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Some background
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Retail Turnover Index (solid) and a transaction index (dashed)
in Norway over 24 months in 2019 and 2020.

Five largest fluctuations of month-on-month ratio between them
(dotted, faint) marked by vertical lines (1, ..., 5).

2



Some background

t + 30: Retail Turnover Index (RTI) for NACE45-47
For each month t, the sample consists of st ∪ rt with

• take-all units st, self-representing

• take-some units rt, representing Rt = Ut \ st
Aim: flash estimation by t + 15, survey only st

• reduced survey burden and processing resource

• requires appropriate modelling and learning, since
st is not ‘representative’ of whole population Ut

Available data:

• {yti : i ∈ st} survey turnover, monthly

• {y∗ti : i ∈ U ∗
t } past VAT turnover, months delay

• {zti : i ∈ UB
t } debit card payment total, daily

NB. generally, Ut ̸= U ∗
t ̸= UB

t , yti ̸= y∗ti ̸= zti
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A generic setup for flash estimation

y = target outcome and x = associated features
Denote by µ(x, s) a predictor for any unit with features x,
obtained from

{(yi, xi) : i ∈ s}
where s is the training sample of observations. Denote by
R a target set of units with known xj, ∀j ∈ R, and

s ∩R = ∅,

for which the predicted y-values are of interest.
However, it is known that µ(x, s) is biased for {yj : j ∈ R},
because yj for j ∈ R and yi for i ∈ s do not have the same
distribution conditional on xj and xi.

Fundamental challenge:
lack of observations from target domain,

e.g. Rt = Ut \ st for RTI

4



Learning approaches, given model µ(x)

Simplistic learning: only based on take-all sample st

{(xi, yi) : i ∈ st}
Augmented learning: augment st by additional data

s∗t = st ∪ r∗t , {(xi, yi) : i ∈ st}, {(xj, y∗j ) : j ∈ r∗t }
NB. Given any constant γ > 0, augmented loss

L(s ∪ r∗; γ) =
∑
i∈s

{µ(xi)− yi}2 + γ
∑
j∈r∗

{µ(xj)− y∗j}2

where r∗ denotes a set of units that are similar to or even overlap
with those in R, but y∗j is a proxy to target yj also if j ∈ r∗ ∩R. Now,

β̂
µ(x)=x⊤β

= (
∑

i∈s xix
⊤
i + γ

∑
j∈r∗ xjx

⊤
j )

−1(
∑

i∈s xiyi + γ
∑

j∈r∗ xjy
∗
j )

= argmin
β

L(s ∪ r∗; γ) = argmin
β

L(s∗)

L(s∗) =
∑
i∈s∗

{µ(xi)− yi}2 and s∗ = r∗ ∪ s ∪ · · · ∪ s

where s is duplicated γ−1 times in s∗ (if practically possible)
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Learning approaches, given model µ(x)

yti = month-t turnover, xti = VAT turnovers, transactions
Augmented sample

s∗t = st ∪ r∗t

Setting-I:
r∗t = rt′, r∗t = rt−1 or r∗t = rt′ ∪ rt−1

where rt′ is r-sample (of take-some units) for the same
month previous year, and rt−1 that of previous month
NB. y∗j for j ∈ r∗t is a past survey turnover value
Setting-II:

r∗t = R∗
t′, r∗t = R∗

t−d or r∗t = R∗
t′ ∪R∗

t−d

where R∗
t′ contains all non-take-all units with VAT turnover

for same month previous year, and R∗
t−d for month t− d

NB. d = 4 in Norway to ensure y∗j is available, ∀j ∈ r∗t

NB. in either setting, many units in r∗t still belong to Rt

Augmented learning can help if E(yti | xti) is similar to
E(y∗t∗i | xt∗i) given sensible choice t∗ or composition of r∗t
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Learning approaches, given model µ(x)

Augmented learning using st and additional units
Setting-I Additional units r∗t

t t′ t− 1 (a) (b) (c)
Sept’22 Sept’21 Aug’22 rSept’21 rAug’22 rSept’21 ∪ rAug’22
Aug’22 Aug’21 Jul’22 rAug’21 rJul’22 rAug’21 ∪ rJul’22...
Sept’21 Sept’20 Aug’21 rSept’20 rAug’21 rSept’20 ∪ rAug’21

Setting-II, d = 4 Additional units r∗t
t t′ t− d (a) (b) (c)

Sept’22 Sept’21 May’22 R∗
Sept’21 R∗

May’22 R∗
Sept’21 ∪R∗

May’22
Aug’22 Aug’21 Apr’22 R∗

Aug’21 R∗
Apr’22 R∗

Aug’21 ∪R∗
Apr’22...

Sept’21 Sept’20 May’21 R∗
Sept’20 R∗

May’21 R∗
Sept’20 ∪R∗

May’21
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Learning approaches, given model µ(x)

Transfer learning: target model µ(x; β) and sample s;
source model µ(x; θ̂) estimated from a similar population;
obtain β̂ based on L(β; s) but subjected to ∥θ̂ − β∥2 ≤ ϵ

Quasi transfer learning: target µ(x, qt) for domain qt

µ(x, s∗t ) µ(x, s∗b)
⇓

µ(x, qt) µ(x, qb)

ĝ(·)

ĝ(·)
given b < t

E{µ(x, s∗t )} = g
(
x, µ(x, s∗b)

)
t = Sept’22 Setting-I, b = Aug’22 Setting-II, b = May’22

Target qt sSept’22 ∪ rSept’22 sSept’22 ∪RSept’22
Source:target qb sAug’22 ∪ rAug’22 sMay’22 ∪RMay’22

Source s∗t sSept’22 ∪ rSept’21 ∪ rAug’22 sSept’22 ∪R∗
Sept’21 ∪R∗

May’22
Source:source s∗b sAug’22 ∪ rAug’21 ∪ rJul’22 sMay’22 ∪R∗

May’21 ∪R∗
Jan’22

8



Model learning illustrated

Major subdivisions of NACE47 - Retail sales
471 Non-specialised stores
472 Food, beverages and tobacco in specialised stores
473 Automotive fuel in specialised stores
474 Information & communication equipment in specialised stores
475 Other household equipment in specialised stores
476 Cultural and recreation goods in specialised stores
477 Other goods in specialised stores
478 Via stalls and markets
479 Not in stores, stalls or markets

Left, domain turnover shares. Right, st turnover share (solid),
population proportion (dotted), sample proportion (dashed).
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Model learning illustrated

Setting-I: relative average MSE in 2022
Sample for learning

NACE471 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 1 1.00 1.00 1.00 1.00
Random forest 1 0.99 0.65 0.65 0.24
NACE475 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 1 1.02 0.93 0.94 0.86
Random forest 1 1.04 0.86 0.92 0.21
NACE477 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 1 0.92 0.83 0.77 0.78
Random forest 1 0.54 0.52 0.47 0.28

Note: MSE =
∑

i∈rt{yti − µ(xti)}2/|rt|
Residual for hypothetical learning on st ∪ rt

Augmented learning better than simplistic learning
Random forest usually better than linear regression
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Model learning illustrated

Setting-I: average SME (×102) in 2022
Sample for learning

NACE 471 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear reg. 310 306 309 305 308
Random forest 268 214 167 157 58
NACE 475 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear reg. 201 192 113 117 132
Random forest 260 108 220 161 16
NACE 477 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear reg. 161 263 133 188 107
Random forest 118 56 37 37 8

Note: SME = {|rt|−1
∑

i∈rt µ(xti)− yti}2
SME more relevant than MSE for Official Statistics

Residual for hypothetical learning on st ∪ rt
Random forest usually better than linear regression
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Model learning illustrated

Setting-II: average SME (×102) in 2022
Sample for learning

NACE 471 st st ∪ rt′ st ∪ rt−4 st ∪ rt′ ∪ rt−4 st ∪ rt

Linear reg. 310 298 307 297 309
Random forest 254 200 226 188 235
NACE 475 st st ∪ rt′ st ∪ rt−4 st ∪ rt′ ∪ rt−4 st ∪ rt

Linear reg. 201 156 206 168 155
Random forest 266 110 188 93 123
NACE 477 st st ∪ rt′ st ∪ rt−4 st ∪ rt′ ∪ rt−4 st ∪ rt

Linear reg. 161 264 203 246 116
Random forest 109 38 38 18 34

Note: using VAT instead of survey turnover in r∗t
Random forest better than linear regression

Augmented s∗t = st ∪ r∗t better than simplistic st
Can accept {yti : i ∈ st} ∪ {y∗tj : j ∈ r∗t } for {yti : i ∈ st ∪ rt},

in particular, r∗t = rt′ ∪ rt−4 seems a robust choice
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Flash RTI for NACE47

RTI (solid) for NACE47 over periods of 2021 - 2022
flash RTI: simplistic (dotted), augmented (dashed)

hypothetical learning from rt (cross)
NB. production implementation currently at SSB
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Retrospective validation

RTI (solid) and VAT index (dotted) in Norway over 2020-2022
NB. Distinguish modelling to learning (details omitted here)

NB. One should be able to tell if the chosen model and learning
approach have worked satisfactorily, till as recently as, say,
d months ago, had VAT turnover been the target measure.

Details of methods omitted here.
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Real-time uncertainty assessment

Retrospectively observable index I∗t based on

survey {yti : i ∈ st} and VAT {y∗tj : j ∈ U ∗
t \ st}

Flash index Ît (by t + 15) based on

observed {yti : i ∈ st} and predicted {ŷtj : j ∈ Ut \ st}

Aim: prediction interval of It at the time of Ît

Empirical calibrated [Ît − δt, Ît + δt] where

δt = argmin
δ

δ>0

( t−D∑
b=t−d

I(Îb − δ ≤ I∗b ≤ Îb + δ) = 1− 1

D − d + 1

)
i.e. δt is the minimum positive value of δ such that the
interval [Îb − δ, Îb + δ] achieves the specified coverage over
the most recent time window b ∈ {t− d, ..., t−D}
E.g. if D − d + 1 = 12, empirical coverage = 11/12 = 91.7%
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Real-time uncertainty assessment

Error-prediction by Quasi Transfer Learning:

[Ŷ c
t − αtσ̂t, Ŷ c

t + αtσ̂t] for Y c
t =

∑
j /∈st y

∗
tj

with empirically calibrated αt given σ̂2
t , which is given by

etj = µ(xtj, s
∗
t )− y∗tj by augmented learning

σ2
t := V

(∑
j /∈st

etj

)
=
∑
j /∈st

E(e2tj) of independent errors

ê2 = η(x, s̃ct) error prediction model η

⇒ σ̂2
t =

∑
j /∈st

η(xtj, s̃
c
t) learned from s̃ct

Illustration: r∗t = s̃ct = R∗
t′ ∪R∗

t−d, d = 4

t t′ t− d t′′ t′ − d (t− d)′ (t− d)− d

Sept ’22 Sept ’21 May ’22 Sept ’20 May ’21 May ’21 Jan ’22
...

May ’22 May ’21 Jan ’22 May ’20 Jan ’21 Jan ’21 Sept ’21
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Real-time uncertainty assessment

Two remarks:

• error prediction is a distinct learning task to outcome
prediction because, without any target observations (in
Rt), one cannot pretend the adopted model, e.g. µ(x, s∗t ),
would yield unbiased prediction of the target outcome
(e.g. turnover) and derive the associated uncertainty as
a by-product of the outcome model;

• to improve the efficiency of error prediction one should
utilise observed unit-level prediction errors in the past
just like one uses observed past outcomes at the unit
level for outcome prediction.
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Inference for NACE47

VAT total (solid), prediction interval by empirical method (dotted),
error prediction (dashed), CI by survey sampling (long-dashed).

NB. relative half-length 4.7% by error prediction,
7.8% by empirical method, and 4.6% by survey sampling

NB. nominal level 91.7% for prediction interval, 95% for CI;
coverage 100% for prediction interval, 91.7% for CI
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Some final remarks

Flash RTI for NACE47 is possible by augmented learning,
which halves the current dissemination time lag, reduces
the response burden and processing cost, without com-
promising the accuracy of RTI by traditional survey.
To achieve official statistics quality, we have developed
methods of retrospective validation of model / learning,
as well as real-time prediction interval estimation.

In addition to debit card data used here, other types of
transaction are also of interest, such as e-invoices and
business-to-business bank transfers. Despite distinct
challenges of access and processing, they complement
each other in coverage and content, becoming more use-
ful in combination with each other. This is an area that
requires strategic development of knowledge, experience
and capacity at NSOs. A coordinated program across all
the business statistics would be more impactful.
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Some final remarks

Provided greater access to relevant and timely non-survey
big data, improving the timeliness of economic indicators
while reducing the response burden and processing cost
becomes an ever more urgent matter. Survey data may
still be necessary to ensure the relevance and accuracy
of official statistics, as it is in the case of RTI. Combining
appropriate purposive samples with novel modelling and
learning approaches may be considered in practice.

Research of machine learning for official statistics may
be less concerned about which model to use than how to
organise the data outside the target domain but can be
relevant (for training any given models), such as

augmented learning, quasi transfer learning.
For official statistics repeated over time and geography,
various forms of transfer learning seem a large topic for
future research and application.
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