boom that started around 2005 and was interrupted by the
GFC, and technology-driven market disruptions (non bank lenders and payment
providers). Since the global financial crisis, the banks have enjoyed substantial
government support including a deposit guarantee and, as already noticed, have
come to dominate the home mortgage market with an 80% market share.

Growth of the housing credit market ceased around 2003 and the market re-
mained stagnant until the early 2010s. The volume of investment loans in particular
stagnated, while owner occupier loans saw cyclical patterns, albeit around a very
slow positive trend. At the same time the Australian house prices were increasing.
Households owning their accommodation were pushed into extremely high level of
debts or to finding alternative housing options because inflation did not match the
rates. The drying up of the housing credit markets then had an impact on the four
banks.

One important aspect that has changed the banking sector has to do with the
technological change. By 2004, the ‘old-school’ bank manager lending was replaced
by lending managers and online forms. The concept of customer loyalty to brand
was replaced by instant access to lending providers’ products, and the long term
relations with the loan managers were steadily replaced by online interface. The
access to transparency and comparability at an increasing rate pushed the banks
to a very different competitive environment. The ease of comparison as well as
removal of barriers to changing mortgage providers increased the efficiency in deter-
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mining going rates and conditions.1 The competition in the homeloan markets, of
which the Big Four have an 80% share, has made investors regard these banks as a
rather homogeneous group with increasingly identical in their products, rather than
individual entities with sharply different valuations.

In 2003, it was announced that Basel II was to be implemented in Australia.
The updated accord was aiming to level inequalities amongst the internationally
active banks and setting expectations regarding capital adequacy requirements. The
Australian Prudential Regulation Authority (APRA) in charge of overseeing the
uptake of the accord worked extensively with numerous ADIs, industry and other
relevant bodies during 2005-2007, aiming to ensure adoption of Basel II included all
relevant aspects of the implementation process, goals, and impacts. Fear for being
subjected to a competitive disadvantage relative to their international counterparts,
both within international and domestic operations, coupled with an opportunity for
a reduced regulatory capital incentivised the banks to signal early their preference
to conform with the accord.2 As a result, Australia was amongst the first nations
to have fully implemented the framework, on 1 January 2008.

The daily return series for the Big Four used in this paper extend from 2 January
1992 to 31 January 2020. The series are plotted in Figure 2. From the plots it is
seen that there is a rather tranquil period between 2003 and 2008, except perhaps
for WBC, that overlaps with the stagnant housing credit market, and also includes
the most recent mining boom. Volatility then substantially increases during the
global financial crisis beginning 2008. There is another increase in volatility after
2016. Consequently, the amplitude of volatility clusters varies over time for all four
banks. This shows in the autocorrelation functions of squared returns in Figure 3.
In all four cases, autocorrelations decay very slowly as a function of the lag length.

These amplitude changes suggest nonstationarity. In its presence, the standard
weakly stationary GARCH or, in our case GJR-GARCH, model does not provide
an adequate description of the data. Our alternative is the MTV model to which
we now turn.

3 The MTV model

The MTV model used in this paper belongs to the family of multivariate GARCH
models introduced by Bollerslev (1990). In the original model the conditional cor-
relations were constant, hence the name Constant Conditional Correlation (CCC-
GARCH) model. This assumption that made the resulting model rather parsimo-
nious was later found too restrictive in applications, and time-varying correlations
were simultaneously introduced by Engle (2002) (dynamic conditional correlations,
DCC) and Tse and Tsui (2002) (varying correlations, VC). In these models, con-
ditional variance components are typically assumed stationary, and correlations are

1See Submission to the Inquiry into Competition in the Bank-
ing and Non-Banking Sectors, Reserve Bank of Australia, 10 July 2008.
https://www.rba.gov.au/publications/submissions/financial-sector/inquiry-report-2009-05/

2See Explanatory Statement, Banking (prudential standard) determination Nos.5,12,15 of 2007.
https://www.legislation.gov.au/Details/F2007L04593/
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Figure 2: Daily returns of the Big Four, from 2 January 1992 to 31
January 2020. From top to bottom: ANZ, CBA, NAB
and WBC

assumed, at least implicitly, to fluctuate around a constant level. In order to consider
the MTV model as defined in Silvennoinen and Teräsvirta (2021) we introduce some
notation. The observable stochastic N × 1 vector εt is decomposed in a customary
fashion as

εt = H
1/2
t zt = StDtP

1/2
t ζt (1)

where Ht = StDtPtDtSt is an N ×N covariance matrix, and ζt ∼ iid(0, IN). We

also define zt = P
1/2
t ζt, a vector of independent random variables with Ezt =

0 and a positive definite deterministically varying covariance matrix cov(zt) =
Pt. The structure of Pt will be defined later. The deterministic matrix St =
diag(g

1/2
1t , . . . , g

1/2
Nt ) has positive diagonal elements for all t, andDt = diag(h

1/2
1t , . . . , h

1/2
Nt )

contains the conditional standard deviations of the elements of S−1t εt = (ε1t/g
1/2
1t , . . . , εNt/g

1/2
Nt )′.

As in Silvennoinen and Teräsvirta (2021) and earlier univariate papers, beginning
with Amado and Teräsvirta (2008), and in the multivariate time-varying GARCH
article by Amado and Teräsvirta (2014), the diagonal elements of S2

t are defined as
follows:

git = gi(t/T ) = δi0 +

ri∑
j=1

δijGij(t/T, γij, cij) (2)
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Figure 3: The first 100 autocorrelations of squared returns. From
the top: ANZ, CBA, NAB and WBC

i = 1, . . . , N , where δi0 > 0 is a known constant, δij 6= 0, j = 1, . . . , ri, and the
(generalised) logistic function

Gij(t/T, γij, cij) = (1 + exp{−γij
Kij∏
k=1

(t/T − cijk)})−1 (3)

where γij > 0 and cij = (cij1, . . . , cijKij
)′ such that cij1 ≤ . . . ≤ cijKij

. Both
γij > 0, cij1 ≤ . . . ≤ cijKij

, and δij 6= 0, j = 1, . . . , ri are identification restrictions.
Assuming δi0 in (2) known is another one. Furthermore, to prevent exchangeability
of components in (2), restrictions are needed on cij. As an example, if Kij = 1 for
j = 1, . . . , ri, one can assume (for instance) that cij1 < . . . < cir11.

The conditional variances have a GARCH or GJR-GARCH(1,1) structure, see
Glosten, Jagannathan and Runkle (1993) for the latter:

hit = αi0 + αi1ε
2
i,t−1 + κi1I(εt−1 < 0)ε2i,t−1 + βi1hi,t−1 (4)

where I(A) is an indicator function: I(A) = 1 when A occurs, zero otherwise. A
higher-order structure is possible, although there do not seem to exist applications
of the GJR-GARCH model of order greater than one.
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As discussed in earlier papers, the idea of git is to normalise or rescale the ob-
servations. Left-multiplying (1) by S−1t yields

φt = S−1t εt = Dtzt

where each element of φt is assumed to have a standard weakly stationary GARCH
representation while the conditional covariance matrix E{φtφ′t|Ft−1} = DtPtDt. In
order to describe the correlation structure, we employ the Double Smooth Transition
Conditional Correlation (DSTCC) model by Silvennoinen and Teräsvirta (2009).
In that model, assuming that the transition variable is t/T throughout, the time-
varying correlation matrix Pt is defined as

Pt =(1−G2(t/T, γ2, c2)){(1−G1(t/T, γ1, c1))P(11) +G1(t/T, γ1, c1)P(21)}
+G2(t/T, γ2, c2){(1−G1(t/T, γ1, c1))P(12) +G1(t/T, γ1, c1)P(22)} (5)

where P(ij), i, j = 1, 2, are four positive definite correlation matrices not equal to
each other, and

Gi(t/T, γi, ci) = (1 + exp{−γi
Ki∏
k=1

(t/T − cik)})−1, γi > 0 (6)

where ci = (ci1, ..., ciKi
), ci1 < ... < ciKi

, i = 1, 2. For the Big Four application we
simplify the definition (5) slightly by assuming P(12) = P(22), so (5) becomes

Pt =(1−G2(t/T, γ2, c2)){(1−G1(t/T, γ1, c1))P(1) +G1(t/T, γ1, c1)P(2)}
+G2(t/T, γ2, c2)P(3) (7)

where re-indexing the matrices highlights the interpretation that there are two tran-
sitions over time. One is from P(1) to P(2) and the other one from a convex com-
bination of these two to P(3). Since P(1), P(2), and P(3) are positive definite, Pt
is positive definite as a convex combination of the three matrices. This simplified
version of the DSTCC model is especially useful when modelling correlations that
shift from one state to the next as a function of time. To that end, the obvious
extension to n such transitions is best expressed as a recursion

P
(0)
t = P(1)

P
(n)
t = (1−Gn(t/T, γn, cn))P

(n−1)
t +Gn(t/T, γn, cn)P(n+1) (8)

When G2(t/T, γ2, c2) ≡ 1 and N = 2, (5) and (7) collapse into the smooth
transition correlation GARCH model by Berben and Jansen (2005) or, if the transi-
tion variable in G1 is stochastic and N ≥ 2, into the smooth transition conditional
correlation GARCH model of Silvennoinen and Teräsvirta (2005, 2015). An MTV-
Conditional Correlation GARCH model with GARCH equations similar to the ones
here but differently defined stochastic Pt was discussed in Amado and Teräsvirta
(2014). It may be noted that Feng (2006) introduced another multivariate Condi-
tional Correlation type GARCH model with deterministically varying correlations.
In this model the variation is described nonparametrically, and the model can be
viewed as a generalisation of the univariate model in Feng (2004).
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4 The three stages of model building

The MTV model is rather general and nests many models. To take just one example,
fitting an MTV model when a nested CCC-GARCH model actually generates the
data leads to inconsistent parameter estimates. For this reason, building adequate
MTV models requires care, and a systematic approach is necessary. Selecting a
candidate from this family of models is a data-driven process, and statistical infer-
ence has to be used to obtain an acceptable model such that it passes the available
misspecification tests.

In this work we follow the classical approach to model building advocated by
Box and Jenkins (1970) and later applied to nonlinear models of the conditional
mean, see for example Teräsvirta, Tjøstheim and Granger (2010, Ch. 16). It has
also been applied to building single-equation MTV-GARCH models; see Amado and
Teräsvirta (2017) and Amado, Silvennoinen and Teräsvirta (2017). The idea is to
first specify the model (select a member from the family of MTV models), and once
this has been done estimate its parameters. At the evaluation stage the estimated
model is subjected to a battery of misspecification tests. These three stages, spec-
ification, estimation and evaluation, will be considered in the next sections. The
emphasis will be on specification and evaluation as maximum likelihood estimation
of the parameters of the MTV model has already been considered in Silvennoinen
and Teräsvirta (2021).

5 Specification of the MTV model

5.1 Specification of the univariate variance equations

Specification of the MTV model is begun by specifying the univariate volatility
equations. This was first discussed in Amado and Teräsvirta (2017). The idea is to
begin with a GARCH(1,1) model by Bollerslev (1986) or the GJR-GARCH model
by Glosten et al. (1993) and test the hypothesis that the multiplicative deterministic
component is constant. The single-equation MTV-GARCH model has the following
form:

εit = zith
1/2
it g

1/2
it (9)

where zit ∼ iid(0, 1). The conditional variance equals

hit = α0 + α1φ
2
i,t−1 + κi1I(φi,t−1 < 0)φ2

i,t−1 + βi1hi,t−1 (10)

where φit = εit/g
1/2
it . The deterministic positive-valued function git = gi(t/T ) =

gi(t/T ;θ1) is defined as in (2) and (3).
Positivity of (2) imposes the following restrictions on δij, j = 1, . . . , ri:

δi0 +

ri∑
j=1

δijGij(r, γij, cij) > 0

for all r ∈ [0,1].
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Typically in applications, Kij = 1, 2. There are two specification issues, deter-
mining ri and choosing Kij, j = 1, . . . , ri. It is possible that g(t/T ; γ, c) = δ0 > 0,
that is, g(t/T ; γ, c) is a positive constant. In this case the MTV-GARCH model
collapses into a standard GARCH or GJR-GARCH equation.

Amado and Teräsvirta (2017) solved the problem of choosing ri by first esti-
mating the GARCH model and testing the hypothesis of a constant gi(t/T ) against
the alternative ri = 1 in (2) thereafter using a Lagrange multiplier type test. The
test can be viewed as a misspecification test of the estimated GARCH model. If
the null hypothesis is rejected, an MTV-GARCH model with a single transition is
estimated, and the hypothesis r = 1 is tested against ri = 2. Sequential testing con-
tinues until the first non-rejection of the null hypothesis. The number of transitions
is determined in this order because of an identification problem: the model with
ri + 1 transitions is not identified if the true number of transitions is ri. The shape
of the logistic function, controlled by the parameter Kij, can be determined using
the sequence of tests familiar from the specification of smooth transition autoregres-
sive (STAR) models, see Teräsvirta (1994) or Teräsvirta et al. (2010, Chapter 16).
Details can be found in Amado and Teräsvirta (2017).

More recently, Silvennoinen and Teräsvirta (2016) considered testing the con-
stancy of gi(t/T ) before estimating the GARCH model, that is, assuming hit = 1
in (9). This implies that the size of the test is distorted because conditional het-
eroskedasticity is ignored, so the size of the test has to be adjusted by simulation.
It turned out that power of the size-adjusted test improved considerably compared
to the case where the test is a misspecification test. Reasons for this are discussed
in Silvennoinen and Teräsvirta (2016).

A major difficulty with this approach is that while in simulations the parameters
of the conditional variance component hit under the null hypothesis are known,
in practice this is not the case. The underlying ‘null’ GARCH process has to be
generated artificially. In so doing, special attention is to be placed on the persistence
of the (GJR-)GARCH process, measured by αi1 + κi1/2 + βi1 in (10) when git ≡ 1.
In fact, the asymmetry parameter has no practical importance for the purpose of
calibrating the test statistic distribution, and it is therefore sufficient to restrict
attention to the standard GARCH process. Other features, such as implied kurtosis
or relative sizes of α and β corresponding to a particular level of persistence only
have a negligible effect on the performance of the test.

A practical problem is that it is not possible to estimate this measure of persis-
tence when the null hypothesis does not hold, that is, when git is not constant over
time. How this difficulty is handled has an effect on the power of the test. We study
two approaches that are discussed more in detail in Appendix B.1. The first one
consists of visually identifying a period of time where there appears to be no change
in the overall level of baseline volatility. A standard GARCH(1,1) is estimated over
this subperiod. The second approach is to use rolling window variance targeting.
This means that the intercept in the GARCH equation is time-varying, and its
value at each point in time is calculated such that it matches the unconditional
variance obtained from a window around that point in time. Simulations discussed
in Appendix B.1 experiment with the choice of window size. Both of these methods
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provide GARCH parameter and persistence estimates that are used for calibrating
the null distribution of the test statistic and calculating p-values.

5.2 Specification of time-varying correlations

After the MTV-GARCH equations have been specified and estimated assuming the
errors are uncorrelated, the next step is to specify the time-varying correlations.
This is done by sequential testing, First, constancy of correlation tested against the
model with a single transition, i.e., G2(t/T, γ2, c2) ≡ 1 in (5). The null hypothesis
is that the model is a MTV-Constant Correlation GARCH model as in Bollerslev
(1990), except that the GARCH equations are MTV-GARCH equations. If it is
rejected, the one-transition model estimated and tested against (5) or (7). If, again,
rejected, the alternative with two transitions is estimated. This is repeated until no
further evidence for time-variation in the correlations is detected.

As discussed in Silvennoinen and Teräsvirta (2005, 2015), the MTV model with
one transition is only identified under the alternative, which invalidates the standard
asymptotic inference. The identification problem can be circumvented by approxi-
mating the transition function (6) by its Taylor expansion around the null hypoth-
esis, H0: γ1 = 0. The form of the expansion depends on the order of the exponent
in (6).

The test can be constructed along the lines presented in the appendix of Sil-
vennoinen and Teräsvirta (2005).3 See also Silvennoinen and Teräsvirta (2021).
To derive the test statistic, consider the first-order Taylor expansion of (6) around
γ1 = 0 assuming Ki = 2. It has the following form:

Gi(t/T, γi, ci) = (1 + exp{−γi
Ki∏
k=1

(t/T − cik)})−1

=
1

2
+

1

4
(t/T − ci1)(t/T − ci2)γi +R2(t/T ; γi) (11)

where R2(t/T ; γi) is the remainder. Using (11), (5) becomes

Pt =(P(1) − P(2))(
1

2
+
γici1ci2

4
) + P(2) − (t/T )(P(1) − P(2))

γi(ci1 + ci2)

4

+ (t/T )2(P(1) − P(2))
γi
4

+ (P(1) − P(2))R2(t/T ; γi)

=P(A0) + (t/T )P(A1) + (t/T )2P(A2) + (P(1) − P(2))R2(t/T ; γi)

where P(1) 6= P(2). The main diagonals of P(A1) and P(A2) consist of zeroes. Setting
ρA = (ρ′A0,ρ

′
A1,ρ

′
A2)
′, where ρAi = vecl(P(Ai)), i = 0, 1, 2, the new null hypothesis

is H0: ρA1 = ρA2 = 0N(N−1)/2. Note that a simpler version of the test assumes
Ki = 1 and yields a similar approximation although without the term (t/T )2P(A2).
The new null in this case is H0: ρA1 = 0N(N−1)/2. This version of the test is more
powerful than the former in case time-variation in the correlations is monotonic.

3Available also in http://econ.au.dk/research/research-centres/creates/research/research-
papers/ supplementary-downloads.
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However, and especially with longer time horizons, this may not always be the case,
and the square term of the expansion is able to capture at least some nonmonotonic
changes.

The details of the ensuing LM-type test statistics are presented in the Ap-
pendix A.3 and A.4.

6 Estimation of the MTV model

After specifying the deterministic components of the model, both in GARCH equa-
tions and correlations, one can estimate the complete model with conditional het-
eroskedasticity included. The log-likelihood of the MTV-STCC-GARCH model has
the form

ln f(ζt|θ) ∝− (1/2)
N∑
i=1

ln gi(t/T )− (1/2)
N∑
i=1

lnhit − (1/2) ln |Pt|

− (1/2)ε′t{StDtPtDtSt}−1εt. (12)

Since Dtzt = S−1t εt = (ε1t/g
1/2
1t , . . . , εNt/g

1/2
Nt )′, it is seen from (4) that the condi-

tional variance components in (12) are

hit = αi0 + αi1φ
2
i,t−1 + κi1I(φt−1 < 0)φ2

i,t−1 + βi1hi,t−1

i = 1, . . . , N . We make the following assumptions, see Silvennoinen and Teräsvirta
(2021):

AN1. In (4), αi0 > 0, either αi1 > 0 and αi1+κi1 ≥ 0 or αi1 ≥ 0 and αi1+κi1 > 0,
βi1 ≥ 0, and αi1 + κi1/2 + βi1 < 1 for i = 1, . . . , N .

AN2. The parameter subspaces {αi0 × κi × αi × βi}, i = 1, . . . , N , are compact,
the whole space Θh is compact, and the true parameter value θ0h is an interior point
of Θh.

AN3. ζt ∼ iidN(0, IN).

AN1 is the necessary and sufficient weak stationarity condition for the ith first-
order GJR-GARCH equation. Assumption AN2 is a standard regularity condition
required for proving asymptotic normality of maximum likelihood estimators of θhi,
i = 1, . . . , N . Assuming normality (A3) is a strong condition, but it is needed here;
see Silvennoinen and Teräsvirta (2021).

These assumptions are sufficient for the maximum likelihood estimators of the
GARCH parameters in single-equation GARCH models to be consistent and asymp-
totically normal. Rewrite (12) indicating the parameters in the relevant functions:

ln f(ζt|θ) ∝− (1/2)
N∑
i=1

ln git(θgi)− (1/2)
N∑
i=1

lnhit(θhi)− (1/2) ln |Pt(θP )|

− (1/2)ε′t{St(θg)Dt(θg,θh)Pt(θP )Dt(θg,θh)St(θg)}−1εt.
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The parameters are estimated in turn: first estimate θgi to obtain starting-values
to joint estimation of θg and θP . This is done assuming hit(θhi) ≡ 1, i = 1, . . . , N .
Amado and Teräsvirta (2013) showed in the single-equation GJR-GARCH case that
under regularity conditions the maximum likelihood estimator of θgi is consistent
and asymptotically normal. Silvennoinen and Teräsvirta (2021) generalised this
result to MTV models. That means that joint estimation of θg and θP by maximum

likelihood produces consistent estimates of these parameter vectors. If θ̂g and θ̂P are
consistent and Assumptions AN1, AN2 and AN3 hold, then by Theorem 3.3 of Song,
Fan and Kalbfleisch (2005), the maximum likelihood estimator of θh is consistent
and asymptotically normal. After estimating θh, the parameter vectors θg and θP
are re-estimated. Iteration continues until convergence. Song et al. (2005) showed
that the final maximum likelihood estimator of θ is consistent and asymptotically
normal. A more detailed description of the maximisation by parts applied to the
present situation can be found in Appendix D, see also Silvennoinen and Teräsvirta
(2021).

7 Evaluation of the MTV model

Once the model has been specified and estimated, it is worth having a final glance
over to identify areas of misspecification. The tests in Section 5.1 were used to guide
the choice of the functional form of the deterministic component, and a rejection of
the null was seen as evidence of the current model still lacking in its specification.
In that sense, the tests in Section 5.1 are seen as both specification and evaluation
tests. It is worth reiterating that these specification tests were constructed at the
stage when the GARCH part was not yet specified, that is, ht = 1 in (10). However,
when the deterministic part passes these tests, and an MTV-GARCH equation is
subsequently estimated, there is room for additional checks in terms of model mis-
specification, beyond the presently final model specification. The tests in Amado
and Teräsvirta (2017) are available for this purpose. They fall into three categories.

In the first one, the deterministic component is additively misspecified. In the
context of the current MTV-GARCH model, the relevant case is a test for yet an-
other transition in (2). The second test assesses the GARCH equation for additive
misspecifiation. The concern here is validity of the maximum lags p or q. The final
test is the ‘test of no remaining ARCH’, which is based on the idea of a sufficiently
well-specified model managing to clear any autocorrelation from the squared stan-
dardised residuals. The test that suits each of these situations (or its robustified
version to avoid the assumption of normality) is conveniently carried out following
a set of steps outlined in Appendix.

It is worth pointing out that the tests here are applied to P̂
−1/2
t εt, one series at a

time. Efforts towards completing the tests in the complete N -variate system simul-
taneously would open up a vast number of permutations of various misspecification
options. To manage the task, the recommendation is to focus on the univariate
specifications one at a time, even with the acknowledgment of some potential for
deviating from the asymptotically exact results. Simulations in Section B.2 indicate

13



that applying the tests on the pre-filtered data has very little impact on the distri-
butions of the test statistics. While the standard form of the misspecification tests
suffers from minor oversizing, this is mostly corrected when using the robust version
of the test.

The test for an additional correlation in Section 5.2 may also be used as an
evaluation test. It is based on the completely specified univariate and correlation
components, and therefore its role as a misspecifiation test of a complete model
is just. The number of degrees of freedom in this test quickly becomes large with
increasing N . One way of restricting this growth would be to assume that under the
alternative only the eigenvalues of the correlation matrix are changing over time.
The alternative would be a correlation matrix only if all correlations were identical,
but an LM test can nevertheless be built on this assumption. Write the correlation
matrix as Pt = QtΛtQ

′
t, where Pt is defined as in (5), Λt is the matrix of eigenvalues

and Qt contains the corresponding eigenvectors. Simplify this by assuming Qt = Q
and approximate Λt, the eigenvalue matrix of (5), by Ψt =

∑K
k=0 Ψk(t/T )k. Under

the null hypothesis, K = 0. The resulting test statistic is derived and its small-
sample properties studied in Silvennoinen and Teräsvirta (2017).

8 Big Four results

8.1 Modelling the error variances

As suggested in the Introduction, the return series may not be adequately described
by a weakly stationary GARCH or GJR-GARCH model. From the plots in Figure 2
it is seen that the amplitude of clusters varies for all four banks, in particular during
and after the financial crisis beginning 2008. There also seems to be a rather tranquil
period between 2004 and 2008. This variation also shows in the autocorrelation
functions of squared returns in Figure 3. In all four cases, autocorrelations decay
very slowly as a function of the lag length. For this reason, modelling the returns has
to be initiated by testing the stationarity hypothesis. As discussed in Section 5.1, the
slow moving volatility specification is done first, followed by the TV-GJR-GARCH
estimation. The test statistic from Section A.1 is calibrated using methods from
Appendix B.1. In the first one, the period of calm spans spans November 2003 –
October 2007. In the other, the window size is 400, chosen based on the simulations,
see discussion in Appendix B.1. To increase the performance of the test, the entire
sample of over 7000 observations is broken into subsections. Once one transition is
found and estimated, the test is applied to both before and after this transition to
see if there is another transition on either side. The process is continued until the
null of no transition is not rejected at the 5% level. After this specification stage, the
GJR-GARCH equations are estimated together with the time-varying component
as a complete TV-GJR-GARCH model. The estimated equations are then checked
for signs of misspecification using the tests from Amado and Teräsvirta (2017).

Estimated TV-GJR-GARCH equations results appear in Table 1 and the de-
terministic components in Appendix E. For interest, a GJR-GARCH equations
without the deterministic component are also estimated, and the results appear in
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αi0 αi1 κi1 βi1 pers kurt

ANZ GJR 0.020 0.039 0.044 0.929 0.991 3.76
(0.005) (0.007) (0.008) (0.008)

TV-GJR 0.111 0.015 0.046 0.792 0.831 3.02
(0.016) (0.005) (0.007) (0.027)

CBA GJR 0.035 0.060 0.063 0.886 0.977 3.66
(0.005) (0.008) (0.011) (0.010)

TV-GJR 0.107 0.021 0.065 0.813 0.867 3.06
(0.014) (0.006) (0.010) (0.020)

NAB GJR 0.065 0.077 0.075 0.850 0.964 3.68
(0.009) (0.010) (0.014) (0.014)

TV-GJR 0.152 0.021 0.058 0.731 0.780 3.03
(0.019) (0.006) (0.009) (0.030)

WBC GJR 0.031 0.045 0.058 0.910 0.985 3.70
(0.006) (0.007) (0.010) (0.009)

TV-GJR 0.079 0.015 0.041 0.829 0.864 3.02
(0.011) (0.004) (0.006) (0.020)

Table 1: Univariate estimation results for the four banks. GJR is
the GJR-GARCH(1,1) equation, TV-GJR is the TV-GJR-
GARCH equation, standard deviations in parentheses

the same Table. It is seen that in all four cases the persistence strongly decreases
after rescaling with the TV component. This is also indirectly obvious from the
autocorrelations in Figure 4 that are considerably smaller than the ones in Figure 3.
The main cause for this decrease lies in the coefficient of the lagged conditional vari-
ance whose estimate becomes smaller in the process. Estimates of the asymmetry
parameter κi1 slightly increase, so asymmetry becomes more pronounced when non-
stationarity is properly taken care of. The table also contains the kurtosis estimates
for the two GJR-GARCH processes, obtained using definitions in He and Teräsvirta
(1999).

Figure 5 contains the estimated transitions. There are two conspicuous features
in the figure. One is the downward shift around 2004, which for WBC is a long
and rather smooth decline. This calm period coincides with the most recent min-
ing boom, which was interrupted by the GFC. For all four banks the deterministic
component remains higher after 2010 than it was before 2008. For WBC, the de-
terministic component slowly but steadily declines after the crisis. For the three
others it remains constant. This can be seen from the estimated equations behind
the figures in Appendix E.

Effects of the deterministic component git on the GARCH equations also become
obvious by comparing the conditional variances from the GJR-GARCH equations
(Figure 6) and from the TV-GJR-GARCH ones (Figure 7). It is seen that the
nonstationarity around 2008–2010 in Figure 6 is no longer visible in Figure 7. This
is true for all four banks.
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Figure 4: The first 100 autocorrelations of squared standardised re-
turns ε2it/git. From the top: ANZ, CBA, NAB and WBC.

8.2 Modelling the error correlations

Stability of correlations over time is tested using the test statistic (A.5) in Sec-
tion 5.2. The p-value of the test equals 0.000, so the null hypothesis is rejected. An
STCC model is then estimated with a single monotonic time transition. Whether
this specification is sufficient is tested with the test for an additional transition.
The resulting p-value is 0.467, and the single time-transition is deemed sufficient.
Estimation results of the MTV model in Table 2, see also Figure 8, indicate that the
correlations between the standardised residuals have been stable, around 0.49–0.60,
from 1992 until the mid to late 2007. At that point, the correlations begin their
steady increase to the range of 0.78–0.83, which they reach by early 2008. The final
correlations are not only quite large but also remarkably similar.

The time-varying correlation structure perhaps reflects the four pillars policy,
the financial concentration which was further emphasised by the acquisition of the
next largest banks by CBA and WBC in 2008. The competition between the banks
was increased by the implementation of Basel II, the technological developments and
the easing of restrictions that directly impacted the home mortgage market which
the Big Four now dominated, and the stagnation of the housing credit market. As
a further effect of the government intervention policy, the government had sympa-
thetic policy settings, which allowed the banks to recapitalize in the 1990s and 2000s
when three of the banks suffered financial losses and the fourth one (CBA) was pri-
vatised. Since the global financial crisis (GFC), the banks have enjoyed substantial
government support (deposit guarantee) – as a result they have, in a sense, become
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Figure 6: Estimated conditional variance ĥit from the GJR-
GARCH model. From top to bottom: ANZ, CBA, NAB
and WBC.

and remained similar.
The fact that serious effort has been made to model the volatilities and cor-

relations separately allows for observations on the timing and magnitude of those
features without the cross-contamination occurring if covariances were examined in-
stead. It is often noted that correlations increase during turbulent times. In the case
of the Big Four, the situation is the opposite. The calm period 2003-2007 is around
the middle of the mining boom. It is only towards the end of this period when the
correlations have smoothly increased over a span of 16 months. Furthermore, it is
notable that the events around the GFC have tremendous impact on the volatili-
ties, whereas the correlations have by then settled to their high levels, and exhibit
no further increase. This does, however, highlight the potentially fragile state of
the Australia’s financial sector, which may have become exposed to shocks that are
likely to have contagious impacts on the financial markets, and Australia’s economy
as a whole.

9 Conclusions

In this paper we describe the steps forming the modelling cycle for MTV models.
An R-package has been built to assist in this process. Our analysis of the Big Four
reveals a systematic increase in similarity of the four banks as assets, reducing their
contribution towards diversification of risk in an investment portfolio. This shift
in similarity occurs before the GFC amid the prevalent mining boom and tranquil
markets. The regulatory changes and technological development have paved the way
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P1 P2

ANZ CBA NAB ANZ CBA NAB
CBA 0.485

(0.011)
1.000 CBA 0.782

(0.006)
1.000

NAB 0.503
(0.010)

0.525
(0.010)

1.000 NAB 0.808
(0.005)

0.787
(0.005)

1.000

WBC 0.606
(0.009)

0.500
(0.011)

0.492
(0.011)

WBC 0.830
(0.004)

0.818
(0.005)

0.814
(0.005)

transition parameters: c η
0.552
(0.002)

5.020
(0.162)

Table 2: Estimation results for the four banks’ time-varying correla-
tions. 90% of the estimated transition is between the dates
2006/Oct/18 and 2008/Feb/28. The centerpoint of the lo-
cation corresponds to 2007/Jun/28, with ± two standard
deviations range of 2007/May/11 – 2007/Aug/13.

for increased competition prior to the shift in the correlation. In short, the highly
concentrated financial sector is also highly correlated. The government intervention
in terms of the tightening of the lending rules has opened the home loan market
to more competition, which has reduced the share of the Big Four within that
market and forced differentiation between the banks. The recent Royal Commission
(2017-2019) has been speculated to have further induced the Big Four’s willingness
to be different. However, our estimation results suggest that the attempts by the
government to diversify the Big Four as assets in an investor portfolio have not yet
carried fruit.
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Silvennoinen, A. and Teräsvirta, T.: 2015, Modeling conditional correlations of asset
returns: A smooth transition approach, Econometric Reviews 34, 174–197.
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Online Appendix
This Appedix contains additional material to the paper. Section A provides details of
the TVV-model specification, the MTV-GARCH model evaluation, the test of constant
correlations, and finally the test for an additional transition in the correlations. The
simulations studies in Section B explore aspects of the specification and evaluation of the
GARCH equations, and the size and sensitivity of the test of constant correlations. Proof
of Lemma 1 is presented in Section C. Section D presents the details of maximisation by
parts. Estimated deterministic components of the Four Banks’ transition equations are
presented in Section E. Finally, Sections F and G provide tabulated results and figures
related to the simulation studies.

A Test statistics

A.1 Test statistic for TVV-model specification

In order to specify gt we not only test constancy but even specify the number of transitions
before estimating the GARCH component of the model. Amado and Teräsvirta (2013)
showed that maximum likelihood estimators of the corresponding time-varying variance
(TVV) model, assuming that there is no conditional heteroskedasticity, are consistent and
asymptotically normal. This forms the base for constructing Lagrange multiplier type
tests for testing r against r+ 1 transitions. For notational simplicity consider testing one
transition against two. Omitting the subscript i for simplicity, the TVV model is (9) with
ht = 1, and

gt = δ0 + δ1G1(t/T, γ1, c1) + δ2G2(t/T, γ2, c2), γi > 0, i = 1, 2.

The null hypothesis is γ2 = 0, in which case G2(t/T, γ2, c2) ≡ 1/2. To circumvent the
identification problem (the model with one transition is only identified when the alternative
γ2 > 0 is true) we follow Luukkonen, Saikkonen and Teräsvirta (1988) and approximate
the second transition by a third-order Taylor expansion around the null hypothesis. After
reparameterisation this yields

gt = δ∗00 + δ1G1(t/T, γ1, c1) + ψ1t/T + ψ2(t/T )2 + ψ3(t/T )3, γ1 > 0. (A.1)

We may call (9) with (A.1) the auxiliary TVV model. The parameters ψi = γ2ψ̃i, where
ψ̃i 6= 0, i = 1, 2, 3. The new null hypothesis in (A.1) equals H′0: ψ1 = ψ2 = ψ3 = 0. The
remainder term of the expansion can be ignored because when we construct a Lagrange
multiplier test, the model is only estimated under H0 (or H′0) and under this hypothesis
the order of the Taylor expansion equals zero. The remainder is present only under the
alternative, and so ignoring it when H0 is valid does not affect the asymptotic size of the
test. It does make a positive contribution to the power of the test when H0 does not hold.

Assume (again for notational simplicity) that K1 = 1 in (A.1), so c1 = c1 (a scalar).
The log-likelihood for observation t of the auxiliary TVV model equals

`t = k − (1/2) ln gt − (1/2)
ε2t
gt
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and the corresponding element of the score is

∂`t
∂θ1

=
1

2
(
ε2t
gt
− 1)

1

gt

∂gt
∂θ1

(A.2)

where θ1 = (δ∗00 , δ1, γ1, c1, ψ1, ψ2, ψ3)
′. Denoting G1(t/T ) = G1(t/T, γ1, c1), the partial

derivative in (A.2) is ∂gt/∂θ1 = (g′1(t/T ), τ ′t)
′where

g1(t/T ) = (1, G1(t/T ), G1γ(t/T ), G1c(t/T )G1γ(t/T ))′

with G1γ(t/T ) = G1(t/T )(1−G1(t/T ))(t/T − c1), G1c(t/T ) = −γ1G1(t/T )(1−G1(t/T )),
and τt = (t/T, (t/T )2, (t/T )3). Define the true parameter vector under H0 as θ01 =
(δ∗00 , δ

0
1 , γ

0
1 , c

0
1, 0, 0, 0)′. If zt is normally distributed, the corresponding element of the

information matrix under H0 has the form

Bt =
1

4
E(
ε2t
gt
− 1)2

[
B11t B12t

B21t B22t

]
=

1

2

[
B11t B12t

B21t B22t

]
.

where, letting g0t = g0(t/T ) = δ∗00 + δ01G1(t/T, γ
0
1 , c

0
1) and denoting G0

1(t/T ) = G1(t/T,
γ01 , c

0
1),

B11t =
1

2(g0(t/T ))2
g01(t/T )g01(t/T )′, B12t =

1

2(g0(t/T ))2
g01(t/T )τ ′t

and

B22t =
1

2(g0(t/T ))2
τtτ
′
t .

Let
g01(r) = (1, G0

1(r), G
0
1γ(r), G0

1c(r))
′

and r = (r, r2, r3)′. We state the following lemma:

Lemma 1 Under the null hypothesis and assuming zt ∼ iidN (0, 1), the information ma-
trix

B = lim
T→∞

1

2T

T∑
t=1

[
B11t B12t

B21t B22t

]
=

1

2

[
B11 B12

B21 B22

]
where

B11 =
1

2

∫ 1

0
(g0(r))−2g01(r)g01(r)′dr, B12 =

1

2

∫ 1

0
(g0(r))−2g01(r)r′dr

and

B22 =
1

2

∫ 1

0
(g0(r))−2rr′dr.

Proof. See Appendix C.

Since the maximum likelihood estimators of the parameters of the auxiliary TVV
model under H0 are consistent, we may construct the LM test for the hypothesis H′0: ψ =
(ψ1, ψ2, ψ3)

′ = 0. Denoting the relevant block of the score by

s2(θ̂1) =
1

2T

T∑
t=1

(
ε2t
ĝt
− 1)

1

ĝt

∂gt
∂ψ
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where ∂gt/∂ψ = τt and, assuming zt = εt/g
1/2
t is standard normal under H0,

ĝt = δ̂0 + δ̂1(1 + exp{−γ̂1(t/T − ĉ1)})−1

the test statistic has the following form:

LM1
T = (T/2)s′2(θ̂1)(B22 −B21B

−1
11 B12)

−1s2(θ̂1) (A.3)

where θ̂1 = (δ̂∗0 , δ̂1, γ̂1, ĉ1, 0, 0, 0)′, see for example Godfrey (1988, p. 14). In order to make
(A.3) operational, the blocks of B are replaced by their consistent counterparts.

When constancy of the error variance is tested against a single transition, gt ≡ δ0,
g1(t/T ) = 1 (scalar), and ∂gt/∂ψ = τt as before. Then B11 = (2(δ00)2)−1,

B12 =
1

2(δ00)2

∫ 1

0
r′dr and B22 =

1

2(δ00)2

∫ 1

0
rr′dr.

The test statistic (A.3) becomes

LM0
T =

T (δ00)2

2δ̂20
s′2(θ̂1)(B22 −B21B

−1
11 B12)

−1s2(θ̂1) (A.4)

where

s2(θ̂1) =
1

2T

T∑
t=1

(
ε2t

δ̂0
− 1)τt.

When the elements of the covariance matrix are replaced by their consistent estimators in
(A.4), the ratio (δ00)2/δ̂20 equals unity.

As already mentioned, conditional heteroskedasticity is ignored in setting up the test.
For this reason, the test statistic (A.3) is likely to be size distorted when applied to financial
time series of sufficiently high frequency, that is, GARCH-type volatility clustering is
present. In applications its size thus has to be adjusted by calibrating its distribution
to reflect the persistence of the GARCH effect present in the data. This is the topic of
discussion in Section B.1.

A.2 Test statistic for MTV-GARCH model evaluation

In this Section the evaluation tests of the univariate MTV-GARCH equations are presented
in an easy to implement fashion. The full details can be found in Amado and Teräsvirta
(2017).

The test statistic is computed based on the following components: ζ̂t, r1t, and r2t.

ζ̂t = εt/

√
ĥtĝt are the residuals, r1t contains the derivatives of the ht and gt functions

with respect to the parameters that govern the MTV-GARCH model under the null, θg
and θh:

r1t = (ĝ−1t
∂gt

∂θ̂g
+ ĥ−1t

∂ht

∂θ̂g
, ĥ−1t

∂ht

∂θ̂h
),

evaluated at the estimated parameters θ̂g and θ̂h. These are recursively calculated,
and depend on the prevailing MTV-GARCH model under the null. For example, gt =
δ0 + δ1G1(t/T, γ1, c1) + δ2G2(t/T, γ2, (c21, c22)

′) and ht = α0 + α1ε
2
t−1/gt−1 + κ1I(εt−1 <

0)ε2t−1/gt−1 + β1ht−1. Here, θg = (δ1, γ1, c1, δ2, γ2, c21, c22)
′ and θh = (α0, α1, κ1, β1)

′.
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Then
∂gt
∂θg

= (G1, δ1
∂G1

∂γ1
, δ1

∂G1

∂c1
, G2, δ2

∂G2

∂γ2
, δ2

∂G2

∂c21
, δ2

∂G2

∂c22
)′

where

∂G1

∂γ1
= G1(1−G1)(t/T − c1)

∂G1

∂c1
= −G1(1−G1)γ1

∂G2

∂γ2
= G2(1−G2)(t/T − c21)(t/T − c22)

∂G2

∂c21
= −G2(1−G2)γ2(t/T − c22)

∂G2

∂c21
= −G2(1−G2)γ2(t/T − c21)

The GARCH equation derivatives are formed recursively as

∂ht
∂θg

= −g−1t (α1ε
2
t−1/gt−1 + κ1I(εt−1 < 0)ε2t−1/gt−1)

∂gt−1
∂θg

+ β1
∂ht−1
∂θg

and
∂ht
∂θh

= (ε2t−1/gt−1, I(εt−1 < 0)ε2t−1/gt−1, ht−1)
′ + β1

∂ht−1
∂θh

From this example, it should be easy to extend the null model to include more addi-
tive deterministic terms and / or have a higher order GARCH equation with or without
asymmetric terms.

One extension regarding the deterministic part should be mentioned though. It is often
convenient to replace the slope parameter γ with eη. In this case, θg = (δ1, η1, c1, δ2, η2,
c21, c22)

′, and

∂G1

∂η1
= G1(1−G1)e

η1(t/T − c1)

∂G1

∂c1
= −G1(1−G1)e

η1

∂G2

∂η2
= G2(1−G2)e

η2(t/T − c21)(t/T − c22)

∂G2

∂c21
= −G2(1−G2)e

η2(t/T − c22)

∂G2

∂c21
= −G2(1−G2)e

η2(t/T − c21)

r2t contains the derivatives of the misspecified part. Details of it in the most commonly
encountered situations are given shortly. The number of variables (columns) in r2t defines
the degrees of freedom in the χ2 distribution for the test statistic under the null.

Given the three components, the LM-test is carried out as follows:

1. Compute the SSR0 =
∑T

t=1(ζ̂
2
t − 1)2.

2. Regress ζ̂2t − 1 on (r1t, r2t), and form the sum of squared residuals SSR1.
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3. Compute the test statistic LM = T SSR0−SSR1
SSR0

.

The robust version that does not rely on the normality of the error term is formed as
follows:

1. Compute the SSR0 =
∑T

t=1(ζ̂
2
t − 1)2.

2. Regress ζ2t on r1t, and obtain residuals wt. When r2t has more than one variable,
run the regression for each of them separately, and thereby obtain a set of residuals
wt.

3. Regress 1 on (ẑ2t − 1)wt, and form the sum of squared residuals SSRR.

4. Compute the test statistic LMR = T − SSRR

The first case seeks to find evidence of misspecification of the determininstic part of
the MTV-GARCH model. That is, the conditional variance is of the form

σ2t = ht(gt + ft)

where the additive term ft is zero under the null of the model being correctly specified. The
case we consider here is the one of testing r against r + 1 transitions in the deterministic
part. The additive term is linearised and reparameterised, after which it becomes

ft = δ∗0 + δ∗1t/T + δ∗2(t/T )2 + δ∗3(t/T )3

The derivative component for the alternative is then

r2t = ĝ−1t (1, t/T, (t/T )2), (t/T )3))

The second case addresses misspecification in the GARCH part:

σ2t = (ht + ft)gt

where the additive term ft is again zero under the null. A common scenario is when ft
may increase either the ARCH or the GARCH order (but not both). An example of the
former is GARCH(1,1) vs GARCH(2,1), in which case ft = α2ε

2
t−2/gt−2, and therefore

r2t = ĥ−1t ε2t−2/ĝt−2

If the model is a GJR one, and the potential increase in the order of the ARCH term
extends to the asymmetric terms as well, then ft = α2ε

2
t−2/gt−2 +κ2I(εt−2 < 0)ε2t−2/gt−2,

and
r2t = ĥ−1t (ε2t−2/ĝt−2, I(εt−2 < 0)ε2t−2/ĝt−2)

An example of the latter is GARCH(1,1) vs GARCH(2,1), which leads to ft = β2ht−2,
and so

r2t = ĥ−1t ĥt−2

The third case is the test of no remaining ARCH. This is a test against multiplicative
misspecification,

σ2t = htgtft
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where ft = 1 under the null. If the alternative is that there is ARCH of order m, then

r2t = (ẑ2t−1, . . . , ẑ
2
t−m)

A.3 Test of constant correlations

The log-likelihood of the auxiliary MTV model for observation t assuming K = 2 equals

ln fA(ζt|θ) =− (1/2)
N∑
i=1

ln git − (1/2)
N∑
i=1

lnhit − (1/2) ln |PAt|

− (1/2)ε′t{StDtPAtDtSt}−1εt

where
PAt = P(A0) + (t/T )P(A1) + (t/T )2P(A2)

and git = δi0 + δi1Gi1(t/T, γi1, ci1); only one transition for notational simplicity, and hit
is as in (10). The first sub-block of the score corresponding to the deterministic variance
component under H0 becomes

st(θgi) = −1

2
(g−1it

∂git
∂θgi

+ h−1it
∂hit
∂θgi

)(1− e′iP−1(A0)ztz
′
tei)

where ei = (0′i−1, 1,0
′
N−i)

′, i = 1, . . . , N , and 00 is an empty set. The sub-block corre-
sponding to the GARCH parameters under H0 is

st(θhi) = −1

2
(h−1it

∂hit
∂θhi

)(1− e′iP−1(A0)ztz
′
tei)

i = 1, . . . , N . The remaining sub-blocks under H0 equal

st(ρAj) = −1

2

∂vec(PAt)
′

∂ρAj
{vec(P−1(A0))− (P−1(A0) ⊗ P

−1
(A0))vec(ztz

′
t)}

= −1

2
(t/T )jU ′{vec(P−1(A0))− (P−1(A0) ⊗ P

−1
(A0))vec(ztz

′
t)}

j = 0, 1, 2, where U = ∂vec(P(Aj))/∂ρ
′
Aj consists of zeroes and ones and is identical for

all j. The N2 ×N(N − 1)/2 matrix U is a columnwise collection of vectorised indicator
matrices that identify the locations of the particular correlation parameter within the
matrix PAt. For example, the first correlation parameter in ρAj is located in positions (2,1)
and (1,2) in PAt. An indicator matrix corresponding to this parameter has ones in those
positions, and zeros elsewhere. This vectorised indicator matrix is then the first column
of matrix U , and so on. Consequently, the 3N(N − 1)/2 × N2 matrix ∂vec(PAt)

′/∂ρA
equals

∂vec(PAt)
′

∂ρA
=

 1
(t/T )
(t/T )2

⊗U ′.
The information matrix for observation t under H0 is quite similar to but simpler than

the corresponding one in Silvennoinen and Teräsvirta (2021). In order to give the matrix
a proper expression, we need the commutation matrix K, an N2×N2 matrix whose (i, j)
block equals eje

′
i, that is, [K]ij = eje

′
i, see for example Lütkepohl (1996, pp. 115–118).
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Let the superscript 0 indicate that the corresponding entity is evaluated under H0 (for
example, g0it equals git|H0 , and ∂g0it/∂θgi equals ∂git/∂θgi|H0). The matrix is defined in
the following lemma.

Lemma 2 The expectations of the nine blocks of the information matrix at (rescaled)
time t/T under H0: ρA1 = ρA2 = 0N(N−1)/2 are

B0
t = Est(θ

0)s′t(θ
0) = E

 st(θ
0
g)s
′
t(θ

0
g) st(θ

0
g)s
′
t(θ

0
h) st(θ

0
g)s
′
t(ρA)

st(θ
0
h)s′t(θ

0
g) st(θ

0
h)s′t(θ

0
h) st(θ

0
h)s′t(ρA)

st(ρA)s′t(θ
0
g) st(ρA)s′t(θ

0
h) st(ρA)s′t(ρA)


The (i, j) sub-block of B11t = Est(θ

0
g)s
′
t(θ

0
g), i 6= j, equals

[B11t]ij = Est(θ
0
gi)s

′
t(θ

0
gj)

=
1

4
(

1

g0it

∂g0it
∂θgi

+
1

h0it

∂h0it
∂θgi

)(
1

g0jt

∂g0jt
∂θ′gj

+
1

h0jt

∂h0jt
∂θ′gj

)e′iP
−1
(A0)eje

′
iP(A0)ej .

When i = j,

[B11t]ii = Est(θ
0
gi)s

′
t(θ

0
gi)

=
1

4
(

1

g0it

∂g0it
∂θgi

+
1

h0it

∂h0it
∂θgi

)(
1

g0it

∂g0it
∂θ′gi

+
1

h0it

∂h0it
∂θ′gi

)(1 + e′iP
−1
(A0)ei).

The (i, j) sub-block of B22t = Est(θ
0
h)s′t(θ

0
h), i 6= j, equals

[B22t]ij = Est(θ
0
hi)s

′
t(θ

0
hj)

=
1

4
(

1

h0it

∂h0it
∂θhi

)(
1

h0jt

∂h0jt
∂θ′hj

)e′iP
−1
(A0)eje

′
iP(A0)ej .

When i = j,

[B22t]ii = Est(θ
0
hi)s

′
t(θ

0
hi)

=
1

4
(

1

h0it

∂h0it
∂θhi

)(
1

h0it

∂h0it
∂θ′hi

)(1 + e′iP
−1
(A0)ei).

The (i, j) sub-block of B12t = Est(θ
0
g)s
′
t(θ

0
h), i 6= j, equals

[B12t]ij = Est(θ
0
gi)s

′
t(θ

0
hj)

=
1

4
(

1

g0it

∂g0it
∂θgi

+
1

h0it

∂h0it
∂θgi

)(
1

h0jt

∂h0jt
∂θ′hj

)e′iP
−1
(A0)eje

′
iP(A0)ej .

When i = j,

[B12t]ii = Est(θ
0
gi)s

′
t(θ

0
hi)

=
1

4
(

1

g0it

∂g0it
∂θgi

+
1

h0it

∂h0it
∂θgi

)(
1

h0it

∂h0it
∂θ′hi

)(1 + e′iP
−1
(A0)ei).
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Furthermore, the (i, j) sub-block of Est(θ
0
g)s
′
t(ρA) equals

[B13t]ij = Est(θ
0
gi)s

′
t(ρAj)

=
1

4
(t/T )j(

1

g0it

∂g0it
∂θgi

+
1

h0it

∂h0it
∂θgi

){(ei ⊗ ei)′(P−1(A0) ⊗ IN ) + (ei ⊗ ei)′(IN ⊗ P−1(A0))}U

i = 1, . . . , N ; j = 0, 1, 2. The (i, j) sub-block of Est(θ
0
h)s′t(ρA) equals

[B23t]ij = Est(θ
0
hi)s

′
t(ρAj)

=
1

4
(t/T )j(

1

h0it

∂h0it
∂θhi

){(ei ⊗ ei)′(P−1(A0) ⊗ IN ) + (ei ⊗ ei)′(IN ⊗ P−1(A0))}U

i = 1, . . . , N ; j = 0, 1, 2. Finally, the (i, j) sub-block of the last block is equal to

[B33t]ij = Est(ρAi)s
′
t(ρAj)

=
1

4
(t/T )i+jU ′MAU

i, j = 0, 1, 2, where

MA = P−1(A0) ⊗ P
−1
(A0) + (P−1(A0) ⊗ IN )K(P−1(A0) ⊗ IN ).

Proof. See the appendix of Silvennoinen and Teräsvirta (2005), or Silvennoinen and
Teräsvirta (2021).

In order to define the test statistic, let B13·j be the (i, j) blocks of B13 where i ∈
{1, . . . , N}, that is,

B13·j =
[
[B′13]j1, . . . , [B

′
13]jN

]
, j = 0, 1, 2

and define B23·j similarly. Partition the matrix B as follows:

B̃11 =

 B11 B12 B13·0
B′12 B22 B23·0
B′13·0 B′23·0 [B33]00


B̃12 =

[
B13·1 B13·2

[B33]01 [B33]02

]
and

B̃33 =

[
[B33]11 [B33]12
[B′33]12 [B33]22

]
.

Next, define

x̂jt = −1

2
(
t

T
)jU ′{vec(P−1(A0))− (P̂−1(A0) ⊗ P̂

−1
(A0))vec(ẑtẑ

′
t)}

j = 1, 2, where ẑt and P̂(A0) equal zt and P(A0) estimated under H0, respectively. The
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test statistic

LMT = T (
1

T

T∑
t=1

x̂′1t,
1

T

T∑
t=1

x̂′2t){B̃22 − B̃′12(B̃0
11)
−1B̃12}−1(

1

T

T∑
t=1

x̂′1t,
1

T

T∑
t=1

x̂′2t)
′ (A.5)

has an asymptotic χ2-distribution with N(N − 1) degrees of freedom when H0 holds. To
make the test statistic operational, the sub-blocks of the information matrix in (A.5) have
to be replaced by consistent plug-in estimators.

A.4 Test for an additional transition in the correlations

The test statistic for an additional transition is constructed in the same way as in Sec-
tion A.3, and the blocks related to the volatility components are identical. However, all
blocks related to the correlation need modifications to include the parameters governing
the time-varying correlation that exists under the null. This includes both the parameters
in the correlation matrices under the null, and their corresponding transition parameters.

Let us define xhit = h−1it
∂hit
∂θhi

, xgit = g−1it
∂git
∂θgi

+ h−1it
∂hit
∂θgi

. Let us also partition the

linearised correlation model as PAt = PAt0 + t/TP(A1) + (t/T )2P(A2), where PAt0 contains
the time-varying correlation model under the null. When testing L transitions against
L + 1 transitions, PAt0 contains L + 1 correlation matrices P(1), . . . ,P(L+1) and L tran-
sition functions Gl(t/T, γl, cl) (here we assume Kl = 1 for simplicity), l = 1, . . . , L. The
information matrix is approximated by its consistent estimator

B̂ = T−1
T∑
t=1

Et−1[st(θ
0)st(θ

0)′]

where θ0 = (θg,θh,θG,θρA0 ,θρA1)′, where θG contains the transition parameters from
the L transitions that are present under the null, θρA0 = (ρ(1), . . . ,ρ(L+1))

′ and θρA1 =
(ρ(A1),ρ(A2))

′. From here on, the expressions are evaluated at the true parameter values
under the null (we omit the additional superscripts of 0 to keep the notation simple).

With this notation, the (i, j) sub-block of B̂11, i 6= j, equals

[B̂11]ij =
1

4T

T∑
t=1

xgitx
′
gjte

′
iP
−1
(At0)eje

′
iP(At0)ej .

When i = j,

[B̂11]ii =
1

4T

T∑
t=1

xgitx
′
git(1 + e′iP

−1
(At0)ei).

Similarly, the (i, j) sub-block of B̂22, i 6= j, is equal to

[B̂22]ij =
1

4T

T∑
t=1

xhitx
′
hjte

′
iP
−1
(At0)eje

′
iP(At0)ej .

When i = j,

[B̂22]ii =
1

4T

T∑
t=1

xhitx
′
hit(1 + e′iP

−1
(At0)ei).
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The (i, j) sub-block of B̂12, i 6= j, equals

[B̂12]ij =
1

4T

T∑
t=1

xgitx
′
hjte

′
iP
−1
(At0)eje

′
iP(At0)ej .

When i = j,

[B̂12]ii =
1

4T

T∑
t=1

xgitx
′
hit(1 + e′iP

−1
(At0)ei).

The next blocks deal with the transition parameters. Define xGt =
∂vecP ′

At
∂θG

. The lth block

of
∂vecP ′

At
∂θG

is (
L∏

i=l+1

(1−Gi)

)
∂Gi
∂θGi

vec(P(l+1) − P
(l−1)
t )′

using the recursion in (8). The block B̂33 is equal to

B̂33 =
1

4T

T∑
t=1

xGtMAx
′
Gt.

The ith sub-block of B̂13 equals

[B̂13]i =
1

4T

T∑
t=1

xgit(e
′
iP
−1
(At0) ⊗ e

′
i + e′i ⊗ e′iP−1(At0))x

′
Gt.

and the ith sub-block of B̂23 equals

[B̂23]i =
1

4T

T∑
t=1

xhit(e
′
iP
−1
(At0) ⊗ e

′
i + e′i ⊗ e′iP−1(At0))x

′
Gt.

Next, we will consider the blocks related to the correlations. The matrix ∂vec(PAt)
′/∂θρA0

equals

∂vec(PAt)
′

∂θρA0

= v ⊗U ′ =



∏L
l=1(1−Glt)

G1t
∏L
l=2(1−Glt)

G2t
∏L
l=3(1−Glt)
· · ·

Gl−1,t(1−GLt)
GLt


⊗U ′.

and the matrix ∂vec(PAt)
′/∂θρA1 equals

∂vec(PAt)
′

∂ρA1
=

[
t/T

(t/T )2

]
⊗U ′

The block B̂44 is equal to

B̂44 =
1

4T

T∑
t=1

vtv
′
t ⊗U ′MAU .
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and (i, j) sub-block of B̂55 is equal to

[B̂55]ij =
1

4T

T∑
t=1

(t/T )i+jU ′MAU .

for i, j = 1, 2. The ith sub-block of B̂14 is equal to

[B̂14]i =
1

4T

T∑
t=1

xgit(e
′
iP
−1
(At0) ⊗ e

′
i + e′i ⊗ e′iP−1(At0))(v

′
t ⊗U)

and the (i, j) sub-block of B̂15 is equal to

[B̂15]ij =
1

4T

T∑
t=1

(t/T )jxgit(e
′
iP
−1
(At0) ⊗ e

′
i + e′i ⊗ e′iP−1(At0))U)

j = 1, 2. The corresponding sub-blocks of B̂24 and B̂25 are

[B̂24]i =
1

4T

T∑
t=1

xhit(e
′
iP
−1
(At0) ⊗ e

′
i + e′i ⊗ e′iP−1(At0))(v

′
t ⊗U)

and the (i, j) sub-block of B̂15 is equal to

[B̂25]ij =
1

4T

T∑
t=1

(t/T )jxhit(e
′
iP
−1
(At0) ⊗ e

′
i + e′i ⊗ e′iP−1(At0))U)

j = 1, 2. The block B̂34 equals

B̂34 =
1

4T

T∑
t=1

xGtMA(v′ ⊗U)

The ith sub-block of B̂35 equals

[B̂35]i =
1

4T

T∑
t=1

(t/T )ixGtMAU

i = 1, 2 Finally, the The ith sub-block of B̂45 is equal to

[B̂45]i =
1

4T

T∑
t=1

(t/T )i(v ⊗U ′)MAU

Next, define

x̂jt = −1

2
(
t

T
)jU ′{vec(P−1(A0t))− (P̂−1(A0t) ⊗ P̂

−1
(A0t))vec(ẑtẑ

′
t)}

j = 1, 2, where ẑt and P̂(A0t) equal zt and P(A0t) estimated under H0, respectively. The
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test statistic

LMT = T (
1

T

T∑
t=1

x̂′1t,
1

T

T∑
t=1

x̂′2t)[B̂
−1]SW (

1

T

T∑
t=1

x̂′1t,
1

T

T∑
t=1

x̂′2t)
′

where [B̂−1]SW is the N(N − 1)×N(N − 1) block in the south-west corner of the inverse
of B̂. Because the matrix B̂ can have a large dimension, its inverse could be obtained by
using block inversion methods, perhaps applying them recursively. The test statistic has
an asymptotic χ2-distribution with N(N − 1) degrees of freedom when H0 holds.
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B Simulations of test statistics

B.1 Tests of GARCH equations

The test for slow moving baseline volatility has a statistic whose distribution is sensitive
to the high frequency, GARCH, volatility. For this reason, one cannot use the asymptotic
distribution, rather the distribution must be generated via simulation. Further, Silven-
noinen and Teräsvirta (2016) showed that the size of the test is distorted if the GARCH
parameterisation deviates from the true one. For this reason a few alternative approaches
to estimate the GARCH parameters, and especially the persistence, are investigated. It
should be noted that estimating GARCH without taking the nonstationarity into account
will yield overestimated persistence, thereby impacting the test statistic distribution and
thus rendering the test outcomes unreliable. These estimates are given in Table 3.

The baseline volatility may be very different in different data series. Therefore one
should not ignore visual inspection of the returns, nor rely on general rules of thumb. If
there are sufficiently long sections of data where the general level of volatility remains
constant, it is advisable to estimate the GARCH parameters over such subsample. In the
case here, there are a couple of relatively constant volatility sections, for example from
November 2003 until October 2007. The parameter estimates for that calm subperiod
are in Table 3. Comparison with the estimates from the entire period GARCH model,
it is clear that the neglected nonstationarity has biased the estimates resulting in high
persistence and kurtosis. Because the data set has a sufficiently long span of GARCH
type clustering without (visually) significant movement in the general baseline level, more
reliable estimates are obtained by using that subsample only.

Another approach consists of estimating the GARCH equation over a rolling window
such that the intercept is time-varying, targeting the unconditional volatility over each
window, while the other parameters are assumed constant over the entire sample period,
and estimated in the usual way. The choice of the window length should take into account
the general recommendations regarding the sample size when attempting GARCH estima-
tion. Too long a window will be impacted by the slowly changing baseline volatility level,
whereas too short a window will yield very uncertain GARCH estimates. To investigate
the properties of this approach, we ran a simulation experiment with a few different base-
line volatilities. The window widths varied from 250 to 1000 observations. Figures 9–11
in Section G depict the distributions of the GARCH estimates and the derived persistence
and kurtosis measures, as explained in He and Teräsvirta (1999), for a selection of baseline
volatilities and window widths. Based on these experiments, we conclude that a window
width of 400 observations yields sufficiently robust results for our application. The re-
sulting GARCH estimates are reported in Table 3, and they are quite similar to the ones
obtained for the aforementioned calm period. This can be interpreted as support for the
rolling window method, especially in situations where visual inspection of data does not
reveal a sufficiently long period of constant unconditional volatility.

Overall, it is clear that using simply the GARCH estimates from the entire sample to
calibrate the test statistic distribution for the specification of the deterministic component
of the volatility is not recommended. For comparison, Table 3 reports also the GARCH
estimates from a TV-GARCH model where the TV specification has been completed. The
estimated persistence is higher than the ones obtained from the calm period or rolling
window variance targeting method, however, as discussed in Silvennoinen and Teräsvirta
(2016), underestimation of persistence has less severe impact on the performance of the
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TV specification test than overestimation does.

α̃ β̃ persistence kurtosis

Rolling window 400

ANZ 0.090 0.836 0.926 3.38
CBA 0.087 0.850 0.937 3.43
NAB 0.095 0.817 0.912 3.36
WBC 0.085 0.858 0.943 3.45

Calm period

ANZ 0.073 0.852 0.925 3.24
CBA 0.081 0.842 0.923 3.29
NAB 0.066 0.829 0.896 3.14
WBC 0.091 0.806 0.897 3.28

Entire period GARCH only

ANZ 0.065 0.927 0.992 6.40
CBA 0.089 0.890 0.979 4.83
NAB 0.104 0.867 0.971 4.85
WBC 0.075 0.911 0.986 5.08

Entire period TV-GARCH

ANZ 0.078 0.880 0.957 3.50
CBA 0.091 0.860 0.950 3.61
NAB 0.107 0.825 0.931 3.62
WBC 0.084 0.878 0.962 3.70

Table 3: Specification stage for the deterministic component in volatili-
ties of each of the four banks. α̃ and β̃ are the initial estimates
used for calibrating the test statistic distribution. The rolling
window method allows the GARCH intercept to adjust to tar-
get the unconditional variance in a window of size 400. The
“calm period” selects the continuous period from Nov-2003 to
Oct-2007 which has very little visible variation in the baseline
volatility. For comparison, the GARCH estimates from the en-
tire sample period are reported, along with the final estimates
from the TV-GARCH model.

B.2 Evaluation tests of GARCH equations

The fact that the evaluation tests discussed in Section A.2 are applied to the pre-filtered

data P̂t
−1/2

εt is known to potentially alter the distribution of the test statistic. In this
Section we present simulation results that show the size of the tests remains practically
unchanged, rendering the tests applicable in the proposed way.

The simulation uses 2000 observations on a bivariate TVGARCH model parameterised
as ht = 0.10 + 0.05ε2t−1/gt−1 + 0.85ht−1, gt = 1 + 3(1 + exp{−e3(t/T − 0.5)})−1. These are
coupled with a CCC model with ρ = 0.5, and then with an STCC model parameterised
as ρ(1) = 0.3, ρ(2) = 0.7, Gt = (1 + exp{−e2.5(t/T − 0.5)})−1. The noise terms are iid
standard normal. Two estimation procedures were used, a two-step and a multi-step one.

1st step The individual TVGARCH models are estimated, assuming the series are un-
correlated.
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2nd step Estimate the correlation model conditional on the volatility model estimates
from the previous step. Then, estimate the TVGARCH models conditional on
the correlation estimates.

The misspecification tests are then calculated using the TVGARCH estimates from
the 2nd step, and the data is pre-filtered with the correlation estimates from the 2nd
step. The multi-step continues repeating the procedure of the 2nd step, until no further
improvements are achieved.

standard robust
10% 5% 1% 10% 5% 1%

CCC two-step MS1 0.146 0.085 0.020 0.132 0.074 0.016
MS2 - a 0.122 0.064 0.012 0.101 0.048 0.013
MS2 - b 0.143 0.080 0.017 0.108 0.051 0.008
MS3 0.125 0.061 0.010 0.104 0.054 0.010

STCC two-step MS1 0.134 0.074 0.023 0.121 0.055 0.015
MS2 - a 0.123 0.059 0.015 0.101 0.045 0.013
MS2 - b 0.122 0.062 0.019 0.087 0.044 0.010
MS3 0.115 0.058 0.015 0.100 0.050 0.011

CCC multi-step MS1 0.145 0.083 0.022 0.133 0.073 0.014
MS2 - a 0.116 0.062 0.015 0.097 0.052 0.009
MS2 - b 0.133 0.069 0.018 0.100 0.046 0.010
MS3 0.120 0.062 0.016 0.107 0.060 0.014

STCC multi-step MS1 0.147 0.084 0.023 0.135 0.068 0.012
MS2 - a 0.130 0.059 0.011 0.103 0.046 0.006
MS2 - b 0.120 0.067 0.016 0.090 0.039 0.005
MS3 0.112 0.055 0.012 0.104 0.047 0.009

Table 4: Size simulation for the three types of misspecification tests in
Amado and Terasvirta (2017). 2000 replications. T = 2000,
N = 2.
MS1: gt additively misspecified, alternative linearised with first
order term only.
MS2 - a: GARCH(1,1) vs GARCH(1,2)
MS2 - b: GARCH(1,1) vs GARCH(2,1)
MS3: test for remaining ARCH, lag 1.

From Table 4 it is evident that the standard form of the tests is slightly oversized. The
robust version of the tests on the other hand seems to behave well, and there is no need
for any adjustments of the test statistics or their distributions. Therefore the procedure
of removing the correlations between the series prior to applying the evaluation tests can
be recommended.

B.3 Tests of correlations

The simulation experiment investigates the size of the test in an environment where the
multivariate model is correctly specified. The number of data series considered in the
system is N = 2, 5, 10, 20. The length varies from T = 25 for the bivariate systems, which
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is relevant for time series systems in macro applications, up to T = 1000, which in turn is
considered to be a fairly small sample size for high frequency returns data. The length of
the time series places a constraint on the dimension of the model, that is, the parametric
alternative is only feasible if the number of parameters remains comfortably below the
amount of available data points. We simulated the test by both assuming that Dt ≡ IN
and that there is conditional heteroskedasticity in the model: Dt 6= IN .

When Dt ≡ IN , it turns out that the results are fairly independent of the structure of
the correlations. We used both equicorrelation and Toeplitz matrices in our simulations,
and the results remained the same. Table 5 in Section F contains results of a simulation
in which Dt ≡ IN , and the N ×N correlation matrix P = [ρij ] is an equicorrelated one
with weak (ρ = 1/3) and moderately strong (ρ = 2/3) correlation. The Table also reports
the results from using a Toeplitz correlation matrix such that [ρij ] = ρ|i−j|, i, j = 1, ..., N ,
with ρ = 0.5 representing moderate to weak correlation, and ρ = 0.9 representing strong
to moderate correlation. It is seen that the empirical size of the test is rather close to
the nominal one already when N = 2 and T = 100. The size holds up across the various
correlation patterns.

We next turn to the case Dt 6= IN . Tables 6 and 7 in Section F contain results of
size simulations where the sensitivity of the test is examined against combinations for the
GARCH persistence and kurtosis, and a selection of strengths of correlations (the equicor-
related and Toepliz ones described above). The test is generally well-sized. However, an
interesting aspect is that there is slight oversizing when kurtosis decreases (which means
shifting the relative weight from α to β in the GARCH equation, while keeping persistence
constant). A change in persistence does not seem to affect the size of the test. As the di-
mension of the system increases, the test does not perform equally well. Increasing sample
size does not seem to be able to counteract this (the simulations use T = 500, 1000, 2000).

As an interesting additional simulation a misspecified case is considered. When Dt 6=
IN but the conditional heteroskedasticity is neglected, the test is heavily oversized, as ex-
pected (results not reported here). The obvious conclusion is that constancy of correlations
can only be tested after specifying and estimating both Dt and St.
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C Proofs

Proof of Lemma 1. The ‘sample’ information matrix with T observations equals

1

4T

T∑
t=1

Bt =
1

4T

T∑
t=1

[
B11t B12t

B21t B22t

]
.

Consider the (1, 2) element of B11(T ) = (1/T )
∑T

t=1B11t:

[B11(T )]12 = (1/T )
T∑
t=1

(g0(t/T ))−2G0
1(t/T )

which is an average of T values of the logistic cumulative distribution function. Let [Tr] = t
be the integer closest to t. Then

(1/T )

T∑
t=1

(g0(t/T ))−2G0
1(t/T ) =

T∑
t=1

∫ (t+1)/T

t/T
(g∗0([Tr]/T )−2G0

1([Tr]/T )dr

=

∫ (T+1)/T

1/T
(g∗0([Tr]/T ))−2G0

1([Tr]/T )dr

→
∫ 1

0
(g∗0(r))−2G0

1(r)dr

as T →∞. The other elements of B11 = limT→∞B11(T ), are derived in a similar fashion.
In matrix form,

B11 =
1

2

∫ 1

0
(g∗0(r))−2g01(r)g01(r)′dr

The blocks B12 and B22 are obtained similarly.
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D Details of maximisation by parts

This appendix describing the outlines of the estimation algorithm derives from Silven-
noinen and Teräsvirta (2021). Estimation proceeds as follows.

1. Assume lnhit(θhi,θgi) = 0, i = 1, . . . , N , and estimate parameters θg = (θg1, . . . ,θgN )′,
i = 1, . . . , N , equation by equation, assuming Pt(θρ) = IN . Denote the estimate

St(θ̂
(1,1)
g ). This means that the deterministic components gi(t/T,θgi) have been

estimated once, including the intercept δi0 in (2).

2. Estimate Pt(θρ) given θg = θ̂
(1,1)
g . This requires a separate iteration because Pt(θρ)

is nonlinear in parameters, see (5) and (6). Denote the estimate Pt(θ̂
(1,1)
ρ ).

3. Re-estimate St(θg) assuming Pt(θρ) = Pt(θ̂
(1,1)
ρ ). This yields St(θ̂

(1,2)
g ). Then re-

estimate Pt(θρ) given θg = θ̂
(1,2)
g . Iterate until convergence. Let the result after R1

iterations be St(θg) = St(θ̂
(1,R1)
g ) and Pt(θρ) = Pt(θ̂

(1,R1)
ρ ). The resulting estimates

are maximum likelihood ones under the assumption Dt(θh,θg) = IN .

4. Estimate θh from Dt(θh, θ̂
(1,R1)
g ) using Pt(θρ) = Pt(θ̂

(1,R1)
ρ ). This is a standard

multivariate conditional correlation GARCH estimation step as in Bollerslev (1990),

because St(θ̂
(1,R1)
g ) is fixed and does not affect the maximum, and Pt(θ̂

(1,R1)
ρ ) is

known. In total, steps 1–4 form the first iteration of the maximisation algorithm.

Denote the estimate θ̂
(1)
h .

5. Estimate θg from St(θg) keeping Dt(θ̂
(1)
h , θ̂

(1,R1)
g ) and Pt(θ̂

(1,R1)
ρ ) fixed. This step is

analogous to the first part of Step 3. The difference is that Dt(θ̂
(1)
h , θ̂

(1,R1)
g ) 6= IN .

Denote the estimator St(θ̂
(2,1)
g ).

6. Estimate Pt(θρ) given θg = θ̂
(2,1)
g and θh = θ̂

(1)
h . Denote the estimator Pt(θ̂

(2,1)
ρ ).

Iterate until convergence, R2 iterations. The result: St(θg) = St(θ̂
(2,R2)
g ) and

Pt(θρ) = Pt(θ̂
(2,R2)
ρ ).

7. Estimate θh from Dt(θh, θ̂
(2,R2)
g ) using Pt(θρ) = Pt(θ̂

(2,R2)
ρ ) (St(θ̂

(2,R2)
g ) is fixed).

The result: θh = θ̂
(2)
h . This completes the second full iteration.

8. Repeat steps 5–7 and iterate until convergence.

For identification reasons, δ0i, i = 1, . . . , N , is frozen to δi0 = δ̂
(1,R1)
i0 . This frees the

intercepts in θhi. Any positive constant would do for δi0, but for numerical reasons the
intercepts are fixed to the values they obtain after the first iteration when θh is not yet
estimated a single time.

In practice, in estimating the slope parameters in transition functions it may be useful
to apply the transformation γij = exp{ηij}, in which case γij need not be restricted when
ηij is bounded away from −∞. The motivation for this transformation is that estimating
ηij instead of γij is numerically convenient in cases where γij is large, see Goodwin, Holt
and Prestemon (2011) or Silvennoinen and Teräsvirta (2016) for discussion. Another
alternative, proposed by Chan and Theoharakis (2011), is to redefine the slope parameter
as γij = 1/η2ij and estimate ηij . The authors show that this also alleviates the convergence
problems sometimes found when γij is large. Ekner and Nejstgaard (2013) aim at the
same effect by rescaling γij to vary between zero and one.
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E Estimated transition equations

This appendix contains the estimated deterministic components in the TV-GARCH equa-
tions (standard deviation estimates in parentheses). Note that the intercept is fixed after
the first iteration, hence it does not have a standard deviation estimate.

ANZ

ĝ1t =2.28− 1.234
(0.059)

(1 + exp{−5.715
(1.223)

(t/T − 0.404
(0.003)

)})−1

+ 12.316
(1.518)

(1 + exp{−5.875
(0.392)

(t/T − 0.571
(0.002)

)})−1

− 11.704
(1.514)

(1 + exp{− 4.459
(0.0.166)

(t/T − 0.623
(0.004)

)})−1.

CBA

ĝ2t =1.35− 0.525
(0.054)

(1 + exp{−5.638
(2.545)

(t/T − 0.407
(0.007)

)})−1

+ 9.257
(1.871)

(1 + exp{−5.117
(0.374)

(t/T − 0.574
(0.004)

)})−1

− 8.944
(1.867)

(1 + exp{−4.504
(0.252)

(t/T − 0.621
(0.006)

)})−1.

NAB

ĝ3t =1.07 + 3.843
(1.273)

(1 + exp{−2.518
(0.130)

(t/T − 0.303
(0.034)

)})−1

− 3.491
(1.114)

(1 + exp{−3.787
(0.329)

(t/T − 0.373
(0.008)

)})−1

+ 20.026
(5.692)

(1 + exp{−4.926
(0.229)

(t/T − 0.576
(0.003)

)})−1

− 20.039
(5.676)

(1 + exp{−4.183
(0.123)

(t/T − 0.609
(0.006)

)})−1.

WBC

ĝ4t =2.45− 3.120
(0.554)

(1 + exp{−2.194
(0.124)

(t/T − 0.534
(0.034)

)})−1

+ 25.782
(12.524)

(1 + exp{−4.569
(0.158)

(t/T − 0.585
(0.006)

)})−1

− 23.616
(12.682)

(1 + exp{−4.767
(0.375)

(1 + (t/T − 0.607
(0.007)

)})−1.

The locations of the transitions are remarkably similar across transitions. The first tran-
sition of the WBC equation is very slow. The effect of the transition extends over the
whole estimation period and is the reason for the post-crisis decline in the value of ĝ4t; see
Figure 5.
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Figure 9: Simulated distributions of GARCH estimates and implied persistence and
kurtosis measures for a selection of window widths. The baseline gt has a
single transition. The dotted vertical lines indicate the true values of the
parameters α, β, persistence and kurtosis.
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Figure 10: Simulated distributions of GARCH estimates and implied persistence
and kurtosis measures for a selection of window widths. The baseline gt
has an asymmetric double transition. The dotted vertical lines indicate
the true values of the parameters α, β, persistence and kurtosis.
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Figure 11: Simulated distributions of GARCH estimates and implied persistence
and kurtosis measures for a selection of window widths. The baseline gt
has two double transitions. The dotted vertical lines indicate the true
values of the parameters α, β, persistence and kurtosis.
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