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Abstract 

I use Bayesian structural VARs with stochastic volatility to study the dy-
namics of global land and ocean temperatures, the sea level, and ice cover in 
the Northern emisphere since 1850, by exploiting (i) their long-run equilib-
rium relationship with climate change drivers ( CCDs) and ( ii) the relationship 
between world GDP and anthropogenic CCDs. Random variation in CCDs 
that causes a permanent increase in land temperatures by 1 Celsius degree is 
associated with a 16% permanent decrease in world GDP, with 94% of the pos-
terior distribution below zero. Assuming that trend GDP growth will remain 
unchanged after 2024, and the world economy will fully decarbonize by 2050, 
land temperatures and the sea level are projected to increase by 4.9 degrees 
and 45 centimeters respectively compared to pre-industrial times. Further, un-
certainty is substantial, pointing to significant upward risks. Because of this, 
bringing climate change under control will require a massive programme of car-
bon removal from the atmosphere, in order to bring anthropogenic CCDs back 
to the levels of the 1970s. 
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1 Introduction

For more than a decade global temperatures have been consistently breaking records

nearly every year. Against this background, the scorching summers of 2022, 2023 and

2024, characterized by heatwaves, droughts, wildfires and floods of an unprecedented

spread and intensity, have highligthed in the starkest possible way the severity of the

threat posed by climate change.

In this paper I use Bayesian structural VARs with stochastic volatility in order

to study the dynamics of global land and ocean temperatures, the sea level, and ice

cover in the Northern emisphere since 1850, by exploiting

() the relationship between world GDP and anthropogenic drivers of climate

change (CO2, methane, clorofluorocarbons, sulphur emissions, ...);

() the long-run equilibrium relationship between global temperatures and either

the sea level or ice cover; and

() the long-run equilibrium relationship between temperatures and all climate

change drivers (CCDs) jointly considered, both anthropogenic and non-anthropogenic

(i.e., volcanic activity and solar irradiance). Such long-run relationship is a key tenet

of climate science, and it is in fact an implication of physics laws that can be (and it

has been) tested within a laboratory setting under controlled conditions.

In line with the climate science literature, the literature on the econometrics of

climate change, and the Intergovernmental Panel on Climate Change (IPCC) reports,

I summarize the joint impact on temperatures of all CCDs via a single index, their

so-called Joint Radiative Forcing (JRF). Intuitively, the radiative forcing of individual

CCDs provides a quantitative measure, based on formulas from physics, of their ability

to trap heat in the atmosphere. The JRF index provides therefore a quantitative

summary of the overall ability of all CCDs jointly considered to trap heat. Because

of this the JRF index is, in fact, all that matters as far as climate change is concerned.

Permanent increases (decreases) in the JRF cause subsequent corresponding increases

(decreases) in global temperatures.

I estimate VARs for world GDP, global temperatures, the sea level, ice cover in the

Northern emisphere, anthropogenic radiative forcing (RF), and the radiative forcings

of volcanic activity and solar irradiance. I impose

(1) exogeneity of both volcanic activity and solar irradiance with respect to the

rest of the system;

(2) in line with a vast literature, cointegration between the JRF index and global

temperatures;

(3) cointegration between global temperatures and either the sea level or ice cover,

a feature of the data that is very strongly supported by cointegration tests; and

(4) a time-varying relationship between world real GDP and anthropogenic RF

(i.e., the ‘carbon intensity’ of GDP). As I discuss below, both conceptual reasons,

and overwhelming empirical evidence, support the notion that the relationship has

indeed materially evolved since the mid-XIX century.
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Finally,

(5) I allow for time-variation in trend world real GDP growth, a feature of the

data that is overwhelmingly supported by Stock and Watson’s (1996, 1998) tests; and

(6) I consider models in which world real GDP is either exogenous with respect

to the rest of the system, or it is allowed to be affected by climate change.

My goal is to provide tentative answers to the following questions: What are the

increases in temperatures and the sea level, and the decrease in ice cover, that are

already implied by the levels of CCDs reached in 2024? How will these variables

evolve going forward under alternative scenarios for the dynamics of world GDP and

its carbon intensity? What are the reductions in CCDs that will be required in order

to bring climate change under control? And what is the impact of climate change on

world GDP?

1.1 Main results

Under an extreme scenario in which the state of the system is ‘frozen’ at 2024–with

both the level of world GDP and its carbon intensity fixed at their 2024 values–

median forecasts predict global overall temperatures (i.e. for both land and ocean)

to increase by about 5.5 Celsius degrees by 2100 compared to pre-industrial times,

and the sea level to increase by 53 centimeters. In order to put these numbers into

perspective it is worth recalling that 5 Celsius degrees is the lower bound of the es-

timates for the increase in global overall temperatures associated with the so-called

Paleocene-Eocene Thermal Maximum (PETM), about 55.5 million years ago. During

that period Antarctica was covered with tropical forests, and Arctic waters pullulated

with alligators. If global overall temperatures were to increase by 5.5 degrees com-

pared to pre-industrial times within less than eight decades, the extent to which

society could adapt–or whether it could adapt at all–is entirely open to question.

Quite simply, this would be a different planet, far removed from the range of tempera-

tures under which human civilizations have flourished over the last 12 to 15 thousand

years.

Under an alternative scenario in which trend GDP growth remains unchanged af-

ter 2024, and the world economy fully decarbonizes by 2050, median forecasts project

land and ocean temperatures and the sea level to increase by 4.9 and 2.6 degrees, and

45 centimeters respectively, compared to pre-industrial times. Further, uncertainty is

substantial, thus pointing to significant upward risks: e.g., the 90%-coverage credi-

ble set for land temperatures stretches from 3.0 to 6.5 Celsius degrees. Alternative

scenarios based on the same assumption for trend GDP growth and a slower pace of

decarbonization, with zero carbon intensity reached in either 2075 or 2100, paint a

significantly grimmer picture.

Evidence also shows that a decrease in economic growth, with trend real GDP

growth falling by 1% either in 2025, or at several alternative future dates, does not

materially change the overall picture, with temperatures still projected to increase by

3



several Celsius degrees by 2100 compared to pre-industrial times. This shows that

the possible future deceleration of economic growth (due e.g. to the ongoing fall in

population growth) will only marginally affect climate change. The implication is

that full decarbonization of GDP is the only possible solution.

Under this respect, evidence shows that, even if we were somehow able to ‘freeze’

JRF at its 2024 level, the intrinsic dynamics of the system will necessarily imply

substantial increases in temperatures going forward: e.g., about 90% of the density

of the forecast of land temperatures for 2100 is above the benchmark of the Paris

climate agreements of 1.5 Celsius degrees, with a median projection equal to 2.5

degrees, and the upper limit of the 90 per cent-coverage credible set equal to 3.6

degrees. It is important to stress that these increases were already ‘locked in’ by

2024, which implies that CCDs have already exceeded the levels climate scientists

regard as dangerous. The implication is that, in order to exit the danger zone, CCDs

will have to be brought back to the levels that had prevailed sometimes before 2024.

The obvious question is ‘By how much?’. Under this respect, forecasts conditional

on alternative paths for CCDs show that, given the extent of statistical uncertainty,

exiting the danger zone will require bringing CCDs back to the levels of the 1970s.

Finally, evidence suggests that random variation in radiative forcing that causes

a permanent increase in global overall temperatures by 1 Celsius degree is associated

with a permanent decrease in world GDP by about 16%, with a 16-84% credible set

stretching between -26.7% and -5.9%.

Until the 1970s, the accumulation in the atmosphere of anthropogenic sulphur

emissions as a by-product of burning fossil fuels had blocked solar radiation to a

significant extent, thus mitigating the temperature increases caused by other CCDs.

This is what James Hansen has labelled as the ‘Faustian bargain’ our civilization has

been entertaining for two centuries. Since then, the progressive removal of sulphur

from the atmosphere has caused the process to go into reverse. As a result, since

the early 1980s the evolution of the accumulated stock of sulphur emissions has con-

tributed to an increase in global temperatures. Evidence suggests that even if we

were somehow able to keep the other CCDs fixed at the level they reached in 2024,

the complete removal of anthropogenic sulphur emissions from the atmosphere, by

itself, would cause sizeable increases in temperatures going forward.

The paper is organized as follows. The next section discusses the data, whereas

Section 3 discusses statistical evidence on their stochastic properties. Section 4 dis-

cusses my econometric approach, and Section 5 discusses the evidence: impulse-

response functions to a permanent shock to the JRF index; and forecasts up to the

end of the XXI century, both unconditional, and conditional on alternative possible

paths for the evolution of the world GDP. Section 6 explores the impact of climate

change on world GDP. Section 7 concludes.
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2 The Data

Online Appendix A describes in detail the data and their sources, which are both

standard in the literatures on climate science and the econometrics of climate change.

I consider nine drivers of climate change: CO2, methane (CH4), nitrous oxide

(N2O), chlorofluorocarbons (CFC11 and CFC12), anthropogenic sulfur emissions

(SOx), El Niño and La Niña (El Niño-Southern Oscillation, henceforth ENSO), solar

irradiance, and volcanic activity. In line with the literature, I convert each individ-

ual CCD into radiative forcing (RF, expressed in Watts per square meter) based on

standard formulas from physics (see Online Appendix A). Once each CCD has been

converted into RF, I construct the aggregate JRF index as in Kaufmann, Kauppi, and

Stock (2006) by summing up the individual components. As shown by Kaufmann,

Kauppi, and Stock (2006, see Table II and the discussion on page 261), it is indeed

not possible to reject the null hypothesis that ‘the temperature effect of a unit of ra-

diative forcing (e.g. W/m2) is equal across forcings’. The single exception is ENSO,

which I ignore for the reasons I discuss in Online Appendix A.4.1 By the same token,

I construct a corresponding index of anthropogenic RF, defined as the sum of the RFs

of CO2, CH4, N2O, CFC11, CFC12, and SOx.

I consider indices of global2 land and ocean temperatures, expressed in Celsius

degrees. As it is routine in the literature, temperatures are expressed as ‘anomalies’,

i.e. as deviations from a benchmark value. Following standard practice (see e.g. the

IPCC reports) I take the average temperature over the period 1850-1900 as the bench-

mark, so that the temperature anomalies I work with are computed as deviations from

such benchmarks.

Finally, I consider a series for world real GDP, an index of ice cover in the Northern

emisphere (in million squared kilometers), and an index for the world sea level (in

centimeters).

The sample period is 1850-2024.

2.1 A look at the raw data

Figure 1 shows the radiative forcing of individual climate change drivers; the JRF

index minus volcanic RF, either including or excluding the radiative forcing of an-

thropogenic sulfur emissions (SOx); the global temperature anomalies, the world sea

level, and the index of ice cover in the Northern emisphere; and either the logarithm

or the growth rate of world real GDP.

1In brief, ENSO features virtually no spectral power at frequencies beyond 25 years, and it

is extraordinarily noisy compared to the other drivers of climate change. The implication is that

including the radiative forcing of ENSO in the JRF index would uniquely add a large amount

of high-frequency noise, whereas it would bring essentially no information about the long-horizon

developments that are the focus of the present work.
2I,.e., for the whole planet.
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Figure 1  The raw data 



Starting from the radiative forcing of the particulates injected by volcanic activ-

ity into the atmosphere, three main findings emerge from the first panel of Figure

1. First, volcanic RF is uniformly negative. This is because the dust spewn into the

atmosphere by volcanoes prevents a fraction of solar radiation from reaching Earth

in the first place, so that its impact on JRF is by definition negative. Second, vol-

canic RF is extraordinarily volatile, and it is manifestly characterized by a sizeable

extent of heteroskedasticity. Third, although over very long periods of time3 volcanic

activity–and therefore volcanic RF–does not exhibit any trend, over comparatively

short periods (such as the sample I am here working with) there are sometimes tran-

sitory shifts in the mean, due to temporary increases in volcanic activity. This is

the case within the present context. A Bai and Perron (1998, 2003) test for multiple

breaks at unknown points in the sample in the mean of the series plotted in the first

panel of Figure 1, bootstrapped as in Diebold and Chen (1996), detects a break in

1961, with the p-values for the  and test statistics equal to 0.050 and

0.056 respectively,4 and the medians for the two sub-samples being equal to -0.126

and -0.351 respectively.5 Although volcanic RF is stationary,6 and therefore provides

no contribution to the secular increase in JRF, this evidence illustrates why it is im-

portant to take it into account in the empirical work. First, the downward shift in the

series since 1961 has had a negative impact on the overall JRF index, thus counter-

acting the impact of increases in other CCDs, and causing therefore temperatures to

increase by less than they would otherwise. Not including volcanic RF in the model

would therefore distort the evidence. In particular, since hundreds of years of data on

volcanic emissions suggest that the post-1961 shift will ultimately disappear–so that

the RF of other CCDs will ultimately fully reveal itself–ignoring volcanic RF would

introduce a downward distortion in temperatures’ forecasts. Second, the series’ large

volatility compared to other CCDs, together with its heteroskedasticity, suggests once

again that ignoring it would likely distort the inference. In Section 4 I will discuss

in detail how I model both the heteroskedasticity (via stochastic volatility) and the

shift in the mean in 1961.

Turning to the other drivers of climate change, and to the aggregate indices of

radiative forcing, two main findings emerge from the second and third panels of Figure

1. First, since 1850 CO2, CH4 and SOx have been by far the dominant drivers of

the evolution of the JRF index. Second, until about the 1970s SOx had been playing

an important moderating role in the overall increase in the JRF index. Since then,

however, its previous moderating contribution has gone into reverse, as efforts to

3The index of volcanic activity I am working with starts in the year 1500.
4On the other hand, the  (2|1) test does not detect a second break in the mean, with the

bootstrapped -value equal to 0.1496.
5Throughout the entire paper I focus on the medians of the two sub-samples, rather than the

means, because of the significant extent of heteroskedasticity.of volcanic RF.
6As discussed in Section B.1 in the Online Appendix, Elliot et al.’s (1996) tests strongly reject

the null of a unit root in the series, either controlling or not controlling for the identified break in

the mean.
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remove anthropogenic sulfur emissions from the atmosphere have started to bear

fruits. As a result, over the last three decades the evolution of SOx’s radiative forcing

has contributed to the overall increase in the JRF index.

The third panel of Figure 1 illustrates this point in an especially stark way. Nor-

malizing the two indices7 to zero in 1850, excluding the impact of SOx the index

would have increased much faster than it has historically been the case. To the ex-

tent that efforts to remove anthropogenic sulfur emissions from the atmosphere will

continue and will be successful, the radiative forcing of SOx shown in the second

panel will converge to zero, and the overall JRF index will therefore be more and

more dominated by the remaining drivers. The implications of this are sobering. As

shown in the third panel, if in 2024 we had somehow been able to remove SOx from

the atmosphere, the normalized JRF excluding volcanic RF would have shot up from

about 2.7 to 3.2. The implication is stark. Even if we were able to keep the non-SOx

radiative forcing fixed at the level reached in 2024, efforts to clean up the atmosphere

of SOx, by themselves, automatically imply sizeable increases in temperatures going

forward.

A similar point holds for volcanic eruptions. As previously mentioned, although

over very long periods of time the amount of particulates injected into the atmosphere

by volcanic eruptions does not show any trend, in a few instances–such as over the

period since 1961–it exhibits a clear shift in the mean. Exactly as for SOx, the

fact that since the early 1960s volcanic RF has been more negative than it had been

before implies that, to the extent that the pre-1961 pattern of eruptions will ulti-

mately reassert itself, global temperatures will necessarily increase by non-negligible

amounts even in the absence of any change in the other drivers of radiative forcing.

In particular, if the median volcanic RF were to revert back to its pre-1961 value of

-0.126, in Europe temperatures would increase by 0.22 Celsius degrees.8

This, together with the previous discussion about the impact of cleaning up the

atmosphere of SOx, shows that even without further increases in the drivers of climate

change, there is already, deeply embedded in the system-Earth, a sizeable amount of

committed warming, i.e. future temperature increases that are already ‘baked in the

cake’ and impossible to avoid other than by removing carbon from the atmosphere,

geoengineering, etc. As we will see in Section 5.4, due to the comparatively long lags

with which global temperatures increase following an increase in radiative forcing,

there is in fact additional committed warming already embedded in the system-Earth.

The fourth, fifth, and sixth panels provide a stark illustration of the main fea-

tures of the global heating phenomenon, with dramatic increases in temperatures and

the sea level since 1850, and a marked shrinkage of the ice surface in the Northern

7We exclude from both indices volcanic RF (i.e., the series plotted in the first panel), because its

large volatility compared to other RF series would make the two indices very noisy. This is without

any loss of generality, since volcanic activity is stationary.
8This is because the cointegration vector between the temperature anomaly for the European

continent and the JRF index is indistinguishable from [1 -1]0. This evidence is available upon request.
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Figure 2  The long-run equilibrium relationships 

 
 
 
 

 
 



emisphere. Further, the phenomenon has clearly accelerated over the most recent

decades. This is especially clear for temperatures and ice cover, and less so for the

sea level (as I discuss below, in the long run the sea level approximately evolves with

the cubic root of global temperatures).

Finally, the last two panels, especially the bottom one, highlight sizeable changes

in the growth rate of world real GDP since 1850, with average growth first pro-

gressively increasing up until the 1960s-1970s, then decreasing, and finally seemingly

stabilizing at about 2-3 per cent.

2.2 The long-run equilibrium relationships

Figure 2 illustrates the long-run equilibrium (i.e., as we will see, cointegration) re-

lationships that are embedded in the system. The first panel shows the relationship

between the level (not the logarithm) of world real GDP and the first difference of

anthropogenic RF, which as discussed in Section 2 is defined as the sum of the RFs

pertaining to CO2, CH4, N2O, CFC11, CFC12, and SOx. The reason why the long-

run relationship pertains to the level of the former series and the first difference of

the latter is straightforward. Every year, in order to produce a certain amount of real

output, the world economy uses a corresponding amount of energy. This translates

into corresponding new emissions of CO2, CH4, etc., which add to the existing stocks

of anthropogenic CCDs.9 In turn, this leads to a progressive increase, year after year,

in the level of anthropogenic RF, which is the fundamental driver of climate change.

The implication is that, both as a matter of logic, and in practice, the relationship

pertains to the level of world real GDP, and the change in (i.e. the first difference of)

the anthropogenic RF index.

Two things are apparent from the first panel of Figure 2. First, in the long-run

the two series tend indeed to closely co-move. Second, in the short-to-medium run

they tend however to deviate from each other. Although most of these deviations are

quite short-lived, and they can therefore be thought of as ‘noise’ contaminating the

fundamental relationship determined by the ‘carbon intensity’ of GDP, the period

between the 1930s and the end of the 1970s clearly appears different from the rest of

the sample, with a persistent negative change in anthropogenic RF. As it is apparent

from the second panel of Figure 1, this was caused by a dramatic increase in the

amount of SOx during that period. Then, starting from the 1970s, SOx first peaked,

and then started being removed from the atmosphere, with the result that the positive

relationship between world real GDP and the first difference of anthropogenic RF

reasserted itself. In Section B.3 in the Online Appendix I show that the two series

are indeed cointegrated.

9To be precise, each CCD has a certain half-life in the atmosphere. E.g. the half-life of CO2 is

about 120 years, whereas that of methane is about 10.5 years. The fact that the dominant CCD,

CO2, has such a long half-life implies that although strictly speaking shocks to anthropogenic RF

are ultimately transitory, for practical purposes they can be regarded as permanent.
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The second and third panels of Figure 2 shows the long-run relationships between

the JRF index and the global land and ocean temperature anomalies. The long-run

equilibrium relationships between the series are quite clearly apparent. Notice that

the previously discussed downward shift in the mean of volcanic RF in 1961 caused

a temporary divergence between the JRF index and temperatures. However, since

volcanic RF, although subject to infrequent and temporary shifts in the mean, is

stationary, the long-run relationship between JRF and the two temperatures series

ultimately reasserted itself. Again, in Section B.3 in the Online Appendix I show

that the JRF is indeed cointegrated with temperature anomalies.

The fourth panel shows the long-run relationship between a weighted average of

land and ocean temperatures and minus the ice cover in the Northern emisphere. I

compute the weighted average as  ∗ = Land+(1-)Ocean, where the notation is

obvious, and  is computed by minimizing the sum of ( ∗-Overall)2, where Overall is
the global overall (i.e. both land and ocean) temperature anomaly. The estimated

value of  is 0.2994. The figure speaks for itself, and it clearly points towards coin-

tegration between the two series, a feature of the data that is strongly supported by

statistical tests.

Finally, the last panel shows the long-run relationship between the weighted av-

erage of land and ocean temperatures and a non-linear transformation of the sea

level series. Evidence indeed quite clearly suggests that, in the long run, the sea

level approximately evolves with the cubic root of global temperatures. In particular,

the best fit is provided by an exponent equal to 2.94, rather than exactly 3. The

transformed sea level series plotted in the last panel of Figure 2 is therefore equal to

the ‘raw’ sea level series raised to the power of 2.94. Again, the evidence speaks for

itself, and it strongly suggests that in the long run the two series in the panel, once

appropriately rescaled, move one-for-one.

3 Stochastic Properties of the Data

Online Appendix B features an extensive analysis of the stochastic properties of

world GDP and climate change series, based on unit root and cointegration tests;

tests for breaks in the mean; and Stock and Watson’s (1996, 1998) tests of the null

of time-invariance in the Data Generation Process (DGP) for the first differences10 of

individual series, against the alternative of random-walk time-variation in the mean.

Overall, evidence strongly and consistently suggests that

(1) in line with the evidence in Figure 1, trend world real GDP growth has exhib-

ited a significant extent of time-variation over the sample period.

(2) Solar irradiance has evolved essentially as a random-walk with drift, reflecting

its well-known long-run secular increase, whereas volcanic RF has been very strongly

stationary, either controlling or not controlling for the identified break in the mean.

10Since volcanic RF is I(0), for this series I consider the level.
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Except for volcanic RF’s heteroskedasticity, there is no evidence of time-variation in

the stochastic properties of either series.

(3) Temperature anomalies, the transformed sea level, the ice cover series, and

anthropogenic RF are all I(2). In particular, their first differences feature a random-

walk component that is very strongly and uniformly detected across the board by

Stock and Watson’s (1996, 1998) tests.

(4) In line with previous cointegration-based studies of climate change, the levels

of the JRF index and of temperature anomalies are cointegrated. As mentioned, this

is in fact what physics predicts it should be. By the same token, the level of world

GDP is cointegrated with the first difference of anthropogenic radiatiave forcing.

(5) Global temperatures are cointegrated with either ice cover, or the transformed

sea level series.

Since evidence is near-uniformly very strong and consistent, in this section I do

not discuss it in detail. The interested reader is referred to Online Appendix B for a

detailed discussion of both technical details, and the evidence itself.

Intuitively, the reason for the presence of time-variation in the means of the first

differences of temperature anomalies, the sea level, ice cover, and anthropogenic RF

is straightforward. The system-Earth went from a period, before the Industrial Revo-

lution, characterized by virtually no economic growth–and therefore negligible emis-

sions of anthropogenic CCDs–to the subsequent period characterized by the pro-

gressive spreading of economic growth across the globe. As an increasing number of

countries experienced sustained growth, their emissions of CCDs increased accord-

ingly. The consequence of this is the progressive long-term acceleration in the rate

of overall increase of CCDs. A second main reason for such acceleration is the fact

that, as mentioned, until the 1970s the accumulation of anthropogenic sulphur emis-

sions in the atmosphere partly mitigated the impact of increases in the other CCDs.

Since then, however, the progressive removal of sulphur has thrown this process into

reverse. This implies that the rate of change of the joint impact of all CCDs, as

captured by the JRF index, has exhibited a non-negligible extent of variation over

the sample period.

I now turn to discussing my econometric approach.

4 The Econometric Approach

In this section I discuss the benchmark model I use throughout most of the paper, in

which the evolution of world real GDP is assumed to be unaffected by global warming.

In Section 6 I will discuss how the benchmark model is modified in order to take into

account of a possible impact of temperatures on GDP.
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4.1 The benchmark model

4.1.1 Exogenous drivers of climate change

World real GDP Based on the evidence from Stock and Watson’s (1996, 1998)

tests reported in Section B.2 in the Online Appendix, I assume that the time-varying

mean of the log-difference of world real GDP, , evolves as a random walk:

 =  + 

  (1)

with 

 ∼ (0, 2). The deviation from  of the log-difference of GDP, ∆ =

∆ ln, is then postulated to evolve as an AR() process,

∆ −  = 1(∆−1 − −1) + + (∆− − −) + 
∆
 (2)

with 
∆
 ∼ (0, 2∆), where 

2
∆ is a time-varying variance which, as I discuss

below, is postulated to evolve according a stochastic volatility specification.

Volcanic radiative forcing Based on the evidence from Elliot et al.’s (1996, 1998)

and Stock and Watson’s (1996, 1998) tests reported in Section B.2 in the Online

Appendix, I assume that the deviation from its mean of the level of volcanic RF,

 
 , follows an AR() process,

 
 −  = 1(


−1 − −1) + + (


− − −) +  (3)

with  equal to either 1, before 1961, or 2, after that, and with  ∼ (0, 2),

with 2 being a time-varying variance.

Solar radiative forcing By the same token, I assume that the first difference of

solar RF, ∆
 , also follows an AR() process,

∆ 
 −  = 1(∆ 

−1 − ) + + (∆
− − ) +  (4)

with  ∼ (0, 2).

4.1.2 Long-run equilibrium relationships

Based on the evidence fromWright’s (2000) tests reported in Section B.3 in the Online

Appendix, I assume that the level of the land and ocean temperature anomalies is

cointegrated with the level of the JRF index, so that in a long-run equilibrium

 =  (5)

where  is the JRF index,  with =Land, Ocean is either temperature anomaly,

and  is the cointegration coefficient.
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I also assume that in a long-run equilibrium the change in anthropogenic RF,

∆
 , is a function of the level (not the logarithm) of world GDP, , through

a coefficient of ‘anthropogenic RF intensity’ (or ‘carbon intensity’, as a shorthand) of

GDP, ,

∆
 =  (6)

In line with the discussion in Section 2.1, I assume that  evolves as a random walk,

 =  + 

  (7)

with 

 ∼ (0, 2). The rationale for this specification is the following. Anthro-

pogenic RF is defined as the sum of the radiative forcing of CO2, methane, nitrous

oxide, chlorofluorocarbons, and anthropogenic sulphur emissions. Due to technolog-

ical progress, since 1850 the amount of anthropogenic CCDs emitted for one unit

of world GDP has changed quite significantly. E.g., in the XIX century energy was

produced mainly by burning carbon, whereas in the XX century the world economy

mostly switched to oil, and in recent years partly to renewables. Further, as discussed,

the progressive cleaning up of the atmosphere from sulphur emissions since the 1970s

has injected a further element of time-variation in the relationship between GDP and

anthropogenic RF.

Finally, in line with the evidence in the last two panels of Figure 2, I assume that

the weighted average of land and ocean temperatures is cointegrated with either minus

the ice cover, or the transformed sea level series, so that in a long-run equilibrium

 ∗ =  =  (8)

where  and  are the the transformed sea level and ice cover series, and  and 
are their respective cointegration coefficients.

4.1.3 The structural VAR representation

I assume that conditional on the paths of the exogenous processes–, ∆, 

 ,

∆
 , and –the evolution of the system is fully characterized by a structural VAR

(SVAR) representation for

(1) the cointegration residuals between the JRF index and land and ocean tem-

perature anomalies;

(2) the cointegration residuals between the weighted average of land and ocean

temperatures and either ice cover or the transformed sea level index; and

(3) the deviation of the change in anthropogenic RF from its equilibrium with

world GDP implied by (6).

Assuming, for illustrative purposes, a SVAR with one lag, the dynamics of the
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system is characterized by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆ − 
∆

 − 

 − L
L


 − O
O


 ∗ − 
 ∗ − 
 

 − 
∆ 

 − 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }



=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣



     

       

       

       

       





⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆−1 − −1
∆

−1 − −1−1
−1 − L

L
−1

−1 − O
O
−1

 ∗−1 − −1
 ∗−1 − −1
 

−1 − −1
∆

−1 − 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }

−1

+

(9)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

+ 1

+ + 1 + +

+ +  1 + +

+ +   1 + +

+ +    1 + +

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


∆












⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }



where 0 is the impact matrix of the structural shocks; ‘+’ labels a non-negative

scalar; ‘’ is a non-0 scalar on which no sign restriction is imposed;  L and O are

the land and ocean temperature anomalies, and L and O are the respective coin-

tegration coefficients with the JRF index; and all entries in either 1 or 0 that are

not labelled as ‘1’, ‘+’, or ‘’ are equal to 0.  is a shock capturing variation in

anthropogenic radiative forcing over and above that due to changes in the level of

world real GDP. As such, it captures a wide range of phenomena, the most important

of which is a sizeable portion of the secular variation in the stock of anthropogenic

sulfur emissions. When SOx is removed from the atmosphere anthropogenic RF in-

creases, whereas the impact on world real GDP is negligible to nil.  ,  ,  ,

and  are four orthogonalized shocks that do not have any specific interpretation. On

impact  only affects land and ocean temperatures, ice cover, and the sea level;

 only affects ocean temperatures, ice cover, and the sea level;  only affects ice

cover and the sea level; and  only affects the sea level. Since neither shock has any

clear interpretation, in what follows I will ignore them.

The matrices 1 and 0 encode the exogenous evolution of ∆ − , 

 − 

and ∆
 − , each one uniquely as a function of its own lags and its own shocks.

Further, 1 assumes that the deviation of anthropogenic RF from its technology-

dictated long-run equilbrium, ∆
 − , is not affected by either volcanic

or solar RF. The rationale for this is that ∆
 −  hinges on technological

relationships, and as such it should therefore have nothing to do with either volcanic
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or solar activity.

For each draw from the posterior distribution of the model’s parameters, I impose

the following restrictions on the IRFs of the four shocks I am interested in, 
∆
 , 


 ,

 , and  :

• a positive 
∆
 produces non-negative IRFs at all horizons for GDP, anthro-

pogenic RF, JRF, global temperatures, the sea level, and ice cover.

• Positive  ,  , and  produce non-negative IRFs at all horizons for anthro-

pogenic RF, volcanic RF, and solar RF respectively. Any of the three shocks

produces non-negative IRFs at all horizons for JRF, global temperatures, the

sea level, and ice cover.

Finally, for each draw from the posterior distribution I impose the restriction that

a unitary increase in JRF due to any of the four shocks produces the same impulse

vector at =0 for temperatures, sea level, and ice cover. That is, if ∆JRF0=1 in

response to either 
∆
 , 


 , 


 , or 


 , then ∆0=, nd∆0=, and ∆0=− for any of

the four shocks, with , , 0. The rationale is the same that justifies aggregating the

radiative forcing of individual climate change drivers into a single index, the JRF. As

previously discussed, evidence suggests that the specific source of radiative forcing is

irrelevant. In particular, as shown by Kaufmann, Kauppi, and Stock (2006, see Table

II and the discussion on page 261), it is not possible to reject the null hypothesis

that ‘the temperature effect of a unit of radiative forcing (e.g. W/m2) is equal across

forcings’.

4.1.4 Estimation

I estimate all models via Bayesian methods, based on a straightforward adaptation to

the problem at hand of the Metropolis-within-Gibbs algorithm proposed by Justini-

ano and Primiceri (2008) to estimate DSGE models with stochastic volatility. The

algorithm is described in detail in Online Appendix D. In this sub-section I only

briefly describe its main features.

Justiniano and Primiceri’s (2008) algorithm (see their Appendix A) consisted of

two ‘blocks’ of steps. In Block I the stochastic volatilies of the structural disturbances,

and their hyper-parameters, were drawn conditional on the parameters of the DSGE

models via a Gibbs step. In Block II a Metropolis step was used in order to draw

the DSGE model’s parameters conditional on the stochastic volatilities. Within the

present context, in Block II, instead of drawing the parameters of the DSGE mod-

els, I draw the parameters of the VAR (9), again via a Metropolis step. As for step

I, the only difference with Justiniano and Primiceri (2008) is that I use a simpler

specification for the stochastic volatilities. Instead of using their mixture of distribu-

tions, I postulate that any of the volatilities of the structural innovations evolves as

in Jacquier, Polson, and Rossi (2002).
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I run a burn-in pre-sample of 1,000,000 draws which I then discard. I then generate

10,000,000 draws, which I ‘thin’ by sampling every 1,000 draws in order to reduce

their autocorrelation. This leaves 10,000 draws from the ergodic distribution which

I use for inference. For all models the fraction of accepted draws is very close to the

ideal one, in high dimensions, of 0.23 (see Gelman, Carlin, Stern, and Rubin, 1995). I

check convergence of the Markov chain based on Geweke’s (1992) inefficiency factors

(IFs) of the draws from the ergodic distribution for each individual parameter. For

all parameters the IFs are equal to at most 3-4, well below the values of 20-25 which

are typically taken to indicate problems in the convergence of the Markov chain.

4.1.5 Restrictions imposed in estimation

In estimation I impose the restrictions that, for each parameters’ draw from the

posterior distribution, shocks generating permanent increases in either anthropogenic

RF (i.e., 
∆
 and  ), or the RF of solar irradiance (


 ), generate non-negative IRFs

at all horizons for the respective series, i.e. anthropogenic RF and the RF of solar

irradiance, respectively. Finally, I restrict the response of volcanic RF to volcanic RF

shocks ( ) to be negative at all horizons.

5 Evidence

5.1 Trend GDP growth and the relationship between GDP

and anthropogenic emissions

The first panel of Figure 3 shows world real GDP growth and the two-sided median

estimate of its time-varying trend , together with the 16-84 and 5-95 per cent

credible sets of the posterior distribution. The estimate of  has been computed via

the Monte Carlo integration procedure proposed by Hamilton (1986). Based on the

median estimate, trend growth had progressively increased from about 1.5% in the

1850s to slightly more than 2% in the aftermath of WWII; it had further accelerated,

reaching a peak of about 3.5% in the mid-1960s; and it has decreased ever since,

reaching about 2.5% at the end of the sample.

The remaining two panels of Figure 3 show either the one- or the two-sided median

estimates of the anthropogenic RF intensity of GDP, i.e. , together with their 16-

84 and 5-95 per cent credible sets. Consistent with the evidence in the second and

third panels of Figure 1, until WWI the negative impact on anthropogenic RF of

the accumulation of sulphur emissions in the atmosphere roughly balanced out the

positive impact of the remaining anthropogenic CCDs. As a result, as shown in

the third panel of Figure 1, the JRF index net of the impact of volcanic emissions

had remained essentially constant. Since solar irradiance plays a minor role, this

implies that anthropogenic RF had also remained virtually unchanged between the

mid-XIX century and WWI. This is why the one-sided estimate in the second panel of
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Figure 3  World real GDP growth and two-sided estimate of its trend, and one- and two-sided estimates of  
                               the anthropogenic radiative force intensity of GDP (median, and 16-84 and 5-95 credible set) 

 

 

 
 



Figure 3 exhibits modest variation until WWI. Between the aftermath of WWII and

the 1970s, on the other hand, the accumulation of sulphur emissions had dominated

other anthropogenic CCDs, with the result that the anthropogenic RF intensity of

GDP had fallen below zero. This is consistent with the fact that, in the third panel of

Figure 1, the JRF index net of volcanic emissions had decreased during those years.

Finally since the 1980s the removal of sulphur from the atmosphere contributed to

the increase in anthropogenic RF, with the result that anthropogenic RF intensity

has dramatically shot up.

5.2 The volatilities of the structural shocks

Figure 4 shows the estimated standard deviations of the eight identified structural

disturbances. For three of them–the shock to solar RF, and the residual orthogo-

nalized shocks to ice cover the sea level, and either both temperature anomalies, or

just the ocean anomaly–the volatility has been virtually unchanged over the entire

sample period. At the other extreme, in line with the evidence in the first panel of

Figure 1, the volatility of shocks to volcanic RF has exhibited a dramatic extent of

variation, which closely mirrors the negative spikes in Figure 1. The standard devi-

ation of innovations to real GDP growth exhibits a roughly hump-shaped pattern,

with an increase starting from the early XX century, a peak around World War II,

and a sharp fall in the 1950s. Starting from the early XXI century, the shocks of the

financial crisis and then of the COVID pandemic have led to a progressive increase.

Finally, the standard deviation of the residual shock to anthropogenic RF (i.e.  )

exhibits an even clearer hump-shaped pattern, with a peak reached roughly around

World War I.

5.3 Impulse-response functions to radiative forcing shocks

Figure 5 shows the series’ IRFs to radiative forcing shocks. For each draw from the

posterior distribution I normalize the IRFs to either anthropogenic or solar RF shocks

by the long-run impact on anthropogenic and solar RF, respectively. On the other

hand, since volcanic RF shocks are transitory, I normalize their IRFs by the impact

on volcanic RF at =0.

Following an exogenous shock to anthropogenic RF, i.e.  , anthropogenic RF

itself essentially reaches its new long-run equilibrium in about two decades, whereas

the response of temperatures, the sea level and ice cover is more drawn out and

inertial.

As one would expect from the first panel of Figure 1, the response of volcanic RF

to  reverts to zero very quickly, in slightly more than ten years. The responses

of temperatures and ice cover are significant on impact, but they quickly become

insignificant just a few years later. As for the sea level, it is barely significant even

on impact.
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Figure 4  Estimated standard deviations of structural shocks (median, and 16-84 and 5-95 credible sets) 
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Figure 5  Impulse-response functions to the three identified shocks to radiative 
                                                  forcing (median, and 16-84 and 5-95 credible set) 
 
 
 



Finally, the response of solar RF to  is virtually flat at all horizons, thus showing

that this series is essentially a pure unit root process. The responses of temperatures,

ice cover and the sea level are, as expected, drawn out, although with a different

profile from the IRFs to  .

5.4 Unconditional forecasts under ‘no change’ scenarios

Figure 6 shows evidence from the following exercise. I ‘freeze’ the state of the system–

in particular, both the level of GDP, and the estimate of –at 2024, and I then

stochastically simulate the model forward until the end of the XXI century. The

evidence from this exercise is sobering. Under such ‘no change’ scenario, median

forecasts predict the land and ocean temperature anomalies to reach nearly 8 and

about 4.2 Celsius degrees by 2100, respectively, with the 90%-coverage credible set

equal to [4.9; 11.0] and [2.7; 6.0] degrees. The forecasts for the sea level and ice

cover are equally ominous, with the median projection for the former reaching 53

centimeters in 2100, and the 90%-coverage credible set for the latter stretching below

zero–i.e., no ice in the Northern emisphere–at the end of the century.

5.5 Forecasts conditional on alternative assumptions about

the evolution of GDP and anthropogenic RF intensity

Figure 7 shows evidence from the following exercise. I ‘freeze’ once again the state of

the system at 2024, and I then stochastically simulate the model forward until the

end of the XXI century (1) keeping GDP at its 2024 level, and (2) assuming full decar-

bonization of the world economy in 2025. The evidence from the exercise is sobering.

Even if we were somehow able to prevent any increase in anthropogenic RF after 2024,

still, the intrinsic dynamics of the system in response to past JRF increases would

produce dangerous levels of warming going forward, with corresponding impacts on

sea level and ice cover. Focusing on land temperatures, about 90% of the density of

the forecast for 2100 is above the benchmark of the Paris climate agreements of 1.5

Celsius degrees, with a median projection equal to 2.5 degrees, and the upper limit

of the 90 per cent-coverage credible set equal to 3.6 degrees. It is important to stress

that these increases were already ‘locked in’ by 2024, which implies that CCDs have

already exceeded the levels climate scientists regard as dangerous. In turn this implies

that only bringing the JRF back to levels reached sometime before 2024 would allow

to bring climate change under control. The obvious question is by how much should

the JRF decrease. Figures 8 and 9 provide some tentative answers to this question.

Figure 8 shows shows evidence from the following exercise. I ‘freeze’ trend GDP

growth, , to the estimated value for 2024, and I then simulate the model forward

until 2100 conditional on three alternative scenarios for the evolution of anthropogenic

RF intensity, in which after 2024  decreases linearly, reaching zero in either 2050,

2075, or 2100. Even the best-case scenario, in which full decarbonization is achieved
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Figure 6  Forecasts keeping both real GDP and its anthropogenic radiative forcing intensity 

                                         constant at their 2024 levels, (median, and 16-84 and 5-95 credible set) 
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Figure 7  Forecasts keeping real GDP at its 2024 level, and assuming full decarbonization 
                                           of the economy in 2025 (median, and 16-84 and 5-95 credible set) 
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Figure 8  Forecasts with trend real GDP growth after 2024 set to the 2024 estimated value, and decreasing 

                               anthropogenic radiative forcing intensity of GDP (median, and 16-84 and 5-95 credible set) 

 
 

 



by 2050, paints a grim picture, with the median forecast for the land temperature

anomaly reaching a 4.9 Celsius degrees increase compared to pre-industrial times.

Further, the upper bound of the 90 per cent-coverage credible set stretches to 6.5

degrees.

5.6 Removing carbon from the atmosphere

Clearly, limiting ourselves to full decarbonization by 2050 is not enough, which sug-

gests that, after peaking sometime in the future, anthropogenic RF should be de-

creased via a massive programme of carbon removal from the atmosphere. The ob-

vious question is: ‘To what level should anthropogenic RF be brought back?’ Figure

9 provides some evidence on this. The exercise is the same as in Figure 8, with the

only difference that after peaking in 2050, anthropogenic RF is then brought back (in

terms of its median projection) to the level of the early 1970s. Under this path for

anthropogenic RF, the median projections for global land and ocean temperatures

converge to about -0.5 and -0.3 degrees. The obvious reason for this undershooting

compared to the 1.5 degrees target of the Paris accord is the large extent of uncer-

tainty, with the upper limits of the 90%-coverage credible sets being equal to 2.1 and

1.1 degrees.

6 Estimating the Impact of Climate Change on

GDP

Up until now I have assumed that GDP is unaffected by climate change. A size-

able literature has however estimated a negative impact of temperatures on output.

The impact is especially large for the agriculture sector that is still sizeable, or even

dominant, in developing countries, with temperature increases beyond certain thresh-

olds being estimated to lead to sizeable falls in crop yields. By the same token, the

well-documented increase in the frequency and intensity of storms and hurricanes has

obvious economic costs, not only in terms of destruction of assets such as housing,

but also in terms of disruption of production activity.

In this section I therefore modify the benchmark model I have been working with

up until now in order to allow for a permanent impact of temperatures on world

GDP. Whereas I leave the impact matrix of the structural shocks (0) unchanged, I

modify the VAR matrices by allowing world GDP to be directly affected by lags of all

variables except volcanic and solar RF, i.e. by lags of∆
 −, −L L ,

 − O
O
 , 

∗
 − , and  ∗ − . So, to fix ideas, in the case of a single lag,
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Figure 9  Forecasts with trend real GDP growth after 2024 set to the 2024 estimated value, and the anthropogenic radiative 

                    forcing intensity of GDP peaking at 2050 and then decreasing (median, and 16-84 and 5-95 credible set) 

 
 

 

 

 



the matrix 1 in (9) becomes

1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

     

     

       

       

       

       





⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

The rationale for excluding a direct impact of lags of volcanic and solar RF on GDP

is that, as a matter both logic and climate science, their impacts should be expected

to work via increases in temperatures.

I define the impact of climate change on GDP as the long-run (i.e., frequency-zero)

impact on world real GDP of a shock  that causes an increase in  ∗ by 1 Celsius
degree. I compute this statistic, which I label as , for each draw from the posterior

distribution. Finally, in estimation I impose a Beta(7.5, 7.5) prior for /100+50.

The corresponding prior for  is shown in the second panel of Figure 10 in red. The

prior has a mode of 0, and it has essentially zero probability mass for ||45. As
the figure shows, it is quite uninformative, and it essentially allows for any value

of  between -40 and 40%. The black line in the second panel of Figure 10 is the

posterior distribution of . It has a median of -16.2%, and a 16-84% credible set

stretching between -26.7% and -5.9%. Further, 94.1% of the posterior distribution

of  is below zero, thus strongly suggesting that, in line with the previous literature,

global warming has a negative impact on GDP.

7 Conclusions

In this paper I use Bayesian structural VARs with stochastic volatility to study the

dynamics of global land and ocean temperatures, the sea level, and ice cover in the

Northern emisphere since 1850, by exploiting () their long-run equilibrium relation-

ship with climate change drivers (CCDs) and () the relationship between world GDP

and anthropogenic CCDs. Random variation in CCDs that causes a permanent in-

crease in global temperatures by 1 Celsius degree is associated with a 16% permanent

decrease in world GDP, with 94% of the posterior distribution below zero. Assuming

that trend GDP growth will remain unchanged after 2024, and the world economy

will fully decarbonize by 2050, land temperatures and the sea level are projected to

increase by 4.9 degrees and 45 centimeters respectively compared to pre-industrial

times. Further, uncertainty is substantial, pointing to significant upward risks. Be-

cause of this, bringing climate change under control will require a massive programme

of carbon removal from the atmosphere, in order to bring anthropogenic CCDs back

to the levels of the 1970s.
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Figure 10 Impulse-response function of real GDP to random variation in radiative forcing leading to an increase 

                            in global temperatures by 1 Celsius degree (median and 16-84% credible set), and prior and posterior 

                            distributions of the long-run impact 
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Figure A.1  Evidence on the close similarity between alternative partially simulated series 

                for CO2, NH4, and N2O: maximum and minimum among the sorted partially 
                simulated paths out of 100,000 simulations 
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Figure A.2  Radiative force of El Niño-Southern Oscillation: raw series and normalized  

                spectral density (with 90%-coverage bootstrapped confidence bands) 
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