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1 Introduction

A growing body of recent work derives structural parameters and policy-relevant statistics

either directly as parameters of regressions in the impulse response space (henceforth, RIRS)

(e.g., Barnichon and Mesters (2020), Barnichon and Mesters (2023b), Lewis and Mertens

(2022), McKay and Wolf (2023)) or in general as other non-linear functions of impulse

responses (e.g. Barnichon and Mesters (2021), Ramey and Zubairy (2018), Barnichon and

Mesters (2023a)).1 These studies demonstrate that impulse responses and forecasts serve

as sufficient statistics for a wide range of macroeconomic questions, thereby reducing the

need to fully specify a structural model in certain contexts. While these approaches are

theoretically appealing, they typically require rich information: researchers must be able

to point-identify impulse responses to multiple policy and non-policy shocks. This paper

aims to relax that informational burden by exploring how to conduct inference on non-linear

functions of impulse responses when impulse responses are only set-identified within a VAR

framework.

The core econometric challenge posed by set-identified impulse responses in this context is

intuitive: For instance, conducting a RIRS with set-identified impulse responses is analogous

to estimating a linear regression when the data—either the regressors, the outcome, or

both—are only known up to an interval. In such cases, a range of regression coefficients may

be consistent with both the linear model and the observed data. As Figure 1 illustrates for

the case where the outcome is perfectly observed but the regressors are interval-valued, even

the sign of the regression coefficients can be indeterminate.

1see Barnichon and Mesters (2024) for an overview on policy statistics.
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Figure 1: Regression with interval regressors (X) and outcomes (y1 > y2 > y3)

In the microeconometric literature deriving the worst-case sharp identified set2 for regression

problems with interval regressors is still an open problem and existing solutions either

introduce auxiliary assumptions (Manski and Tamer (2002)) or derive outer sets (see e.g. for

the related problem of missing data Aucejo, Bugni, and Hotz (2017)). For the related problem

of finding the best linear predictor see for example Horowitz et al. (2003) or Beresteanu,

Molchanov, and Molinari (2011).3 The RIRS setting considered here, however, offers more

structure than the general interval regression problem. Specifically, rather than evaluating

all possible combinations of point values for each observation, one only needs to consider all

admissible trajectories of impulse responses. When the impulse responses are generated from

a VAR, I show that the RIRS coefficients can be expressed in terms of the orthogonalized

reduced-form parameters of the VAR, substantially simplifying the problem.

In macroeconomics, the predominant method for set-identifying impulse responses involves

the use of sign restrictions within a Bayesian VAR framework, for early contributions see Faust

(1998) and Uhlig (2005). The seminal work of Moon and Schorfheide (2012) demonstrates that

the posterior distribution in set-identified models contains an unrevisable component that

remains unaffected by the data. Consequently, inference within the identified set is entirely

driven by prior beliefs. As Figure 1 illustrates, the parameters of a RIRS can be sensitive to

any kind of imputation rule, i.e. in our case the location of the posterior mean of the impulse

2i.e. the smallest set of parameter values consistent with the data and the assumed model.
3In ongoing companion work we derive the sharp identifed set for the general linear regression problem

with missing and interval data extending the ideas in Beresteanu, Molchanov, and Molinari (2011) to this
problem. The tools derived in this work could potentially be also utilized for the RIRS problem at hand, if
estimates for the bounds of the dynamic causal effects are available. An advantage of this procedure would
be that it could also handle missing impulse responses. I leave this for future work.
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responses within the identified set, suggesting that for RIRS parameters inference is even

more sensitive to prior information than inference on the impulse responses themselves.4

The contribution of this paper is four-fold: First, to the best of my knowledge this paper is the

first highlighting the above issue for the non-linear sufficient statistic approaches mentioned

above. I further extend the above argument and show that inference can be potentially

misleading via simulation studies and in applications. Second, I express the parameters of

interest in terms of the orthogonalized reduced-form parameters of the VAR and study this

mapping. Continuity and boundedness thereof is established for several examples of sufficient

statistic approaches and I propose a general algorithm to verify path-connectedness of the

respective domain of these mappings. These results allow the application of the robust Bayes

procedure of Giacomini and Kitagawa (2021), delivering the sharp identified set for RIRS

parameters, i.e. the worst-case bounds consistent with the data, thereby avoiding overreliance

on arbitrary priors. Finally, the continuity of the mapping from VAR parameters to the

parameters of interest enables the introduction of a new class of structural identification

strategies. For example, researchers can impose sign restrictions on causal parameters such

as those in a (causal) Phillips curve, or derive impulse responses under the assumption that

specific policy institutions systematically under- or overreacted during historical episodes.

The theoretical properties of such restrictions are studied for several examples and applied to

sharpen identification of an optimal policy coefficients for the US.

This paper is structured as follows: After Section 2 briefly discusses the related literature,

Section 3 proceeds by illustrating the main points of this work within a simple simulation

study. Subsequently, the general theory is presented in Section 4, before Section 5 applies

the theory to the identification of a US monetary policy shock as well as derive robust set

identified bounds for a sequence of optimal policy perturbations. Section 6 concludes.

4For the latter, see discussions in Baumeister and Hamilton (2015),Arias and Waggoner (2024), etc.
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2 Literature Review

To be completed.

3 Motivating Example

This section delineates the main contributions of this paper within a simple example before

the subsequent sections develop the formal theory to justify the procedures used. Suppose the

economy follows the following log-linearized solution to a standard 3-variable New Keynesian

model:

πt = Et[πt+1] + κxt − ϵSt

xt = Et[xt+1]−
1

σ
(it − Et[πt+1]) + ϵDt

it = ϕππt + ϕϵSϵ
S
t + ϵt

with πt the inflation gap, xt the output gap, it the nominal interest rate set by the central

bank, and ϵSt and ϵDt represents supply and demand shocks, respectively. The non-standard

policy rule includes the true structural supply shock in order to better control how optimal

a specific policy maker is reacting to different types of shocks.The model solution for the

non-policy variables will be of the form:

πt

xt

 = Γ

ϵSt

ϵDt

+Rϵt

where Γ collects the impulse responses to the supply and demand shock and R collects the

impulse responses with respect to the policy shock. Under a quadratic loss function weighting

the output and inflation gap equally, Barnichon and Mesters (2023b) show that the optimal
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reaction adjustment (ORA) is given by:

ORA = −(R′R)−1R′Γ

where implicitly the impulse responses are understood as those under the baseline rule. There

are two subset ORA statistics, only measuring whether the response to a demand or supply

shock has been optimal. For simplicity, in the following we I will only focus on the response

to supply shock. In general, the ORA will be close to zero if the conduct of policy is optimal.

A negative value for the ORA statistic indicates that the policy rate is too high, e.g. it

increased too much or declined too slow, after a respective non-policy shock. Note that this

is just one example of a statistic of interest, the theory developed in this paper is applicable

more broadly as the subsequent sections will show.

Suppose a researcher estimates a VAR using a sample of 5000 observations of the triplet

yt = (πt, xt, it) and imposing the following sign restrictions to identify the impulse responses:


ux
t

uπ
t

ui
t

 =


? + −

? − −

? − +

×


ϵDt

ϵSt

ϵt


Thus, the monetary policy shock is the only one affecting inflation and the interest rate

in the opposite direction and the supply shock is the only shock affecting the output gap

and inflation in opposite directions. On top of these standard restrictions I also impose a

negative output response to the policy shock and a negative response of the interest rate

with respect to a supply shock. Importantly, the researcher does not know the true data

generating process.
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Figure 2: Top panel: ORA statistic and Impulse Responses

Note:

Figure 2 reports the estimated impulse responses. The blue solid lines represent the posterior

medians, and the shaded regions the 95% pointwise credible intervals, obtained under the

common uniform prior on the orthogonal matrix (the Haar prior).5 Comparing these posterior

distributions with the true impulse responses (red dashed lines), the sign restrictions overall

recover the true effects well. Nevertheless, in a set-identified environment there is no reason

to expect the posterior distribution to be centered on the true effect, that is, the posterior

mean is not a consistent estimator of the true impulse response. Consequently, even with

many observations, the posterior may occasionally place little mass on the true response.

For the impulse responses themselves, this issue is relatively mild in the present example,

5For the reduced form, I adopt an uninformative prior. Given the large sample size, however, the choice of
prior for the reduced form has no meaningful effect on the posterior.
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since the true dynamics of the economy are still qualitatively well captured. However, Figure

2 shows that the problem becomes more severe when considering non-linear transformations

of the impulse responses. The figure reports in blue the posterior distribution of the ORA,

constructed from the posterior draws of the impulse responses above. The median6 is negative,

whereas the true ORA statistic is positive. Thus, even small inaccuracies in estimating the

impulse responses can translate into misleading conclusions about policy-relevant statistics.

Although substantial uncertainty remains, a researcher observing this evidence might conclude

that the policymaker should have responded less, when in fact a stronger reaction would have

been closer to the optimum.

Figure 3: Top panel: ORA statistic and Impulse Responses

Note:

Figure 2 also reports the estimated identified set, shown in light grey, which represents

6The mean, not shown for simplicity, is also negative.
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the smallest set of parameters consistent with the data, the VAR model, and the imposed

sign restrictions. The following sections describe how this set is constructed and analyze its

properties under several sufficient-statistic approaches. The key insight is that the set correctly

reflects the ambiguity surrounding the true ORA statistic by encompassing both positive

and negative values. Importantly, this set is obtained using the robust Bayes procedure of

Giacomini and Kitagawa (2021), which considers a class of prior distributions that includes

the Haar prior. Consequently, the posterior median based on the Haar prior always lies

within the identified set. However, the fact that in this example the median happens to be

centered within the set is purely coincidental.

It is well known that weak inequality restrictions are not very informative, typically yielding

large identified sets for impulse responses, as in the example above. This has motivated

a range of extensions, including augmenting sign restrictions with narrative information

(Antolin-Diaz and Rubio-Ramirez (2018)), imposing restrictions on the coefficients of VAR

equations (Arias, Caldara, and Rubio-Ramirez (2019)), and adding classical zero restrictions

on short- or long-run impulse responses (see, e.g., the example in Giacomini and Kitagawa

(2021)). These approaches have been successfully applied in practice and could likewise be

used to shrink the identified set in the present example. However, as the following sections

demonstrate, representing sufficient statistics directly in terms of the orthogonal reduced

form of the VAR opens the door to a new class of sign restrictions applied directly to these

statistics.

To illustrate, consider again the simple three-variable New Keynesian model described above,

but now suppose the econometrician is only willing to impose standard sign restrictions:


ux
t

uπ
t

ui
t

 =


+ + ?

+ − −

? ? +

×


ϵDt

ϵSt

ϵt


In particular, following Uhlig (2005), we do not impose that output must respond negatively to
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a contractionary monetary policy shock. However, suppose that, based on narrative evidence

or economic reasoning, we are confident in imposing the condition that the policymaker, on

average, underreacted to supply shocks during her term. This corresponds to the restriction

ORA > 0. Thus, we add one additional (and in this simulation, correct) sign restriction.

Figure 4: Top panel: ORA statistic and Impulse Responses

Note:

Figure 4 illustrates how adding a single additional restriction can improve the estimation of

the impulse responses. The blue bands and solid line represent the credible intervals and

posterior median based solely on classical sign restrictions, while the black dashed bands and

solid line correspond to the same restrictions augmented with the condition that the ORA

is positive. Focusing on the response of output to a monetary policy shock, the posterior
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based only on sign restrictions incorrectly assigns nearly all its mass to positive responses, a

manifestation of the masquerading shock problem described by Wolf (2020). By contrast,

once the ORA restriction is imposed, this problem disappears and the posterior aligns much

more closely with the true impulse response.

The plausibility of such a restriction naturally depends on the context. However, as with the

preceding discussion, the idea is not limited to the ORA statistic. For example, in Section

5 I apply the same logic to restrict the Phillips multiplier (Barnichon and Mesters (2021)),

assuming the existence of an unemployment–inflation trade-off to sharpen the identification

of monetary policy shocks. A related approach in the same section imposes a narrative

restriction on the optimal policy perturbation (Barnichon and Mesters (2023a)) in April

2008, assuming that at the onset of the financial crisis the FED did not lower the interest

rate enough. As in the simulation above, both types of restrictions substantially sharpen the

identification of impulse responses and, by extension, of non-linear functions thereof.

4 Theory

For illustrative purposes thus far we focused on the ORA statistic which is one of many

examples of a parameter which is defined as non-linear function of impulse responses. In the

following we will give a general framework to study the theoretical properties of statistics of

a more general class and give several specific examples which fit within this framework. The

starting point is to express these statistics in terms of the VAR parameters directly, allowing

to characterize the sharp identified set in terms of the latter.

A crucial requirement for both, theoretically justifying sign restrictions on non-linear functions

of impulse responses, as well as studying the properties of a robust Bayes procedure, we

need to ensure continuity of the functional of interest. As the next subsections shows, the

parameters of interest considered can be represented as ratios of two continuous mappings,

thus continuity depends on the denominator of this expression. A relevance assumption is
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imposed and discussed for several examples.

The second non-trivial extension of the framework in Giacomini and Kitagawa (2021) is

that I consider cross-equation restrictions (in form of the regression in the impulse response

space restrictions) and situation with sign restrictions on more than one column of the

rotation matrices.7 This alters the set of feasible orthogonal matrices, which in turn can

yield non-convex identified sets and non-differentiable bounds thereof, both of which break

the asymptotic equivalence between the robust Bayes approach of Giacomini and Kitagawa

(2021) and frequentist approaches.

4.1 Representation in terms of VAR parameters

Consider a standard VAR(p) for the n× 1 vector of observable variables yt (all vectors in

the following are column vectors):

y′tA0 = x′
tA+ + ϵ′t with ϵt ∼ N(0, I)

where A+ ≡ [A′
1 . . . A

′
p c′], x′

t ≡ [y′t−1 . . . y
′
t−p 1] and c is a vector containing the coefficients

on the intercept. We have dim(A+) = (1 + np)× n and dim(A0) = n× n. This structural

VAR has a reduced form given by:

y′t = x′
tB + u′

t where u′
t = ϵ′tA

−1
0 Σ = (A0A

′
0)

−1 B = A+A
−1
0

Given that the system of equations is Gaussian, it is well known that two structural parameter

pairs (A0, A+) and (Ã0, Ã+) are observational equivalent if and only if there exists Q ∈ Q

such that A0 = Ã0Q and A+ = Ã+Q. Where Q denotes the set of n-dimensional orthogonal

matrices. This result motivates the orthogonalized reduced form represention of the model

7e.g. the ORA statistic above requires the identification of two shocks simultaneously. Further, in this
case, we need to ensure that the restrictions yield convex domains for both columns jointly.
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(see e.g. Arias and Waggoner (2018)):

y′t = x′
tB + ϵ′tQ

′h(Σ)

where h(Σ) is any decomposition of Σ such that h(Σ)′h(Σ) = Σ. We collect the reduced form

parameters in ϕ = (vec(B), vech(Σ)) and note that Q ∈ Q. We can learn ϕ consistently from

the data, but identification of the structural parameters requires restricting Q. Denote the

restricted set by Q(ϕ|F, S), where F and S are zero and sign restrictions, respectively, which

are discussed in detail latter.

Let Φh(B,Σ) collect the reduced form impulse responses at horizon h. The structural impact

matrix A0 relates the reduced form with the structural impulse responses Γh(A0, A+) =

Φh(B,Σ)(A−1
0 )′. Let us define γ = vec(Γ1, . . .ΓH). The object of interest in this paper can

be viewed as functions of this vector and has the general form:

θ =
η1(γ, x)

η2(γ, x)

where x denotes some external vector. Let us denote by γa,b
h the subset of impulse responses

collecting the response of variable a to shock b at horizon h, then several recent sufficient

statistic approaches are nested within this framework:

Example 1. Optimal Policy Adjustment (ORA): Let ϵp be a policy shock (e.g. monetary

policy) and ϵnp a non-policy shock (e.g. supply shock). Let y denote the output gap and π

inflation. Define Rp ≡ (γ
y,ϵp
0:h , γ

π,ϵp
0:h ) and Rnp ≡ (γ

y,ϵnp

0:h , γ
π,ϵnp

0:h ). Under a quadratic loss function

weighting the output gap and inflation equally, Barnichon and Mesters (2023b) define the

subset ORA θ as θ = (R′
pRp)

−1R′
pRnp, i.e. η1(γ, x) = R′

pRnp and η2(γ, x) = (R′
pRp)

−1.

Example 2. Optimal Policy Perturbation (OPP): Assuming the same loss function as in

Example 1 above and denote by Y = (y, π) Barnichon and Mesters (2023a) define the OPP

θ = (R′
pRp)

−1R′
pE[Y ], i.e. η1(γ, x) = R′

pE[Y ] and η2(γ, x) = (R′
pRp)

−1, with x = E[Y ].
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Example 3. Phillips-Multiplier / Fiscal Multiplier: Let ϵ be a monetary policy shock. Let

Rπ̄
h = 1

H

H∑
j=0

γπ,ϵ
j and Rū

h = 1
H

H∑
j=0

γu,ϵ
j be the impulse responses of average inflation and

unemployment to a one-unit policy shock. Barnichon and Mesters (2021) define the Phillips-

Multiplier as θ =
Rπ̄

h

Rū
h
, i.e. η1(γ, x) = Rπ̄

h and η2(γ, x) = Rū
h. The fiscal multiplier of Ramey

and Zubairy (2018) is structured similarly.

Example 4. Set-Identified Instruments: Let yt = θ′Yt + ut be an endogenous macro equation

with a scalar outcome yt and a vector of covariates Yt. Let ϵ be a monetary policy shock and

let γY,ϵ
0:H stacking the responses of all variables in Y to ϵ in a column vector. Barnichon and

Mesters (2020) show that if appropriate economic shocks (or proxies thereof) are used as

instruments for this equation, θ can be represented as a regression in the impulse response space:

θ =

((
γY,ϵ
0:H

)′
γY,ϵ
0:H

)−1 (
γY,ϵ
0:H

)′
γy,ϵ
0:H where all responses are with respect to the appropriately

chosen shock. Thus, we define η1(γ, x) =
(
γY,ϵ
0:H

)′
γy,ϵ
0:H , and η2(γ, x) =

((
γY,ϵ
0:H

)′
γY,ϵ
0:H

)−1

.

Example 5. Using shocks in a second stage: Often researchers use shocks (or proxies thereof)

as inputs for a local projection, e.g. yt+h = θϵt + et+h, where for simplicity I abstract from

control variables and non-linearities. Then θ = (ϵ′ϵ)−1ϵ′y. This does not exactly follow in the

above framework, however, by expressing the structural errors in terms of the reduced form

ϵ′t = u′
tA0, we can define in a slight abuse of notation η1(γ, x) = ϵ′y and η2(γ, x) = ϵ′ϵ

There is a one-to-one mapping between the structural impulse responses and the orthogonal

reduced form parameters (ϕ,Q), thus equivalently we can represent the parameters of interest

as functions of (ϕ,Q, x):

θ = η̃(ϕ,Q, x) =
η̃1(ϕ,Q, x)

η̃2(ϕ,Q, x)

This allows us, together with the restrictions on Q to characterize the identified set, i.e. the
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set of parameters consistent with the data and all imposed assumptions, as:

ΘI ≡ {θ ∈ R : θ = η̃(ϕ0, Q, x) , Q ∈ Q(ϕ0|F, S)}

where ϕ0 is the true value of ϕ.

A potential robust Bayes estimator of this set is given by the procedure described in Giacomini

and Kitagawa (2021), however whether such an estimator exhibits the frequentist properties

derived in the latter, depends on the properties of the objective function, i.e. the mappings η̃1

as well as η̃2 and on the properties of the constraint space Q(ϕ|F, S). The latter are discussed

in the following subsection.

In terms of objective, a key requirement for convergence of the estimator to the true identified

set defined above as well as coverage properties is continuity of the functional of interest.

The following assumption is a necessary condition to ensure continuity:

Assumption 1. (Relevance) |η̃2(ϕ,Q, x)| > κ for some, possibly data dependent, constant κ,

πϕ-a.s.

Remark 1. In examples 3 and 4 this is literally equivalent to the instrument relevance

assumptions in the two papers, whereas in the remaining examples it ensures that there is

enough variation in the explanatory variables.

4.2 Constraint Sets

In the cases where we only have zero or sign restrictions on one column, i.e. our parameter

of interest is only a function of impulse responses to one shock (Examples 2-4 above), all the

results of Giacomini and Kitagawa (2021) are applicable. This is because above basically

only changes the parameter of interest from a scalar impulse response at horizon h, to a

scalar-valued continuous function of such impulse responses.

However, for statistics which are functions of impulse responses of more than one shock

(Example 1), the domain of the mapping η̃(ϕ,Q, x) is not necessarily path-connected and thus
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non-convex identified sets can arise. In these cases, the results of Giacomini and Kitagawa

(2021) are only valid for the convex hull of the identified set. Thus, next I discuss this

issue. Currently I am working on an algorithm checking whether a set of restrictions yields a

path-connected domain.

In general as Giacomini and Kitagawa (2021) point out, if sign restrictions are imposed on

more than one column, the identified set of impulse responses can be non-convex. First, let

us reconsider their simple example.

yt =

y1,t

y2,t

 = A−1
0

ϵ1,t

ϵ2,t

 Σtr =

σ11 0

σ21 σ22

 Q =

q11 q12

q21 q22


The impulse responses at horizon zero are therefore given by

IR0 =

ir11 ir12

ir21 ir22

 =

 σ11q11 σ11q12

σ21q11 + σ22q21 σ21q12 + σ22q22


Suppose we combine the economic restriction ir12 ≥ 0 together with the sign normalizations

σ22q11 − σ21q21 ≥ 0 σ11q22 ≥ 0

How does the identified set for column 1 look in this case, specifically what about the element

ir11?

The restrictions σ11q22 ≥ 0 and ir12 = σ11q12 ≥ 0 imply q2 = (q12, q22) ≥ 0 (elementwise), thus

to make q′1q2 = 0 possible we need {q1 : q11q21 ≤ 0}, i.e. {q11 ≥ 0, q12 ≤ 0}∪{q11 ≤ 0, q12 ≥ 0}.

Geometrically, this restricts the set to the upper-left and lower-right quadrant of the following

figure.
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Figure 5: Illustration Sign Restrictions

The light red areas are the feasible regions ignoring the σ22q11 − σ21q21 ≥ 0, which defines

the half space to the right of the dashed line. The non-convexity problem arises as the two

arcs are separated, thus depending on the slope of the dashed line the resulting set are two

disconnected arcs. If the slope σ22

σ21
is positive, the set is convex, if not its non-convex. As

σ21 ≤ 0 is of positive measure in the set of reduced form parameters we cannot rule out

non-convex identified sets.

However, now assume the additional restriction on an regression in the impulse response

space parameter, e.g. that ir11
ir12

≥ 0, implying q11q12 ≥ 0, which reduces the feasible set to

the lower right quadrant {q11 ≥ 0, q12 ≤ 0}. Thus now if the set is non-empty, its always

convex. An even easier example when restrictions on two columns are imposed which can

lead to convex sets is if instead of ir12 ≥ 0 we assume ir12 ≤ 0 which is not restricting the

first column of Q to any subspace. Thus, restrictions on more than one column of Q can but

do not have to yield non-convex domains.

Now suppose we restrict two columns of an n-dimensional Q. The above example suggest

that what matters is how the sign restrictions on column 2 restrict the space of feasible q1

signs. Excluding the origin, we have to make sure that the feasible space is path-connected.

The following proposition gives a first attempt on an algorithm to check whether imposing

restrictions on two columns yield to convex sets for their respective impulse responses. This
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are only necessary conditions, I am currently working on a more general version.

Proposition 1. Fix a reduced form draw ϕ. Suppose columns qi and qj of Q are restricted

by linear inequality restrictions encoded in the functions S.(ϕ) (and no zero restrictions are

imposed.):

1. For all sign patterns (si, sj) solve the following problem

min
qi,qj

q′iqj

Si(ϕ)qi ≥ 0 , Sj(ϕ)qj ≥ 0

sign(qi) = si , sign(qj) = sj

||qi|| = ||qj|| = 1

Similarly for max
qi,qj

q′iqj. Denote the respective objective values by pmin and pmax. If the

problem’s feasibility set is non-empty and pmin ≤ 0 ≤ pmax, keep sign pattern. Store all

surviving sign patterns in S = (Si,Sj), where S. are matrices with columns s..

2. Built a graph for Si and Sj respectively. Each node is a sign pattern and nodes are

connected if they share n− 1 signs. Denote this graphs by Gi and Gj respectively. If Gi

is connected, the domain of the continuous function mapping to the impulse response is

path-connected thus the identified set for the impulse response is convex conditional on

ϕ. Same for Gj.

Remark 2. Above can be also used to just check whether one of the two yield an convex

identified set and is thus of general interest.

Remark 3. If we cannot restrict some signs ex-ante we have 2n × 2n sign patterns to check.

For a six variable VAR this involves solving 2× 4096 optimization problems for each reduced

form draw.
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Remark 4. If one of the two columns is point identified (i.e. through proxy variables) the

above simplifies considerably. First, the set of possible sign patterns for the point identified

shock reduces to one pattern. Second, the minimization problem reduces to a linear program.

Remark 5. Above only works if all constraints are homogeneous, e.g. they go through the

origin, otherwise cones can be sliced into disjoint sets.

Remark 6. Above does not seem to work if one also includes zero restrictions, I have to develop

this further. Given that Giacomini and Kitagawa (2021) already consider zero restrictions on

multiple columns, there should be a possible combination that works. The problem is that

they only consider the identified set for the response associated to one column!

4.3 Estimation

Theorem 1. Consider θ = η̃(ϕ,Q, x) subject to S(ϕ,Q) ≥ 0 and F (ϕ,Q) = 0 and let

ΘI(ϕ0) be the true identified set. Let l(ϕ) ≡ inf
Q
{η̃(ϕ,Q, x) : S(ϕ,Q) ≥ 0 F (ϕ,Q) = 0} and

u(ϕ) ≡ sup
Q

{η̃(ϕ,Q, x) : S(ϕ,Q) ≥ 0 F (ϕ,Q) = 0}. Than Θ̂I = [l̄(ϕ), ū(ϕ)]
p−→ ΘI(ϕ0) if one

of the following conditions hold:

1. θ(ϕ,Q) = θ(ϕ, qj), S(ϕ,Q) = S(ϕ)qj and the zero restrictions F (ϕ,Q) = 0 follow the

conditions in Giacomini and Kitagawa (2021)

2. θ(ϕ,Q) = θ(ϕ, qj) and S(ϕ,Q) ≥ 0 are such that Proposition 1 yields convex sets for

column j.

3. θ(ϕ,Q) = θ(ϕ, [qj, qi]) and S(ϕ,Q) ≥ 0 are such that Proposition 1 yields convex sets

for columns j and i.

4.4 Imposing Restrictions on Sufficient Statistics

This section discusses whether we can impose sign and zero restrictions on the regression in

the impulse response space parameters and sample from the associated constrained posterior
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distribution.

For sign restrictions only, notice that the theory in Arias and Waggoner (2018) applies to

any continuous function S(A0, A+), thus continuity of the regression in the impulse response

space mappings is already sufficient for imposing sign restrictions on them.

For zero restrictions the following three conditions from Rubio-Ramirez, Waggoner, and Zha

(2010) have to hold: 1.) F (A0Q,A+Q) = F (A0, A+)Q, 2.) F (.) if its domain is open and

F (.) is continuously differentiable with F ′(.) of rank kn for all (A0, A+). and 3.) F (A) is

dense in the set of k × n matrices. Where for scalar regression in the impulse response space

parameters k = 1. I am currently working on the verification of these conditions for the

parameters of interest in examples 1-4 above.

Although, given a specific prior on the rotation matrix, above is already enough to justify

the use of restrictions on impulse response space parameters, this could result in non-convex

sets. The basic issue is that these class of restrictions, even if imposed only on parameters

depending on a single column, are non-linear. In this cases Proposition 1 does not work as

these non-linear restrictions can slice a cone into two disjoint sets.

Here I discuss results on two special cases used in the empirical applications below. First,

the following ensures convexity of the identified set restricting the Multipliers of example 3:

Proposition 2. Let ϕ = (B,Σ), Q = [q1, . . . , qn] and Ωh(ϕ) = [ω(ϕ)ih]i=1,...,n ∈ Rn×n. Con-

sider restricting the sign of ratios of functions of impulse responses to one shock (e.g. example

3), i.e. θh(ϕ) =
h−1

∑h
k=1 ω

′
ikq1

h−1
∑h

k=1 ω
′
jkq1

. Let Ch(ϕ) = c′j(ϕ)ci(ϕ) with cl(ϕ) =
(∑h

k=1 ω1,lk, · · ·
∑h

k=1 ωn,lk

)
and λmin and λmax be its smallest and largest eigenvalue. Than θh(ϕ) ≥ 0 (respectively,

θh(ϕ) ≤ 0) iff λmin ≥ 0 (respectively, λmax ≤ 0).

1. θh(ϕ) ≥ 0 (respectively, θh(ϕ) ≤ 0) iff λmin ≥ 0 (respectively, λmax ≤ 0).

2. Let Γh = [γhk]k=1,...,n and consider additional sign restrictions q1 of the form S1(ϕ)q1 ≥ 0.

Then the identified set for γh1 is convex and the identified set for θh is convex if

h−1
∑h

k=1 ω
′
jkq1 ̸= 0 πϕ almost surely.
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Proof. Consider θh(ϕ) ≥ 0, the opposite case is proven analogously. Note

θh(ϕ) ≥ 0 ⇐⇒

(
h∑

k=1

ω′
ikq1

)(
h∑

k=1

ω′
jkq1

)
≥ 0

Basic linear algebra shows this is equivalent to q′1Ch(ϕ)q1 ≥ 0. The condition on this quadratic

form8 to be positive is positive semi-definiteness of Ch(ϕ), i.e. λmin ≥ 0 because ||q1|| = 1.

Note that the latter is a restriction which does not involve the rotation matrix. Thus,

sampling ϕ conditional λmin ≥ 0 ensures θh(ϕ) ≥ 0 for all Q. Convexity of the identified set

than follows from the arguments in Giacomini and Kitagawa (2021) together with continuity

of θh(ϕ) under the conditions of this proposition.

Above clarifies the statistical properties and justification of restricting these non-linear

functions of impulse response, but what is the economic justification? In terms of the

phillips-multiplier of Barnichon and Mesters (2021) restricting the statistic to be (weakly)

positive is assuming that there is a trade-off between unemployment and inflation at some

horizons. The assumption does not postulate the existence of a parametric phillips-curve but

can be surely contested, especially at shorter horizons due to indeterminancies.

A second potentially interesting restrictions pertains the Optimal Policy Perturbation (OPP)

statistic of Barnichon and Mesters (2023a). Economically, under certain conditions, the

OPP characterizes the optimal adjustment to the baseline policy rule conditional on a loss

function. Restricting the sign of such an assumption for certain historical episodes introduces

a new class of narrative restrictions. For instance, a researcher might impose that the Federal

Reserve lowered the short term interest too slow at the onset of the great recession. The

following proposition characterizes such an assumption statistically and shows that any such

sign restriction does not induce non-convexities to the identified sets.

Proposition 3. Let ϕ = (B,Σ), Q = [q1, . . . , qn], and Ωh(ϕ) = [ωih(ϕ)]i=1,...,n ∈ Rn×n. Let

the parameter of interest be the optimal policy perturbation θ = (R′
pRp)

−1R′
pE[Y ], where

8Note, Ch(ϕ) is not symmetric but due to standard arguments we can consider C̃h(ϕ) = (Ch(ϕ)+C ′
h(ϕ))/2
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E[Y ] = (y1, . . . , yh, π1, . . . , πh). Define the 1× n vector

Pyπ = y1 ω
′
y1 + · · ·+ yh ω

′
yh + π1 ω

′
π1 + · · ·+ πh ω

′
πh (1)

Then θh(ϕ) ≥ 0 (respectively, θh(ϕ) ≤ 0) if and only if Pyπq1 ≥ 0 (respectively, Pyπq1 ≤ 0).

Imposing this restriction on top of additional sign restrictions on q1, the resulting identified

sets for both γh1 and θh remain convex.

Proof. Follows trivially from the condition R′
pE[Y ] ≥ 0.

Remark 7. Inference on the restricted OPP in this case might be not of primary interest,

however it sharpens identification of the impulse response itself and thus on OPP for other

periods in question. For instance, a policy institution might use insights on past OPP

to estimate the current OPP in an online fashion (see Einarsson (2024)). Specifically, let

PApril,2008
yπ denote the OPP related matrix above for April 2008. In retrospect we might feel

confident in claiming that the Federal Reserve underreacted to the onset of the great recession.

Imposing this condition sharpens identification of the associated impulse responses, thus

reduces uncertainty while estimating the current OPP.

5 Empirical Application

This section presents two applications. The first demonstrates how the new class of sign

restrictions on sufficient statistics can sharpen the identification of monetary policy shocks.

Specifically, I compare a set of sign restrictions with a proxy BVAR in the context of the

classic study by Gertler and Karadi (2015). The aim is to highlight the value of the proposed

approach, even when the sufficient statistic itself is not the primary object of interest.

The second application integrates the methods discussed above to conduct inference using

only sign restrictions on the optimal policy perturbation from Barnichon and Mesters (2023a)

for the US, the set of weak sign restrictions allows (arguably) correct inference on the sign of
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the optimal policy perturbation in nearly all periods.

5.1 Restricting Phillips-Multiplier

The seminal study by Gertler and Karadi (2015) employs high-frequency monetary policy

instruments to examine the transmission of monetary policy shocks across various specifica-

tions. Here, I focus on their simple VAR, which includes log industrial production, the log

consumer price index, the one-year government bond rate as the policy indicator, and the

GZ excess bond premium.

We consider three specifications. The first replicates the results of Gertler and Karadi

(2015) by using their proxy variable within a proxy BVAR, estimated as described in Arias

and Waggoner (2021) with uninformative priors. The second specification imposes classical

Uhlig (2005)-type sign restrictions to identify the monetary policy shock, assuming that the

monetary policy shock is the only shock affecting the interest rate and inflation in opposite

directions. The third specification augments these sign restrictions with the additional

condition that the Phillips multiplier of Barnichon and Mesters (2021), defined using the

responses of industrial production and the consumer price index, is positive at all horizons,

that is, that a trade-off between output and inflation exists in the economy. The latter two

models are estimated using the algorithm in Arias and Waggoner (2018).

Figure 5 shows the results for all three models in the respective columns. The replicated proxy

BVAR results display a delayed negative response of inflation and a more immediate decline

in industrial production, while the excess bond premium rises on impact and dissipates after

about 12 months. Imposing only classical Uhlig (2005) sign restrictions yields no significant

effects in most periods, except for an immediate drop in inflation. Most notably, consistent

with prior literature, the effect on output, industrial production in this example, is ambiguous

at all horizons, implying that output could even increase following a contractionary monetary

policy shock. This ambiguity is resolved once the Phillips-multiplier restriction is added, as

shown in the final column. Inflation and industrial production both decline on impact, and
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the estimated trajectory for industrial production closely tracks the proxy BVAR results.

The effect on the excess bond premium is similarly well captured. Overall, assuming the

existence of an inflation–output trade-off appears sufficient to qualitatively reproduce the

dynamics obtained via high-frequency identification.

Figure 6: Impulse Responses

Note:

An important caveat is that, for illustrative purposes, the results above are conditional on

the Haar prior for the orthogonal matrices. As discussed, this prior can have a substantial

impact on the impulse responses, particularly for non-linear functions thereof. Nonetheless,

its use for the impulse responses themselves can be justified by Arias and Waggoner (2024),

who show that the Haar prior is the only prior that induces a uniform joint distribution

over the space of all impulse responses.9 Reporting results conditional on this prior is also

9Interestingly, this result implies that the prior on non-linear transformations of the impulse responses is
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practically useful, as it remains widely employed in applied work. Figure 6 illustrates the

same impulse responses, comparing estimators of the identified set, i.e., the region between

the means of the upper and lower bounds, for the classical sign restriction case (blue area)

and the case with the Phillips-multiplier restriction added (dashed black lines).

Figure 7: Identified Sets under Classic and PM Restrictions

Note:

For the log consumer price index and the log of industrial production, the Phillips-multiplier

restrictions provide substantial identification power: positive responses are largely ruled

not uniform. Moreover, a uniform prior is not necessarily uninformative, so it is not clear whether such a
prior is desirable in general.
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out and any remaining responses are modest. This suggests that the new restrictions are

informative independently of the chosen prior on the orthogonal matrices. For the excess

bond premium, however, the robust estimators indicate that the improvement observed in the

previous figure arises from the combined effect of the Haar prior and the Phillips-multiplier

restriction.

5.2 Optimal Monetary Policy US

This section integrates the previous discussion to estimate the short-rate optimal policy

perturbation from Barnichon and Mesters (2023a) for the US, using only sign restrictions.

Details on the dataset are provided in Barnichon and Mesters (2023a). I estimate a VAR

with the same three variables—excluding the shock series, namely inflation, unemployment,

and the federal funds rate. Both the classical sign restrictions and the Phillips-multiplier

restriction are imposed as before, with the key difference that the Phillips multiplier is now

defined using unemployment and is therefore restricted to be negative.

To further sharpen identification, we apply the new class of narrative restrictions to a specific

period for the optimal policy perturbation. In particular, the OPP in April 2008 is restricted

to be negative, reflecting the assumption that the Federal Reserve set the interest rate too

high at the onset of the financial crisis. For a discussion of why this assumption might be

reasonable based on narrative evidence, see Barnichon and Mesters (2023a).

Figure 7 shows the estimated identified set of the OPP from 1990 to 2022 based on these sign

restrictions (blue), while the black line replicates the results from Barnichon and Mesters

(2023a), ignoring the zero lower bound.10 Consequently, results for 2008–2015 should be

interpreted as theoretical adjustments. Nevertheless, in all periods the identified set in blue

correctly captures the sign of the optimal policy perturbation relative to the replication mean.

Although substantial uncertainty remains regarding the magnitude, this illustrates that even

weak sign restrictions allow a researcher to infer the direction of the adjustment needed for

10I am working on estimating the constrained OPP that respects the zero lower bound; this requires
studying the properties of a new target statistic, which has no closed-form solution.
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optimal monetary policy.

Figure 8: Impulse Responses

Note:

Finally, returning to the main point of this paper, Figure 8 illustrates that using the Haar

prior on the VAR rotation matrices to compute non-linear statistics can severely distort

inference. Here, the OPP is estimated using only classical sign restrictions. The blue area

represents the robust identified set, while the black line shows the original results from

Barnichon and Mesters (2023a). The blue dashed line indicates the posterior median based

solely on the Haar prior. In nearly every period, this estimate disagrees with the replication

and, for example, would incorrectly suggest that the Federal Reserve should have raised the

interest rate just before the financial crisis.
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Figure 9: Impulse Responses

Note:

6 Conclusion

This paper demonstrates that widely used non-linear sufficient statistics of impulse responses,

such as RIRS coefficients, the Phillips multiplier, and optimal-policy perturbations, can be

highly sensitive to the prior under set identification. Simple (single prior) posterior summaries,

such as medians based on the Haar prior, may even reverse signs and mislead policy inference,

despite the underlying impulse responses appearing reasonable. Building on a mapping from

the orthogonalized reduced form to the sufficient statistics and under transparent relevance

and continuity conditions, I adapt robust Bayes methods to deliver sharp identified sets for

these statistics. Crucially, I also introduce a new class of identification restrictions applied

directly to the statistics themselves. Under tractable convexity and path-connectedness

conditions, these restrictions preserve a well-behaved geometry and restore the frequentist
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validity of the robust envelope.

Two applications illustrate the practical value of this approach. In the Gertler and Karadi

(2015) setting, augmenting classical sign restrictions with a Phillips-multiplier sign restriction

sharpens identification and reproduces the qualitative dynamics of a proxy-SVAR without

relying on external instruments. In a US policy exercise, combining the Phillips-multiplier

restriction with a narrative OPP sign in April 2008 produces identified sets that track the

direction of optimal rate adjustments from 1990 to 2022, while highlighting how Haar-based

medians alone could provide misleading guidance. Future work could build on these insights

in an online monitoring framework, providing real-time feedback for policymakers, as in

Einarsson (2024).
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