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Abstract

The present paper proposes a new approach to panel data regression models
with interactive effects that is appropriate when the slope coefficients are not nec-
essarily constant but that they may be shifting over time. A major point about the
new methodology—referred to as “SHIFTIE”—is that the type of shifts that can be
accommodated is very broad and includes most existing specifications in the liter-
ature, such as structural breaks and Markov switching, as special cases. This gen-
erality is important from a practical point of view, as existing approaches require
empirical researchers to take a stance as to the shift-generating process, which is
typically unknown. The asymptotic validity of SHIFTIE is established and verified
in small samples using Monte Carlo simulations. The empirical implementation is
illustrated using as an example economic growth. The results confirm the common

heuristic belief that the COVID-19 pandemic was special in many ways.
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1 Introduction

Accounting for temporal shifts in the coefficients of otherwise linear regression mod-
els has long been important in economics and elsewhere. The urgency of addressing
this issue has grown markedly in recent years due to a succession of extreme events—
including wars, pandemics, trade conflicts, financial crises, natural disasters, and major
policy changes—that continue to unfold.! Panel data are especially vulnerable to such
shocks because they contain many individual time series. However, only recently have
methods designed to handle shifts in panel data become available to practitioners.
Most existing techniques are limited to models with a single “structural break,” that
is, two regimes separated by a single breakpoint at which the parameters shift perma-
nently (see, for example, Antoch et al., 2019, Baltagi et al., 2016, Karavias et al., 2022, and
Zhu et al., 2020). Such single structural break models are appropriate in some situations,
as in the case of a monetary policy regime change or a technological breakthrough, but
certainly not in all. The methods proposed by Qian and Su (2016), Boldea et al. (2020),
Kaddoura and Westerlund (2023), and Ditzen et al. (2025) allow for multiple structural
breaks, and are therefore more general in this regard. However, they still assume that
breaks are infrequent and that their effects are permanent. These methods therefore
fail to accommodate situations in which events are recurrent—such as business cycles,
bushfires, or storms—or where the impact is transitory, as with episodes of extreme

weather, or financial crises. In fact, switches between regimes may be frequent, as in the

L A non-exhaustive list of recent examples includes the 2007-2008 global financial crisis, the subprime
mortgage crisis of 2007-2010, the COVID-19 pandemic, Russia’s invasion of Ukraine in 2022, and the
2021-2023 energy crisis.



case of rapidly changing financial market conditions (see Piger, 2009, for a discussion of
different types of breaks).

Observations like the ones just made have led to the development of a separate lit-
erature on “regime switching.” Regime switching models can be broadly categorized
into two types; “threshold” models and “Markov-switching” models, both of which
generate frequent shifts with transitory effects. The key difference between the two lies
in the mechanism governing the shifts. Threshold models assume that regime changes
are triggered by the level of an observed variable relative to an unobserved threshold.
In contrast, Markov-switching models posit that regime shifts follow a latent Markov
chain, often with only two states and time-invariant transition probabilities. Each ap-
proach has its strengths and weaknesses. Threshold models are relatively easy to esti-
mate and interpret; however, they rely on the assumption that the relevant state vari-
able is observed—an assumption that is seldom satisfied in practice. Markov-switching
models relax this requirement, but do so at the expense of imposing strong parametric
assumptions and requiring more complex estimation techniques. Interestingly, while
the time series strand of the regime switching literature is huge (see Hamilton, 2016, for
a recent overview), the panel strand is almost nonexistent (see Cheng et al., 2010, and
Miao et al., 2020, for discussions).

The above discussion suggests that if the panel literature on structural breaks is
small, the literature on regime switching is even smaller, and there have been no at-
tempts to bridge the two.? This point is important not only in its own right but also
because of its implications for empirical work. In particular, since there is currently

no holistic approach, researchers are forced to take a stance as to whether shifts are in-

2This observation applies to the time series literature as well. In fact, the structural breaks and regime
switching literatures appear to have developed largely independently, despite the close relationship be-
tween the two phenomena. Reflecting this, the otherwise comprehensive surveys by Hamilton (2016) and
Perron (2006) hardly mention this issue.



frequent with permanent effects (structural breaks) or frequent with transitory effects
(regime switches). The present paper can be seen as a reaction to this. Its aim is to
develop a new approach to panel data models that is general enough to accommodate
both phenomena, henceforth referred to as “shifts.”

Dealing with these shifts would have been easier were it not for the simultaneous
presence of unobserved heterogeneity due to omitted variables. This is a major con-
cern because models in economics tend to be very parsimonious and are, therefore,
likely to omit variables that may be correlated with the regressors, rendering them en-
dogenous. To address this problem, researchers commonly assume that the unobserved
heterogeneity consists of additive unit- and time-specific constants, or “fixed effects.”
However, unlikely to be enough in many applications, which has recently led to the
consideration of more general interactive effects models. In these models, the time- and

4

unit-specific effects—often called “factors” and “loadings,” respectively—enter mul-
tiplicatively. The most common approach to handling such effects is “de-factoring,”
which involves projecting the data onto the space orthogonal to the estimated factors.
This procedure eliminates the interactive effects asymptotically; however, it does so in
an awkward way, as the shifting slope coefficients in the model for the de-factored data
are not the same as those for the raw data.

We address this challenge by “de-loading” the data instead of de-factoring them.
Unlike the factors, the loadings are time-invariant, which means that we can project
them out without affecting the slopes. With the interactive effects removed, we identify
shifts by adapting an existing algorithm from the literature on unknown group struc-
tures to estimate shifts along the time dimension. The groups in this context are regimes,
and the approach allocates each time period to one of these regimes optimally using a

least squares (LS) criterion. Time periods within the same regime share the same co-

efficients, whereas periods in different regimes have different coefficients. Moreover,



because the periods allocated to a particular regime do not need to be consecutive,
shifts may occur frequently. Both the timing of the shifts and the regime-specific slope
coefficients are treated as non-random, meaning that—unlike in much of the regime-
switching literature—no restrictive distributional assumptions are required. The new
approach, henceforth referred to as “SHIFTIE” (SHIFTs in Interactive Effects models), is
therefore very general in terms of the types of shifts it can accommodate.

The rest of the paper is organized as follows. In Section 5.2, we present the model
and the proposed SHIFTIE approach used to estimate it. Sections 3 and 5.2 examine
the asymptotic and finite-sample properties of the approach, respectively. Section 5
reports the results of an empirical application that showcases the importance of COVID-
19 for models of economic growth. Section 6 concludes. All proofs are provided in the

appendix.

2 Model and approach

Consider a scalar panel variable y;, observed over t = 1,...,T time periods and i =
1,..., N cross-sectional units. The data-generating process (DGP) that we consider can
be viewed as a prototypical interactive effects model, with the added feature that the

slope coefficients are allowed to shift over time. It is given by

Yir = By Xir + vifi +€in (2.1)
xii = Lifi +viy, (2.2)
where x;; = [x14,..., %) and B, = [B1s, ..., Bks|" are k x 1 vectors of known

regressors and unknown slope coefficients, respectively. The slope coefficients are al-

lowed to vary over time via the variable r; € R := {1,..., R}, which assigns each time



period t into one of R regimes. Moreover, y; := [Y1t, ..., Ymt|] and Ty := [T14,..., Tyl
are m x 1 and m X k matrices, respectively, of unknown common factors with f; :=
[f1is---, fmi]’ being the associated m x 1 vector of factor loadings, and ¢;; and v, ; are
idiosyncratic error terms.

The products vf; and T}f; represent the interactive effects. As noted in Section 1,
these effects appear in both (2.1) and (2.2), which makes x;; endogenous. Unlike in
studies such as Pesaran (2006), this endogeneity arises from the loadings rather than
3

the factors themselves (see Hansen and Liao, 2019, for a similar assumption).

It is useful to write the above equations in stacked vector form as follows:

yt = Xt,Br[ + F'Yt + &, (2.3)
X; = FT; + V;, (2.4)
where y; 1= [y1¢,...,yn¢| and & = [e14,...,ent) are N x 1, X; := [x14,...,XN) and

Vi:=[vit,...,vNt) are N x k,and F:= [f1,..., fN] is N x m.

The model in (2.3) involves four types of parameters: the vector of regime-specific
slope coefficients B, , the regime membership variable r;, the vector of common factors
v+ and the matrix of loadings F. It is convenient to organize the first three into the
Rk x 1 vector B:= [B,...,Br]’, the m x 1 vector r := [ry,...,rr]’, and the T x m matrix
v :=[vy,--.,vr)- While ¢ and F are not of primary interest, it is necessary to control for
them; otherwise, B and r would be inconsistently estimated due to the omitted variables
problem. One approach is to follow the existing literature on grouped cross-sectional
heterogeneity and estimate all four sets of parameters jointly (see, for example, Ando
and Bai, 2016). However, joint estimation in this high-dimensional panel data setting is

computationally burdensome. We therefore seek a stepwise procedure. An important

3Although the same set of loadings f; appears in both (2.1) and (2.2), some of the elements of 7y, and
I't may be zero. As a result, y;; and x;; are allowed to depend on different loadings.



observation in this regard is that while estimates of B and r necessarily depend on one
another, the problems of estimating (B, r), on the one hand, and (1, F), on the other
hand, are in principle separable.

As a source of inspiration, we consider the studies by Baltagi et al. (2016), Karavias
et al. (2023), and Ditzen et al. (2025), which incorporate structural breaks and interac-
tive effects through variations of the common correlated effects (CCE) approach of Pe-
saran (2006). CCE uses cross-sectional averages of the observables as proxies for the fac-
tors, which are then projected out in a regime-wise manner. While this de-factoring ad-
dresses the interactive effects, it introduces a dependency on the unknown break dates
due to its regime-wise implementation. As a result, this approach does not achieve a
clear separation between breaks and interactive effects, instead making all estimates
interdependent—something we aim to avoid.

Our proposed SHIFTIE solution is inspired by Moon and Perron (2004). Although
their context—unit root testing—differs from ours and they do not consider the CCE ap-
proach, they make a key observation: de-factoring with non-stationary factors is more
complex than de-loading with non-random factor loadings. Since the goal is to elim-
inate interactive effects rather than estimate them, de-loading is sufficient. We face a
similar situation in the sense that de-factoring is comparatively more complicated. In
particular, unlike the factors, the loadings are time-invariant, which allows de-loading
to be performed without any knowledge of the regime memberships.

To formalize our proposed solution, let Z; := [y, X;] be the N x (k + 1) matrix of
observables. By combining (2.3) and (2.4), the models for y; and X; can be rewritten as

the following static factor model for Z;:

Z, = FC; + U, (2.5)



where C; := [I"tﬁrt + 9, T ism x (k+1) and U; := [ + Vtﬁrt,Vt] is N x (k+1). In

this notation, the proposed estimator F of (the space spanned by) F is given simply by
F:=Z=FC+T, (2.6)

where A := T~ Y.L, A, for any generic matrix A;. The justification for this estimator
lies in the fact that under certain regulatory conditions laid out in Section 3, U negligi-
ble. Hence, F is consistent for FC, which under the conditions of Section 3 implies that
pre-multiplication by the N x N projection error matrix M := Iy — F(FF)~'F will
eliminate the interactive effects asymptotically.

To estimate (B, r), we propose an algorithm inspired by the grouped fixed effects
(GFE) approach of Bonhomme and Manresa (2015) to the estimation of latent cross-
sectional group structures in fixed effects models. In particular, the idea is to estimate 8

and r jointly by minimizing the residual sum of squares of the de-loaded data;

T
=~ : 2
(,B, r) ;= argmin Z HMf(Yt — Xtﬁl’t) , (2.7)
(Br)EBRXRT t=1
where B € R**1 is the parameter space of B, and [|A[| := \/tr (A’A) is the Frobenius

norm of any matrix A. The above joint estimation problem can be solved iteratively.
Given r, we can estimate B, and given B, we can reestimate r. This process contin-
ues until convergence. The below estimation algorithm provides the details. Here and
throughout this paper, rl®) := [rgs),. . .,r(TS)}/ and ,B(S) = [,Bgs)l,. . .,,B%S)’}/ denote esti-

mates of r and B, respectively, at step s.

Estimation algorithm.

1. Sets = 0. Initiate r for a given R. Let r(?) be this initial value.



2. Given r®), compute

T
'3(5) = arg ggg}z tzzl HMﬁ(yf — Xt'Brt(s)) H2 (2.8)

3. Given [3(5), update ras rt1) = [rgsﬂ), . ,rgﬂ)} ' where

VESH) = arg mg% HMf(yt — Xtﬁﬁf)) H2 (2.9)
Tt

4. Set s = s+ 1 and return to step 2. Repeat until numerical convergence. The

-~

solution (B,T) to (2.7) is given by the final step estimates.

According to our Monte Carlo simulations, convergence is very fast, partly because
the objective function is non-increasing with each iteration. However, convergence to
the global optimum is not guaranteed—a common limitation of this type of iterative
algorithm. Therefore, multiple initializations of r should be tested, and the one yielding
the lowest value of the objective function should be selected.

The GFE approach can be viewed as a variant of the classical k-means clustering
algorithm, and serves as the workhorse of the literature on unknown groups (see, for
example, Loyo and Boot, 2025, and Miao et al., 2020). However, it is not the only avail-
able method. One alternative is the expectation—-maximization (EM) algorithm used
by Ke et al. (2016) to maximize the full likelihood function. However, this approach
is computationally costly and challenging to implement—Ilikely one reason for its lim-
ited adoption in applied work. Additionally, it assumes that the slope coefficients are
pre-ordered, which in practice requires sequencing the data. This is manageable with a
single regressor but it is unclear how to proceed when multiple regressors are present.
Another alternative to GFE is the penalized principal component (PPC) approach of Su

and Ju (2018), which uses the principal components-based approach of Bai (2009) to

9



deal with the interactive effects and the least absolute shrinkage and selection operator
(LASSO) to deal with the groups. However, PPC involves solving a high-dimensional,
non-convex optimization problem and requires grid search over multiple tuning pa-
rameters, including the number of factors m. Thus, from a computational standpoint,

PPC is no more practical than EM.

3 Asymptotic analysis

To facilitate our asymptotic analysis, we need to introduce some notation. Specifically, if
A is a matrix, Amin(A) and Amax(A) signify its smallest and largest eigenvalues, respec-
tively, while rank(A) signifies its rank. The symbols —, and —, signify convergence
in probability and distribution, respectively. The indicator function for the event A is
denoted 1(A). It takes on the value 1 if A is true and 0 otherwise. We use w.p.1 (w.p.a.1)
to denote with probability (approaching) 1. As usual, true parameter values are super-

scripted by a “0,” such that, for example, 7! is the true value of r¢.

Assumption 1.
(a) Bisacompact subset of RF*1,

(b) B,,, I'+t and 7, are non-random such that rank(C) = m < k+ 1. Also, C — C as

T — oo, where rank(C) = m < k+ 1 and ||C|| < o0;

(c) Wi := [€i4,vi]' as a covariance stationary process with absolutely summable au-
: ~1yvN N
tocovariances, E(wi;) = 0(41)x1, sup; , E(||wi[|*) < co and sup, N"1 ;¥ I

|tr [E(Wi,tW;,t)H < 00;

(d) & and v, are independent for all , ¢, j and s;

10



(e) f;is non-random such that sup; ||f;|| < cc and N"'F'F — Zr as N — oo, where I
Pi

is positive definite;
(f) (NT)"! Zthl Zstl E(UjUs) — Oy, as N, T — oo, where ), is positive definite;

(g) max,er Amin(Sy ;) > Pmin > 0 forallr € R w.p.a.l, where S, := (NT) ™! Y,
1(r; = ') 1(r; = r)VIMpoV;, and F is the limit of F in the sense of Lemma A.1 in

the appendix;
(h) T 'T, - 1, >0as T — coforall r € R, where T, := 2;[:1 A(ry =71);

G) [|B% — B2 > 0 for all ¥ # 7.

Some remarks are in order. Assumption 1(a) requires that the parameter space for g,
is compact—a standard condition for extremum estimators. Unlike many other studies
on interactive effects (see, for example, Pesaran, 2006, and Kaddoura and Westerlund,
2025), Assumptions 1(b) and 1(c) do not require I', -y, or f; to be randomly distributed.
Instead, these matrices are treated as non-random, which is a more general considera-
tion, since it is non-parametric. Random loadings can still be accommodated by inter-
preting f; as a single realization from the underlying random loading process, and the
same applies to random factors. Treating B,, as non-random in Assumption 1(b) is also
a strength, especially when compared to the Markov switching literature, which—as
discussed in Section 1—typically assumes that r; evolves according to a Markov chain.
Assumption 1(b) further requires that C has full row rank. This condition ensures that
the m columns of F can be recovered asymptotically from the k + 1 columns of F, and
is analogous to the standard CCE rank condition on the cross-sectional averages of the
loadings. Itis a mild restriction, requiring only that the number of loadings is not under-

specified. This contrasts with much of the interactive effects literature, which assumes
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that the number of loadings is known or can be estimated accurately (see Westerlund
and Urbain, 2015, for a discussion).*

Assumption 1(c) allows for weak serial and cross-sectional dependence in ¢;; and
v;, and is quite general. This is sufficient for some of our results but not all. Later on,
at-most-weak dependence will need to be strengthened to independence—an expected
requirement, as many studies on unknown groups assume independence in at least
one of the two dimensions (see, for example, Miao et al., 2020). Assumption 1(d) rules
out lagged dependent variables in x;;. However, as noted above, y;; is still allowed
to exhibit serial correlation through both 7, and ¢;;. Assumption 1(d) also does not
preclude endogeneity, as x;; may still be correlated with the regression errors in (2.1)
via f;.

Assumptions 1(e) and 1(g) are standard non-collinearity conditions that ensure iden-
tification of ,39 They require that the loadings are not collinear and that the regressors
exhibit sufficient variation across both the cross-section and time, after projecting out
all variation that can be explained by the loadings (see, for example, Bai, 2009). The
latter condition is assumed to hold over the intersection of time periods assigned to all
estimated and true regimes. Note also that for Assumption 1(g) to be satisfied, these
intersections cannot be negligible relative to T. This requirement is formalized in As-
sumption 1(h), which is standard in the structural break literature (see, for example,
Bonhomme and Manresa, 2015, and Loyo and Boot, 2025). However, while in that lit-
erature Assumption 1(h) is essential for accurate estimation, according to our Monte
Carlo results this is not the case here. Assumption 1(f) requires that the average long-
run covariance matrix of U; is positive definite. This implies that y;; and x; ; cannot be

over-differenced. Finally, Assumption 1(i)—commonly referred to as the regime “sepa-

“One way to relax Assumption 1(b) is to include time-invariant regressors that can be treated as ob-

served loadings. These observed loadings may be appended to F and projected out, thereby removing
the need for them to satisfy the rank condition in Assumption 1(b).
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ration condition”—requires that ,39/ and ﬁ? are distinct.
With the above conditions in place, we can establish the consistency result in Theo-

rem 1 below. The theorem is stated in terms of the following Hausdorff distance:

dy (a,b) := in [|a, — by||, in ||la, — b,/ }, 3.1
u (a,b) maX{rgg;ggllar rll, maxmin [la, WH} (3.1)

where (a,b) € BR x BR.> The reason for considering this distance is that our objective
function is invariant to a relabeling of the regime index r and the regime-specific slopes
B, are therefore only identified up to a re-ordering of the regimes (see Bonhomme and
Manresa, 2015, for a discussion). By showing that dp; (8°, B) = 0p(1) Theorem 1 estab-

lishes that the identified set is consistently estimated.

Theorem 1. Suppose that Assumption 1 holds. Then, as T — oo with N < co or N — oo,
d (BB) =0y (1).

Theorem 1 implies that the elements of B can be relabelled so that ||, — B2|| = 0p(1)
for all ¥ € R (see the appendix for details). Hence, in what follows, we simply assume
that the elements of B have been suitably relabelled, as in Bonhomme and Manresa
(2015). Theorem 1 does not require that the regime membership ) is consistently esti-
mated for all time periods t, which is only possible if N — co. This follows from the fact
that 7; is constructed using only cross-sectional variation. By not requiring consistent
estimation of ) it is possible to have N fixed. This allowance stands out when compared
to existing results in the group literature, which typically require both N and T to grow

large (see, for example, Bonhomme and Manresa, 2015; Loyo and Boot, 2025; and Miao

et al., 2020).

5The exact definition of dy (-, -) depends on the problem at hand and hence varies from study to study.
Our definition is the same as in Miao et al. (2020).
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The 0,(1) convergence rate in Theorem 1 is clearly not sharp. It can be sharpened
at the expense of more restrictive conditions. This is done in Theorem 2. As we show
in the appendix, the proof of Theorem 1 can be modified to establish consistency in the

following mean square sense:

"= op(1), (3.2)

L& 0 3
7L B =B
which is analogous to Theorem 1 in Bonhomme and Manresa (2015), and Loyo and
Boot (2025). However, this requires that min; Apin(N~'ViMpV;) > 0 w.p.a.l instead
of Assumption 1(g), which in turn means that N cannot be fixed anymore.

We now turn to the question under what conditions the SHIFTIE estimator achieves
consistent classification of individual time periods. Under consistent classification, B
will be asymptotically equivalent to the infeasible estimator based on the true group

memberships, henceforth denoted Binf.

Assumption 2.
(@) w;;isindependent over i and ¢;

(b) P(|w;;¢| > M) < exp(l — (M/v)¥) for all i and t, where wj;; is the j-th row of

R / .
Wit = (Wit ..., Wrr1i¢) and M, v, k > 0;

(c) ]E(N_lVth) — Xyt as N — oo, where L, is positive definite with sup, ||Zo|| <

00,

Classification consistency typically requires restrictions on the dependence structure
and tail behavior of the data (see Bonhomme and Manresa, 2015, for a discussion). This
is where Assumption 2 comes into play. Part (a) strengthens the weak dependence

condition of Assumption 1(c) to independence. This assumption is used in the proofs;
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however, intuition and the Monte Carlo results reported in Section 5.2 suggest that in-
dependence may be stronger than necessary. In any case, y; ; and x; ; are still allowed to
be dependent through the interactive effects. Similarly, while Assumption 2(b) requires
that the tail probability of w; ; decays at an exponential rate, the observed data may still

exhibit thick tails.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, forall 5 > 0,as N, T — oo,

(@) P ( sup |7 —1r| > o) = 0(1) +0o(TN™°),

te{1,...,T}
~ ~inf _
(b) max||B, = B,"|| = op(N7*).

Unlike Theorem 1, Theorem 2 requires that both N and T grow without bound,
which, as already noted, is a standard condition in the literature. Moreover, for 7; to
be consistent for 1, the relative growth rates of N and T must satisfy TN~° = O(1).
This condition is not particularly restrictive, as the only requirement on ¢ (at this point)

is that it be positive.
Assumption 3.

(@) T 1 EtT:l 1(ry = r)Zyt — Oras T — oo for all ¥ € R, where X, is positive

definite;

b) T, 'YL, 1(rs = r)0g,Eos — @y as T — oo forallr € R, where 07, = ]E(Ezz',t);

() T''N —=#<ocoasN, T — co.

Assumption 3 ensures that the infeasible estimator [S;n is asymptotically well de-
~ ~inf
fined. This is important because, by Theorem 2, B, is asymptotically equivalent to ,B;n .

As a result, the asymptotic distribution of /N Ty(Br — ,39) stated in Theorem 3 below

15



is derived from that of /NT, (Birnf - ,39) Assumptions 3(a) and 3(b) correspond to the
standard identification and covariance matrix conditions (see, for example, Bonhomme
and Manresa, 2015; and Loyo and Boot, 2025). The expansion rate condition in part
(c) is needed to address the incidental parameters problem arising from the interactive
effects, and is standard in studies that allow for such effects (see, for example, Bai, 2009,

and Westerlund and Urbain, 2015, for discussions).

Theorem 3. Suppose that Assumptions 1-3 hold, and that 6 > 1. Then, uniformly inr € R,

as N, T — oo,
VNT, <Br - :B(r)> —d N <_\/ﬁ77r_1/2®r_1brr ®r_1q)1’®r_1> ’
where b, is a k x 1 bias vector such that b, = by, + bz, + by, — by, with

by, := lim — 211 re =71)(Zos[B, It) — T1B, Q) P_ 1y ZuBuy,,

T—oo T,

o1 T
by, == lim — ) 1(ry = )02 (Zot[B, Ik — 1B, Q)P [1,01.1),

T—o0 e 1

bs, := lim — 211 re =1)(ZotB,, It) — T}B1, Q) By,

T—o0
1 a 2 r/p! I
b4r = lim — Zﬂ(rt = r)agltl"th[l, lek] ’
T—o0 r =1

where P_,, = B_m(B’_mQuB_m)*lB’_m and B_,, is as in the proof of Lemma A.1 in the

appendix.

Theorem 3 implies that [A3r is consistent and that the rate of convergence is given by
(N Tr)_l/ 2. The bias term VT 1/ 2@; 1br does not affect consistency; however, it does
lead to a miscentering of the asymptotic distribution of /N Tr([/;r — BY), which inval-

idates inference. Because 7, 172 — limr_,e vT/Ty > 1, the only exception is when
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n = 0, in which case the distribution simplifies to N/ (0y1, ®, '®,0,1).° In practice,
this means that we require T > N, which need not be the case in a given sample. An-
other possibility is to estimate the bias directly and subtract it from Er, which would
yield an asymptotically unbiased estimator, provided that the bias estimate is consis-
tent. Unfortunately, consistent estimation of b, is only possible if m = k 4 1, which,
again, may not hold in practice.

These considerations motivate the use of the split panel jackknife (SPJ) proposed by
Dhaene and Jochmans (2015), which requires neither T > N nor explicit bias estima-

tion. The specific SPJ estimator we consider is given by

~Spj

=28 —B,, (3.3)

where B, := (Bl,r + ,lA%Z,,) /2 with B&r for ¢ € {1,2} given by

-1
Bii= | L XiMpX; | Y XiMgys, (3.4)
teTy, teTy,
and where 71, := {1,...,T,/2} and Tp, := {T,/2+1,..., T;}.

Assumption4. X, = X, , and Usz,t = agr for all t such thatr; = r € R.

Assumption 4 requires that X, ; and ‘Tez,t are constant within regimes. This is needed

or else split panel jackknife will not be able to eliminate the bias of Br.

Theorem 4. Suppose that Assumptions 1-4 hold, and that 6 > 1. Then,as N, T — oo,

UNT, (B = BY) =4 N (001, 0225 ).

®Note that unless 17 = 0, the presence of 7, /2 will inflate the bias for relatively small regimes.
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Theorem 4 verifies that the SP] correction is asymptotically successful. Inference
based on this result requires consistent estimators ag,r and f‘.w of ng,r and X, respec-
tively. Natural suggestions towards this end are 2, = (NT,) ™! YL, (7 = r)&jg and
f'v,r = (NT,)~! Zthl (7 = r)\A/;\A/t, where & := Mz(y; — XtB?t) and V; := MzX;.

All the results reported so far assume that the true number of regimes, RY, is known,
which may not be the case in practice. If R" is unknown, we follow the bulk of the
existing group literature and minimize an information criterion (see, for example, Bon-
homme and Manresa, 2015, Miao et al., 2020, and Su and Ju, 2018). Our proposed

estimator R of R? is given by

R := argmin IC (R), (3.5)
1§R§Rmax

where Rpax > Rlis a pre-specified maximum number of regimes, and

T
t=1

Here we have made the dependence of € on R explicit by writing & = & (R). Consis-
tency requires that the penalty term @7 satisfies ¢t — 0 and ¢yt max{N,T} — oo

as N, T — oo.

4 Monte Carlo study

In this section, we investigate the finite-sample properties of our proposec SHIFTIE
approach. The DGP used for this purpose is similar to those considered by Kaddoura

and Westerlund (2023), and Kaddoura (2025), and is given by a restricted version of
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(2.1) and (2.2) with k = 3 and r = 2. The loadings are generated as

Iy = @l + 11, (4.1)

Yi = @21 + 0, (4.2)

with initial conditions set to zero, parameters ¢; = 0.5 and ¢, = 0.1, and innovations
drawn independently from N (0,1). We use the same DGP as for v, to generate f;. The

idiosyncratic error ¢;; is generated in the following way:

L
gip =01+ s+ )0 (Cizjt + Civit) s (4.3)
/=1
where e19 = -+ = eno = 0,8 = 0.3, L = 10, and ;; ~ N(0,0?) with 0; ~ U(0.5,1).

This means that ¢;; is both serially and cross-section correlated with the 2L nearest
cross-sectional neighbours.” The DGP of v;; is the same, except that the innovations
are drawn from N (0, 1). Hence, while ¢; ; is heteroskedastic, v;; is not.

The primary focus of this simulation study is the slope coefficients. We consider
two distinct DGPs in which the slopes display (DGP1) a temporary structural break
and (DGP2) Markov switching. Both DGPs are inspired by our empirical illustration in

Section 5. In DGP1, B,, is generated as follows:

(

0,x1 for 1<t< [05T]

Br, =41y« for [05T] <t< [0.6T]- (4.4)

kOpxl for 06T <t<T

where | -] is the floor function. Thus, B, experiences a temporary structural break that

"The cross-sectional sum in v; ; is truncated at beginning and end when not enough cross-sections are
available.
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subsequently reverts back to the original level. The number of regimes, RY, is there-
fore given by two. In DGP2, B, evolves according to a two-regime Markow switching

process with the following transition matrix:

P P11 P12 ’ (4.5)

P21 P22

where p,, := P{r; = b | r;,_1 = a} is the probability of moving from regime a at time
t — 1 to regime b at time t. For our simulation, we set p1; = py» = 0.8 and p1p = p21 =
0.2.

The performance of SHIFTIE is evaluated based on 1000 replications of the above
DGPs for all combinations of N, T € {40, 60,80,100}. Hence, not only is the DGP chal-
lenging but most sample sizes are also very small. Note in particular how in DGP1 the
second regime where |0.5T | < t < |0.6T | only contains 4 time periods when T = 40.
Three metrics are considered; the mean squared error (MSE) and bias of Br and B:pj ,and
the misclassification frequency of 7;. The bias and MSE are reported separately for each

regime and all together. All results are based on treating R as known.
INSERT TABLES 1 AND 2 ABOUT HERE

Tables 1 and 2 report the bias and MSE results for DGP1 and DGP2, respectively. As
expected given Theorem 3, the baseline SHIFTIE estimator is biased, especially in the
smallest samples. We also see that in DGP1 most of the inaccuracy originates from the
second regime, which—as pointed out earlier—is relatively small. Things improve as
N and T increase; however, some distortions remain, as to be expected given that all
samples considered are quite small. Note in particular how the unbiasedness require-
ment that T > N is not met. The SPJ takes care of this problem. In fact, the accuracy

of the SP] SHIFTIE version is very high, even in the smallest samples and regardless of
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the DGP considered. This corroborates Theorem 4.
INSERT TABLE 3 ABOUT HERE

In Table 3, we report the misclassification frequency for both DGPs. As expected
given Theorem 2(a) this frequency goes down as N increases. It goes down also when
T increases but not always. Note in particular how in DGP2 the misclassification is
increasing in T when N is relatively small, which is again consistent with Theorem 2(a).
Intuitively, unless N is large enough to ensure accurate estimation, more time periods

to classify just means more errors.

5 Empirical illustration

5.1 Motivation

There is a substantial empirical literature concerned with economic growth and the
business cycle in the US (see Owyang et al., 2005, and Hamilton and Owyang, 2012,
and the references provided therein). The coronavirus pandemic (COVID-19) had a
substantial effect on the US economy. In fact, as Federal Reserve Bank of Chicago (2022)
point out, COVID-19 was highly disruptive even from an historical perspective. Real
GDP contracted by 3.5% in 2020, which is the largest contraction since 1946 and the first
contraction since the 2008 financial crisis. The US Census Bureau’s Household Pulse
Survey published weekly statistics of the effects of the pandemic on Americans’ lives.
For week 12 (July 16-21) of 2020, 51.1% of respondents reported a loss of employment
income since March 13. During roughly the same period, the number of persons with
jobs decreased by 14.7 million. Recovery began relatively quickly, though, with the

recession lasting only two months—March and April—according to the National Bu-

21



reau of Economic Research (NBER).® Of course, this does not mean that the effect of
COVID-19 was gone after two months. In fact, unemployment did not return to its
pre-pandemic level until 2022, and it took even longer for real GDP to return to its pre-
pandemic trend (2023:Q4). Parts of the US economy have not completely recovered
even today. The duration of the COVID-19 effect on economic growth is therefore un-
clear, although it seem to have been temporary. This is unlike the global financial crisis
of 2007-2008, which shifted the level of real GDP down permanently (Federal Reserve,
2024).

Another unsettled issue is whether the recovery took place abruptly or gradually. A
key factor here is the many interventions by the US government and the Federal Reserve
aimed at keeping financial markets functioning and to provide stimulus. In particular,
there was the Coronavirus Aid, Relief, and Economic Security Act—also known as the
“CARES Act”—of March 2020, and the American Rescue Plan Act of March 2021—also
called the “COVID-19 Stimulus Package” or “American Rescue Plan,” which are the
largest economic stimulus packages in US history. There were other stimulus pack-
ages as well, such as the Families First Coronavirus Response Act of March 2020, the
Paycheck Protection Program and Healthcare Enhancement Act of April 2020, and the
Consolidated Appropriations Act of December 2020, but these were not quite as large.
There was also a massive quantitative easing programme launched by the Federal Re-
serve in March of 2020 and a lowering of the target for the federal funds rate to (almost)
0. While many interventions were introduced in March of 2020, they were in effect for
many months, and there were subsequent interventions.

As the discussion in the last two paragraphs makes clear, there is great uncertainty

80ne reason for this speedy recovery is the American Rescue Plan Act of 2021, also called the “COVID-
19 Stimulus Package” or “American Rescue Plan”, which was a USD 1.9 trillion economic stimulus pack-
age. Another reason is the Federal Reserve’s cut of the federal funds rate and massive quantitative easing
programs aimed at keeping financial markets functioning and to provide stimulus.
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over both the duration and the size of the effect of COVID-19 on growth. Surprisingly,
the part of the empirical literature that is concerned with this issues is very scarce, and
the few studies that exists are either policy reports or research not focusing on the US
or growth (see, for example, Congress, 2025, Sunge et al., 2024, and Ditzen et al., 2025).
In fact, most growth studies are pre-COVID-19. There therefore much to do.

The present paper is the first to consider the effect of COVID-19 on US economic
growth. This is our first contribution. Our second contribution lies in our choice of
econometric method. Starting with the seminal work of Hamilton (1989), there is a long
tradition in the existing business cycle literature to apply Markov switching approaches
to aggregate data. As Owyang et al. (2005) point out, however, such data are not nec-
essarily reflective of all regions of the country. Disaggregate panel data are more infor-
mative in this regard. Motivated by this observation, Owyang et al. employ state-level
data for the 1979:01-2002:06 period. Their proposed approach has two steps. In the first
step, Hamilton’s (1989) time series Markov switching approach is used to identify state-
specific regime shifts in the intercept of the dependent variable, which is given by the
monthly state coincident index produced by the Federal Reserve Bank of Philadelphia.
In the second step, the sample is split by estimated regime and regime-specific, pooled
panel regression models are estimated where the dependent variable is regressed onto
several regressors thought to explain growth.

While reasonable and appealing in its simplicity, Owyang et al.’s (2005) two-step ap-
proach has (at least) five drawbacks. One drawback is that the first-step estimation of
the regimes is done state-by-state using only the time series variation of the data. This
wasteful in the sense that when the regimes of one state are estimated, the informa-
tion contained in all other states is ignored. The states are treated as though they are
independent, which they are not. Another drawback is that the regimes are estimated

based on the dependent variable only, which is again wasteful as it ignores the regres-
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sors. Stated differently, if the second-step regression model with regime specific slopes
is the truth, the first-step intercept-only model is misspecified. A third drawback is that
the error coming from the estimation of the regimes is unlikely to be negligible in the
second step, as it is again based on a relatively imprecise time series-only approach. A
fourth drawback is that the regimes are assumed to be Markov with only two states and
constant transition probabilities, which need not be a mandate of the data. A fifth and
tinal drawback is that the second-step regression model is fitted with only an overall
intercept, and there is no attempt to account for unobserved heterogeneity.

The SHIFTIE methodology developed in Section 2 overcomes these drawbacks. The
regimes and slopes are estimated jointly as opposed to sequentially in two steps, which
means that no information is disregarded and that all estimation errors are accounted
for. The estimated model is very general in that it allows for unobserved heterogeneity
in the form of interactive fixed effects, and it places no assumptions on the nature of
the shifts. SHIFTIE does assume that the shifts are homogenous; however, this is a

reasonable assumption because all states were affected by COVID-19.

5.2 Data

The dependent variable is based on the same coincident index used not only by Owyang
et al. (2005), but by a number of other studies (see, for example, Agudze et al., 2022, and
Crone and Clayton-Matthews, 2005).? We use this index because it is reported monthly,
as opposed to GDP, which is only available at a quarterly frequency. The regressors
are extracted from the FRED-SD data set of Bokun et al. (2023), which contains 28
variables per state at either monthly or quarterly frequency. All quarterly variables were

discarded. While the coincident indices are available from 1979:01, most variables in the

9More information and data are available online at https: //philadelphiafed.org/research-and-d-
ata/regional-economy/indexes/coincident.
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FRED-SD data are not available until later. Most variables are available from 1990:01.
We therefore take this as the starting date of our sample. We take the latest end date
available to us, which is 2025:03. We then removed all variables for which there were
missing observations within the sample rage. This brought the number of variables
down to 12, most of which are labor market related. Many of the variables are non-
stationary, which, as pointed out in Section 3, is not permitted under our assumptions.
We therefore transform them by taking logs when possible, and then first differences if
needed to achieve stationarity. This process is copied from McCracken and Ng (2016).
McCracken and Ng are not considering the same data set; however, most variables in
the FRED-SD data set are also in the aggregate FRED-MD data set that they study. The
coincident index is used in place of GDP, and is transformed accordingly by taking logs
and first difference. Because of the differencing, the sample used in the analysis starts
in 1990:02, for a total of T = 422 months and N = 50 states. This means that T is large
relative to N, and that it is substantially larger than the values considered in the Monte
Carlo study of Section . We therefore expect SHIFTIE to work well here.

The included regressors, which are inspired by studies such as Agudze et al. (2022),
Owyang et al. (2005), and Hamilton and Owyang (2012), are the growth rate of the
number of employees in the construction (CON), finance (FIN), government (GOV),
information (INF), manufacturing (MAN), and private services (PRS) sectors, and the
first difference of the participation rate (PAR).!” In terms of the notation of Section , these
seven variables are the ones that go into x; ;. The dependent variable, y; ;, is the growth
rate of the coincident index. The estimated loadings in F are given by the time series
averages of all eight variables. A vector of ones is also included, which is tantamount to

treating the presence of time fixed effects as known. We can therefore allow for as many

19We experimented with different model specifications, all of which yielded qualitatively similar re-
sults.
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as nine unknown factors.

5.3 Results

We begin by considering the results on the estimated regimes. The number of shifts,
RY, is estimated using R. The maximum number of regimes is set to Rmax = 5 and
the penalty term is specified as oyt = (NT)"Y(T + N) - In[(N + T)~!NT], similarly
to Bonhomme and Manresa (2015). We estimate R=2 regimes. As alluded to earlier,
many studies that assume Markov switching also assume two regimes. We require
neither of these assumptions. However, our results actually support the use of two

regimes.
INSERT FIGURES 1 AND 2 ABOUT HERE

The estimated regime memberships are illustrated in Figure 1. Regime 2 only con-
tains four months, 2020:04-2020:06 and 2020:08, which are represented by the vertical
red lines. All other months belong to regime 1. The red lines are plotted together with
the average coincident index across states. We see that in 2020:04 the average index ex-
periences a substantial drop but that it immediately bounces back up to a level that is
even higher than before the drop. The drop in April coincides with NBERs recessions,
which dates the peak and trough of the COVID-19 recession to 2020:02 and 2020:04,
respectively. Regime 1 therefore covers the lowest point of the recession and the sub-
sequent recovery. As already pointed out, many fiscal and monetary interventions oc-
curred in March 2020. Regime 1 is located directly after these interventions. While there
were other factors that also affected growth, the interventions described earlier were
the largest events at the time and they are likely to have affected growth. Note also

that while there are other major historical events in the sample, including the 2007-2008
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global financial crisis, these do not show up in the results. COVID-19 was therefore
unique.

Interestingly, if we increase the number of regimes from two to three, many of these
other events appear, as is evident form Figure 2. The “COVID-19 regime”, regime 2, is
still there and seems very robust to changes in the number of regimes. The new regime,
regime 3, contain a number of events that were not as significant as COVID-19 but that
did nevertheless affect growth. One example occurs at the beginning of the sample,
where we estimate parts of 1990 to regime 3. This coincides with the recession of that
time. The global financial crisis is also a part of regime 3, as is the 2001 recession, and
Black Monday of 2011. Moreover, while the COVID-19 regime lasts four months, the
transition back to the “normal” regime, regime 1, does not occur directly but via regime
3. Regime 3 can therefore be meaningfully interpreted as a crisis regime that excludes
the initial COVID-19 effect (regime 2). However, because R = 2, while economically
interpretable, regime 3 is not statistically important. We therefore disregard it in what

remains of this section.
INSERT TABLE 4 ABOUT HERE

The estimation results based on the best-performing SP]-version of SHIFTIE are re-
ported in Table 4. The first thing to note is that while the sign of the estimated coeffi-
cients is the same in the two regimes, the size and significance of those estimates differ
markedly between regimes. The only exception is FIN for which there is a change of
sign but then this regressor is always insignificant. The differences in the results for the
other sectors/regressors depend on how exposed they were to the effects of the pan-
demic. Consider CON. This regressor is highly significant in regime 1 but not in regime
2. Construction is an important sector that under the pandemic was classified as “crit-

ical”, which means that it was prioritized for continued operation (CISA, 2020). This
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explains not only the importance of CON for growth in normal times (regime 1), but
also its disconnect during the pandemic (regime 2), as it was shielded from exposure.
Parts of the government was also deemed critical, and we see that the effect of GOV is
qualitatively similar to that of CON. Manufacturing was not protected in the same way.
Both output and hours worked fell dramatically, especially in the motor vehicle produc-
tion, which basically came to a complete stop. However, the sector quickly rebounced,
as did growth; in fact, the increase in output and hours worked in the third quarter of
2020 were the largest ever recorded (US Bureau of Labor Statistics, 2022). This explains
why the estimated effect of MAN is relatively large in regime 2. The same is true for
PRS. The estimated effect of PAR is small but significant. The fact that it is negative is
counterintuitive and requires an explanation. Except for a few episodes like the global
tinancial crisis and COVID-19, US economic activity has been steadily increasing dur-
ing the sample period. Yet, since the mid-1990’s, the labor force participation rate for
the total population ages 16 and over has actually been declining. The reason for this is
a rise in the percentage of the population ages 65 and over, which is relatively less likely
to be working (see US Census Bureau, 2021). This explains the negative association
between growth and PAR.

The above results show how the pandemic stands apart from other crises. They
corroborate the following conclusion by Federal Reserve Bank of Chicago (2022): “the
Covid-19 pandemic recession and the subsequent expansion—hereafter referred to as
the ‘pandemic cycle” or ‘pandemic era’—have less in common with those of other busi-

ness cycles.”
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6 Conclusion

This study proposes a new approach to the estimation of panel data regression models
with interactive effects and possibly time-varying slope coefficients. A major strength
of the new methodology is that the type of time-variation that can be accommodated is
very broad and includes most common specifications in the literature, such as structural
breaks and Markov switching, as special cases. This generality is important not only
from a theoretical point of view, but also in practice, as existing approaches require
empirical researchers to take a stance as to the shift-generating process, which is almost
always unknown. We therefore expects the new approach to become a valuable addition

to the already existing menu of tools for handling shifts in model coefficients.
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Table 1: Bias and MSE in DGP1.

SHIFTIE SPJ
N T Total Regime1 Regime 2 Total Regime1l Regime 2
Bias
40 40 -0.092551 0.013958 -0.199059 -0.014811 0.006829 -0.036451
40 60 -0.053652 0.004663 -0.111968 -0.012752  0.002677  -0.028180
40 80 -0.029844 0.007988 -0.067675 -0.009111  0.002500 -0.020722
40 100 -0.025014 0.002352 -0.052380 -0.010456  0.000949 -0.021861
60 40 -0.065158 0.009285 -0.139602 -0.019352  0.003645 -0.042350
60 60 -0.027844 0.003836 -0.059524 -0.012269  0.001340 -0.025878
60 80 -0.017835 0.005487 -0.041157 -0.011625 0.003911 -0.027162
60 100 -0.013561 0.002859 -0.029982 -0.008278 0.001888 -0.018444
80 40 -0.035505 0.005175 -0.076185 -0.014790 0.006889  -0.036469
80 60 -0.018815 0.003751 -0.041381 -0.010748  0.002569  -0.024064
80 80 -0.012985 0.001984 -0.027953 -0.010637  0.001730  -0.023003
80 100 -0.008291 0.001010 -0.017592 -0.006427  0.001790 -0.014645
100 40 -0.027847 0.007087 -0.062780 -0.017358  0.005357  -0.040074
100 60 -0.015441 0.002822 -0.033705 -0.012965  0.002373  -0.028303
100 80 -0.008888 0.007316 -0.025092 -0.007271  0.003352 -0.017894
100 100 -0.006378 0.000405 -0.013162 -0.006380 0.000659 -0.013419
MSE
40 40 0.123408 0.025348  0.221468 0.036066  0.006652  0.065481
40 60 0.062230 0.014835 0.109625 0.024118 0.004425  0.043811
40 80 0.042042 0.014438 0.069647 0.018846  0.003380  0.034312
40 100 0.025286  0.008470  0.042102 0.014054 0.002572  0.025537
60 40 0.081578 0.018056  0.145100 0.029529  0.005664  0.053395
60 60 0.035504 0.009050 0.061959 0.018898  0.003550  0.034246
60 80 0.019370 0.006347  0.032394 0.014136  0.002805  0.025466
60 100 0.015833 0.005477  0.026190 0.010965  0.002091  0.019840
80 40 0.037548 0.005688  0.069407 0.021742  0.004634  0.038851
80 60 0.021953 0.007307  0.036599 0.015515  0.002934  0.028096
80 80 0.012613 0.003355 0.021871 0.011923  0.002239  0.021608
80 100 0.008986 0.001733  0.016240 0.009377  0.001730  0.017025
100 40 0.030367 0.008440  0.052293 0.020193  0.003883  0.036504
100 60 0.015583  0.005112  0.026054 0.014251  0.002610  0.025891
100 80 0.016801 0.007994  0.025609 0.010308  0.002057  0.018559
100 100 0.007125 0.001559  0.012692 0.008027  0.001593  0.014461

Notes: The table reports the bias and MSE of the estimated slopes, Er. The results are reported sepa-
rately for each regime and all together. “SHIFTIE” and “SP]” refer to the basic SHIFTIE estimator and
its split panel jackknife version, respectively. The DGP is described in the text.
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Table 2: Bias and MSE in DGP2.

SHIFTIE SPJ
N T Total Regime1 Regime 2 Total Regime1l Regime 2
Bias
40 40 -0.187871 0.024302 -0.400043 -0.011139 0.006071  -0.028348
40 60 -0.148834 0.025061 -0.322729 -0.011213 0.002076  -0.024502

40 80 -0.111652 0.019381 -0.242685 -0.007219  0.002426 -0.016863
40 100 -0.104958 0.019939 -0.229855 -0.009008 0.000881 -0.018896
60 40 -0.152110 0.016738 -0.320957 -0.015626  0.002961 -0.034214
60 60 -0.104771 0.013413 -0.222955 -0.010137  0.000953  -0.021227
60 80 -0.088480 0.007632 -0.184593 -0.008864 0.002054 -0.019783
60 100 -0.066627 0.008063 -0.141317 -0.007161 0.001740 -0.016063
80 40 -0.106731 0.012961 -0.226424 -0.010712  0.006322  -0.027746
80 60 -0.073646 0.011019 -0.158311 -0.009096 0.003526 -0.021718
80 80 -0.056092 0.008733 -0.120917 -0.008750 0.001366 -0.018867
80 100 -0.040993 0.007286 -0.089271 -0.004670 0.001702  -0.011042
100 40 -0.086420 0.013852 -0.186691 -0.012966  0.004869  -0.030801
100 60 -0.053053 0.009932 -0.116038 -0.009943 0.002119  -0.022005
100 80 -0.036325 0.007584 -0.080234 -0.006046  0.003057 -0.015148
100 100 -0.028008 0.001619 -0.057634 -0.005218 0.000535 -0.010971
MSE
40 40 0.188017 0.042474  0.333561 0.034362  0.006585  0.062138
40 60 0.141960 0.031473  0.252446 0.028081  0.005569  0.050592
40 80 0.096567 0.020778  0.172356 0.020705  0.004555  0.036856
40 100 0.079148 0.018417  0.139878 0.019168  0.003819  0.034518
60 40 0.145974 0.040419 0.251528 0.023678  0.004409  0.042948
60 60 0.096169 0.024787  0.167551 0.018535 0.003556  0.033514
60 80 0.063095 0.018975 0.107216 0.014993  0.002927  0.027059
60 100 0.046753 0.014080  0.079427 0.013655  0.002583  0.024728
80 40 0.105628 0.031660  0.179597 0.018409  0.003344  0.033474
80 60 0.068641 0.020423  0.116858 0.013718  0.002763  0.024672
80 80 0.045808 0.015408  0.076208 0.011665 0.002225  0.021105
80 100 0.031326 0.011560  0.051091 0.010039  0.002029  0.018050
100 40 0.095274  0.032040  0.158508 0.013771  0.002558  0.024983
100 60 0.053045 0.015895  0.090195 0.010806  0.002084  0.019527
100 80 0.033558 0.013477  0.053638 0.009147  0.001711  0.016583
100 100 0.019950 0.006429  0.033471 0.007862  0.001564  0.014160

Notes: The table reports the bias and MSE of the estimated slopes, Er. The results are reported sepa-
rately for each regime and all together. “SHIFTIE” and “SP]” refer to the basic SHIFTIE estimator and
its split panel jackknife version, respectively. The DGP is described in the text.
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Average Dependent Variable

Table 3: Misclassification frequency.

N\T 40 60 80 100

DGP1

40 2.010 1457 1340 0972

60 1202 0.745 0.293 0.126

80 0376 0293 0.172 0.125

100 0.286 0.126 0.363 0.033
DGP2

40 8.040 9.923 9.876 11.639

60 6.061 6404 6.535 6.518

80 4.049 4.084 4139 3.933

100 3.184 2.813 2.666 2.086

Notes: The table reports the misclassification frequency in % of the estimated regime memberships, 7;.
DGP1 and DGP2 are described in the text.

Figure 1: Estimated regime memberships.
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Notes: The black dashed line represents the cross-sectional mean of the dependent
variable, the coincident index. The red vertical lines are months that SHIFTIE esti-
mate to belong to regime 2, which are 2020:04-2020:06 and 2020:08. All other months
are estimated to belong to the regime 1.
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Figure 2: Estimated regime memberships with three regimes.
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Notes: The black dashed line represents the cross-sectional mean of the dependent
variable, the coincident index. The red (blue) vertical lines are months that SHIFTIE
estimate to belong to regimes 2 and 3, respectively. All other months are estimated
to belong to the regime 1.
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Table 4: The estimated regime-specific slope coefficients.

Regressor Estimate SE t-statistic p-value
Regime 1
CON 0.022399  0.001811  12.3667  0.0000
FIN -0.003316 0.003924 -0.8449  0.3982
GOV 0.033948 0.002443 13.8986  0.0000
INF -0.003277 0.001296  -2.5283  0.0115
MAN 0.030352  0.002033  14.9282  0.0000
PRS 0.270826  0.007392  36.6392  0.0000
PAR -0.005731 0.000135 -42.4967  0.0000
Regime 2
CON 0.008094 0.077188  0.1049 0.9165
FIN 0.879779  0.669142  1.3148  0.1886
GOV 0.202993 0.271041  0.7489 0.4539
INF -0.124576 0.177773  -0.7008  0.4835
MAN 0.473399 0.127820  3.7036  0.0002
PRS 1.498865 0.288253  5.1998  0.0000
PAR -0.011569 0.004072  -2.8413  0.0045

Notes: “CON”, “FIN”, “GOV"”, “INF”, “MAN" and “PRS” refer to the growth rate
of the number of employees in the construction, finance, government, information,
manufacturing, and private services sectors, respectively, while “PAR” refers to the
first difference of the participation rate. Regime 2 contains the months 2020:04-
2020:06 and 2020:08. All other months belong to regime 1. The estimated slopes
are based on the SPJ version of SHIFTIE. “SE” refers to the estimated standard er-
rors. The reported t-statistic and the associated p-value test the null hypothesis that
the relevant slope coefficient is zero.
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Appendix

Our asymptotic results rely on F being consistent in some sense. The limit of this object
depends on whether m = k+1 or m < k + 1 (similarly to Karabiyik et al., 2017, but
now applied to loadings instead of factors). Suppose first that m < k + 1. This means
that some of the columns of F are degenerate. Note in particular that if rank C = m,
which holds under out Assumption 1, we may without loss of generality partition C as

C =: [C;;, C_p], where C,; is an m x m full rank matrix and C_, is m x (k+1 —m). By

similarly partitioning U =: [U,,, U_,,], we have

F = [FC,y, FC_] + [Up, U_). (A1)
Define

B = S G = [By, Byl (A.2)

0(k+1—m)><m Liti-m

with obvious definitions of B,, and B_,,. Note that while B,, is (k+ 1) x m, B_,, is
(k+1) x (k+1 —m), which means that B is (k+ 1) x (k+ 1). The matrix B is also
full rank, because rank B = rankf,;l +ranklj_,, = m+ (k+1—m) = k+1 (see
Abadir and Magnus, 2005, Exercise 5.43), and can therefore be inverted. Moreover,

CB = [I,,,0,,, (k+1—m)], which we can use to construct the following:

By the definition of Uy, U; := [& + Vt,Brt,Vt] = W;Q,,, where W; := [g;, V{] is
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N x (k+1) and

1 O1xk
Qrt = ) (A4:)
:Brt Ik
is (k+1) x (k+1) and full rank (see Abadir and Magnus, 2005, Exercise 5.48). Hence,

denoting by u?, (w},) the i-th row of U; (W;), we have u;; = [g;; + ﬂ;tv,-,t, vi,) = Qpwi,.

We also use the following: tr (A’'B) < +/tr (A’A)tr (B'B) = ||A||||B|| if A and B are
of the same dimension (see Abadir and Magnus, 2005, Exercise 12.5). Applying these

results to E(||v/TN~1/2U||?), we can show that

E(|VTN~20|)

= TN~ !E[tr (U'D) :I%IE
Nz:l

1 N T T 1 N T T
= mi;t;;lﬁ[ﬁ (uju,)] = ﬁz;t;;E tr (Ql, wi W, Q)]
1 N T T / 1 N T T
= 7 L L L tr[QnQLE(wiwi)] < 1z Y- )5 Y 1Qn QL I[E(wiiwi,) |
i=1t=1s=1 =55
< Sup ||Q7‘5QrtH Z 2 Z HIE w; tW = O(l), (A5)

zltls

where the last inequality is due to the fact that the autocovariances of w;; are absolute
summable by Assumption 1, and sup, ; Q- Qy, || < sup; [|Qv [[[1Qx || < (sup, [Qr[1)* =

O(1) since ||B,|| < co by the compactness of . Hence, since the variance is O(1),
IVTIN~V2U0| = 0,(1), (A.6)

which holds regardless of whether N is fixed or tending to infinity. Note in particular

how ||U|| = O,(T~!/2) for a fixed N, which means that the last k + 1 — m columns
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of FB are degenerate. In order to address this issue, we introduce (k + 1) x (k + 1)
normalization matrix Dy := diag(I,, VT I 1 ). Post-multiplication by this matrix

the above equation becomes

?ﬁDT = [F, ONx(k—i-l—m)] + [ﬁml ﬁﬁ,m]

- [F, \/Tﬁfm] + [ﬁm, 0N><(k+1—m)]' (A7)

Hence, defining F° := FBDt and F° := [F,/TUB_,,] and making use of the fact that

Ul|| = 0,(T12) and ||C|| < oo by Assumption 1, we can show that
p y P
[F® —FO|| = [|[UBw, On (k1= )| < (TN 1Bil| = Op(T~1/3), (A.8)

The result in (A.8) assumes that m < k 4 1. The corresponding result for the case
when m = k + 1 follows by the same arguments after redefining C := C,,, B := c’
and Dy := I, such that F = F\Efl and F® = F. Hence, with this modification to the
notation (A.8) holds regardless of whether m = k+1orm < k + 1.

The above results presume that N is fixed. If N is large, then we can make use of

IN~Y20||2 = O,(T 1) to show that
INTH2(E — )2 < [N TP By = Op(T ), (9)

Note that the scaling by N here is inconsequential if N fixed. This last result therefore

holds regardless of whether N < co or N — co. Lemma A.1 summarizes this.

Lemma A.1. Suppose that Assumption 1 holds. Then, as T — oo with N < co or N — oo,

IN“V2(E — E)|| = 0,(T1/2). (A.10)
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Before we state our next lemma, analogously to Bonhomme and Manresa (2015,

Proof of Theorem 1), we introduce the following functions:

T
QB ™) = i L IMeys = X8, I, (A1)

1 T
QB0 = 377 LMVt~ )17+ 7 1= M (a12)

Note that the scaling by N and T here is again inconsequential. The proposed estimator
(B, %) of (B, ) minimizes Q(-, -). Lemma A.2 makes clear that Q°(-, -) can be regarded as
the limiting version of Q(-, -). In order to avoid cluttering the notation, the dependence

of these functions on N and T is omitted.

Lemma A.2. Suppose that Assumption 1 holds. Then, as T — oo with N < oo or N — oo,

sup  |Q(B,r) — QUB,1)| = O, (T~ 1/2). (A.13)

(Br)eBRxRT

Proof: The following basic result will be used repeatedly in this proof: ||A + B|? =
|A]|*+ |[B||* +2tr (A’B). We begin by applyingitto [Mg(y: — XiB,,) > = [MeX:(Bp —
B.,) +Mg(Fy, + &) giving

IME(y: = XeB, )2 = IMeXe (B — By, )II? + [IMp(Fy, + &) |1®

+2tr [(Fy, + &) MeXe (B — B,)). (A14)
Consider the first term on the right-hand side. From CB,, = 1,,, we obtain
X; = FB,,I'; — (F — FC)B,I; + V; = FB,,I', — UB,,I'; + V,. (A.15)

Hence, since FM; = 0(k11)x N, we obtain X{Mz = (V; — UB,,I;)'Mp. By using this and
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another application of the above result for || A + BJ|?,

IMEXi (8% — B,)IIP = [Mz(V: — UB,.T) (B - B,)
= [MpVi(BY — B,) |+ MBI (B — B,

— 2tr [(1399 - ﬁrt)/V;Mfﬁmrf(ﬁ%) - ﬁrt)]' (A.16)
The same result can be applied again to show that

IMEVi(BY — B,) I = [MpVi(B% — B,) + (Mz — M) Vi(BY — B, )|
= Mg Vi(Bl — B,) I + [ (Mg~ M) Vi(B% — B,) P

2tr (B — B,) ViIMp Mz ~ Mp)Vi(Bh — B,)]  (A17)

The second term on the right-hand side of (A.14) can be written similarly using FMp =

0,,«xN as

IMz(F, + &)l|* = [Mpoer + (Mg — Mpo) (Fy, + &) ||
= [Mpoee|® + | (Mg — Mpo) (Fy, + &) |

+ 2tr [€jMpo (Mg — Mpo) (Fy, + )] (A.18)
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Inserting these results into Q(, r) yields

T
QUBT) =y L IMslye ~Xe8, )
t=

= Q) + NlTZHM — M) Vi(Bh — B,

Ztr ﬁo ﬁ?’t /V,MFO(M MFO)Vt(:B :Brt)]

1
NTZHM FUB,T/ (8% — B,

Ztr — B,)'ViMg UBmFt(ﬁ - B,)]

1
+ 5T Z I(Mz — Mo ) (Fy, + &)

NT Ztr [€iMpo(Mz — Mpo) (Fy, + )]

— Z%tr [(Fy, + St)/MAXt(:B — Bl

7
=QUB 1)+ ) I (A.19)

j=1

with implicit definitions of I, . .., I;. We now consider each of these seven terms.

Consider I;. By the Cauchy-Schwarz inequality,

—Mp)Vi(Bp — B, II°

1
h=F7
1/4

T
Ll
1T Yz
(f Y INTY2(Mp — Mpo) V| ) (f Y ||.399 _:Brt||4> , (A.20)
t=1 =1

where H,BSO — Bl = O(1) since ||B,,|| < oo by the compactness of B. Consider My —
t
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Mz;. Since B and D7 are invertible, we have Pp = PF?DT = Pp, which in turn implies

MFO — Mﬁ - Pﬁo - PFO
— (/F\O . FO)(iEO/iEO)—l(/F\O . FO)/ + (’F\O . FO)(’F\OI?O)—lFO/

+ FO(iﬁO/iEO)—l(iEO _ FO)/ + FO[(F\OI’F\O)—l _ (FO/FO)_l]FO/, (A.21)
By inserting this into || N~"1/2(Mz — M) V}||?, we obtain

IN"V2(Mg — Mpo) Ve |?

= N7t [Vi(Mg — Mpo)' (M — Mo ) V]|

< N7t [VH(F* — FO) (FYFO) " 1(F* — F°)(F° — FO) (FYF%) ' (F° — F¥)'v{]|
+ 2N [Vi(F — FO) (FF%) 1 (F° — FO)'(F° — FO) (FVF°) 'F” V]|

+ 2Nt [VH(F — FO) (FUF) ~1(F° — FO)'FO(FUF0) L (F° — F%) vy

+ 2N [V(F — FO) (FYF0) 1 (F° — FO)'FO[(FYF%) ' — (FF%) '|F" V]|
+ 2N [Vi(F — FO) (FF%) ~ (F° — FO)'FO (FUF°) ~1(F — F°) V|

+ 2Nt [VH(F — FO) (FYF°) 'FYFO(FYF0) 1 (FO — F°)'vy]|

+ 2Nt [VIFO(FYFO) L (F — FO)'FO(FUFO) "1 (FO — FO)'vy]|

+ N—l |tr [V;FO (iﬁO/iﬁO)—l(F‘O o FO)/(iﬁO . FO)(i}O/iﬁO)—lFO/VtH
+ N~ 1|t1‘ [ ( FO)(F\O/’F\O)—lFO/FO(?O/F\O)—1(?0 . FO)/VtH

+ N_1|tr [FO[(fO’fO)_l _ (FO/FO)—l]FO/FO[(’150/?0)—1 _ (FO/FO)—I]FO/] | (A.22)

We now make use of the fact that tr (A’B)? < tr (A’A)tr (B'B) = ||A|?||B||? if A and B

are of the same dimension (see Abadir and Magnus, 2005, Exercise 12.5). This implies
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that |tr (A’B)| < ||A]|||B]|, which we can use to show the following:

INTY2 (Mg — Mpo) Ve |?

< [INTIVLE — FO) 2| (NTTFVE) PN - B
+2[INTIVHE — )| [(NTTFVE) PN THE — B2 [N TRV
+2[INTIVH(E — F) 2| (NTTFYF) AN TV2IE — FOIN T2 F))
+2[INTIVHE = F) [ [(NTTFVE) TN [F - BN T2
X [|(NTHFYFO) 1 — (NTTEYFO) T[N TR V|

+2[INTIVH(E — FO) |2 (NTTFYRY) AN V2|E — FOIN T2 F))
+2[|NTIVH(E — FO) 2| (NTFUR) AN |2

+ 2NV (NTTFYE) AN VRE — FOIN T2 EOIN T (EO - FO) V|
+INTIVIF (N TTEVE) PN FO - B2

+INTIV(E — FO) P (NTTEF) PN )2

+ N2 EO (N TROR) - (NTEVE) 2 (A23)

Consider N~'V/FY = [N"'V/F, N~1\/TV,UB_,,]. By the at-most-weak dependence
il < (sup; [I£i]))* = O(1)

of v;; over i (Assumption 1) and sup; ; |ff;| < sup, ;
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(Assumption 1) similarly to the proof of Lemma A.1,

E(||N~1V}F||?) = N2E[tr (V}FF'V})] =N—21E[tr (VIFF'V})]
1 N N ) )
=N Z Z E[tr (vi,tfifjv N2 Z Z fifitr [E(v; tv )]
i=1j=1 i=1j=1
1 N N /¢
< mzzrf £t [E(viv),)]
i=1j=1
< N~ 'sup |fif; tr [E(vi v,
..P i
1 1]
S 1
<N sup I1£:1])? Z Y |tr[E(v;, tv )] =O(NT), (A.24)
1 1j=1

which in turn implies | N"1V/F|| = O,(N~1/2). Next up is

_ 1 L
N"WTV/U = = NUT Y [Vies+ ViViB, , ViVy]. (A.25)
s=1

1 &
——) ViU
NVT S; o
Since & and V; are independent of one another, and at most weakly dependent over
time and cross-sectional units by Assumption 1, we have || (NT) V2T Vies|| = 0,(1).
The term N~1T-1/2YT_ Vie; in N~1\/TV!U is therefore negligible. However, this is

generally not true for the other terms. In order to appreciate this, note how

1 T 1 N
oy T ViV A26
W SV s Rl B =

While the first term on the right-hand side is clearly OP(T’U 2), and hence negligible,
the second term is not. By imposing additional conditions on the cross-sectional and
serial dependencies of v;; also the second term can be made negligible. One possibility
is to require that v;; is serially uncorrelated, in which case the second term will be

O,(N~1/2). In the present lemma, however, we only require that v;; is at most weakl
p P y req , y

47



correlated, which means that

1 < 1 N
— Y ViV, = ||—= vi Vi || +0,(T7V2) = 0,(1). (A.27)
This implies || N~1v/TV}U| = O,(1), and so
IN“IVIFY| = 0,(1). (A.28)

We want to point out that this order need not be exact. As already pointed out, and
as we exploit further in Proof of Lemma A.3, one exception occurs when v;; is serially
uncorrelated, in which case [|[N“!'V{F0|| = O,(N~1/2) + 0,(T~'/2). Another possibility
is that m = k + 1, in which case ||[N"!V{F|| = |[N"IV{F|| = O,(N~!/2). In this proof,
however, we treat |[N~'V;F°|| as O,(1). From |[N~'V/TV|U| = Op(1) and F* — F’ =

[UB, O (k11—m)) (Lemma A.1), we obtain
INTIVHE = FO)|| <INV [[Bul| = Op(T13). (A.29)

Another term in (A.23) is N~'FYF". The steps used earlier to evaluate E(||[ N~ V/F||?)
can be applied also to E(||v/TN~1FU||?). This yields | VTN "'F'U|| = O,(N~1/2).
In order to characterize the limit of TN~1U'U it is useful to introduce the indicator

function 1(A), which takes on the value 1 if the event A is true and 0 other wise. In this

notation, YL, B, = Y YR 1(rr =r)B,and hence Y[ 1 Q) wi; = Y[ Y8 1(ry =
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r)Q;w; ;. This implies

. 1 N T T 1 N T T
TN-IUU = — 2 Z Z ui,tu = X7 Z 2 Z Q;twi,twf,sQrs
NT i=1t=1s=1 NT i=1t=1s=1
R R 1 N T T
=Y Y o (ﬁ YN Y A =1)1(rs = ”/)Wi,twf,s> Q.
r=1r'=1 i=1t=1s=1
ROR. 1 T T /
—p Z% Z Q. Nl%rgoo NT Z Z; Z‘il re=r)1 )E(Wi,twi,s) Q,
r=1r'=1 i=1t=1s
=:Qy (A.30)

as N, T — oo, where ), is positive definite by Assumption 1. Hence, since N —“lF'F =

N1 Zfil fif. — Lras N — oo, where I is positive definite too (Assumption 1),

—1g/ -1 TR
N N~'F'F VTNT'FUB_,
1= = 1= ==l
VIN-'B_,UF TN'B_,UUB_,
N-'F'F 0 _
_ m_></(k+i,2 4 Op(N_l/z)
Ok+1-myxm TN 'B_,UUB_,,
by 0 _
S i mx(k1=m) (A31)
0(k+1—m)><m Oy

as N, T — co. The limiting block-diagonal matrix here is positive definite because the
blocks are positive definite (see Abadir and Magnus, 2005, Exercise 8.44). This implies
that N7H|F0||2 = O,(1) and ||[(N~'FYF%)~!|| = O,(1). We also need || (N~'FF°)~!
(N-'FVF%)~!||. From

FFO = FOF° + (F* — FO)'F° + F(F° — F°) + (F° — FO)(F° — ), (A.32)
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and using Lemma A.1, we obtain

N—1||’F\O/i;\0 o FO/FOH < 2N—1/2||’F\0 _ FOHN—l/ZHFOH + N—1||?0 o FOHZ

= 0,(T71/?), (A.33)
which in view of
(FUFO)~1 — (F"F)~1 = (FYFO)~1(FVF° — FFO)(FUF) ! (A.34)
leads to the following:

” (Nfl/lEO/ﬁO) -1 _ (NleOIFO) -1 ”

< |(NTTFFO) THINTHIFYF - FYFO (NI TN = 0p(T72). (A35)

We now have all the pieces we need in order to evaluate (A.23). The dominating
terms are given by || N~V (F° — FO) ||2|| (N~ TEYF%)~1||2N~1||F%||2 and N ~2||F°||4|| (N 'FVF0) 1 —
(N~ITFYF?) 1|2, which are both O,(T!). It follows that

INTY2(Mg = Mpo) Vi[> = Op(T7), (A.36)

which in turn implies that I; is of the same order;

1/4

1/2
1L 1<
L < (TZHN 1/2(Mﬁ_MF0)VtH4) (72\\ﬂ?9—ﬂrt!|4>
=1 t=1

— OP(T_l). (A.37)
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For I, we again use (A.21) followed by MpF’ = 0y, (k+1—m), 8LVING

IN~'ViMpo (Mg — Mpo) V|
_ ||N_1V£MF0[(F\O . FO)(?O//F\O)—l(iEO . FO)/ + (/F\O _ FO)(iEO/i;\O)—lFO/]VtH
< INTIViMpo (O — FO) || [|[(NT'EVFO) | INTH(E — FO)'V |

+ [INT'VIMpo (F — FO) ||| (NTTEYEY) 1IN TRV V), (A.38)
where all terms are known, except for

IN"ViMpo (F — F)|
< INTIVHE = ) ||+ [NTIVEF | (NTTEYEO) THIN T2 FO N2 EO - |

= 0,(T?). (A.39)

Hence, since ||(N~'FVF%)~1||, |IN~1F” V| are both O, (1), while |[N~!(F® — F°)'V;|| =

O,(T~1/2), we have
INT'ViMp(Mp — Mpo) Vi|| = Op(T/2). (A.40)

By using this last result, Hﬁ?o — B,/ =0(1) and [tr (A'B)| < [|A[|||B||, we arrive at the
t
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following bound for |I|:

T
|12|:‘% ) te[(B)) — B, ViMp(M; — Mpa) V(B — B,
=1
T
< o 1t ((BY — B, )(BY — B, Vi (Mg — M) V]|
t=1
T
< ot L 1B — B PIViM (M7~ M) Vi|
t=
1 T 1/2 1 1/2
<2z L8 W) (TZHN1v;Mpo<Mf—Mpo>th2)
t=1 t=1
= 0,(T~1/?). (A.41)

For I3, we use (a+ b)? < 2(a* + b?), which together with |[N~Y2U|| = O,(T~1/2)

imply

INTV2MpU|* < 2|[N~V2T|1* + 2|[N~2PR U2
= 2|[N~V20|]2 4 2tr [N 'UF(N'FVFO) "IN~ 1RV
<2|NVAU|? + 2 NTTUF | (NTTEVEY)
<2|INTV2U|? 42 NTVEO|PINTV2E P (NTTEYEO) |

= 0,(T™ ). (A.42)

The term ||N~1/2 (Mg — Mpo)U||? is of the same order, which is easily appreciated using

the above given expansion of ||[N~1/2(Mz — Myo) V¢||2. We can therefore show that

INTY2MEU|1? < 2| NTV2MpoU|1* 4 2[[N "2 (Mg — Mpo)U|J* = O, (T ),
(A.43)
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so that
1 & — 0 2
-1/2 —2—21T 41/21T 0 41/2
< [NTY MZU|7|[By || TZHDH TZH.B,)Q—.BHII
t=1

t=1

= 0,(T™Y). (A.44)

The evaluations of Iy, I5 and I is similar to those of I}, I and I3. |I4| and |Ig] is of
the same order as ||, by exactly the same arguments, and I5 is of the same order as I;.

Only I7 remains. We start by writing

T

2
Iy = —— Y tr[(Fy, + &) MpXe (B% — B,.,)]
NT & t
T

2
= NT t; EQMFovt(ﬁgg - B,,)

2 T
- NT (Fy; + &) (Mp — MFO)Vi(:BSO - B,.)
t=1 !

2 & — 0
-7 ; &iMpUB,I: (B — B,,)
2 d / IR 0
+ 37 (v + &) (Mg — Mpo)UB,Ti(By — B,)- (A.45)
t=1

The first term on the right dominates (see Proof of Lemma A.3). When evaluating this
term we follow Bonhomme and Manresa (2015, Proof of Theorem 1), and split it in two,

one part that involves ﬁ?o and one that involves B, , and we evaluate the sum regime-
t
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wise. Note first how

1 T 1 R T
|W Z 8;MFOVtﬁrt = W Z Z SQMFOVt].(Tt = T’)ﬁr
=1 r=1t=1
Rl 1 T 2\ 2 g 1/2
< Z NT Z eMpVil(ry =r) <Z ||.3r||2>
r=1 t=1 r=1
R {1 T 2\ 2 g 172
<X NT Y &MpV; (Z ||ﬁr”2>
r=1 t=1 r=1

R 1/2
<+VR <Z ||ﬁr||2> , (A.46)
r=1

1 &,
— Y &MpV;
NT =

where YR | ||B,]|> = O(1) by the compactness of B. We also have

where the first term on the right is clearly O, ((NT)~1/2) since & and V; are mean zero,

1 &
_thMFOVt
NT =

1 0 00y — 1500
— Y gF (F'F) " 'F'V,
NT =

< + , (A4

1 i ,
e gtVt
NT =

independent of one another, and at most weakly dependent over both time and the
cross-section (Assumption 1). For the second term, we use the fact that |[vecA||?> =
(vecA)'vecA = tr (A’A) = ||A||? by Exercise 10.20 in Abadir and Magnus (2005). By
using this, vec (ABC) = (C' ® A)vecB (see Abadir and Magnus, Exercise 10.18) and
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|FO(FYFO)~1FY||2 = tr I, = m, we obtain

0(R0/R0Y—1§0 _ 0(R0/ROY—1§0
‘NTZV’F (FVF)'F"g || = ||vec (NTZV’F (FF)~'Fe )H
1 T
= |57 Y (e @ Vy)'vec[F (FVF) 1F]
t=1
1 L 0 (/0/R0\—150/
< |57 (e @ Vo) | [[vec[F(FVF?) ~TFY]|
t=1
T
< |l 7 (e @ V)| [EO(FVE) 'F|
t=1
1 T
=/m WZ(&@VQ , (A.48)
t=1

where by Assumption 1 and a number of basic rules for Kronecker products,

1T 2 (1 T 1T "
E Hm;(ﬁ@w) =E (tr NT ) (2@ Vi) (m Z(€t®vt)> )

t=1

4T N1 -
=E (tr (m Z(€t®vt) ) mZ(st(@Vf) )

t=1

1 T T
=T r - Y Y INT'E(gles) ® N‘lE(VQVs)]>
)

(A.49)

Hence, since the variance is O(T~!), we have ||(NT) 'YL (g @ V})|| = 0,(T1/2),

which in turn implies

1 T
Z V;FO(FOIFO)_lFO/St

_ — op(T—l/Z) (A.50)
NT =
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By adding the results,

1 & 1 &
- M V - /V FO FOIFO 1FO/V
‘NTt_Z{gt PVt NTt;Et * NTZSt )
= Op((NT) V%) + 0,(T/2) = 0,(T"1/?), (A.51)

and so

1/2
1 & 1 & R _
m Z SQMFOVtﬁn < VR _T Z SQMFOVf (Z ||:Br||2> = OP(T 1/2)'
t=1 t=1 r=1
(A.52)
Clearly, this last result holds also if B, = ,B(r)o. It follows that
t
1 1 &
NT Z gtMFOVt(ﬁ ﬁrt) NT Z StMPOVtﬁ NT t; StMFOVfﬁrt
=0,(T71/?), (A.53)
which in turn implies that |I7| is of the same order.
By adding the results, (A.19) becomes
Q(B,x) = QY(B,x) + Oy (T~ 1/3), (A.54)

where the order of the reminder is uniform in (8,r) € BR x RT.
The above results require that N — co. This is not necessary. In fact, having N fixed
only affects the results insofar that N~ !F”F’ is no longer asymptotically block diagonal.

However, it is still O, (1), as is its inverse, which is what matters in the end. [ |
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Lemma A.3. Suppose that Assumption 1 holds. Then, as T — oo with N < co or N — oo,

2 -1/2
min max & =0,(T .
DeR FER || ﬁrOH P( )

Proof: We will prove that max,cx minser |2 — B:)|> = O »(T~1/2) by considering the

following inequality:
Q(B,T) — (B’ 1°) <0, (A.55)

which holds because, as already pointed out, (8, %) minimises Q(B, r). We employ con-
tradiction to show that, unless max,c mingcx |80 — B;||2 = 0,(T~1/2), the aforemen-
tioned inequality will not hold.

We begin by noting that from the definition of Q°(B, r), we have
0(g0 0 1 ¢ 2
QB 1) = <= ) Mpoi|%, (A.56)
NT =~
and hence

Q’(B,r) — Q°(B°1")

1 T
NT ||MF0Vt(ﬁ0 ﬁrt)Hz

Z tr[( :Br ,V/MFOVt(ﬁ ﬁrt)]

T
= 3 B ) gy L = 0] = VMV )

rO 17r=

- Z Z tr ﬁr :Br’ (139 - ﬁr/)]/ (A.57)

r=1r'=
where S, , := (NT)' L, 1(r} = #)1(rt = r)ViMpV;. Suppose that A and B are

57



positive semi-definite matrices. Suppose also that A is symmetric. Then, Apin(A)tr B <
tr (AB) < Amax(A)tr B, where Apin(A) and Amax(A) are the smallest and largest eigen-

values of A, respectively (see Fang et al., 1994, Theorem 1). Applying this to tr [( ,39 —
ﬁ}’/)/sr/,r(ﬁi(’) - ﬁr’)] yields

tr [(:39 - ﬁr’)(ﬁ? - :Br’)lsr’,r] > /\min(sr',r)tr [(:BS - lBr’)(:B;(') - ﬁr’)/]

- /\min(sr’,r) ||:B1(’) - :Br’ ||2’ (A.58)

so that w.p.a.1,

R
Qo(ﬁ,r) Qoﬁ ; min ( ||ﬁr ﬁr’||2

R

> A
'=1
R
; Imn Hﬁr ﬁr’”z

R
o min 182 - ﬁr,uZ) Y Amin(S

/
€R r'=1

> max <mm 182 — B, ||2) max Amin(Sy 1)

reR "eR
2
2 max (r;g% 1B, = B, ) Pmin, (A.59)

where pmin > 0 by Assumption 1. Hence, invoking Lemma A.2, we have

Q(B, 1) — Q(B° ") = Q°B,x) — QUB°, 1) + O, (T/2)
> pmin maxmin |87 — B2 + 0p(T~1/2). (A.60)

This holds for all (B,r) € BR x RT, including (B,r) = (B,T). We can therefore show
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that

Q(BT) — QB r %) > pmin maxmin |8 — B:lI* + 0, (T7V2) > 0. (A.61)

Because pmin > 0 w.p.a.1, the limit of Q(B,T) — Q(B, 1) will be positive if first term on
the right-hand side dominates, which will be the case if max,cr minyer || % — Bl >
OP(T_l/ 2). But then this would contradict (A.55). The only way in which (A.55) can
be satisfied asymptotically is therefore if max,cr mingcx || B — [Ai?||2 < O,(T~1/2). This

means that

Q(BT) —Q(B°1°) =, 0, (A.62)

so that asymptotically (A.55) is satisfied with strict equality. This completes the proof.l

Lemma A.3 establishes consistency in a minimax sense. Consistency in mean square
can be established in the same way, although under sightly different conditions. In
particular, suppose that instead of ppin > 0 w.p.a.1 we have min; Apin(N _1V;M Vi) >

0 w.p.a.1. Then, by using exactly the same steps as in Proof of Lemma A.3 above,

Q"(B,r) — Q" (B’ x Ztr JNTIVMp V(B — B,)]
> = Dmm ViMp Vi) |8 — By, 117

> min Amin (N 1V/MFth) Z||[30 B, I>>0, (A63)
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so that by Lemma A.2 evaluated at (B, r) = (B,7),

Q(BT) — QB ")

: _ 1< - B
> min Apin (N 1V§MFth)T t[% H/sS? — B |I> +0,(T712) > 0. (A.64)
This implies that
1¢ 0 7 o2 -1/2
7 2 1By = B, I* < Op(T ) (A.65)
t=1

for otherwise (A.55) cannot be satisfied asymptotically.

Proof of Theorem 1.

The proof is analogous to that of Lemma B.3 in Bonhomme and Manresa (2015) (see

also Proof of Lemma A.2 of Miao et al., 2020). We need to show that the following two

results hold:
— B = 0,(1), A.66
maxmin ||, — B, || = 0p(1) (A.66)
maxmin [|B; — B[l = 0p(1) (A.67)

The first result is implied by Lemma A.3. We therefore proceed to establish the second.

Define the function ¢ : R — R such that
o(r) := argmin || — B,.||. (A.68)
reR

We start by showing that o(-) one-to-one w.p.a.1. By applying first ||[a — b|| > ||a|| — ||b]|

(the reverse triangle inequality) and then |la + b|| < |ja|| + ||b]| (the regular version of
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the same inequality),

||Bo’(r) - Ba(w) I =18 —B)— (B — Ba(r) + Bo’(r’) - B
> 18) = BYNl = 1BY = Bogr) + Bory = BY
> 187 = BUI = 18Y = By | = 1Bory = BY - (A.69)

For the first term on the right-hand side, we use the fact that || ,39 — [39/ | > 0forr # 1+
by Assumption 2. The second and third terms are 0,(1) because by Lemma A.3 || ,39 —
Bl = op(1) forall (+',r) € R? Hence, forr # 7/,

1Bsr) = Boiy |l =p e >0 (A.70)

as T — oo with N < o0 or N — oo. This last result implies that o(r) # o(r') w.p.a.l,
which in turn means that o(-) is one-to-one and hence a proper permutation function.
Moreover, the inverse of o(-) exists and is given by c=1(-). It follows that for all ' € R,

: 0_ 7 0 2 . 0 - o
1;1;1713 ||ﬁr - nBr’H < H:BU—l(r’) - :Br’H < rr,l,'lel% ”:30—1(;/) - ﬁr”H - OP(l)/ (A‘71)

where the last equality is due to Lemma A.3. Because this holds for all #’ it holds also

for the maximum. This establishes (A.67) and therefore the proof is complete. |

The proof of Theorem 1 shows that there is a permutation o (r) of the regime index r
such that || g0 — Bg(r) | = 0p(1). By relabelling the elements of B, we can take o'(r) = r.
In what follows, we adopt this convention (similarly to Bonhomme and Manresa, 2015).

We therefore write || 82 — B, || = 0p(1) for || B2 — Ba(r) | = 0p(1). Thisjustifies considering
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the following set:
N:={BecBR:|B—B,| <y forall rcR}. (A.72)

We now continue onto the proof of Theorem 2, which, following the lead of Bon-

homme and Manresa (2015), proceeds as follows: Define

Qi(B,) == N~ [Mz(y: — Xi, )II*. (A.73)

For a given B, our estimator 7; = 7;(B,) of 1! is the minimizer of this function. In Lemma
A.4 below we show that the probability of misclassification is negligible when g € N.
This is then used to show that B is asymptotically equivalent to the oracle estimator that
treats the regimes as known (Lemma A.5) and that the probability of misclassification

is negligible also for 7:(B, ).

Lemma A.4. Suppose that Assumptions 1 and 2 hold. Then, as N, T — oo,

145 -
sup — ) 1(7(B,) # 17) = 0,(N™%), (A.74)
BEN =1
where 6 > 0.

Proof: By the definition of 7;(-), time period ¢ is assigned to regime r if the value of the

objective function is lowest for that group; that is,

17 (B,) = r) <T(Q:(B,) < Qi(By))- (A.75)
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Hence, if we define

Zi(B,) = 1(r} # r)1(Qe(B,) < Qi(By0)) (A.76)

for the wrongly assigned time periods, we have

1 T R 1 T 0 R
T LGB £ = L3 Y10 £ 01G(8,) =)
t=1 r=1" t=1
R 1 T
< f Z Zf(ﬁr)- (A.77)
r=1 t=1

Consider Z;(B,). From

IMEX:B, |17 — [IMpXeByo|? = tr (B XIMpXe,) — tr (B XiMEXiByo)
= (B, — Bo) XiMeXi(B, + Byo), (A.78)

tr (yiMpXeB,) + tr (yiMpXiB,0) = —yiMpXi(B, — Byo), (A.79)

we obtain

NQ:(B,) = [Mp(y: — XeB,) I = [Mpy:l* + [MpXeB, ||> — 2tr (yiMpX:B,),
(A.80)
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which in turn implies

Q:(B,) — Qt(Bo)

= N7IMgXiB, |12 — 2tr (yiMpXiB,) — [IMpXeByo1* + 2tr (yiMpXiByo)]
= N7Y(B, = By) XiMpXt(B, + Byo) — 2yiMeX:(B, — Byo)]

= N [Xe(B, + Bo) — 2yt MpXe(B, — Byo)

= N2yt — Xe(B,o + B,) MpXe(Bo — B,)

= N TR0 + Fry - e) — Xi(B + B MeXi(By — B,) = Ar(Bo, B,)- (A8I)

which in turn implies that Z;(B,) can be written as

Zt(ﬂr) = ]1(79 7£ r)ﬂ(At(ﬁr?' ﬂr) < 0) (A82)

We now want to bound IP(Z;(B,) = 1). In so doing, it is convenient to define

Ios(r,7") := (By — BY)'N"'VVi(B) — BY), (A.83)
Li(r,7") := D(By, B,) — De(BY, BY), (A.84)
L (r,7") i= A(BY, B2) — Tos(r, 7). (A.85)

This means that A;(f,/, B,) can be expanded in the following fashion:

At(ﬁr” :Br) = IO,f(rl 7’,) + [At(:BS” 139) - IO,t(r/ 1’/)] + [At(ﬁr’/ ﬁr) - At(,BSM 139)]
= los(r,7") + I (r,7") + Loy (r, 7). (A.86)

By using this and the same max bound as in Bonhomme and Manresa (2015, Proof of
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Lemma B.4), we obtain

Zi(B,) < max L(A(B,,B,) <0)= max L(I1;(r, ") < —Io(r,r") — Ly(r,7"))

- r'eR\{r} r'eR\{r}
< max W(IL(r, ") < —Ios(r,7") + |L(r, 7)), (A.87)
r'eR\{r}

so that if we bound the maximum over r’ # r by the corresponding sum,

P(Zi(B,) =1) < Y_ P(Li(r,r") < —Ios(r,r") + |L(r, 7)) (A.88)
v #Er

Consider I (r,r"). From the definition of a;(B,, B,),

Li(r,7') = Md(By, B,) — Dr(BY, BY)
= N'2(X:By + Fy, + &) — Xe(By + B,)) MpXe(B, — B,)
— NT2(XeB) + Fyy + &) — Xe(B) + BY)) MpXi (B, — BY)
= 2N [(Fy, + &) MpX;(B, — B,) — (Fy; + &) MpX:(B) — B))]
+ 2N BYXIMEX (B — B,) — BYXIMEXi(B) — B))]
+ N7 (B, + B,)XIMpX: (B, — B,)

+ (BY + BY) XiMgX(B) — B))1, (A.89)
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where

— (By + B,)XIMpXi (B, — B,) + (By + B)) XIMpXi (B — B))

= —(By + B,)XIMeXe(B, — B,) + (B} + B)) XIMpXe(B, — B,)

— (B) + B)XIMpXe (B, — B,) + (B) + B)) X{MpX: (B, — BY)

= —[(By = B)) + (B, — BDIXIMpXe(B, — B,)

— (By + B))XiMgXe (B — By) — (B, — B))] (A.90)

implying

Ly(r,r") = 2N (Fy, + &) MpXe (B, — By) — (B, — B,))]
+ ZNilﬁS’/X;Mth[(ﬁr’ - ﬂg’) - (ﬂr - ﬁ?)]
- [(ﬁr’ - 139’) + (:Br - ﬁg)]/N_lngfxt(ﬁr’ - ﬁr)

— (B% + BN "X MeXe[(B, — BY) — (B, — BY)). (A91)

We now consider each of the terms on the right-hand side of the above equation,
starting with the first. By using the fact that ||8, — B°|| < # for B € N and the same

steps as in the proof of Lemma A.2, we can show that

INT (B, + &) MpXi[(B, — B)) — (B, — B

< INTH(Fy + &) MpX| (1B, — Byl + 1B, — B

< 29||NTH(Fy, + &) MpX||

= 217N~ (Fy, + &)'Mp(V; — UB,T1) |

< 29[|IN" eiMpo V|| + [N~ e;MpoU||[| By || T¢ ]| + [|[N ' (Fy, + &) (Mp — Mpo) Vi |

+ N1 By + &) (Mg — Mpo)U|[|[Bon ||| T ] (A.92)
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As for the first term on the right-hand side, we have
INTeiMpo Vel < [INTTeiVil| + [N T1efE[[[| (N TTEVE) TN TIEY VL (A93)

From the proof of Lemma A.2, we know that ||[N"'FYV,|| and |[N~!&/F°|| are Op(1)
under the conditions of that lemma. This is not enough here, though. In particular,
the condition that v;; is at most weakly serially correlated must be strengthened to

independence (Assumption 2), so that

1 N / ~1/2
— vivig|l = O,(N ), (A.94)
H NVT S;E e ’
in which case (A.27) reads
: i ViVs|| = 0p(Cyr) (A.95)
NVT =1 e PRNT .

where Cy1 := max{+v/N, v/T}. This implies that || N~1v/TV,U|| and hence also || N~ V/F?||
are of the same order. By using this, |[(N7!'FYF°)~1|| = O,(1) and |[N"le}Vy|| =

O,(N~1/2), we can show that

INT eMpo Vil < [INTleiVil| + [Nl [[(NTEYFO) T[N TR V|

= |[N"1e}Vi[| + 0,(Cx3) (A.96)

The second term on the right-hand side of (A.92) involves ||[N~!e;MpU]||. This term
has exactly the same structure as || N~ !e{M o V|| but with U in place of V;. It is therefore
of smaller order in magnitude than O, (C KI%) From Proof of Lemma A.2, we know that
IN“'U'F| and ||[N~1VTU U] are O,((NT)~1/2) and O,(T~1/2), respectively. Hence,
INT'U'F| = ||[[N"TUF,N"'WTU'UB_,]|| = O,(T~1/2). Also, |[N~'/U|| is of the
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same order as || N~!1V|U]|| (Proof of Lemma A.2). We can therefore show that

INT efMpU|| < [N~ efU]| + [N~ eiF||[|(N~'FF) 7! [[|[ NT'FU|

= Op(T™H) + 0, ((NT)"12) < 0p(Cx2)- (A.97)

We now move on to the third term, |[N~!(Fy, + &) (Mz — Mpo) V¢||. Here we use

IN“1(Ey, + &)'F%|| = O,(1) and
IN“U(Eq, + &) (B — FO)[| < [N (Fy, + &)'O]|[Bun]| = O, (C2). (A.98)

Together with (A.21) and some of the orders derived as a part of the proof of Lemma

A2, these results imply

INT(F, + &) (Mpo — Mp) V|

< [INTH(Fyy + ) (F = FO[(NTTEYF) T INTH(E — F)'vy|
+INTH(Ey, + ) (B = F)[(NTTFVF) [NV
+INTH(Fy, + ) B [(NTTFVE) [ INTHE — F0)' V|
+INTH(Ey, + &) B [[(NTTFVE) = (NTTEVFO) | TR V|

= 0p(Cy?)- (A.99)

Just as with the first and second terms on the right-hand side of (A.92), the fourth has
the same structure as the third but with U in place of V;. Adjusting the above arguments

to this change leads to the following:

INT (Fy; + &) (Mpo — M) UJ| = O, (Cx7)- (A.100)
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The above results imply that (A.92) reduces to

N (Ey, + &) MpXel (B, — By) — (B, — B)]| = 21 (Nl Vi || + Op(Cy7))-
(A.101)

This completes our evaluation of the first term of I ;(r,7"). We now move on to the
second. Because ||B, — Y| < 7, we have ||B,]| < |18, — B2l + ||B°]| < 27, which holds

for all B,, including ﬁ? Hence,

INTIBYXIMEX: (B, — BY) — (B, — BY)]
< [|BSIINTIXIMEXe | (118, — BN + 118, — B2l
< 4n?||[NTIXMEX ||

= 4 (|INT'VIVL]| + O, (CT))- (A.102)

For the last equality, we employ the same steps used earlier to evaluate |[N~!(Fy, +

&t)'MgX;|| to show that

N~'X{M:X; = N (V; — UB,I})Mz(V; — UB,,I'})
= N 1(V; = UB,,I}) Mg (V; — UB,I})
+ N}V, = UB,I}) (Mz — Mp)(V; — UB,I})

= N"'V{Vi+0,(Cy3), (A.103)

where, as usual, A = B +0,(1) means ||A — B|| = 0,(1).

The above arguments can be applied also to the third term of I, (r, "), from which
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we obtain

|[(:Br’ - ﬁg’) + (ﬁr - ﬁg)]/N_lxéMth(ﬁr’ - ﬁr)|

< 872 (IINT'VEVi]| + Op(Cr7))- (A.104)

The fourth term has the same bound.

The reminders of the last three terms of I, (7, 7') are dominated by the first term. It

follows that if 7 is small such that 77 > 72, then

(L (r,7")| < 2IN!(Fy, + &) MeXi[(B, — B)) — (B, — B)]
+ 2N BYXIMEX (B, — B)) — (B, — B
+|[(By — BY) + (B, = BN XiMgXe (B, — B,)|
+1(B) + BN XIMX (B — B)) — (B, — B
< 4 ([N Vil + 0p(CrF)) + 2477 (INT'VIVE ]| + 0, (Ci3))

< (4|[N"1epVi|| + 24| NTIVIVL]) + Op(1Cx3). (A.105)
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We now move on to I ¢(r,7'). From the definitions of A;(B%, B°) and Iy (r, '),

Ii(r,7") = DBy, BY) — los(r,7)
= NT'2(XeB) + Fy + &) — Xe(B) + BY)) MpXi (B, — BY)
— (B) = BYN'VVi(B) — B))
= 2N (Fy, + &) MeXe(B) — BY) + 2B N~ XiMXe(B) — By)
— (By + B))'NTIXIMpXe (B — BY) — (By — B))'N ' ViVi(B) — By)
= 2N (Fy, + &)’ MpXe(B) — BY) + (B) — B))' N~ XIMpX: (B} — B))
— (BY = BY)YNT'VIVi(B) — BY)
= 2N (Fy, + &) MpXe(B) — BY)

+(By — B)' N~ (XiMpX — ViVi) (B) — B,). (A.106)

We have already shown that |[N~1(X;MzX; — ViV})|| = 0,(Cxn?%), which in view of
IB7Il < 21 gives

[(BY = BN (XiMpXe = ViV (B — B))

< 167%|[N"H(XIMzX; — ViVy)|| < 0, (1Cx7)- (A.107)
Hence, since N~ (Fy, + &) MzX; = N"1e[V, + 0, (Cx7),
Lii(r,7') = 2N e, Vi(BY — BY) + O, (1Cx3). (A.108)
For Iy;(r,7"), we write

los(r, ") = te[(By — B))'NT'VIVH(B) — B))] = INTV2Vi(B) — B2 (A109)
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We now make use of the above results to evaluate P (I + (v, ') < —Io(r,7") + L (r,7)|).
In so doing, it is convenient to also make use of the fact that P(Y +0,(1) < a) = P(Y <

a—o0p(1)) <P(Y <a+|op(1)]), where Y is a random variable and a is a constant. This

implies

P(I(r,7") < —Ioe(r,7") + I (r, 7))

= PN Vi(B) — B)) +Op(Cx7) < —IN"V2Vi(B) — B
+417||N‘182Vt|| + 2417 [NTVIVL| + 10, (1Cy 7))

< PN Vi(B) — B)) < —IN"V2Vi(B) — B>

+ 17(4\|N‘18£Vt|| +24||NTIViVE]) 4 2|0, (1CR ) )

< PN Vi(B) - B)) < —IN"V2Vi(B) — B

- n<4uNfle;vtu T+ 24NV + 200, (1)) (A110)

From Loyo and Boot (2024, Proof of Lemma C.3): If Y and X are random variables and

a and b constants, then

P(X<Y+4+a)=P(X<Y+aY>b)+P(X<Y+aY <b)

<P(X<a+b)+P(Y >b). (A.111)
This result can be used repeatedly to show the following;:

P(Iys(r,7") < —Io(r,7") + | (r,

1)
<P (zN—ls;vtws/ gy < oot

rr
Ct(

)4 17(4M—|—24M+2M)>

N

_ c(r, 7’ B
2 (N2, - )P < S ) b eIty > my

P(|N"'ViVi|| > M) + P(|O(Cy7)| > M) (A.112)
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for some M > 0 and where ¢;(r,7') := (B% — B%)'Zo+(BY — B2). It is important to note

that from tr (AB) > Apin(A)tr B and Assumption 2, we have

ci(r, 7)) = tr [(BY — B)) Zoi(By — BY)] = tr [Zos(B) — BY) (B — BY)]

> Amin(Zo)tr [(BY — BY)(BY — BY)'] = Amin(Eo,) || B — BYJI* > 0 (A.113)

whenever ' # r. We are now going to bound each of the terms appearing on the
right-hand side of (A.112). In so doing, we will employ Lemma B.5 of Bonhomme and
Manresa (2015), which states that if z; is a strongly mixing process with zero mean and

tail probability P(|z¢| > M) < exp(1 — (M/v)*), where M, v, k > 0. Then, for all § > 0,

1 T
(52

> M) = o(T79). (A.114)

We will apply this lemma to the cross-sectional dimension. This is possible because un-
der Assumption 2, ¢;; and v;; are mean zero, independent and hence strongly mixing,
and with the required tails. We begin by applying Bonhomme and Manresa’s lemma to
the third term on the right-hand side of (A.112), which is possible since ¢; ;v;; is mean

zero and independent over i. It follows that
P(|IN"'&[Vi| > M) = o(N %), (A.115)
For the fourth term, P(||[N~1V|V,|| > M), we use
INTIVIVE| < [INTIVIVe = E(NTIVIV)) | + [E(NTTVIVH (A116)

where |[E(N~1VIV,)|| = [|[Zy¢]] < cas N — oo for some ¢ < co by Assumption 2. By

using this last result to handle ||[E(N~1V}V})||, and applying Bonhomme and Manresa’s
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Lemma B.5 to || N~!VIV; — E(N~1V|V,)||, we obtain the following large-N bound for
P(INTIViVi]| > M):

P(IN'VIVY|| > M) <P(|IN"'V{V, — E(N"'ViVy) | + [[E(N" VIV || > M)
<P(IN"'WVIV;, —E(N"VIV))|| + ¢ > M) = o(N7°).
(A.117)

Let us now consider P(||N~1/2V,(B% — B)||> < ct(r,7')/2), the second term on the
right-hand side of (A.112). Because E(||N"1/2V(B) — B%)||?) = ci(r,7") for N large

enough, we have

2¢¢(r,7")
3

E(|INV2V(B) — B)I1%) > (A.118)

Hence, since P(Y < —a) =P(=Y > a) <P(|Y| > a),

P (I 12viies - IR < 221

<P (||N‘1/2Vt(/39/ — B2 —E(IN"Y2V, (8% — BY)|P) < _ct(r,r’))

6

<P (| IN-V2v (B2 — B0 — E(IN"2V,(8% — BO)?)] > %) . (A119)

Applying Lemma B.5 of Bonhomme and Manresa to this yields
/
P (I8 /2vi (82— BN < A5 ) = o(v ), (A.120)

We move on to the first term on the right-hand side of (A.112). If we assume that
n < ci(r,7")/(120M) and then apply P(Y < —a) < P(|Y| > a), this term can be written
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as

P (2N"1ejvi(p% — BY) < —Ct(rz’r') +30nM)
ct(r,7)
<P (2n-tevicpl - g < 27
(\N Vi(gl — g0 > A )) , (A121)

which is 0(N~%) by Bonhomme and Manresa’s lemma. The fifth and final term on the
right-hand side of (A.112) is of even lower order than this and is therefore dominated

by the other terms. Hence, by putting everything together, (A.112) becomes
P(I(r,7") < —Ios(r, 7)) + |Lg(r,7")]) = o(N79), (A.122)
which in view of the fact that G < oo in turn implies

P(Zi(B,) =1) < Y P(Lii(r,¥) < —Ios(r,7') + |Ly(r, 7)) =o(N7?).  (A.123)
r#g

Hence, since P(A) = [E[1(A)], we arrive at

1 I R 1T
E (7 Y17 (B,) # r?)) <Y 7 Y E(Zi(B)
t=1 r=1" t=1
R T
= Z%ZH’(Zt(ﬁr) =1) =o(N™). (A.124)
r=1 t=1

This result holds uniformly in B € N. The sought result is implied by this and Markov’s

inequality (see Bonhomme and Manresa, Proof of Lemma B.4). n
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Define

T
QUB) = QBT = 7 L IMz(ys —Xi8, ) (A125)
t=
. T
Q"(8) = Q(B.¥) = 57 12 My —Xif ) (A126)
t=

where 7; = 7;(B,). Let g and Binf be the minimizers of Q(8) and Q™ (), respectively.

Lemma A.5. Suppose that Assumptions 1 and 2 hold. Then, as N, T — oo,

~inf -~ 2 0
max |B," B, = o, (N ). (A.127)

Proof: Because Q(B) — Q™ (B) = 0if 7; = 7Y, in the notation of the proof of Lemma A 4,

we have

. T
Q(B) — Q™(B) = % Y [IMe(ye = XeB5) 12 = [Me(ye — XeByo) |1
=1
T
= 2 LGB BN TIMp (s~ X[  [Mz(ys = )l
T
= 2 Y AG(B,) # )M, Br). (A128)

W
—_

By Assumption 2, there is a constant ¢ < oo such that ||[E(N~'V,V,)|| < cforall t and N
sufficiently large. By using this and some of the results reported in the proof of Lemma

A4,

[B+(Byo, B7)| < 407 [INTIVIV +0,(1) < 4077 + 0y (1). (A.129)
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Hence, by Lemma A 4,
T
Q(B) ~ Q(B)| < 7 L A(B,) # H)0e +op(1)) = 0p(N),  (A130)

which holds uniformly in B € . We now make use of this last result to bound |Q(E) —

Q"f(B)|. For any € > 0,

P(|Q(B) — Q™(B)| > eN°)
<P(BEN)+P(BeN,QPB) —Q™(B)| >eN?), (A.131)

where, in view of P(A) = E[1(A)], 1{ANB) = 1(A)1(B) and |Q(ﬁ) — QM(B)| =
op(N_(s),

P(BeN,|Q(B)— Q™ (B) > eN’)
= E[1(B € N)L(Q(B) — Q™(B)| > eN°)]

<E|1 (sup 1Q(B) — Q™(B)| > eN‘S)]
BEN
=P (EUJI\)/ 1Q(B) — Q™(B)| > €N‘5> =o(1). (A.132)

Since E is consistent by Theorem 1, we also have P(ﬁ ¢ N') = o(1). It follows that

P(|Q(B) — Q™(B)| > eN’) = o(1), (A.133)
so that
1Q(B) — Q™ (B)| = 0p(N7°). (A.134)
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We similarly have \Q(Bmf) — Qinf (Binf)| = 0,(N~°). These results can be used to show

that

~inf

0< Q™(B) - Q" (B") = QB ~ QB™) +o,(N) <0p(NTF),  (A135)

where the first inequality holds because Binf minimizes Q™ (-), and therefore Q™ (B) —

inf

Qinf(ﬁinf) > 0. Similarly, since B minimizes Q(-), Q(B) — Q(B ) < 0, from which the

last equality follows. We can therefore show that
PPN . ¢ ~inf B
me(ﬁ) _me(ﬂm) :OP(N (5). (A.136)

Consider the left-hand side of the above equation. Use of ||A + B||?> = ||A||> + ||B||? +
2tr (A’B) gives

Qi (B) — Qinf(B™)

1 T ~ ~inf
= N7 2 Mp(y: = XeBo) 1> = IMg(ye — XeBro )|
t=1
1 T ~inf ~inf  ~ ) ~inf, o
= = LMy — X))+ MBS — B P — Mg (s — XiBp )P
t=1
1 r ~inf  ~ 2 ~inf, , ~inf  ~
= N7 25 M B — Byl + 28 (=X B M (B — By
1 T ~inf ~ 2
= 7 L IMeXe(Bo = Bo)l1, (A.137)
=1

where the last equality holds because ﬁlr? is an OLS estimator that satisfies the first
i, f .

order condition Y1, (y; — Xt,B;n ) MgX; = 01,k We now use the arguments provided

in the proof of Lemma A.4 to take care of the estimation error coming from F. We then

~inf

apply the same steps as in Proof of Theorem 1 to bound ||Vt(ﬁr0 — Arg)) |?. It follows
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that w.p.a.l,

Q" (B) ~ Q(B™) = <= L IVi(BY ~ Byl +10,(C33)]
t=1
> mt; IVi(Bo =Bl

R ~inf  ~
> Z/\min(sr,r)nﬁr _ﬁer

R .
~inf
= Pmin Z ||.Br - :Br”z
r=1
~inf

> pminmax [|B," — B, |, (A.138)
reR

where we have used that Apin(Srr) > Pmin W.p-a.1 by Assumption 1. Hence, since

Qinf(ﬁ) — Qinf(ﬁinf) = op(N_‘s) and Pmin > 0 by Assumption 1,

/\inf -~ 2 4
max B B, = 0,(N~?), (A139)
which is what we wanted to show. [ ]

Proof of Theorem 2.
For part (a), we use

P ( sup [7i(B,) 1l > o)

te{1,..., T}

sr<B¢N>+r(ﬁeN, sup wﬁ»—r?»o)
te{1,..., T}

~ T o~ ~
<PBEN)+ ) PBeN,I[(B,) -1 >0)
t=1

T
SPBEN)+ Y P(BEN, (B, # 1) (A.140)
t=1
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where, similarly to Proof of Lemma A 4,

P(B e N, 7i(B,) #17) = EIL(B € N)L(7(B,) # 1)) < EAFH(B,) #11))
< i E(Z+(B,)) 211) (Z:(B,) =1) =o(N7?). (A.141)
r=1

Hence, since P(B & N') = 0(1) (Theorem 1), we can show that

P ( sup [7(B,) — 17| > o) =0(1) + To(N~°), (A.142)
te{1,..., T}

as required for (a).
Part (b) is a direct consequence of Lemmas A.5. The proof of the theorem is therefore

complete. [ ]

As a preparation for our next lemma and the proof of Theorem 3, we introduce the

following notation:

1 & _
= NT. Y U(re =7)(Vi — UB,I}) e, (A.143)
T =1
T
Qy, = NT Z )(Vi — UBuIt) Progy, (A.144)
1’ _
T
Z )(Vi —UBuIt) (Mpo — M3)ey, (A.145)
1 T , " —
R1,1’ = W ]].(rt = r)(Vt — rthU )UBm')’t, (A146)
\% rt=1
1 & e
Ry, = Y =1)(V /B, U)PxUB,7,, (A.147)
rt
1 T , p—— —
Rz, := N, 1(ry = r)(V; —T}B,, U )(Mp — Mz)UB,7,. (A.148)
T =
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We also need

.1
bl,r = Ilgn T Zﬂ(rt = r)(zv,t {:Br Ik} - r;B;nQu)P—mZuBm')’t/ (A'149)
®Lr =1
1 '
by, = lim — Z]I(rt = r)agz,t():v,t {ﬁ Ikl — F{Bjﬂﬂu)P_m [1 lek] ,  (A.150)
T—>OO Tr t:1 r
1 &
b3, := lim — Z]I(rt =7)(Zoy {’3 Ik} — F;B%Qu)Bm'yt, (A.151)
T—oo Tr =1 ¥
1 < !
by, := lim — Y 1(r, = r)o,I}B), [1 kal] , (A.152)
T—oo Ty =1

where P_,, := B_,,(B",,Q,B_,,)"'B",, and B_,, is as in the proof of Lemma A.1.
Lemma A.6 below expresses the limits of Ry,,...,R3, and Qq,,...,Q3, in terms of

b1y, ..., ba;.
Lemma A.6. Suppose that Assumptions 1 and 2 hold. Then, as N, T — oo,
@) Ry, = VNT, ?by, +0,(T"1/?),
() Qz, = VNT, /by, + 0,(T1/?),
(©) [[Rao,|| = Op(N712),
(d) Ry, = VNT, ?b3, + 0, (Cy1),

(© [1Qzsll = Op(N"2),

1 T
—) 1
VNT 5
where Cyt := max{v/N,/T} as in Proof of Lemma A.4.

) Qi = (re = r)Vier — VNT; 12by, 4+ 0,(Crb),

Proof: This proof is analogous to that of Lemma S.1 in Karabiyik et al. (2017) after

interchanging the time and cross-sectional dimensions. We therefore omit the details.ll
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Proof of Theorem 3.
By using Br — ,39 = Birnf - Br + Birnf — ,39 and Lemma A.5,
VNT|[B, - B2 = (B, — Bl = VNTIIB,” — B, = VNT,0,(N~°).  (A153)

Because T, = O(T) by Assumption 1, we have \/NT,0,(N %) = o(v/TN'/27%), which is
0(1) provided that v/ TN'/?27% = \/TN~1/2N1=% = O(1), which it will be since T"'N —
1 and & > 1 under the conditions of the theorem. Let us therefore consider v/NT, (Blrnf -
B%). The minimizer Bmf of Q(+) is simply the OLS solution that takes the regimes as

~inf
known. The estimator ,B;n of B? is therefore given by

-1
T
~inf
g (Z 1(r = r)X MAXt> Y 1(re = r)X;Mgy:. (A.154)
t=1
From CB,, = I,
= X;B) + FByy; — (F—FC)Byy, + & = X¢f° + FByy; — UByy; + &1, (A.155)

which in turn implies

~1
~inf 1 T
N (B - D) = ( SRS r)XéMth>
t=
1 & —_
X NT, 1(rt = r)XiMgz (& — UBpy,). (A.156)
=

From T, = O(T), we get Cy1, = O(CnT). By using this and some of the results obtained

as a part of Proof of Lemma A.2,

= 0,(Cy7), (A.157)

Y A(re = r)X;MpX; — Y A(ry =r)ViV,

1 & 1 &
NTrtzl NT’tl
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where (NT,)~! Zthl Ure = r)ViVy — O, as N, T — oo by Assumption 3. We can

therefore show that

1
NT,

T
Y A(re = r)XiMzX; = O, + 0p(1). (A.158)
t=1

Let us now consider the numerator, which we write as

1 & _
Y 1(ry = r)X;Mz(e; — UByy,) = Q, — R, (A.159)
NT: (5

with obvious definitions of Q, and R,. From X; = FB,,I; — UB,,I; + V;, M: = Mz

and Lemma A.6, we get

1 T
= 1(r; = )X Maze
1 T
= A(ry =7r)(V;, — UB,,I;) Mz e
1 T
= NT, t_lel(rt =7)(Vi — UB,I1) e
1 & _
T NT, : 111(” =7)(Vy — UB,I}) Prog;
1 & _
- ﬂ(ft = 1’) (Vt — Uert)/(MFo — Mﬁ)et
NT, t=1
- Ql,r - QZ,r - QS,r
1 T
= 1(rs = r)Vier — VNT, V2(by, + by,) + O, (Cok), A.160
\/N—Trt:1 (t ) tet r ( 4r 2,r) p( NT) ( )
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and

= 1(ry = r)X;M:UB,,,y
\/N_Trtzl ( ) t*YEF m It

=—— Y1 =r)(V,-T'B,U)UB
\/N_Trt (t )(t tPm ) mY¢

\/N_T Z 1(r —TI;B,,U)PrUB,7,
T Z 1(r —TIB,,U)(Mp —Mz)UB,,7,

=Ry, — Ry, —R3,

= VNT, V2(b3, — by,) + 0,(C

ST (A.161)
which in turn implies
1 - ﬂ(?’t = T’)X/M"(& —ﬁ Y )
- m
/NT, = #iVLp t
1 T
= = Y 1(r = r)Vier — VNT,V/2b, + O, (Cyh), (A.162)
r =1

where b, := by, + bz, +bs, — by,

By putting everything together, we obtain the following asymptotic representation
~inf
for VNT, (B, — BY):

VNTT’(ﬁ ﬁr)

1 J , g
_ 1(r = NXIMX; | ——
NTr = (T’t 7’) pVEIEAE

1(ry = r)XMz(e; — UB
\/N_Trtzl (t ) t F(t m,)’t)

L 1 -
=0,! <\/N_Tr t;ﬂ(rt = r)Vie; — VNT, 1/2br> +0p(1), (A.163)
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which together with (A.153), T~!T, — 7, (Assumption 1) and T"!N — 7 imply

V NTT’(Br - 139)

:@;1<

where we have again used that v/TN'/27% = O(1). The term (NT,)"V2YL  1(r; =

i r)\Vier — /i, b ) +0p(1), (A.164)

r)Vig; is asymptotically normal by a cental limit law for independent processes. The

limiting covariance matrix is given by

/
1 & 1 &
lim E 1(r; =71)Vie 1(r; =7r)Vie
N, T-e0 NT”;“ )tt(\/N_Trt:l(t )”>]
1 T T
. !/ /
— Nlilfllloo NT, t;g;]l(rt =1r)1(rs = r)E(Vieel V)
a 1
N T, (re=r) (Viere V)
1 < )
= lim — Y U(ry =1)071T0s =: Py, (A.165)
©Ar =1

where we have used the fact that V; and ¢; are serially and cross-sectionally uncorre-

lated (Assumption 2). They are also independent of each other with IE(E% ;) = 0'8 ;»and

therefore

N'E(Viee)Vy) = N'E[V[E(e;| V) V] = N E[V}(07, 1) Vi

= 0 NT'E(V{ V) = 0, Eoy (A.166)
as N — oo. It follows that
VNT(B, — B°) =4 N(0kx1,0,'®,0; 1) — /17,120, b, (A.167)

85



as N, T — oo, which is what we wanted to show. [ |
Proof of Theorem 4.

This proof uses the same basic steps as in the proof of Theorem 2 in Westerlund (2018).
We begin by noting that under X, ; = L, (Assumption 4), wehave @, = T,” 1 Zthl 1(ry =
)Ly, = Ly, which does not depend on the subsample being used (“1” or “2”). By us-
ing this, the fact that the cardinality of 7 is given by |7;| = T,/2 for ¢ € {1,2}, and the
limiting representation of v/NT, (Br - ,39) provided in Proof of Theorem 3, we can show

that

VNT,/2(B,, — BY) = ©,1(Qq, — Ry,) +0p(1), (A.168)

where Qy, and Ry, are defined analogously to Q, and R,, respectively, in Lemma A.6

based on subsample ¢. This implies

VNT(BP - B)

—2NT, (B, — %) — 5= VT 72(B, — B9+ VNT /2(Bs, — )
=20,(Q, —R,) — %[@;%Qu ~Ry,) + 0, 1(Qs, —Ry,)] +0,(1).  (A.169)

We have already shown that under Assumption 4 ®, does not depend on the subsample
being used. The same is true for the bias terms. By using this, | 7;| = T;/2 and some of

the results of the proof of Lemma A.6,

! Y U(re=r)Vier + V2%, + 0p(1), (A.170)

Quy —Ryr = =5
T VN2,
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which in turn implies

~SDj B 1
VNT(B” = B7) = ©:12(Q: = R)) = —5(Quy — Ri +Qar = Rap)l +0y(1)
-0, 2y 1(ry = 1) Vies +2/57, /b
- - r
7 /_NTr =~ r
1 1 2 / 1/2
— | ——— Y 1 =) Vi + /2y b
A\ UNT 2 t; (re = r)Vier N7t by
1 Lr
+—— ). Wr=rVie+ \/2177rr1/2br) +0p(1)
NT /2 77241
0 N 1 = )Vies 1 0n(1) (A171)
= t= t : :
" VNT, & ! P

The required result is a direct consequence of this and the asymptotic normality argu-

ments of the proof of Lemma A.6. Because O'E,t = 02, and I, = Zy, for all f such that

r¢ = r under Assumption 4, we have

1 T 1 T
O, = lim — Y 1(r =1)Eus = Zo, lim — Y (s =7) = Loy, A172
r Tgr;o T, t:Zl (rt 7’) vt u,r Tglgo ) tzzl (Tt 1’) u,r ( )
T ) 5 T
@, = lim — ) I(r = Lot = 05,0, lim — Y 1(ry =
r = Jim Trt_Zl (re = 1)0gsEos = 05, Ty lim rt_Zl (re=r)
=02,Zoy, (A.173)

and therefore the asymptotic covariance matrix simplifies to ©, 1®,0, ! = 02, %, L m
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