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Abstract

The present paper proposes a new approach to panel data regression models

with interactive effects that is appropriate when the slope coefficients are not nec-

essarily constant but that they may be shifting over time. A major point about the

new methodology—referred to as “SHIFTIE”—is that the type of shifts that can be

accommodated is very broad and includes most existing specifications in the liter-

ature, such as structural breaks and Markov switching, as special cases. This gen-

erality is important from a practical point of view, as existing approaches require

empirical researchers to take a stance as to the shift-generating process, which is

typically unknown. The asymptotic validity of SHIFTIE is established and verified

in small samples using Monte Carlo simulations. The empirical implementation is

illustrated using as an example economic growth. The results confirm the common

heuristic belief that the COVID–19 pandemic was special in many ways.
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1 Introduction

Accounting for temporal shifts in the coefficients of otherwise linear regression mod-

els has long been important in economics and elsewhere. The urgency of addressing

this issue has grown markedly in recent years due to a succession of extreme events—

including wars, pandemics, trade conflicts, financial crises, natural disasters, and major

policy changes—that continue to unfold.1 Panel data are especially vulnerable to such

shocks because they contain many individual time series. However, only recently have

methods designed to handle shifts in panel data become available to practitioners.

Most existing techniques are limited to models with a single “structural break,” that

is, two regimes separated by a single breakpoint at which the parameters shift perma-

nently (see, for example, Antoch et al., 2019, Baltagi et al., 2016, Karavias et al., 2022, and

Zhu et al., 2020). Such single structural break models are appropriate in some situations,

as in the case of a monetary policy regime change or a technological breakthrough, but

certainly not in all. The methods proposed by Qian and Su (2016), Boldea et al. (2020),

Kaddoura and Westerlund (2023), and Ditzen et al. (2025) allow for multiple structural

breaks, and are therefore more general in this regard. However, they still assume that

breaks are infrequent and that their effects are permanent. These methods therefore

fail to accommodate situations in which events are recurrent—such as business cycles,

bushfires, or storms—or where the impact is transitory, as with episodes of extreme

weather, or financial crises. In fact, switches between regimes may be frequent, as in the

1A non-exhaustive list of recent examples includes the 2007–2008 global financial crisis, the subprime
mortgage crisis of 2007–2010, the COVID-19 pandemic, Russia’s invasion of Ukraine in 2022, and the
2021–2023 energy crisis.
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case of rapidly changing financial market conditions (see Piger, 2009, for a discussion of

different types of breaks).

Observations like the ones just made have led to the development of a separate lit-

erature on “regime switching.” Regime switching models can be broadly categorized

into two types; “threshold” models and “Markov-switching” models, both of which

generate frequent shifts with transitory effects. The key difference between the two lies

in the mechanism governing the shifts. Threshold models assume that regime changes

are triggered by the level of an observed variable relative to an unobserved threshold.

In contrast, Markov-switching models posit that regime shifts follow a latent Markov

chain, often with only two states and time-invariant transition probabilities. Each ap-

proach has its strengths and weaknesses. Threshold models are relatively easy to esti-

mate and interpret; however, they rely on the assumption that the relevant state vari-

able is observed—an assumption that is seldom satisfied in practice. Markov-switching

models relax this requirement, but do so at the expense of imposing strong parametric

assumptions and requiring more complex estimation techniques. Interestingly, while

the time series strand of the regime switching literature is huge (see Hamilton, 2016, for

a recent overview), the panel strand is almost nonexistent (see Cheng et al., 2010, and

Miao et al., 2020, for discussions).

The above discussion suggests that if the panel literature on structural breaks is

small, the literature on regime switching is even smaller, and there have been no at-

tempts to bridge the two.2 This point is important not only in its own right but also

because of its implications for empirical work. In particular, since there is currently

no holistic approach, researchers are forced to take a stance as to whether shifts are in-

2This observation applies to the time series literature as well. In fact, the structural breaks and regime
switching literatures appear to have developed largely independently, despite the close relationship be-
tween the two phenomena. Reflecting this, the otherwise comprehensive surveys by Hamilton (2016) and
Perron (2006) hardly mention this issue.
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frequent with permanent effects (structural breaks) or frequent with transitory effects

(regime switches). The present paper can be seen as a reaction to this. Its aim is to

develop a new approach to panel data models that is general enough to accommodate

both phenomena, henceforth referred to as “shifts.”

Dealing with these shifts would have been easier were it not for the simultaneous

presence of unobserved heterogeneity due to omitted variables. This is a major con-

cern because models in economics tend to be very parsimonious and are, therefore,

likely to omit variables that may be correlated with the regressors, rendering them en-

dogenous. To address this problem, researchers commonly assume that the unobserved

heterogeneity consists of additive unit- and time-specific constants, or “fixed effects.”

However, unlikely to be enough in many applications, which has recently led to the

consideration of more general interactive effects models. In these models, the time- and

unit-specific effects—often called “factors” and “loadings,” respectively—enter mul-

tiplicatively. The most common approach to handling such effects is “de-factoring,”

which involves projecting the data onto the space orthogonal to the estimated factors.

This procedure eliminates the interactive effects asymptotically; however, it does so in

an awkward way, as the shifting slope coefficients in the model for the de-factored data

are not the same as those for the raw data.

We address this challenge by “de-loading” the data instead of de-factoring them.

Unlike the factors, the loadings are time-invariant, which means that we can project

them out without affecting the slopes. With the interactive effects removed, we identify

shifts by adapting an existing algorithm from the literature on unknown group struc-

tures to estimate shifts along the time dimension. The groups in this context are regimes,

and the approach allocates each time period to one of these regimes optimally using a

least squares (LS) criterion. Time periods within the same regime share the same co-

efficients, whereas periods in different regimes have different coefficients. Moreover,
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because the periods allocated to a particular regime do not need to be consecutive,

shifts may occur frequently. Both the timing of the shifts and the regime-specific slope

coefficients are treated as non-random, meaning that—unlike in much of the regime-

switching literature—no restrictive distributional assumptions are required. The new

approach, henceforth referred to as “SHIFTIE” (SHIFTs in Interactive Effects models), is

therefore very general in terms of the types of shifts it can accommodate.

The rest of the paper is organized as follows. In Section 5.2, we present the model

and the proposed SHIFTIE approach used to estimate it. Sections 3 and 5.2 examine

the asymptotic and finite-sample properties of the approach, respectively. Section 5

reports the results of an empirical application that showcases the importance of COVID-

19 for models of economic growth. Section 6 concludes. All proofs are provided in the

appendix.

2 Model and approach

Consider a scalar panel variable yi,t, observed over t = 1, . . . , T time periods and i =

1, . . . , N cross-sectional units. The data-generating process (DGP) that we consider can

be viewed as a prototypical interactive effects model, with the added feature that the

slope coefficients are allowed to shift over time. It is given by

yi,t = β′rt
xi,t + γ′tfi + εi,t, (2.1)

xi,t = Γ′tfi + vi,t, (2.2)

where xi,t := [x1,i,t, . . . , xk,i,t]
′ and βrt

:= [β1,rt , . . . , βk,rt ]
′ are k × 1 vectors of known

regressors and unknown slope coefficients, respectively. The slope coefficients are al-

lowed to vary over time via the variable rt ∈ R := {1, . . . , R}, which assigns each time
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period t into one of R regimes. Moreover, γt := [γ1,t, . . . , γm,t]’ and Γt := [Γ1,t, . . . , Γm,t]′

are m × 1 and m × k matrices, respectively, of unknown common factors with fi :=

[ f1,i, . . . , fm,i]
′ being the associated m × 1 vector of factor loadings, and εi,t and vi,t are

idiosyncratic error terms.

The products γ′tfi and Γ′tfi represent the interactive effects. As noted in Section 1,

these effects appear in both (2.1) and (2.2), which makes xi,t endogenous. Unlike in

studies such as Pesaran (2006), this endogeneity arises from the loadings rather than

the factors themselves (see Hansen and Liao, 2019, for a similar assumption).3

It is useful to write the above equations in stacked vector form as follows:

yt = Xtβrt
+ Fγt + εt, (2.3)

Xt = FΓt + Vt, (2.4)

where yt := [y1,t, . . . , yN,t]
′ and εt := [ε1,t, . . . , εN,t]

′ are N × 1, Xt := [x1,t, . . . , xN,t]
′ and

Vt := [v1,t, . . . , vN,t]
′ are N × k, and F := [f1, . . . , fN]

′ is N ×m.

The model in (2.3) involves four types of parameters: the vector of regime-specific

slope coefficients βrt
, the regime membership variable rt, the vector of common factors

γt, and the matrix of loadings F. It is convenient to organize the first three into the

Rk× 1 vector β := [β′1, . . . , β′R]
′, the m× 1 vector r := [r1, . . . , rT]

′, and the T×m matrix

γ := [γ1, . . . , γT]
′. While γ and F are not of primary interest, it is necessary to control for

them; otherwise, β and r would be inconsistently estimated due to the omitted variables

problem. One approach is to follow the existing literature on grouped cross-sectional

heterogeneity and estimate all four sets of parameters jointly (see, for example, Ando

and Bai, 2016). However, joint estimation in this high-dimensional panel data setting is

computationally burdensome. We therefore seek a stepwise procedure. An important

3Although the same set of loadings fi appears in both (2.1) and (2.2), some of the elements of γt and
Γt may be zero. As a result, yi,t and xi,t are allowed to depend on different loadings.
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observation in this regard is that while estimates of β and r necessarily depend on one

another, the problems of estimating (β, r), on the one hand, and (γ, F), on the other

hand, are in principle separable.

As a source of inspiration, we consider the studies by Baltagi et al. (2016), Karavias

et al. (2023), and Ditzen et al. (2025), which incorporate structural breaks and interac-

tive effects through variations of the common correlated effects (CCE) approach of Pe-

saran (2006). CCE uses cross-sectional averages of the observables as proxies for the fac-

tors, which are then projected out in a regime-wise manner. While this de-factoring ad-

dresses the interactive effects, it introduces a dependency on the unknown break dates

due to its regime-wise implementation. As a result, this approach does not achieve a

clear separation between breaks and interactive effects, instead making all estimates

interdependent—something we aim to avoid.

Our proposed SHIFTIE solution is inspired by Moon and Perron (2004). Although

their context—unit root testing—differs from ours and they do not consider the CCE ap-

proach, they make a key observation: de-factoring with non-stationary factors is more

complex than de-loading with non-random factor loadings. Since the goal is to elim-

inate interactive effects rather than estimate them, de-loading is sufficient. We face a

similar situation in the sense that de-factoring is comparatively more complicated. In

particular, unlike the factors, the loadings are time-invariant, which allows de-loading

to be performed without any knowledge of the regime memberships.

To formalize our proposed solution, let Zt := [yt, Xt] be the N × (k + 1) matrix of

observables. By combining (2.3) and (2.4), the models for yt and Xt can be rewritten as

the following static factor model for Zt:

Zt = FCt + Ut, (2.5)
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where Ct := [Γtβrt
+ γt, Γt] is m× (k + 1) and Ut := [εt + Vtβrt

, Vt] is N × (k + 1). In

this notation, the proposed estimator F̂ of (the space spanned by) F is given simply by

F̂ := Z = FC + U, (2.6)

where A := T−1 ∑T
t=1 At for any generic matrix At. The justification for this estimator

lies in the fact that under certain regulatory conditions laid out in Section 3, U negligi-

ble. Hence, F̂ is consistent for FC, which under the conditions of Section 3 implies that

pre-multiplication by the N × N projection error matrix MF̂ := IN − F̂(F̂′F̂)−1F̂′ will

eliminate the interactive effects asymptotically.

To estimate (β, r), we propose an algorithm inspired by the grouped fixed effects

(GFE) approach of Bonhomme and Manresa (2015) to the estimation of latent cross-

sectional group structures in fixed effects models. In particular, the idea is to estimate β

and r jointly by minimizing the residual sum of squares of the de-loaded data;

(
β̂, r̂
)

:= arg min
(β,r)∈BR×RT

T

∑
t=1

∥∥MF̂

(
yt − Xtβrt

)∥∥2, (2.7)

where B ∈ Rk×1 is the parameter space of βrt
and ‖A‖ :=

√
tr (A′A) is the Frobenius

norm of any matrix A. The above joint estimation problem can be solved iteratively.

Given r, we can estimate β, and given β, we can reestimate r. This process contin-

ues until convergence. The below estimation algorithm provides the details. Here and

throughout this paper, r(s) :=
[
r(s)1 , . . . , r(s)T

]′ and β(s) :=
[
β
(s)′
1 , . . . , β

(s)′
R
]′ denote esti-

mates of r and β, respectively, at step s.

Estimation algorithm.

1. Set s = 0. Initiate r for a given R. Let r(0) be this initial value.
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2. Given r(s), compute

β(s) := arg min
β∈BR

T

∑
t=1

∥∥MF̂

(
yt − Xtβr(s)t

)∥∥2. (2.8)

3. Given β(s), update r as r(s+1) =
[
r(s+1)

1 , . . . , r(s+1)
R

]′, where

r(s+1)
t := arg min

rt∈R

∥∥MF̂

(
yt − Xtβ

(s)
rt

)∥∥2. (2.9)

4. Set s = s + 1 and return to step 2. Repeat until numerical convergence. The

solution (β̂, r̂) to (2.7) is given by the final step estimates.

According to our Monte Carlo simulations, convergence is very fast, partly because

the objective function is non-increasing with each iteration. However, convergence to

the global optimum is not guaranteed—a common limitation of this type of iterative

algorithm. Therefore, multiple initializations of r should be tested, and the one yielding

the lowest value of the objective function should be selected.

The GFE approach can be viewed as a variant of the classical k-means clustering

algorithm, and serves as the workhorse of the literature on unknown groups (see, for

example, Loyo and Boot, 2025, and Miao et al., 2020). However, it is not the only avail-

able method. One alternative is the expectation–maximization (EM) algorithm used

by Ke et al. (2016) to maximize the full likelihood function. However, this approach

is computationally costly and challenging to implement—likely one reason for its lim-

ited adoption in applied work. Additionally, it assumes that the slope coefficients are

pre-ordered, which in practice requires sequencing the data. This is manageable with a

single regressor but it is unclear how to proceed when multiple regressors are present.

Another alternative to GFE is the penalized principal component (PPC) approach of Su

and Ju (2018), which uses the principal components-based approach of Bai (2009) to
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deal with the interactive effects and the least absolute shrinkage and selection operator

(LASSO) to deal with the groups. However, PPC involves solving a high-dimensional,

non-convex optimization problem and requires grid search over multiple tuning pa-

rameters, including the number of factors m. Thus, from a computational standpoint,

PPC is no more practical than EM.

3 Asymptotic analysis

To facilitate our asymptotic analysis, we need to introduce some notation. Specifically, if

A is a matrix, λmin(A) and λmax(A) signify its smallest and largest eigenvalues, respec-

tively, while rank(A) signifies its rank. The symbols →p and →d signify convergence

in probability and distribution, respectively. The indicator function for the event A is

denoted 1(A). It takes on the value 1 if A is true and 0 otherwise. We use w.p.1 (w.p.a.1)

to denote with probability (approaching) 1. As usual, true parameter values are super-

scripted by a “0,” such that, for example, r0
t is the true value of rt.

Assumption 1.

(a) B is a compact subset of Rk×1;

(b) βrt
, Γt and γt are non-random such that rank(C) = m ≤ k + 1. Also, C → C as

T → ∞, where rank(C) = m ≤ k + 1 and ‖C‖ < ∞;

(c) wi,t := [εi,t, vi,t]
′ as a covariance stationary process with absolutely summable au-

tocovariances, E(wi,t) = 0(k+1)×1, supi,t E(‖wi,t‖4) < ∞ and supt N−1 ∑N
i=1 ∑N

j=1

|tr [E(wi,tw′j,t)]| < ∞;

(d) εi,t and vj,s are independent for all i, t, j and s;
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(e) fi is non-random such that supi ‖fi‖ < ∞ and N−1F′F→ ΣF as N → ∞, where ΣF

is positive definite;

(f) (NT)−1 ∑T
t=1 ∑T

s=1 E(U′tUs)→ Ωu as N, T → ∞, where Ωu is positive definite;

(g) maxr′∈R λmin(Sr′,r) ≥ ρmin > 0 for all r ∈ R w.p.a.1, where Sr′,r := (NT)−1 ∑T
t=1

1(r′t = r′)1(rt = r)V′tMF0Vt, and F0 is the limit of F̂ in the sense of Lemma A.1 in

the appendix;

(h) T−1Tr → πr > 0 as T → ∞ for all r ∈ R, where Tr := ∑T
t=1 1(rt = r);

(i) ‖β0
r′ − β0

r‖ > 0 for all r′ 6= r.

Some remarks are in order. Assumption 1(a) requires that the parameter space for βrt

is compact—a standard condition for extremum estimators. Unlike many other studies

on interactive effects (see, for example, Pesaran, 2006, and Kaddoura and Westerlund,

2025), Assumptions 1(b) and 1(c) do not require Γt, γt, or fi to be randomly distributed.

Instead, these matrices are treated as non-random, which is a more general considera-

tion, since it is non-parametric. Random loadings can still be accommodated by inter-

preting fi as a single realization from the underlying random loading process, and the

same applies to random factors. Treating βrt
as non-random in Assumption 1(b) is also

a strength, especially when compared to the Markov switching literature, which—as

discussed in Section 1—typically assumes that rt evolves according to a Markov chain.

Assumption 1(b) further requires that C has full row rank. This condition ensures that

the m columns of F can be recovered asymptotically from the k + 1 columns of F̂, and

is analogous to the standard CCE rank condition on the cross-sectional averages of the

loadings. It is a mild restriction, requiring only that the number of loadings is not under-

specified. This contrasts with much of the interactive effects literature, which assumes
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that the number of loadings is known or can be estimated accurately (see Westerlund

and Urbain, 2015, for a discussion).4

Assumption 1(c) allows for weak serial and cross-sectional dependence in εi,t and

vi,t, and is quite general. This is sufficient for some of our results but not all. Later on,

at-most-weak dependence will need to be strengthened to independence—an expected

requirement, as many studies on unknown groups assume independence in at least

one of the two dimensions (see, for example, Miao et al., 2020). Assumption 1(d) rules

out lagged dependent variables in xi,t. However, as noted above, yi,t is still allowed

to exhibit serial correlation through both γt and εi,t. Assumption 1(d) also does not

preclude endogeneity, as xi,t may still be correlated with the regression errors in (2.1)

via fi.

Assumptions 1(e) and 1(g) are standard non-collinearity conditions that ensure iden-

tification of β0
r . They require that the loadings are not collinear and that the regressors

exhibit sufficient variation across both the cross-section and time, after projecting out

all variation that can be explained by the loadings (see, for example, Bai, 2009). The

latter condition is assumed to hold over the intersection of time periods assigned to all

estimated and true regimes. Note also that for Assumption 1(g) to be satisfied, these

intersections cannot be negligible relative to T. This requirement is formalized in As-

sumption 1(h), which is standard in the structural break literature (see, for example,

Bonhomme and Manresa, 2015, and Loyo and Boot, 2025). However, while in that lit-

erature Assumption 1(h) is essential for accurate estimation, according to our Monte

Carlo results this is not the case here. Assumption 1(f) requires that the average long-

run covariance matrix of Ut is positive definite. This implies that yi,t and xi,t cannot be

over-differenced. Finally, Assumption 1(i)—commonly referred to as the regime “sepa-

4One way to relax Assumption 1(b) is to include time-invariant regressors that can be treated as ob-
served loadings. These observed loadings may be appended to F̂ and projected out, thereby removing
the need for them to satisfy the rank condition in Assumption 1(b).
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ration condition”—requires that β0
r′ and β0

r are distinct.

With the above conditions in place, we can establish the consistency result in Theo-

rem 1 below. The theorem is stated in terms of the following Hausdorff distance:

dH (a, b) := max
{

max
r∈R

min
r′∈R
‖ar − br′‖ , max

r′∈R
min
r∈R
‖ar − br′‖

}
, (3.1)

where (a, b) ∈ BR × BR.5 The reason for considering this distance is that our objective

function is invariant to a relabeling of the regime index r and the regime-specific slopes

βr are therefore only identified up to a re-ordering of the regimes (see Bonhomme and

Manresa, 2015, for a discussion). By showing that dH(β0, β̂) = op(1) Theorem 1 estab-

lishes that the identified set is consistently estimated.

Theorem 1. Suppose that Assumption 1 holds. Then, as T → ∞ with N < ∞ or N → ∞,

dH

(
β0, β̂

)
= op (1) .

Theorem 1 implies that the elements of β̂ can be relabelled so that ‖β̂r − β0
r‖ = op(1)

for all r ∈ R (see the appendix for details). Hence, in what follows, we simply assume

that the elements of β̂ have been suitably relabelled, as in Bonhomme and Manresa

(2015). Theorem 1 does not require that the regime membership r0
t is consistently esti-

mated for all time periods t, which is only possible if N → ∞. This follows from the fact

that r̂t is constructed using only cross-sectional variation. By not requiring consistent

estimation of r0
t it is possible to have N fixed. This allowance stands out when compared

to existing results in the group literature, which typically require both N and T to grow

large (see, for example, Bonhomme and Manresa, 2015; Loyo and Boot, 2025; and Miao

et al., 2020).
5The exact definition of dH(·, ·) depends on the problem at hand and hence varies from study to study.

Our definition is the same as in Miao et al. (2020).

13



The op(1) convergence rate in Theorem 1 is clearly not sharp. It can be sharpened

at the expense of more restrictive conditions. This is done in Theorem 2. As we show

in the appendix, the proof of Theorem 1 can be modified to establish consistency in the

following mean square sense:

1
T

T

∑
t=1

∥∥∥β0
r0

t
− β̂r̂t

∥∥∥2
= op(1), (3.2)

which is analogous to Theorem 1 in Bonhomme and Manresa (2015), and Loyo and

Boot (2025). However, this requires that mint λmin(N−1V′tMF0Vt) > 0 w.p.a.1 instead

of Assumption 1(g), which in turn means that N cannot be fixed anymore.

We now turn to the question under what conditions the SHIFTIE estimator achieves

consistent classification of individual time periods. Under consistent classification, β̂

will be asymptotically equivalent to the infeasible estimator based on the true group

memberships, henceforth denoted β̂
inf

.

Assumption 2.

(a) wi,t is independent over i and t;

(b) P(|wj,i,t| > M) ≤ exp(1− (M/ν)κ) for all i and t, where wj,i,t is the j-th row of

wi,t := [w1,i,t, . . . , wk+1,i,t]
′ and M, ν, κ > 0;

(c) E(N−1V′tVt) → Σv,t as N → ∞, where Σv,t is positive definite with supt ‖Σv,t‖ <

∞.

Classification consistency typically requires restrictions on the dependence structure

and tail behavior of the data (see Bonhomme and Manresa, 2015, for a discussion). This

is where Assumption 2 comes into play. Part (a) strengthens the weak dependence

condition of Assumption 1(c) to independence. This assumption is used in the proofs;
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however, intuition and the Monte Carlo results reported in Section 5.2 suggest that in-

dependence may be stronger than necessary. In any case, yi,t and xi,t are still allowed to

be dependent through the interactive effects. Similarly, while Assumption 2(b) requires

that the tail probability of wi,t decays at an exponential rate, the observed data may still

exhibit thick tails.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, for all δ > 0, as N, T → ∞,

(a) P

(
sup

t∈{1,...,T}

∣∣r̂t − r0
t
∣∣ > 0

)
= o(1) + o(TN−δ),

(b) max
r∈R

∥∥∥β̂r − β̂
inf
r

∥∥∥ = op(N−δ).

Unlike Theorem 1, Theorem 2 requires that both N and T grow without bound,

which, as already noted, is a standard condition in the literature. Moreover, for r̂t to

be consistent for r0
t , the relative growth rates of N and T must satisfy TN−δ = O(1).

This condition is not particularly restrictive, as the only requirement on δ (at this point)

is that it be positive.

Assumption 3.

(a) T−1
r ∑T

t=1 1(rt = r)Σv,t → Θr as T → ∞ for all r ∈ R, where Σv,r is positive

definite;

(b) T−1
r ∑T

t=1 1(rt = r)σ2
ε,tΣv,t → Φr as T → ∞ for all r ∈ R, where σ2

ε,t = E(ε2
i,t);

(c) T−1N → η < ∞ as N, T → ∞.

Assumption 3 ensures that the infeasible estimator β̂
inf
r is asymptotically well de-

fined. This is important because, by Theorem 2, β̂r is asymptotically equivalent to β̂
inf
r .

As a result, the asymptotic distribution of
√

NTr(β̂r − β0
r ) stated in Theorem 3 below
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is derived from that of
√

NTr(β̂
inf
r − β0

r ). Assumptions 3(a) and 3(b) correspond to the

standard identification and covariance matrix conditions (see, for example, Bonhomme

and Manresa, 2015; and Loyo and Boot, 2025). The expansion rate condition in part

(c) is needed to address the incidental parameters problem arising from the interactive

effects, and is standard in studies that allow for such effects (see, for example, Bai, 2009,

and Westerlund and Urbain, 2015, for discussions).

Theorem 3. Suppose that Assumptions 1–3 hold, and that δ > 1. Then, uniformly in r ∈ R,

as N, T → ∞,

√
NTr

(
β̂r − β0

r

)
→d N

(
−√ηπ−1/2

r Θ−1
r br, Θ−1

r ΦrΘ−1
r

)
,

where br is a k× 1 bias vector such that br = b2,r + b3,r + b4,r − b1,r with

b1,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)(Σv,t[βr, Ik]− Γ′tB
′
mΩu)P−mΣuBmγt,

b2,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)σ2
ε,t(Σv,t[βr, Ik]− Γ′tB

′
mΩu)P−m[1, 01×k]

′,

b3,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)(Σv,t[βr, Ik]− Γ′tB
′
mΩu)Bmγt,

b4,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)σ2
ε,tΓ
′
tB
′
m[1, 01×k]

′,

where P−m := B−m(B′−mΩuB−m)−1B′−m and B−m is as in the proof of Lemma A.1 in the

appendix.

Theorem 3 implies that β̂r is consistent and that the rate of convergence is given by

(NTr)−1/2. The bias term
√

ηπ−1/2
r Θ−1

r br does not affect consistency; however, it does

lead to a miscentering of the asymptotic distribution of
√

NTr(β̂r − β0
r ), which inval-

idates inference. Because π−1/2
r = limT→∞

√
T/Tr ≥ 1, the only exception is when
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η = 0, in which case the distribution simplifies to N (0k×1, Θ−1
r ΦrΘ−1

r ).6 In practice,

this means that we require T � N, which need not be the case in a given sample. An-

other possibility is to estimate the bias directly and subtract it from β̂r, which would

yield an asymptotically unbiased estimator, provided that the bias estimate is consis-

tent. Unfortunately, consistent estimation of br is only possible if m = k + 1, which,

again, may not hold in practice.

These considerations motivate the use of the split panel jackknife (SPJ) proposed by

Dhaene and Jochmans (2015), which requires neither T � N nor explicit bias estima-

tion. The specific SPJ estimator we consider is given by

β̂
spj
r := 2β̂r − βr, (3.3)

where βr := (β̂1,r + β̂2,r)/2 with β̂`,r for ` ∈ {1, 2} given by

β̂`,r :=

 ∑
t∈T`,r

X′tMF̂Xt

−1

∑
t∈T`,r

X′tMF̂yt, (3.4)

and where T1,r := {1, . . . , Tr/2} and T2,r := {Tr/2 + 1, . . . , Tr}.

Assumption 4. Σv,t = Σv,r and σ2
ε,t = σ2

ε,r for all t such that rt = r ∈ R.

Assumption 4 requires that Σv,t and σ2
ε,t are constant within regimes. This is needed

or else split panel jackknife will not be able to eliminate the bias of β̂r.

Theorem 4. Suppose that Assumptions 1–4 hold, and that δ > 1. Then, as N, T → ∞,

√
NTr

(
β̂

spj
r − β0

r

)
→d N

(
0k×1, σ2

ε,rΣ−1
v,r

)
.

6Note that unless η = 0, the presence of π−1/2
r will inflate the bias for relatively small regimes.
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Theorem 4 verifies that the SPJ correction is asymptotically successful. Inference

based on this result requires consistent estimators σ̂2
ε,r and Σ̂v,r of σ2

ε,r and Σv,r, respec-

tively. Natural suggestions towards this end are σ̂2
ε,r = (NTr)−1 ∑T

t=1 1(r̂t = r)ε̂′tε̂t and

Σ̂v,r = (NTr)−1 ∑T
t=1 1(r̂t = r)V̂′tV̂t, where ε̂t := MF̂(yt − Xt β̂r̂t

) and V̂t := MF̂Xt.

All the results reported so far assume that the true number of regimes, R0, is known,

which may not be the case in practice. If R0 is unknown, we follow the bulk of the

existing group literature and minimize an information criterion (see, for example, Bon-

homme and Manresa, 2015, Miao et al., 2020, and Su and Ju, 2018). Our proposed

estimator R̂ of R0 is given by

R̂ := arg min
1≤R≤Rmax

IC (R) , (3.5)

where Rmax ≥ R0 is a pre-specified maximum number of regimes, and

IC(R) := ln

(
1

NT

T

∑
t=1

ε̂t (R)′ ε̂t (R)

)
+ R · ϕNT (3.6)

Here we have made the dependence of ε̂t on R explicit by writing ε̂t = ε̂t(R). Consis-

tency requires that the penalty term ϕNT satisfies ϕNT → 0 and ϕNT max{N, T} → ∞

as N, T → ∞.

4 Monte Carlo study

In this section, we investigate the finite-sample properties of our proposec SHIFTIE

approach. The DGP used for this purpose is similar to those considered by Kaddoura

and Westerlund (2023), and Kaddoura (2025), and is given by a restricted version of
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(2.1) and (2.2) with k = 3 and r = 2. The loadings are generated as

Γt = ϕ1Γt−1 + Πt, (4.1)

γt = ϕ2γt−1 + θt, (4.2)

with initial conditions set to zero, parameters ϕ1 = 0.5 and ϕ2 = 0.1, and innovations

drawn independently from N (0, 1). We use the same DGP as for γt to generate fi. The

idiosyncratic error εi,t is generated in the following way:

εi,t = ϑεi,t−1 + ζi,t +
L

∑
`=1

ϑ
(
ζi−j,t + ζi+j,t

)
, (4.3)

where ε1,0 = · · · = εN,0 = 0, ϑ2 = 0.3, L = 10, and ζi,t ∼ N (0, σ2
i ) with σi ∼ U (0.5, 1).

This means that εi,t is both serially and cross-section correlated with the 2L nearest

cross-sectional neighbours.7 The DGP of vi,t is the same, except that the innovations

are drawn from N (0, 1). Hence, while εi,t is heteroskedastic, vi,t is not.

The primary focus of this simulation study is the slope coefficients. We consider

two distinct DGPs in which the slopes display (DGP1) a temporary structural break

and (DGP2) Markov switching. Both DGPs are inspired by our empirical illustration in

Section 5. In DGP1, βrt
is generated as follows:

βrt
=


0p×1 for 1 ≤ t < b0.5Tc

1p×1 for b0.5Tc ≤ t < b0.6Tc

0p×1 for b0.6Tc ≤ t ≤ T

, (4.4)

where b·c is the floor function. Thus, βrt
experiences a temporary structural break that

7The cross-sectional sum in vi,t is truncated at beginning and end when not enough cross-sections are
available.
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subsequently reverts back to the original level. The number of regimes, R0, is there-

fore given by two. In DGP2, βrt
evolves according to a two-regime Markow switching

process with the following transition matrix:

P :=

 p11 p12

p21 p22

 , (4.5)

where pab := P{rt = b | rt−1 = a} is the probability of moving from regime a at time

t− 1 to regime b at time t. For our simulation, we set p11 = p22 = 0.8 and p12 = p21 =

0.2.

The performance of SHIFTIE is evaluated based on 1000 replications of the above

DGPs for all combinations of N, T ∈ {40, 60, 80, 100}. Hence, not only is the DGP chal-

lenging but most sample sizes are also very small. Note in particular how in DGP1 the

second regime where b0.5Tc ≤ t < b0.6Tc only contains 4 time periods when T = 40.

Three metrics are considered; the mean squared error (MSE) and bias of β̂r and β̂
spj
r , and

the misclassification frequency of r̂t. The bias and MSE are reported separately for each

regime and all together. All results are based on treating R0 as known.

INSERT TABLES 1 AND 2 ABOUT HERE

Tables 1 and 2 report the bias and MSE results for DGP1 and DGP2, respectively. As

expected given Theorem 3, the baseline SHIFTIE estimator is biased, especially in the

smallest samples. We also see that in DGP1 most of the inaccuracy originates from the

second regime, which—as pointed out earlier—is relatively small. Things improve as

N and T increase; however, some distortions remain, as to be expected given that all

samples considered are quite small. Note in particular how the unbiasedness require-

ment that T � N is not met. The SPJ takes care of this problem. In fact, the accuracy

of the SPJ SHIFTIE version is very high, even in the smallest samples and regardless of
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the DGP considered. This corroborates Theorem 4.

INSERT TABLE 3 ABOUT HERE

In Table 3, we report the misclassification frequency for both DGPs. As expected

given Theorem 2(a) this frequency goes down as N increases. It goes down also when

T increases but not always. Note in particular how in DGP2 the misclassification is

increasing in T when N is relatively small, which is again consistent with Theorem 2(a).

Intuitively, unless N is large enough to ensure accurate estimation, more time periods

to classify just means more errors.

5 Empirical illustration

5.1 Motivation

There is a substantial empirical literature concerned with economic growth and the

business cycle in the US (see Owyang et al., 2005, and Hamilton and Owyang, 2012,

and the references provided therein). The coronavirus pandemic (COVID–19) had a

substantial effect on the US economy. In fact, as Federal Reserve Bank of Chicago (2022)

point out, COVID–19 was highly disruptive even from an historical perspective. Real

GDP contracted by 3.5% in 2020, which is the largest contraction since 1946 and the first

contraction since the 2008 financial crisis. The US Census Bureau’s Household Pulse

Survey published weekly statistics of the effects of the pandemic on Americans’ lives.

For week 12 (July 16–21) of 2020, 51.1% of respondents reported a loss of employment

income since March 13. During roughly the same period, the number of persons with

jobs decreased by 14.7 million. Recovery began relatively quickly, though, with the

recession lasting only two months—March and April—according to the National Bu-
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reau of Economic Research (NBER).8 Of course, this does not mean that the effect of

COVID–19 was gone after two months. In fact, unemployment did not return to its

pre-pandemic level until 2022, and it took even longer for real GDP to return to its pre-

pandemic trend (2023:Q4). Parts of the US economy have not completely recovered

even today. The duration of the COVID–19 effect on economic growth is therefore un-

clear, although it seem to have been temporary. This is unlike the global financial crisis

of 2007–2008, which shifted the level of real GDP down permanently (Federal Reserve,

2024).

Another unsettled issue is whether the recovery took place abruptly or gradually. A

key factor here is the many interventions by the US government and the Federal Reserve

aimed at keeping financial markets functioning and to provide stimulus. In particular,

there was the Coronavirus Aid, Relief, and Economic Security Act—also known as the

“CARES Act”—of March 2020, and the American Rescue Plan Act of March 2021—also

called the “COVID–19 Stimulus Package” or “American Rescue Plan,” which are the

largest economic stimulus packages in US history. There were other stimulus pack-

ages as well, such as the Families First Coronavirus Response Act of March 2020, the

Paycheck Protection Program and Healthcare Enhancement Act of April 2020, and the

Consolidated Appropriations Act of December 2020, but these were not quite as large.

There was also a massive quantitative easing programme launched by the Federal Re-

serve in March of 2020 and a lowering of the target for the federal funds rate to (almost)

0. While many interventions were introduced in March of 2020, they were in effect for

many months, and there were subsequent interventions.

As the discussion in the last two paragraphs makes clear, there is great uncertainty

8One reason for this speedy recovery is the American Rescue Plan Act of 2021, also called the “COVID–
19 Stimulus Package” or “American Rescue Plan”, which was a USD 1.9 trillion economic stimulus pack-
age. Another reason is the Federal Reserve’s cut of the federal funds rate and massive quantitative easing
programs aimed at keeping financial markets functioning and to provide stimulus.
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over both the duration and the size of the effect of COVID–19 on growth. Surprisingly,

the part of the empirical literature that is concerned with this issues is very scarce, and

the few studies that exists are either policy reports or research not focusing on the US

or growth (see, for example, Congress, 2025, Sunge et al., 2024, and Ditzen et al., 2025).

In fact, most growth studies are pre-COVID–19. There therefore much to do.

The present paper is the first to consider the effect of COVID–19 on US economic

growth. This is our first contribution. Our second contribution lies in our choice of

econometric method. Starting with the seminal work of Hamilton (1989), there is a long

tradition in the existing business cycle literature to apply Markov switching approaches

to aggregate data. As Owyang et al. (2005) point out, however, such data are not nec-

essarily reflective of all regions of the country. Disaggregate panel data are more infor-

mative in this regard. Motivated by this observation, Owyang et al. employ state-level

data for the 1979:01–2002:06 period. Their proposed approach has two steps. In the first

step, Hamilton’s (1989) time series Markov switching approach is used to identify state-

specific regime shifts in the intercept of the dependent variable, which is given by the

monthly state coincident index produced by the Federal Reserve Bank of Philadelphia.

In the second step, the sample is split by estimated regime and regime-specific, pooled

panel regression models are estimated where the dependent variable is regressed onto

several regressors thought to explain growth.

While reasonable and appealing in its simplicity, Owyang et al.’s (2005) two-step ap-

proach has (at least) five drawbacks. One drawback is that the first-step estimation of

the regimes is done state-by-state using only the time series variation of the data. This

wasteful in the sense that when the regimes of one state are estimated, the informa-

tion contained in all other states is ignored. The states are treated as though they are

independent, which they are not. Another drawback is that the regimes are estimated

based on the dependent variable only, which is again wasteful as it ignores the regres-
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sors. Stated differently, if the second-step regression model with regime specific slopes

is the truth, the first-step intercept-only model is misspecified. A third drawback is that

the error coming from the estimation of the regimes is unlikely to be negligible in the

second step, as it is again based on a relatively imprecise time series-only approach. A

fourth drawback is that the regimes are assumed to be Markov with only two states and

constant transition probabilities, which need not be a mandate of the data. A fifth and

final drawback is that the second-step regression model is fitted with only an overall

intercept, and there is no attempt to account for unobserved heterogeneity.

The SHIFTIE methodology developed in Section 2 overcomes these drawbacks. The

regimes and slopes are estimated jointly as opposed to sequentially in two steps, which

means that no information is disregarded and that all estimation errors are accounted

for. The estimated model is very general in that it allows for unobserved heterogeneity

in the form of interactive fixed effects, and it places no assumptions on the nature of

the shifts. SHIFTIE does assume that the shifts are homogenous; however, this is a

reasonable assumption because all states were affected by COVID–19.

5.2 Data

The dependent variable is based on the same coincident index used not only by Owyang

et al. (2005), but by a number of other studies (see, for example, Agudze et al., 2022, and

Crone and Clayton-Matthews, 2005).9 We use this index because it is reported monthly,

as opposed to GDP, which is only available at a quarterly frequency. The regressors

are extracted from the FRED–SD data set of Bokun et al. (2023), which contains 28

variables per state at either monthly or quarterly frequency. All quarterly variables were

discarded. While the coincident indices are available from 1979:01, most variables in the
9More information and data are available online at https://philadelphiafed.org/research-and-d-

ata/regional-economy/indexes/coincident.
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FRED–SD data are not available until later. Most variables are available from 1990:01.

We therefore take this as the starting date of our sample. We take the latest end date

available to us, which is 2025:03. We then removed all variables for which there were

missing observations within the sample rage. This brought the number of variables

down to 12, most of which are labor market related. Many of the variables are non-

stationary, which, as pointed out in Section 3, is not permitted under our assumptions.

We therefore transform them by taking logs when possible, and then first differences if

needed to achieve stationarity. This process is copied from McCracken and Ng (2016).

McCracken and Ng are not considering the same data set; however, most variables in

the FRED–SD data set are also in the aggregate FRED–MD data set that they study. The

coincident index is used in place of GDP, and is transformed accordingly by taking logs

and first difference. Because of the differencing, the sample used in the analysis starts

in 1990:02, for a total of T = 422 months and N = 50 states. This means that T is large

relative to N, and that it is substantially larger than the values considered in the Monte

Carlo study of Section . We therefore expect SHIFTIE to work well here.

The included regressors, which are inspired by studies such as Agudze et al. (2022),

Owyang et al. (2005), and Hamilton and Owyang (2012), are the growth rate of the

number of employees in the construction (CON), finance (FIN), government (GOV),

information (INF), manufacturing (MAN), and private services (PRS) sectors, and the

first difference of the participation rate (PAR).10 In terms of the notation of Section , these

seven variables are the ones that go into xi,t. The dependent variable, yi,t, is the growth

rate of the coincident index. The estimated loadings in F̂ are given by the time series

averages of all eight variables. A vector of ones is also included, which is tantamount to

treating the presence of time fixed effects as known. We can therefore allow for as many

10We experimented with different model specifications, all of which yielded qualitatively similar re-
sults.
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as nine unknown factors.

5.3 Results

We begin by considering the results on the estimated regimes. The number of shifts,

R0, is estimated using R̂. The maximum number of regimes is set to Rmax = 5 and

the penalty term is specified as ϕNT = (NT)−1(T + N) · ln[(N + T)−1NT], similarly

to Bonhomme and Manresa (2015). We estimate R̂ = 2 regimes. As alluded to earlier,

many studies that assume Markov switching also assume two regimes. We require

neither of these assumptions. However, our results actually support the use of two

regimes.

INSERT FIGURES 1 AND 2 ABOUT HERE

The estimated regime memberships are illustrated in Figure 1. Regime 2 only con-

tains four months, 2020:04–2020:06 and 2020:08, which are represented by the vertical

red lines. All other months belong to regime 1. The red lines are plotted together with

the average coincident index across states. We see that in 2020:04 the average index ex-

periences a substantial drop but that it immediately bounces back up to a level that is

even higher than before the drop. The drop in April coincides with NBERs recessions,

which dates the peak and trough of the COVID–19 recession to 2020:02 and 2020:04,

respectively. Regime 1 therefore covers the lowest point of the recession and the sub-

sequent recovery. As already pointed out, many fiscal and monetary interventions oc-

curred in March 2020. Regime 1 is located directly after these interventions. While there

were other factors that also affected growth, the interventions described earlier were

the largest events at the time and they are likely to have affected growth. Note also

that while there are other major historical events in the sample, including the 2007–2008
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global financial crisis, these do not show up in the results. COVID–19 was therefore

unique.

Interestingly, if we increase the number of regimes from two to three, many of these

other events appear, as is evident form Figure 2. The “COVID–19 regime”, regime 2, is

still there and seems very robust to changes in the number of regimes. The new regime,

regime 3, contain a number of events that were not as significant as COVID–19 but that

did nevertheless affect growth. One example occurs at the beginning of the sample,

where we estimate parts of 1990 to regime 3. This coincides with the recession of that

time. The global financial crisis is also a part of regime 3, as is the 2001 recession, and

Black Monday of 2011. Moreover, while the COVID–19 regime lasts four months, the

transition back to the “normal” regime, regime 1, does not occur directly but via regime

3. Regime 3 can therefore be meaningfully interpreted as a crisis regime that excludes

the initial COVID–19 effect (regime 2). However, because R̂ = 2, while economically

interpretable, regime 3 is not statistically important. We therefore disregard it in what

remains of this section.

INSERT TABLE 4 ABOUT HERE

The estimation results based on the best-performing SPJ-version of SHIFTIE are re-

ported in Table 4. The first thing to note is that while the sign of the estimated coeffi-

cients is the same in the two regimes, the size and significance of those estimates differ

markedly between regimes. The only exception is FIN for which there is a change of

sign but then this regressor is always insignificant. The differences in the results for the

other sectors/regressors depend on how exposed they were to the effects of the pan-

demic. Consider CON. This regressor is highly significant in regime 1 but not in regime

2. Construction is an important sector that under the pandemic was classified as “crit-

ical”, which means that it was prioritized for continued operation (CISA, 2020). This
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explains not only the importance of CON for growth in normal times (regime 1), but

also its disconnect during the pandemic (regime 2), as it was shielded from exposure.

Parts of the government was also deemed critical, and we see that the effect of GOV is

qualitatively similar to that of CON. Manufacturing was not protected in the same way.

Both output and hours worked fell dramatically, especially in the motor vehicle produc-

tion, which basically came to a complete stop. However, the sector quickly rebounced,

as did growth; in fact, the increase in output and hours worked in the third quarter of

2020 were the largest ever recorded (US Bureau of Labor Statistics, 2022). This explains

why the estimated effect of MAN is relatively large in regime 2. The same is true for

PRS. The estimated effect of PAR is small but significant. The fact that it is negative is

counterintuitive and requires an explanation. Except for a few episodes like the global

financial crisis and COVID–19, US economic activity has been steadily increasing dur-

ing the sample period. Yet, since the mid-1990’s, the labor force participation rate for

the total population ages 16 and over has actually been declining. The reason for this is

a rise in the percentage of the population ages 65 and over, which is relatively less likely

to be working (see US Census Bureau, 2021). This explains the negative association

between growth and PAR.

The above results show how the pandemic stands apart from other crises. They

corroborate the following conclusion by Federal Reserve Bank of Chicago (2022): “the

Covid-19 pandemic recession and the subsequent expansion—hereafter referred to as

the ‘pandemic cycle’ or ‘pandemic era’—have less in common with those of other busi-

ness cycles.”

28



6 Conclusion

This study proposes a new approach to the estimation of panel data regression models

with interactive effects and possibly time-varying slope coefficients. A major strength

of the new methodology is that the type of time-variation that can be accommodated is

very broad and includes most common specifications in the literature, such as structural

breaks and Markov switching, as special cases. This generality is important not only

from a theoretical point of view, but also in practice, as existing approaches require

empirical researchers to take a stance as to the shift-generating process, which is almost

always unknown. We therefore expects the new approach to become a valuable addition

to the already existing menu of tools for handling shifts in model coefficients.
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Table 1: Bias and MSE in DGP1.

SHIFTIE SPJ
N T Total Regime 1 Regime 2 Total Regime 1 Regime 2

Bias
40 40 -0.092551 0.013958 -0.199059 -0.014811 0.006829 -0.036451
40 60 -0.053652 0.004663 -0.111968 -0.012752 0.002677 -0.028180
40 80 -0.029844 0.007988 -0.067675 -0.009111 0.002500 -0.020722
40 100 -0.025014 0.002352 -0.052380 -0.010456 0.000949 -0.021861
60 40 -0.065158 0.009285 -0.139602 -0.019352 0.003645 -0.042350
60 60 -0.027844 0.003836 -0.059524 -0.012269 0.001340 -0.025878
60 80 -0.017835 0.005487 -0.041157 -0.011625 0.003911 -0.027162
60 100 -0.013561 0.002859 -0.029982 -0.008278 0.001888 -0.018444
80 40 -0.035505 0.005175 -0.076185 -0.014790 0.006889 -0.036469
80 60 -0.018815 0.003751 -0.041381 -0.010748 0.002569 -0.024064
80 80 -0.012985 0.001984 -0.027953 -0.010637 0.001730 -0.023003
80 100 -0.008291 0.001010 -0.017592 -0.006427 0.001790 -0.014645

100 40 -0.027847 0.007087 -0.062780 -0.017358 0.005357 -0.040074
100 60 -0.015441 0.002822 -0.033705 -0.012965 0.002373 -0.028303
100 80 -0.008888 0.007316 -0.025092 -0.007271 0.003352 -0.017894
100 100 -0.006378 0.000405 -0.013162 -0.006380 0.000659 -0.013419

MSE
40 40 0.123408 0.025348 0.221468 0.036066 0.006652 0.065481
40 60 0.062230 0.014835 0.109625 0.024118 0.004425 0.043811
40 80 0.042042 0.014438 0.069647 0.018846 0.003380 0.034312
40 100 0.025286 0.008470 0.042102 0.014054 0.002572 0.025537
60 40 0.081578 0.018056 0.145100 0.029529 0.005664 0.053395
60 60 0.035504 0.009050 0.061959 0.018898 0.003550 0.034246
60 80 0.019370 0.006347 0.032394 0.014136 0.002805 0.025466
60 100 0.015833 0.005477 0.026190 0.010965 0.002091 0.019840
80 40 0.037548 0.005688 0.069407 0.021742 0.004634 0.038851
80 60 0.021953 0.007307 0.036599 0.015515 0.002934 0.028096
80 80 0.012613 0.003355 0.021871 0.011923 0.002239 0.021608
80 100 0.008986 0.001733 0.016240 0.009377 0.001730 0.017025

100 40 0.030367 0.008440 0.052293 0.020193 0.003883 0.036504
100 60 0.015583 0.005112 0.026054 0.014251 0.002610 0.025891
100 80 0.016801 0.007994 0.025609 0.010308 0.002057 0.018559
100 100 0.007125 0.001559 0.012692 0.008027 0.001593 0.014461

Notes: The table reports the bias and MSE of the estimated slopes, β̂r. The results are reported sepa-
rately for each regime and all together. “SHIFTIE” and “SPJ” refer to the basic SHIFTIE estimator and
its split panel jackknife version, respectively. The DGP is described in the text.
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Table 2: Bias and MSE in DGP2.

SHIFTIE SPJ
N T Total Regime 1 Regime 2 Total Regime 1 Regime 2

Bias
40 40 -0.187871 0.024302 -0.400043 -0.011139 0.006071 -0.028348
40 60 -0.148834 0.025061 -0.322729 -0.011213 0.002076 -0.024502
40 80 -0.111652 0.019381 -0.242685 -0.007219 0.002426 -0.016863
40 100 -0.104958 0.019939 -0.229855 -0.009008 0.000881 -0.018896
60 40 -0.152110 0.016738 -0.320957 -0.015626 0.002961 -0.034214
60 60 -0.104771 0.013413 -0.222955 -0.010137 0.000953 -0.021227
60 80 -0.088480 0.007632 -0.184593 -0.008864 0.002054 -0.019783
60 100 -0.066627 0.008063 -0.141317 -0.007161 0.001740 -0.016063
80 40 -0.106731 0.012961 -0.226424 -0.010712 0.006322 -0.027746
80 60 -0.073646 0.011019 -0.158311 -0.009096 0.003526 -0.021718
80 80 -0.056092 0.008733 -0.120917 -0.008750 0.001366 -0.018867
80 100 -0.040993 0.007286 -0.089271 -0.004670 0.001702 -0.011042

100 40 -0.086420 0.013852 -0.186691 -0.012966 0.004869 -0.030801
100 60 -0.053053 0.009932 -0.116038 -0.009943 0.002119 -0.022005
100 80 -0.036325 0.007584 -0.080234 -0.006046 0.003057 -0.015148
100 100 -0.028008 0.001619 -0.057634 -0.005218 0.000535 -0.010971

MSE
40 40 0.188017 0.042474 0.333561 0.034362 0.006585 0.062138
40 60 0.141960 0.031473 0.252446 0.028081 0.005569 0.050592
40 80 0.096567 0.020778 0.172356 0.020705 0.004555 0.036856
40 100 0.079148 0.018417 0.139878 0.019168 0.003819 0.034518
60 40 0.145974 0.040419 0.251528 0.023678 0.004409 0.042948
60 60 0.096169 0.024787 0.167551 0.018535 0.003556 0.033514
60 80 0.063095 0.018975 0.107216 0.014993 0.002927 0.027059
60 100 0.046753 0.014080 0.079427 0.013655 0.002583 0.024728
80 40 0.105628 0.031660 0.179597 0.018409 0.003344 0.033474
80 60 0.068641 0.020423 0.116858 0.013718 0.002763 0.024672
80 80 0.045808 0.015408 0.076208 0.011665 0.002225 0.021105
80 100 0.031326 0.011560 0.051091 0.010039 0.002029 0.018050

100 40 0.095274 0.032040 0.158508 0.013771 0.002558 0.024983
100 60 0.053045 0.015895 0.090195 0.010806 0.002084 0.019527
100 80 0.033558 0.013477 0.053638 0.009147 0.001711 0.016583
100 100 0.019950 0.006429 0.033471 0.007862 0.001564 0.014160

Notes: The table reports the bias and MSE of the estimated slopes, β̂r. The results are reported sepa-
rately for each regime and all together. “SHIFTIE” and “SPJ” refer to the basic SHIFTIE estimator and
its split panel jackknife version, respectively. The DGP is described in the text.
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Table 3: Misclassification frequency.

N \ T 40 60 80 100
DGP1

40 2.010 1.457 1.340 0.972
60 1.202 0.745 0.293 0.126
80 0.376 0.293 0.172 0.125

100 0.286 0.126 0.363 0.033
DGP2

40 8.040 9.923 9.876 11.639
60 6.061 6.404 6.535 6.518
80 4.049 4.084 4.139 3.933

100 3.184 2.813 2.666 2.086

Notes: The table reports the misclassification frequency in % of the estimated regime memberships, r̂t.
DGP1 and DGP2 are described in the text.

Figure 1: Estimated regime memberships.
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Notes: The black dashed line represents the cross-sectional mean of the dependent
variable, the coincident index. The red vertical lines are months that SHIFTIE esti-
mate to belong to regime 2, which are 2020:04–2020:06 and 2020:08. All other months
are estimated to belong to the regime 1.
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Figure 2: Estimated regime memberships with three regimes.
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Notes: The black dashed line represents the cross-sectional mean of the dependent
variable, the coincident index. The red (blue) vertical lines are months that SHIFTIE
estimate to belong to regimes 2 and 3, respectively. All other months are estimated
to belong to the regime 1.
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Table 4: The estimated regime-specific slope coefficients.

Regressor Estimate SE t-statistic p-value
Regime 1

CON 0.022399 0.001811 12.3667 0.0000
FIN -0.003316 0.003924 -0.8449 0.3982

GOV 0.033948 0.002443 13.8986 0.0000
INF -0.003277 0.001296 -2.5283 0.0115

MAN 0.030352 0.002033 14.9282 0.0000
PRS 0.270826 0.007392 36.6392 0.0000
PAR -0.005731 0.000135 -42.4967 0.0000

Regime 2
CON 0.008094 0.077188 0.1049 0.9165
FIN 0.879779 0.669142 1.3148 0.1886

GOV 0.202993 0.271041 0.7489 0.4539
INF -0.124576 0.177773 -0.7008 0.4835

MAN 0.473399 0.127820 3.7036 0.0002
PRS 1.498865 0.288253 5.1998 0.0000
PAR -0.011569 0.004072 -2.8413 0.0045

Notes: “CON”, “FIN”, “GOV‘”, “INF”, “MAN” and “PRS” refer to the growth rate
of the number of employees in the construction, finance, government, information,
manufacturing, and private services sectors, respectively, while “PAR” refers to the
first difference of the participation rate. Regime 2 contains the months 2020:04–
2020:06 and 2020:08. All other months belong to regime 1. The estimated slopes
are based on the SPJ version of SHIFTIE. “SE” refers to the estimated standard er-
rors. The reported t-statistic and the associated p-value test the null hypothesis that
the relevant slope coefficient is zero.
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Appendix

Our asymptotic results rely on F̂ being consistent in some sense. The limit of this object

depends on whether m = k + 1 or m < k + 1 (similarly to Karabiyik et al., 2017, but

now applied to loadings instead of factors). Suppose first that m < k + 1. This means

that some of the columns of F̂ are degenerate. Note in particular that if rank C = m,

which holds under out Assumption 1, we may without loss of generality partition C as

C =: [Cm, C−m], where Cm is an m×m full rank matrix and C−m is m× (k + 1−m). By

similarly partitioning U =: [Um, U−m], we have

F̂ = [FCm, FC−m] + [Um, U−m]. (A.1)

Define

B :=

 C−1
m −C−1

m C−m

0(k+1−m)×m Ik+1−m

 = [Bm, B−m], (A.2)

with obvious definitions of Bm and B−m. Note that while Bm is (k + 1) × m, B−m is

(k + 1) × (k + 1 − m), which means that B is (k + 1) × (k + 1). The matrix B is also

full rank, because rank B = rank C−1
m + rank Ik+1−m = m + (k + 1− m) = k + 1 (see

Abadir and Magnus, 2005, Exercise 5.43), and can therefore be inverted. Moreover,

CB = [Im, 0m×(k+1−m)], which we can use to construct the following:

F̂B = FCB + UB = [F, 0N×(k+1−m)] + [UBm, UB−m]. (A.3)

By the definition of Ut, Ut := [εt + Vtβrt
, Vt] = WtQrt , where Wt := [εt, Vt] is
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N × (k + 1) and

Qrt :=

 1 01×k

βrt
Ik

 (A.4)

is (k + 1)× (k + 1) and full rank (see Abadir and Magnus, 2005, Exercise 5.48). Hence,

denoting by u′i,t (w′i,t) the i-th row of Ut (Wt), we have ui,t = [εi,t + β′rt
vi,t, v′i,t]

′ = Q′rt
wi,t.

We also use the following: tr (A′B) ≤
√

tr (A′A)tr (B′B) = ‖A‖‖B‖ if A and B are

of the same dimension (see Abadir and Magnus, 2005, Exercise 12.5). Applying these

results to E(‖
√

TN−1/2U‖2), we can show that

E(‖
√

TN−1/2U‖2)

= TN−1E[tr (U′U)] =
T
N

N

∑
i=1

E[tr (uiu′i)]

=
1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

E[tr (ui,tu′i,s)] =
1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

E[tr (Q′rt
wi,tw′i,sQrs)]

=
1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

tr [Qrs Q
′
rt

E(wi,tw′i,s)] ≤
1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1
‖Qrs Q

′
rt
‖‖E(wi,tw′i,s)‖

≤ sup
t,s
‖Qrs Q

′
rt
‖ 1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1
‖E(wi,tw′i,s)‖ = O(1), (A.5)

where the last inequality is due to the fact that the autocovariances of wi,t are absolute

summable by Assumption 1, and supt,s ‖Qrs Q
′
rt
‖ ≤ supt,s ‖Qrs‖‖Qrt‖ ≤ (supt ‖Qrt‖)2 =

O(1) since ‖βr‖ < ∞ by the compactness of B. Hence, since the variance is O(1),

‖
√

TN−1/2U‖ = Op(1), (A.6)

which holds regardless of whether N is fixed or tending to infinity. Note in particular

how ‖U‖ = Op(T−1/2) for a fixed N, which means that the last k + 1 − m columns
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of F̂B are degenerate. In order to address this issue, we introduce (k + 1) × (k + 1)

normalization matrix DT := diag(Im,
√

TIk+1−m). Post-multiplication by this matrix

the above equation becomes

F̂BDT = [F, 0N×(k+1−m)] + [UBm,
√

TUB−m]

= [F,
√

TUB−m] + [UBm, 0N×(k+1−m)]. (A.7)

Hence, defining F̂0 := F̂BDT and F0 := [F,
√

TUB−m] and making use of the fact that

‖U‖ = Op(T−1/2) and ‖C‖ < ∞ by Assumption 1, we can show that

‖F̂0 − F0‖ = ‖[UBm, 0N×(k+1−m)]‖ ≤ ‖U‖‖Bm‖ = Op(T−1/2), (A.8)

The result in (A.8) assumes that m < k + 1. The corresponding result for the case

when m = k + 1 follows by the same arguments after redefining C := Cm, B := C−1

and DT := Im, such that F̂0 = F̂C−1 and F0 = F. Hence, with this modification to the

notation (A.8) holds regardless of whether m = k + 1 or m < k + 1.

The above results presume that N is fixed. If N is large, then we can make use of

‖N−1/2U‖2 = Op(T−1) to show that

‖N−1/2(F̂0 − F0)‖2 ≤ ‖N−1/2U‖2‖Bm‖2 = Op(T−1). (A.9)

Note that the scaling by N here is inconsequential if N fixed. This last result therefore

holds regardless of whether N < ∞ or N → ∞. Lemma A.1 summarizes this.

Lemma A.1. Suppose that Assumption 1 holds. Then, as T → ∞ with N < ∞ or N → ∞,

‖N−1/2(F̂0 − F0)‖ = Op(T−1/2). (A.10)
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Before we state our next lemma, analogously to Bonhomme and Manresa (2015,

Proof of Theorem 1), we introduce the following functions:

Q(β, r) :=
1

NT

T

∑
t=1
‖MF̂(yt − Xtβrt

)‖2, (A.11)

Q0(β, r) :=
1

NT

T

∑
t=1
‖MF0Vt(β0

r0
t
− βrt

)‖2 +
1

NT

T

∑
t=1
‖MF0εt‖2. (A.12)

Note that the scaling by N and T here is again inconsequential. The proposed estimator

(β̂, r̂) of (β, r) minimizes Q(·, ·). Lemma A.2 makes clear that Q0(·, ·) can be regarded as

the limiting version of Q(·, ·). In order to avoid cluttering the notation, the dependence

of these functions on N and T is omitted.

Lemma A.2. Suppose that Assumption 1 holds. Then, as T → ∞ with N < ∞ or N → ∞,

sup
(β,r)∈BR×RT

|Q(β, r)−Q0(β, r)| = Op(T−1/2). (A.13)

Proof: The following basic result will be used repeatedly in this proof: ‖A + B‖2 =

‖A‖2 + ‖B‖2 + 2tr (A′B). We begin by applying it to ‖MF̂(yt−Xtβrt
)‖2 = ‖MF̂Xt(β0

r0
t
−

βrt
) + MF̂(Fγt + εt)‖2, giving

‖MF̂(yt − Xtβrt
)‖2 = ‖MF̂Xt(β0

r0
t
− βrt

)‖2 + ‖MF̂(Fγt + εt)‖2

+ 2tr [(Fγt + εt)MF̂Xt(β0
r0

t
− βrt

)]. (A.14)

Consider the first term on the right-hand side. From CBm = Im, we obtain

Xt = F̂BmΓt − (F̂− FC)BmΓt + Vt = F̂BmΓt −UBmΓt + Vt. (A.15)

Hence, since F̂′MF̂ = 0(k+1)×N, we obtain X′tMF̂ = (Vt−UBmΓt)′MF̂. By using this and
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another application of the above result for ‖A + B‖2,

‖MF̂Xt(β0
r0

t
− βrt

)‖2 = ‖MF̂(Vt −UBmΓt)(β0
r0

t
− βrt

)‖2

= ‖MF̂Vt(β0
r0

t
− βrt

)−MF̂UBmΓt(β0
r0

t
− βrt

)‖2

= ‖MF̂Vt(β0
r0

t
− βrt

)‖2 + ‖MF̂UBmΓt(β0
r0

t
− βrt

)‖2

− 2tr [(β0
r0

t
− βrt

)′V′tMF̂UBmΓt(β0
r0

t
− βrt

)]. (A.16)

The same result can be applied again to show that

‖MF̂Vt(β0
r0

t
− βrt

)‖2 = ‖MF0Vt(β0
r0

t
− βrt

) + (MF̂ −MF0)Vt(β0
r0

t
− βrt

)‖2

= ‖MF0Vt(β0
r0

t
− βrt

)‖2 + ‖(MF̂ −MF0)Vt(β0
r0

t
− βrt

)‖2

+ 2tr [(β0
r0

t
− βrt

)′V′tMF0(MF̂ −MF0)Vt(β0
r0

t
− βrt

)] (A.17)

The second term on the right-hand side of (A.14) can be written similarly using F′MF0 =

0m×N as

‖MF̂(Fγt + εt)‖2 = ‖MF0εt + (MF̂ −MF0)(Fγt + εt)‖2

= ‖MF0εt‖2 + ‖(MF̂ −MF0)(Fγt + εt)‖2

+ 2tr [ε′tMF0(MF̂ −MF0)(Fγt + εt)]. (A.18)
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Inserting these results into Q(β, r) yields

Q(β, r) =
1

NT

T

∑
t=1
‖MF̂(yt − Xtβrt

)‖2

= Q0(β, r) +
1

NT

T

∑
t=1
‖(MF̂ −MF0)Vt(β0

r0
t
− βrt

)‖2

+
2

NT

T

∑
t=1

tr [(β0
r0

t
− βrt

)′V′tMF0(MF̂ −MF0)Vt(β0
r0

t
− βrt

)]

+
1

NT

T

∑
t=1
‖MF̂UBmΓt(β0

r0
t
− βrt

)‖2

− 2
NT

T

∑
t=1

tr [(β0
r0

t
− βrt

)′V′tMF̂UBmΓt(β0
r0

t
− βrt

)]

+
1

NT

T

∑
t=1
‖(MF̂ −MF0)(Fγt + εt)‖2

+
2

NT

T

∑
t=1

tr [ε′tMF0(MF̂ −MF0)(Fγt + εt)]

+
2

NT

T

∑
t=1

tr [(Fγt + εt)
′MF̂Xt(β0

r0
t
− βrt

)]

= Q0(β, r) +
7

∑
j=1

Ij, (A.19)

with implicit definitions of I1, . . . , I7. We now consider each of these seven terms.

Consider I1. By the Cauchy–Schwarz inequality,

I1 =
1

NT

T

∑
t=1
‖(MF̂ −MF0)Vt(β0

r0
t
− βrt

)‖2

≤
(

1
T

T

∑
t=1
‖N−1/2(MF̂ −MF0)Vt‖4

)1/2(
1
T

T

∑
t=1
‖β0

r0
t
− βrt

‖4

)1/4

, (A.20)

where ‖β0
r0

t
− βrt

‖ = O(1) since ‖βrt
‖ < ∞ by the compactness of B. Consider MF0 −
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MF̂. Since B and DT are invertible, we have PF̂ = PF̂BDT
= PF̂0 , which in turn implies

MF0 −MF̂ = PF̂0 − PF0

= (F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′ + (F̂0 − F0)(F̂0′F̂0)−1F0′

+ F0(F̂0′F̂0)−1(F̂0 − F0)′ + F0[(F̂0′F̂0)−1 − (F0′F0)−1]F0′. (A.21)

By inserting this into ‖N−1/2(MF̂ −MF0)Vt‖2, we obtain

‖N−1/2(MF̂ −MF0)Vt‖2

= N−1|tr [V′t(MF̂ −MF0)′(MF̂ −MF0)Vt]|

≤ N−1|tr [V′t(F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′(F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′Vt]|

+ 2N−1|tr [V′t(F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′(F̂0 − F0)(F̂0′F̂0)−1F0′Vt]|

+ 2N−1|tr [V′t(F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′F0(F̂0′F̂0)−1(F̂0 − F0)′Vt]|

+ 2N−1|tr [V′t(F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′F0[(F̂0′F̂0)−1 − (F0′F0)−1]F0′Vt]|

+ 2N−1|tr [V′t(F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′F0(F̂0′F̂0)−1(F̂0 − F0)′Vt]|

+ 2N−1|tr [V′t(F̂0 − F0)(F̂0′F̂0)−1F0′F0(F̂0′F̂0)−1(F̂0 − F0)′Vt]|

+ 2N−1|tr [V′tF0(F̂0′F̂0)−1(F̂0 − F0)′F0(F̂0′F̂0)−1(F̂0 − F0)′Vt]|

+ N−1|tr [V′tF0(F̂0′F̂0)−1(F̂0 − F0)′(F̂0 − F0)(F̂0′F̂0)−1F0′Vt]|

+ N−1|tr [Vt(F̂0 − F0)(F̂0′F̂0)−1F0′F0(F̂0′F̂0)−1(F̂0 − F0)′Vt]|

+ N−1|tr [F0[(F̂0′F̂0)−1 − (F0′F0)−1]F0′F0[(F̂0′F̂0)−1 − (F0′F0)−1]F0′]|. (A.22)

We now make use of the fact that tr (A′B)2 ≤ tr (A′A)tr (B′B) = ‖A‖2‖B‖2 if A and B

are of the same dimension (see Abadir and Magnus, 2005, Exercise 12.5). This implies
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that |tr (A′B)| ≤ ‖A‖‖B‖, which we can use to show the following:

‖N−1/2(MF̂ −MF0)Vt‖2

≤ ‖N−1V′t(F̂
0 − F0)‖2‖(N−1F̂0′F̂0)−1‖2N−1‖F̂0 − F0‖2

+ 2‖N−1V′t(F̂
0 − F0)‖‖(N−1F̂0′F̂0)−1‖2N−1‖F̂0 − F0‖2‖N−1F0′Vt‖

+ 2‖N−1V′t(F̂
0 − F0)‖2‖(N−1F̂0′F̂0)−1‖2N−1/2‖F̂0 − F0‖N−1/2‖F0‖

+ 2‖N−1V′t(F̂
0 − F0)‖‖(N−1F̂0′F̂0)−1‖N−1/2‖F̂0 − F0‖N−1/2‖F0‖

× ‖(N−1F̂0′F̂0)−1 − (N−1F0′F0)−1‖‖N−1F0′Vt‖

+ 2‖N−1V′t(F̂
0 − F0)‖2‖(N−1F̂0′F̂0)−1‖2N−1/2‖F̂0 − F0‖N−1/2‖F0‖

+ 2‖N−1V′t(F̂
0 − F0)‖2‖(N−1F̂0′F̂0)−1‖2N−1‖F0‖2

+ 2‖N−1V′tF
0‖‖(N−1F̂0′F̂0)−1‖2N−1/2‖F̂0 − F0‖N−1/2‖F0‖‖N−1(F̂0 − F0)′Vt‖

+ ‖N−1V′tF
0‖2‖(N−1F̂0′F̂0)−1‖2N−1‖F̂0 − F0‖2

+ ‖N−1Vt(F̂0 − F0)‖2‖(N−1F̂0′F̂0)−1‖2N−1‖F0‖2

+ N−2‖F0‖4‖(N−1F̂0′F̂0)−1 − (N−1F0′F0)−1‖2. (A.23)

Consider N−1V′tF
0 = [N−1V′tF, N−1

√
TV′tUB−m]. By the at-most-weak dependence

of vi,t over i (Assumption 1) and supi,j |f′ifj| ≤ supi,j ‖fi‖‖fj‖ ≤ (supi ‖fi‖)2 = O(1)
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(Assumption 1) similarly to the proof of Lemma A.1,

E(‖N−1V′tF‖2) = N−2E[tr (V′tFF′Vt)] = N−2E[tr (V′tFF′Vt)]

=
1

N2

N

∑
i=1

N

∑
j=1

E[tr (vi,tf′ifjv′j,t)] =
1

N2

N

∑
i=1

N

∑
j=1

f′ifjtr [E(vi,tv′j,t)]

≤ 1
N2

N

∑
i=1

N

∑
j=1
|f′ifj||tr [E(vi,tv′j,t)]|

≤ N−1 sup
i,j
|f′ifj|

1
N

N

∑
i=1

N

∑
j=1
|tr [E(vi,tv′j,t)]|

≤ N−1(sup
i
‖fi‖)2 1

N

N

∑
i=1

N

∑
j=1
|tr [E(vi,tv′j,t)]| = O(N−1), (A.24)

which in turn implies ‖N−1V′tF‖ = Op(N−1/2). Next up is

N−1
√

TV′tU =
1

N
√

T

T

∑
s=1

V′tUs =
1

N
√

T

T

∑
s=1

[V′tεs + V′tVsβrs
, V′tVs]. (A.25)

Since εt and Vt are independent of one another, and at most weakly dependent over

time and cross-sectional units by Assumption 1, we have ‖(NT)−1/2 ∑T
s=1 V′tεs‖ = Op(1).

The term N−1T−1/2 ∑T
s=1 V′tεs in N−1

√
TV′tU is therefore negligible. However, this is

generally not true for the other terms. In order to appreciate this, note how

1
N
√

T

T

∑
s=1

V′tVs =
1

N
√

T

N

∑
i=1

vi,tv′i,t +
1

N
√

T
∑
s 6=t

N

∑
i=1

vi,tv′i,s. (A.26)

While the first term on the right-hand side is clearly Op(T−1/2), and hence negligible,

the second term is not. By imposing additional conditions on the cross-sectional and

serial dependencies of vi,t also the second term can be made negligible. One possibility

is to require that vi,t is serially uncorrelated, in which case the second term will be

Op(N−1/2). In the present lemma, however, we only require that vi,t is at most weakly
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correlated, which means that

∥∥∥∥∥ 1
N
√

T

T

∑
s=1

V′tVs

∥∥∥∥∥ =

∥∥∥∥∥ 1
N
√

T
∑
s 6=t

N

∑
i=1

vi,tv′i,s

∥∥∥∥∥+ Op(T−1/2) = Op(1). (A.27)

This implies ‖N−1
√

TV′tU‖ = Op(1), and so

‖N−1V′tF
0‖ = Op(1). (A.28)

We want to point out that this order need not be exact. As already pointed out, and

as we exploit further in Proof of Lemma A.3, one exception occurs when vi,t is serially

uncorrelated, in which case ‖N−1V′tF
0‖ = Op(N−1/2)+Op(T−1/2). Another possibility

is that m = k + 1, in which case ‖N−1V′tF
0‖ = ‖N−1V′tF‖ = Op(N−1/2). In this proof,

however, we treat ‖N−1V′tF
0‖ as Op(1). From ‖N−1

√
TV′tU‖ = Op(1) and F̂0 − F0 =

[UBm, 0N×(k+1−m)] (Lemma A.1), we obtain

‖N−1V′t(F̂
0 − F0)‖ ≤ ‖N−1V′tU‖‖Bm‖ = Op(T−1/2). (A.29)

Another term in (A.23) is N−1F0′F0. The steps used earlier to evaluate E(‖N−1V′tF‖2)

can be applied also to E(‖
√

TN−1F′U‖2). This yields ‖
√

TN−1F′U‖ = Op(N−1/2).

In order to characterize the limit of TN−1U′U it is useful to introduce the indicator

function 1(A), which takes on the value 1 if the event A is true and 0 other wise. In this

notation, ∑T
t=1 βrt

= ∑T
t=1 ∑R

r=1 1(rt = r)βr and hence ∑T
t=1 Q′rt

wi,t = ∑T
t=1 ∑R

r=1 1(rt =
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r)Q′rwi,t. This implies

TN−1U′U =
1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

ui,tu′i,s =
1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

Q′rt
wi,tw′i,sQrs

=
R

∑
r=1

R

∑
r′=1

Q′r

(
1

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

1(rt = r)1(rs = r′)wi,tw′i,s

)
Qr′

→p

R

∑
r=1

R

∑
r′=1

Q′r

(
lim

N,T→∞

1
NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

1(rt = r)1(rs = r′)E(wi,tw′i,s)

)
Qr′

=: Ωu (A.30)

as N, T → ∞, where Ωu is positive definite by Assumption 1. Hence, since N−1F′F =

N−1 ∑N
i=1 fif′i → ΣF as N → ∞, where ΣF is positive definite too (Assumption 1),

N−1F0′F0 =

 N−1F′F
√

TN−1F′UB−m
√

TN−1B′−mU′F TN−1B′−mU′UB−m


=

 N−1F′F 0m×(k+1−m)

0(k+1−m)×m TN−1B′−mU′UB−m

+ Op(N−1/2)

→p

 ΣF 0m×(k+1−m)

0(k+1−m)×m Ωu

 (A.31)

as N, T → ∞. The limiting block-diagonal matrix here is positive definite because the

blocks are positive definite (see Abadir and Magnus, 2005, Exercise 8.44). This implies

that N−1‖F0‖2 = Op(1) and ‖(N−1F0′F0)−1‖ = Op(1). We also need ‖(N−1F̂0′F̂0)−1 −

(N−1F0′F0)−1‖. From

F̂0′F̂0 = F0′F0 + (F̂0 − F0)′F0 + F0′(F̂0 − F0) + (F̂0 − F0)′(F̂0 − F0), (A.32)
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and using Lemma A.1, we obtain

N−1‖F̂0′F̂0 − F0′F0‖ ≤ 2N−1/2‖F̂0 − F0‖N−1/2‖F0‖+ N−1‖F̂0 − F0‖2

= Op(T−1/2), (A.33)

which in view of

(F̂0′F̂0)−1 − (F0′F0)−1 = (F̂0′F̂0)−1(F0′F0 − F̂0′F̂0)(F0′F0)−1 (A.34)

leads to the following:

‖(N−1F̂0′F̂0)−1 − (N−1F0′F0)−1‖

≤ ‖(N−1F̂0′F̂0)−1‖N−1‖F0′F0 − F̂0′F̂0‖‖(N−1F0′F0)−1‖ = Op(T−1/2). (A.35)

We now have all the pieces we need in order to evaluate (A.23). The dominating

terms are given by ‖N−1Vt(F̂0−F0)‖2‖(N−1F̂0′F̂0)−1‖2N−1‖F0‖2 and N−2‖F0‖4‖(N−1F̂0′F̂0)−1−

(N−1F0′F0)−1‖2, which are both Op(T−1). It follows that

‖N−1/2(MF̂ −MF0)Vt‖2 = Op(T−1), (A.36)

which in turn implies that I1 is of the same order;

I1 ≤
(

1
T

T

∑
t=1
‖N−1/2(MF̂ −MF0)Vt‖4

)1/2(
1
T

T

∑
t=1
‖β0

r0
t
− βrt

‖4

)1/4

= Op(T−1). (A.37)
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For I2 we again use (A.21) followed by MF0F0 = 0N×(k+1−m), giving

‖N−1V′tMF0(MF̂ −MF0)Vt‖

= ‖N−1V′tMF0 [(F̂0 − F0)(F̂0′F̂0)−1(F̂0 − F0)′ + (F̂0 − F0)(F̂0′F̂0)−1F0′]Vt‖

≤ ‖N−1V′tMF0(F̂0 − F0)‖‖(N−1F̂0′F̂0)−1‖‖N−1(F̂0 − F0)′Vt‖

+ ‖N−1V′tMF0(F̂0 − F0)‖‖(N−1F̂0′F̂0)−1‖‖N−1F0′Vt‖, (A.38)

where all terms are known, except for

‖N−1V′tMF0(F̂0 − F0)‖

≤ ‖N−1V′t(F̂
0 − F0)‖+ ‖N−1V′tF

0‖‖(N−1F0′F0)−1‖N−1/2‖F0‖N−1/2‖F̂0 − F0‖

= Op(T−1/2). (A.39)

Hence, since ‖(N−1F̂0′F̂0)−1‖, ‖N−1F0′Vt‖ are both Op(1), while ‖N−1(F̂0 − F0)′Vt‖ =

Op(T−1/2), we have

‖N−1V′tMF0(MF̂ −MF0)Vt‖ = Op(T−1/2). (A.40)

By using this last result, ‖β0
r0

t
− βrt

‖ = O(1) and |tr (A′B)| ≤ ‖A‖‖B‖, we arrive at the
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following bound for |I2|:

|I2| =
∣∣∣∣∣ 2
NT

T

∑
t=1

tr [(β0
r0

t
− βrt

)′V′tMF0(MF̂ −MF0)Vt(β0
r0

t
− βrt

)]

∣∣∣∣∣
≤ 2

NT

T

∑
t=1
|tr [(β0

r0
t
− βrt

)(β0
r0

t
− βrt

)′V′tMF0(MF̂ −MF0)Vt]|

≤ 2
NT

T

∑
t=1
‖β0

r0
t
− βrt

‖2‖V′tMF0(MF̂ −MF0)Vt‖

≤ 2

(
1
T

T

∑
t=1
‖β0

r0
t
− βrt

‖4

)1/2(
1
T

T

∑
t=1
‖N−1V′tMF0(MF̂ −MF0)Vt‖2

)1/2

= Op(T−1/2). (A.41)

For I3, we use (a + b)2 ≤ 2(a2 + b2), which together with ‖N−1/2U‖ = Op(T−1/2)

imply

‖N−1/2MF0U‖2 ≤ 2‖N−1/2U‖2 + 2‖N−1/2PF0U‖2

= 2‖N−1/2U‖2 + 2tr [N−1U′F0(N−1F0′F0)−1N−1F0′U]

≤ 2‖N−1/2U‖2 + 2‖N−1U′F0‖2‖(N−1F0′F0)−1‖

≤ 2‖N−1/2U‖2 + 2‖N−1/2U‖2‖N−1/2F0‖2‖(N−1F0′F0)−1‖

= Op(T−1). (A.42)

The term ‖N−1/2(MF̂−MF0)U‖2 is of the same order, which is easily appreciated using

the above given expansion of ‖N−1/2(MF̂ −MF0)Vt‖2. We can therefore show that

‖N−1/2MF̂U‖2 ≤ 2‖N−1/2MF0U‖2 + 2‖N−1/2(MF̂ −MF0)U‖2 = Op(T−1),

(A.43)
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so that

I3 =
1

NT

T

∑
t=1
‖MF̂UBmΓt(β0

r0
t
− βrt

)‖2

≤ ‖N−1/2MF̂U‖2‖Bm‖2

(
1
T

T

∑
t=1
‖Γt‖4

)1/2(
1
T

T

∑
t=1
‖β0

r0
t
− βrt

‖4

)1/2

= Op(T−1). (A.44)

The evaluations of I4, I5 and I6 is similar to those of I1, I2 and I3. |I4| and |I6| is of

the same order as |I2|, by exactly the same arguments, and I5 is of the same order as I1.

Only I7 remains. We start by writing

I7 =
2

NT

T

∑
t=1

tr [(Fγt + εt)
′MF̂Xt(β0

r0
t
− βrt

)]

=
2

NT

T

∑
t=1

ε′tMF0Vt(β0
r0

t
− βrt

)

− 2
NT

T

∑
t=1

(Fγt + εt)
′(MF̂ −MF0)Vt(β0

r0
t
− βrt

)

− 2
NT

T

∑
t=1

ε′tMF0UBmΓt(β0
r0

t
− βrt

)

+
2

NT

T

∑
t=1

(Fγt + εt)
′(MF̂ −MF0)UBmΓt(β0

r0
t
− βrt

). (A.45)

The first term on the right dominates (see Proof of Lemma A.3). When evaluating this

term we follow Bonhomme and Manresa (2015, Proof of Theorem 1), and split it in two,

one part that involves β0
r0

t
and one that involves βrt

, and we evaluate the sum regime-
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wise. Note first how

∣∣∣∣∣ 1
NT

T

∑
t=1

ε′tMF0Vtβrt

∣∣∣∣∣ =
∣∣∣∣∣ 1
NT

R

∑
r=1

T

∑
t=1

ε′tMF0Vt1(rt = r)βr

∣∣∣∣∣
≤

 R

∑
r=1

∥∥∥∥∥ 1
NT

T

∑
t=1

ε′tMF0Vt1(rt = r)

∥∥∥∥∥
2
1/2(

R

∑
r=1
‖βr‖

2

)1/2

≤

 R

∑
r=1

∥∥∥∥∥ 1
NT

T

∑
t=1

ε′tMF0Vt

∥∥∥∥∥
2
1/2(

R

∑
r=1
‖βr‖

2

)1/2

≤
√

R

∥∥∥∥∥ 1
NT

T

∑
t=1

ε′tMF0Vt

∥∥∥∥∥
(

R

∑
r=1
‖βr‖

2

)1/2

, (A.46)

where ∑R
r=1 ‖βr‖2 = O(1) by the compactness of B. We also have

∥∥∥∥∥ 1
NT

T

∑
t=1

ε′tMF0Vt

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

NT

T

∑
t=1

ε′tVt

∥∥∥∥∥+
∥∥∥∥∥ 1

NT

T

∑
t=1

ε′tF
0(F0′F0)−1F0′Vt

∥∥∥∥∥ , (A.47)

where the first term on the right is clearly Op((NT)−1/2) since εt and Vt are mean zero,

independent of one another, and at most weakly dependent over both time and the

cross-section (Assumption 1). For the second term, we use the fact that ‖vec A‖2 =

(vec A)′vec A = tr (A′A) = ‖A‖2 by Exercise 10.20 in Abadir and Magnus (2005). By

using this, vec (ABC) = (C′ ⊗ A)vec B (see Abadir and Magnus, Exercise 10.18) and
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‖F0(F0′F0)−1F0′‖2 = tr Im = m, we obtain

∥∥∥∥∥ 1
NT

T

∑
t=1

V′tF
0(F0′F0)−1F0′εt

∥∥∥∥∥ =

∥∥∥∥∥vec

(
1

NT

T

∑
t=1

V′tF
0(F0′F0)−1F0′εt

)∥∥∥∥∥
=

∥∥∥∥∥ 1
NT

T

∑
t=1

(εt ⊗Vt)
′vec[F0(F0′F0)−1F0′]

∥∥∥∥∥
≤
∥∥∥∥∥ 1

NT

T

∑
t=1

(εt ⊗Vt)

∥∥∥∥∥ ‖vec[F0(F0′F0)−1F0′]‖

≤
∥∥∥∥∥ 1

NT

T

∑
t=1

(εt ⊗Vt)

∥∥∥∥∥ ‖F0(F0′F0)−1F0′‖

=
√

m

∥∥∥∥∥ 1
NT

T

∑
t=1

(εt ⊗Vt)

∥∥∥∥∥ , (A.48)

where by Assumption 1 and a number of basic rules for Kronecker products,

E

∥∥∥∥∥ 1
NT

T

∑
t=1

(εt ⊗Vt)

∥∥∥∥∥
2
 = E

(
tr

[
1

NT

T

∑
t=1

(εt ⊗Vt)

(
1

NT

T

∑
t=1

(εt ⊗Vt)

)′])

= E

(
tr

[(
1

NT

T

∑
t=1

(εt ⊗Vt)
′
)

1
NT

T

∑
t=1

(εt ⊗Vt)

])

= tr

(
1

(NT)2

T

∑
t=1

T

∑
s=1

E(ε′tεs ⊗V′tVs)

)

= T−1tr

(
1
T

T

∑
t=1

T

∑
s=1

[N−1E(ε′tεs)⊗ N−1E(V′tVs)]

)

= O(T−1) (A.49)

Hence, since the variance is O(T−1), we have ‖(NT)−1 ∑T
t=1(εt ⊗ Vt)‖ = Op(T−1/2),

which in turn implies

∥∥∥∥∥ 1
NT

T

∑
t=1

V′tF
0(F0′F0)−1F0′εt

∥∥∥∥∥ = Op(T−1/2) (A.50)
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By adding the results,

∥∥∥∥∥ 1
NT

T

∑
t=1

ε′tMF0Vt

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

NT

T

∑
t=1

ε′tVt

∥∥∥∥∥+
∥∥∥∥∥ 1

NT

T

∑
t=1

ε′tF
0(F0′F0)−1F0′Vt

∥∥∥∥∥
= Op((NT)−1/2) + Op(T−1/2) = Op(T−1/2), (A.51)

and so

∣∣∣∣∣ 1
NT

T

∑
t=1

ε′tMF0Vtβrt

∣∣∣∣∣ ≤ √R

∥∥∥∥∥ 1
NT

T

∑
t=1

ε′tMF0Vt

∥∥∥∥∥
(

R

∑
r=1
‖βr‖

2

)1/2

= Op(T−1/2).

(A.52)

Clearly, this last result holds also if βrt
= β0

r0
t
. It follows that

∣∣∣∣∣ 1
NT

T

∑
t=1

ε′tMF0Vt(β0
r0

t
− βrt

)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
NT

T

∑
t=1

ε′tMF0Vtβ
0
r0

t

∣∣∣∣∣+
∣∣∣∣∣ 1
NT

T

∑
t=1

ε′tMF0Vtβrt

∣∣∣∣∣
= Op(T−1/2), (A.53)

which in turn implies that |I7| is of the same order.

By adding the results, (A.19) becomes

Q(β, r) = Q0(β, r) + Op(T−1/2), (A.54)

where the order of the reminder is uniform in (β, r) ∈ BR ×RT.

The above results require that N → ∞. This is not necessary. In fact, having N fixed

only affects the results insofar that N−1F0′F0 is no longer asymptotically block diagonal.

However, it is still Op(1), as is its inverse, which is what matters in the end. �
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Lemma A.3. Suppose that Assumption 1 holds. Then, as T → ∞ with N < ∞ or N → ∞,

min
r0∈R

max
r̂∈R
‖β̂r̂ − β0

r0‖2 = Op(T−1/2).

Proof: We will prove that maxr∈Rminr̂∈R ‖β0
r − β̂r̂‖2 = Op(T−1/2) by considering the

following inequality:

Q(β̂, r̂)−Q(β0, r0) ≤ 0, (A.55)

which holds because, as already pointed out, (β̂, r̂) minimises Q(β, r). We employ con-

tradiction to show that, unless maxr∈Rminr̂∈R ‖β0
r − β̂r̂‖2 = Op(T−1/2), the aforemen-

tioned inequality will not hold.

We begin by noting that from the definition of Q0(β, r), we have

Q0(β0, r0) =
1

NT

T

∑
t=1
‖MF0εt‖2, (A.56)

and hence

Q0(β, r)−Q0(β0, r0)

=
1

NT

T

∑
t=1
‖MF0Vt(β0

r0
t
− βrt

)‖2

=
1

NT

T

∑
t=1

tr [(β0
r0

t
− βrt

)′V′tMF0Vt(β0
r0

t
− βrt

)]

=
R

∑
r0=1

R

∑
r=1

tr [(β0
r0 − βr)

′ 1
NT

T

∑
t=1

1(rt = r′)1(r0
t = r)V′tMF0Vt(β0

r − βr′)]

=
R

∑
r=1

R

∑
r′=1

tr [(β0
r − βr′)

′Sr′,r(β0
r − βr′)], (A.57)

where Sr′,r := (NT)−1 ∑T
t=1 1(r′t = r′)1(rt = r)V′tMF0Vt. Suppose that A and B are
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positive semi-definite matrices. Suppose also that A is symmetric. Then, λmin(A)tr B ≤

tr (AB) ≤ λmax(A)tr B, where λmin(A) and λmax(A) are the smallest and largest eigen-

values of A, respectively (see Fang et al., 1994, Theorem 1). Applying this to tr [(β0
r −

βr′)
′Sr′,r(β0

r − βr′)] yields

tr [(β0
r − βr′)(β0

r − βr′)
′Sr′,r] ≥ λmin(Sr′,r)tr [(β0

r − βr′)(β0
r − βr′)

′]

= λmin(Sr′,r)‖β0
r − βr′‖

2, (A.58)

so that w.p.a.1,

Q0(β, r)−Q0(β0, r0) ≥
R

∑
r=1

R

∑
r′=1

λmin(Sr′,r)‖β0
r − βr′‖

2

≥ max
r∈R

R

∑
r′=1

λmin(Sr′,r)‖β0
r − βr′‖

2

≥ max
r∈R

(
min
r′∈R
‖β0

r − βr′‖
2
) R

∑
r′=1

λmin(Sr′,r)

≥ max
r∈R

(
min
r′∈R
‖β0

r − βr′‖
2
)

max
r′∈R

λmin(Sr′,r)

≥ max
r∈R

(
min
r′∈R
‖β0

r − βr′‖
2
)

ρmin, (A.59)

where ρmin > 0 by Assumption 1. Hence, invoking Lemma A.2, we have

Q(β, r)−Q(β0, r0) = Q0(β, r)−Q0(β0, r0) + Op(T−1/2)

≥ ρmin max
r∈R

min
r′∈R
‖β0

r − βr′‖
2 + Op(T−1/2). (A.60)

This holds for all (β, r) ∈ BR ×RT, including (β, r) = (β̂, r̂). We can therefore show
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that

Q(β̂, r̂)−Q(β0, r0) ≥ ρmin max
r∈R

min
r̂∈R
‖β0

r − β̂r̂‖
2 + Op(T−1/2) ≥ 0. (A.61)

Because ρmin > 0 w.p.a.1, the limit of Q(β̂, r̂)−Q(β0, r0) will be positive if first term on

the right-hand side dominates, which will be the case if maxr∈Rminr̂∈R ‖β0
r0 − β̂r̂‖2 >

Op(T−1/2). But then this would contradict (A.55). The only way in which (A.55) can

be satisfied asymptotically is therefore if maxr∈Rminr̂∈R ‖β0
r − β̂r̂‖2 ≤ Op(T−1/2). This

means that

Q(β̂, r̂)−Q(β0, r0)→p 0, (A.62)

so that asymptotically (A.55) is satisfied with strict equality. This completes the proof.�

Lemma A.3 establishes consistency in a minimax sense. Consistency in mean square

can be established in the same way, although under sightly different conditions. In

particular, suppose that instead of ρmin > 0 w.p.a.1 we have mint λmin(N−1V′tMF0Vt) >

0 w.p.a.1. Then, by using exactly the same steps as in Proof of Lemma A.3 above,

Q0(β, r)−Q0(β0, r0) =
1
T

T

∑
t=1

tr [(β0
r0

t
− βrt

)′N−1V′tMF0Vt(β0
r0

t
− βrt

)]

≥ 1
T

T

∑
t=1

λmin(N−1V′tMF0Vt)‖β0
r0

t
− βrt

‖2

≥ min
t

λmin(N−1V′tMF0Vt)
1
T

T

∑
t=1
‖β0

r0
t
− βrt

‖2 ≥ 0, (A.63)
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so that by Lemma A.2 evaluated at (β, r) = (β̂, r̂),

Q(β̂, r̂)−Q(β0, r0)

≥ min
t

λmin(N−1V′tMF0Vt)
1
T

T

∑
t=1
‖β0

r0
t
− β̂r̂t

‖2 + Op(T−1/2) ≥ 0. (A.64)

This implies that

1
T

T

∑
t=1
‖β0

r0
t
− β̂r̂t

‖2 ≤ Op(T−1/2) (A.65)

for otherwise (A.55) cannot be satisfied asymptotically.

Proof of Theorem 1.

The proof is analogous to that of Lemma B.3 in Bonhomme and Manresa (2015) (see

also Proof of Lemma A.2 of Miao et al., 2020). We need to show that the following two

results hold:

max
r∈R

min
r′∈R
‖β0

r − β̂r′‖ = op(1), (A.66)

max
r′∈R

min
r∈R
‖β0

r − β̂r′‖ = op(1). (A.67)

The first result is implied by Lemma A.3. We therefore proceed to establish the second.

Define the function σ : R 7→ R such that

σ(r) := arg min
r′∈R
‖β0

r − β̂r′‖. (A.68)

We start by showing that σ(·) one-to-one w.p.a.1. By applying first ‖a− b‖ ≥ ‖a‖ − ‖b‖

(the reverse triangle inequality) and then ‖a + b‖ ≤ ‖a‖+ ‖b‖ (the regular version of

60



the same inequality),

‖β̂σ(r) − β̂σ(r′)‖ = ‖β
0
r − β0

r′ − (β0
r − β̂σ(r) + β̂σ(r′) − β0

r′)‖

≥ ‖β0
r − β0

r′‖ − ‖β
0
r − β̂σ(r) + β̂σ(r′) − β0

r′‖

≥ ‖β0
r − β0

r′‖ − ‖β
0
r − β̂σ(r)‖ − ‖β̂σ(r′) − β0

r′‖. (A.69)

For the first term on the right-hand side, we use the fact that ‖β0
r − β0

r′‖ > 0 for r 6= r′

by Assumption 2. The second and third terms are op(1) because by Lemma A.3 ‖β0
r −

β̂r′‖ = op(1) for all (r′, r) ∈ R2. Hence, for r 6= r′,

‖β̂σ(r) − β̂σ(r′)‖ →p c > 0 (A.70)

as T → ∞ with N < ∞ or N → ∞. This last result implies that σ(r) 6= σ(r′) w.p.a.1,

which in turn means that σ(·) is one-to-one and hence a proper permutation function.

Moreover, the inverse of σ(·) exists and is given by σ−1(·). It follows that for all r′ ∈ R,

min
r∈R
‖β0

r − β̂r′‖ ≤ ‖β
0
σ−1(r′) − β̂r′‖ ≤ min

r′′∈R
‖β0

σ−1(r′) − β̂r′′‖ = op(1), (A.71)

where the last equality is due to Lemma A.3. Because this holds for all r′ it holds also

for the maximum. This establishes (A.67) and therefore the proof is complete. �

The proof of Theorem 1 shows that there is a permutation σ(r) of the regime index r

such that ‖β0
r − β̂σ(r)‖ = op(1). By relabelling the elements of β̂, we can take σ(r) = r.

In what follows, we adopt this convention (similarly to Bonhomme and Manresa, 2015).

We therefore write ‖β0
r − β̂r‖ = op(1) for ‖β0

r − β̂σ(r)‖ = op(1). This justifies considering
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the following set:

N := {β ∈ BR : ‖β0
r − βr‖ < η for all r ∈ R}. (A.72)

We now continue onto the proof of Theorem 2, which, following the lead of Bon-

homme and Manresa (2015), proceeds as follows: Define

Qt(βr) := N−1‖MF̂(yt − Xtβr)‖
2. (A.73)

For a given β, our estimator r̂t = r̂t(βr) of r0
t is the minimizer of this function. In Lemma

A.4 below we show that the probability of misclassification is negligible when β ∈ N .

This is then used to show that β̂ is asymptotically equivalent to the oracle estimator that

treats the regimes as known (Lemma A.5) and that the probability of misclassification

is negligible also for r̂t(β̂r).

Lemma A.4. Suppose that Assumptions 1 and 2 hold. Then, as N, T → ∞,

sup
β∈N

1
T

T

∑
t=1

1(r̂t(βr) 6= r0
t ) = op(N−δ), (A.74)

where δ > 0.

Proof: By the definition of r̂t(·), time period t is assigned to regime r if the value of the

objective function is lowest for that group; that is,

1(r̂t(βr) = r) ≤ 1(Qt(βr) ≤ Qt(βr0
t
)). (A.75)
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Hence, if we define

Zt(βr) := 1(r0
t 6= r)1(Qt(βr) ≤ Qt(βr0

t
)) (A.76)

for the wrongly assigned time periods, we have

1
T

T

∑
t=1

1(r̂t(βr) 6= r0
t ) =

R

∑
r=1

1
T

T

∑
t=1

1(r0
t 6= r)1(r̂t(βr) = r)

≤
R

∑
r=1

1
T

T

∑
t=1

Zt(βr). (A.77)

Consider Zt(βr). From

‖MF̂Xtβr‖
2 − ‖MF̂Xtβr0

t
‖2 = tr (β′rX′tMF̂Xtβr)− tr (β′r0

t
X′tMF̂Xtβr0

t
)

= (βr − βr0
t
)′X′tMF̂Xt(βr + βr0

t
), (A.78)

−tr (y′tMF̂Xtβr) + tr (y′tMF̂Xtβr0
t
) = −y′tMF̂Xt(βr − βr0

t
), (A.79)

we obtain

NQt(βr) = ‖MF̂(yt − Xtβr)‖
2 = ‖MF̂yt‖2 + ‖MF̂Xtβr‖

2 − 2tr (y′tMF̂Xtβr),

(A.80)
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which in turn implies

Qt(βr)−Qt(βr0
t
)

= N−1[‖MF̂Xtβr‖
2 − 2tr (y′tMF̂Xtβr)− ‖MF̂Xtβr0

t
‖2 + 2tr (y′tMF̂Xtβr0

t
)]

= N−1[(βr − βr0
t
)′X′tMF̂Xt(βr + βr0

t
)− 2y′tMF̂Xt(βr − βr0

t
)]

= N−1[Xt(βr + βr0
t
)− 2yt]

′MF̂Xt(βr − βr0
t
)

= N−1[2yt − Xt(βr0
t
+ βr)]

′MF̂Xt(βr0
t
− βr)

= N−1[2(Xtβ
0
r0

t
+ Fγt + εt)− Xt(βr0

t
+ βr)]

′MF̂Xt(βr0
t
− βr) =: ∆t(βr0

t
, βr). (A.81)

which in turn implies that Zt(βr) can be written as

Zt(βr) = 1(r0
t 6= r)1(∆t(βr0

t
, βr) ≤ 0). (A.82)

We now want to bound P(Zt(βr) = 1). In so doing, it is convenient to define

I0,t(r, r′) := (β0
r′ − β0

r )
′N−1V′tVt(β0

r′ − β0
r ), (A.83)

I2,t(r, r′) := ∆t(βr′ , βr)− ∆t(β0
r′ , β0

r ), (A.84)

I1,t(r, r′) := ∆t(β0
r′ , β0

r )− I0,t(r, r′). (A.85)

This means that ∆t(βr′ , βr) can be expanded in the following fashion:

∆t(βr′ , βr) = I0,t(r, r′) + [∆t(β0
r′ , β0

r )− I0,t(r, r′)] + [∆t(βr′ , βr)− ∆t(β0
r′ , β0

r )]

= I0,t(r, r′) + I1,t(r, r′) + I2,t(r, r′). (A.86)

By using this and the same max bound as in Bonhomme and Manresa (2015, Proof of
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Lemma B.4), we obtain

Zt(βr) ≤ max
r′∈R\{r}

1(∆t(βr′ , βr) ≤ 0) = max
r′∈R\{r}

1(I1,t(r, r′) ≤ −I0,t(r, r′)− I2,t(r, r′))

≤ max
r′∈R\{r}

1(I1,t(r, r′) ≤ −I0,t(r, r′) + |I2,t(r, r′)|), (A.87)

so that if we bound the maximum over r′ 6= r by the corresponding sum,

P(Zt(βr) = 1) ≤ ∑
r′ 6=r

P(I1,t(r, r′) ≤ −I0,t(r, r′) + |I2,t(r, r′)|). (A.88)

Consider I2,t(r, r′). From the definition of at(βr′ , βr),

I2,t(r, r′) = ∆t(βr′ , βr)− ∆t(β0
r′ , β0

r )

= N−1[2(Xtβ
0
r′ + Fγt + εt)− Xt(βr′ + βr)]

′MF̂Xt(βr′ − βr)

− N−1[2(Xtβ
0
r′ + Fγt + εt)− Xt(β0

r′ + β0
r )]
′MF̂Xt(β0

r′ − β0
r )

= 2N−1[(Fγt + εt)
′MF̂Xt(βr′ − βr)− (Fγt + εt)

′MF̂Xt(β0
r′ − β0

r )]

+ 2N−1[β0′
r′X
′
tMF̂Xt(βr′ − βr)− β0′

r′X
′
tMF̂Xt(β0

r′ − β0
r )]

+ N−1[−(βr′ + βr)
′X′tMF̂Xt(βr′ − βr)

+ (β0
r′ + β0

r )
′X′tMF̂Xt(β0

r′ − β0
r )], (A.89)
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where

− (βr′ + βr)
′X′tMF̂Xt(βr′ − βr) + (β0

r′ + β0
r )
′X′tMF̂Xt(β0

r′ − β0
r )

= −(βr′ + βr)
′X′tMF̂Xt(βr′ − βr) + (β0

r′ + β0
r )
′X′tMF̂Xt(βr′ − βr)

− (β0
r′ + β0

r )
′X′tMF̂Xt(βr′ − βr) + (β0

r′ + β0
r )
′X′tMF̂Xt(β0

r′ − β0
r )

= −[(βr′ − β0
r′) + (βr − β0

r )]
′X′tMF̂Xt(βr′ − βr)

− (β0
r′ + β0

r )
′X′tMF̂Xt[(βr′ − β0

r′)− (βr − β0
r )] (A.90)

implying

I2,t(r, r′) = 2N−1(Fγt + εt)
′MF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]

+ 2N−1β0′
r′X
′
tMF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]

− [(βr′ − β0
r′) + (βr − β0

r )]
′N−1X′tMF̂Xt(βr′ − βr)

− (β0
r′ + β0

r )
′N−1X′tMF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]. (A.91)

We now consider each of the terms on the right-hand side of the above equation,

starting with the first. By using the fact that ‖βr − β0
r‖ < η for β ∈ N and the same

steps as in the proof of Lemma A.2, we can show that

|N−1(Fγt + εt)
′MF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]|

≤ ‖N−1(Fγt + εt)
′MF̂Xt‖(‖βr′ − β0

r′‖+ ‖βr − β0
r‖)

≤ 2η‖N−1(Fγt + εt)
′MF̂Xt‖

= 2η‖N−1(Fγt + εt)
′MF̂(Vt −UBmΓt)‖

≤ 2η[‖N−1ε′tMF0Vt‖+ ‖N−1ε′tMF0U‖‖Bm‖‖Γt‖+ ‖N−1(Fγt + εt)
′(MF̂ −MF0)Vt‖

+ ‖N−1(Fγt + εt)
′(MF̂ −MF0)U‖‖Bm‖‖Γt‖]. (A.92)
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As for the first term on the right-hand side, we have

‖N−1ε′tMF0Vt‖ ≤ ‖N−1ε′tVt‖+ ‖N−1ε′tF
0‖‖(N−1F0′F0)−1‖‖N−1F0′Vt‖. (A.93)

From the proof of Lemma A.2, we know that ‖N−1F0′Vt‖ and ‖N−1ε′tF
0‖ are Op(1)

under the conditions of that lemma. This is not enough here, though. In particular,

the condition that vi,t is at most weakly serially correlated must be strengthened to

independence (Assumption 2), so that

∥∥∥∥∥ 1
N
√

T
∑
s 6=t

N

∑
i=1

vi,tv′i,s

∥∥∥∥∥ = Op(N−1/2), (A.94)

in which case (A.27) reads

∥∥∥∥∥ 1
N
√

T

T

∑
s=1

V′tVs

∥∥∥∥∥ = Op(C−1
NT). (A.95)

where CNT := max{
√

N,
√

T}. This implies that ‖N−1
√

TV′tU‖ and hence also ‖N−1V′tF
0‖

are of the same order. By using this, ‖(N−1F0′F0)−1‖ = Op(1) and ‖N−1ε′tVt‖ =

Op(N−1/2), we can show that

‖N−1ε′tMF0Vt‖ ≤ ‖N−1ε′tVt‖+ ‖N−1ε′tF
0‖‖(N−1F0′F0)−1‖‖N−1F0′Vt‖

= ‖N−1ε′tVt‖+ Op(C−2
NT) (A.96)

The second term on the right-hand side of (A.92) involves ‖N−1ε′tMF0U‖. This term

has exactly the same structure as ‖N−1ε′tMF0Vt‖ but with U in place of Vt. It is therefore

of smaller order in magnitude than Op(C−1
NT). From Proof of Lemma A.2, we know that

‖N−1U′F‖ and ‖N−1
√

TU′U‖ are Op((NT)−1/2) and Op(T−1/2), respectively. Hence,

‖N−1U′F0‖ = ‖[N−1U′F, N−1
√

TU′UB−m]‖ = Op(T−1/2). Also, ‖N−1ε′tU‖ is of the
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same order as ‖N−1V′tU‖ (Proof of Lemma A.2). We can therefore show that

‖N−1ε′tMF0U‖ ≤ ‖N−1ε′tU‖+ ‖N−1ε′tF
0‖‖(N−1F0′F0)−1‖‖N−1F0′U‖

= Op(T−1) + Op((NT)−1/2) ≤ Op(C−2
NT). (A.97)

We now move on to the third term, ‖N−1(Fγt + εt)′(MF̂ −MF0)Vt‖. Here we use

‖N−1(Fγt + εt)′F0‖ = Op(1) and

‖N−1(Fγt + εt)
′(F̂0 − F0)‖ ≤ ‖N−1(Fγt + εt)

′U‖‖Bm‖ = Op(C−2
NT). (A.98)

Together with (A.21) and some of the orders derived as a part of the proof of Lemma

A.2, these results imply

‖N−1(Fγt + εt)
′(MF0 −MF̂)Vt‖

≤ ‖N−1(Fγt + εt)
′(F̂0 − F0)‖‖(N−1F̂0′F̂0)−1‖‖N−1(F̂0 − F0)′Vt‖

+ ‖N−1(Fγt + εt)
′(F̂0 − F0)‖‖(N−1F̂0′F̂0)−1‖‖N−1F0′Vt‖

+ ‖N−1(Fγt + εt)
′F0‖‖(N−1F̂0′F̂0)−1‖‖N−1(F̂0 − F0)′Vt‖

+ ‖N−1(Fγt + εt)
′F0‖‖(N−1F̂0′F̂0)−1 − (N−1F0′F0)−1‖‖N−1F0′Vt‖

= Op(C−2
NT). (A.99)

Just as with the first and second terms on the right-hand side of (A.92), the fourth has

the same structure as the third but with U in place of Vt. Adjusting the above arguments

to this change leads to the following:

‖N−1(Fγt + εt)
′(MF0 −MF̂)U‖ = Op(C−2

NT). (A.100)
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The above results imply that (A.92) reduces to

|N−1(Fγt + εt)
′MF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]| = 2η(‖N−1ε′tVt‖+ Op(C−2

NT)).

(A.101)

This completes our evaluation of the first term of I2,t(r, r′). We now move on to the

second. Because ‖βr − β0
r‖ < η, we have ‖βr‖ ≤ ‖βr − β0

r‖+ ‖β
0
r‖ ≤ 2η, which holds

for all βr, including β0
r . Hence,

|N−1β0′
r′X
′
tMF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]|

≤ ‖β0
r′‖‖N−1X′tMF̂Xt‖(‖βr′ − β0

r′‖+ ‖βr − β0
r‖)

≤ 4η2‖N−1X′tMF̂Xt‖

= 4η2(‖N−1V′tVt‖+ Op(C−2
NT)). (A.102)

For the last equality, we employ the same steps used earlier to evaluate ‖N−1(Fγt +

εt)′MF̂Xt‖ to show that

N−1X′tMF̂Xt = N−1(Vt −UBmΓt)
′MF̂(Vt −UBmΓt)

= N−1(Vt −UBmΓt)
′MF0(Vt −UBmΓt)

+ N−1(Vt −UBmΓt)
′(MF̂ −MF0)(Vt −UBmΓt)

= N−1V′tVt + Op(C−2
NT), (A.103)

where, as usual, A = B + op(1) means ‖A− B‖ = op(1).

The above arguments can be applied also to the third term of I2,t(r, r′), from which
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we obtain

|[(βr′ − β0
r′) + (βr − β0

r )]
′N−1X′tMF̂Xt(βr′ − βr)|

≤ 8η2(‖N−1V′tVt‖+ Op(C−2
NT)). (A.104)

The fourth term has the same bound.

The reminders of the last three terms of I2,t(r, r′) are dominated by the first term. It

follows that if η is small such that η > η2, then

|I2,t(r, r′)| ≤ 2|N−1(Fγt + εt)
′MF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]|

+ 2|N−1β0′
r′X
′
tMF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]|

+ |[(βr′ − β0
r′) + (βr − β0

r )]
′N−1X′tMF̂Xt(βr′ − βr)|

+ |(β0
r′ + β0

r )
′N−1X′tMF̂Xt[(βr′ − β0

r′)− (βr − β0
r )]|

≤ 4η(‖N−1ε′tVt‖+ Op(C−2
NT)) + 24η2(‖N−1V′tVt‖+ Op(C−2

NT))

≤ η(4‖N−1ε′tVt‖+ 24‖N−1V′tVt‖) + Op(ηC−2
NT). (A.105)
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We now move on to I1,t(r, r′). From the definitions of ∆t(β0
r′ , β0

r ) and I0,t(r, r′),

I1,t(r, r′) = ∆t(β0
r′ , β0

r )− I0,t(r, r′)

= N−1[2(Xtβ
0
r′ + Fγt + εt)− Xt(β0

r′ + β0
r )]
′MF̂Xt(β0

r′ − β0
r )

− (β0
r′ − β0

r )
′N−1V′tVt(β0

r′ − β0
r )

= 2N−1(Fγt + εt)
′MF̂Xt(β0

r′ − β0
r ) + 2β0′

r′N
−1X′tMF̂Xt(β0

r′ − β0
r )

− (β0
r′ + β0

r )
′N−1X′tMF̂Xt(β0

r′ − β0
r )− (β0

r′ − β0
r )
′N−1V′tVt(β0

r′ − β0
r )

= 2N−1(Fγt + εt)
′MF̂Xt(β0

r′ − β0
r ) + (β0

r′ − β0
r )
′N−1X′tMF̂Xt(β0

r′ − β0
r )

− (β0
r′ − β0

r )
′N−1V′tVt(β0

r′ − β0
r )

= 2N−1(Fγt + εt)
′MF̂Xt(β0

r′ − β0
r )

+ (β0
r′ − β0

r )
′N−1(X′tMF̂Xt −V′tVt)(β0

r′ − β0
r ). (A.106)

We have already shown that ‖N−1(X′tMF̂Xt − V′tVt)‖ = Op(C−2
NT), which in view of

‖β0
r‖ ≤ 2η gives

|(β0
r′ − β0

r )
′N−1(X′tMF̂Xt −VtVt)(β0

r′ − β0
r )|

≤ 16η2‖N−1(X′tMF̂Xt −V′tVt)‖ ≤ Op(ηC−2
NT). (A.107)

Hence, since N−1(Fγt + εt)′MF̂Xt = N−1ε′tVt + Op(C−2
NT),

I1,t(r, r′) = 2N−1ε′tVt(β0
r′ − β0

r ) + Op(ηC−2
NT). (A.108)

For I0,t(r, r′), we write

I0,t(r, r′) = tr [(β0
r′ − β0

r )
′N−1V′tVt(β0

r′ − β0
r )] = ‖N−1/2Vt(β0

r′ − β0
r )‖

2. (A.109)
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We now make use of the above results to evaluate P(I1,t(r, r′) ≤ −I0,t(r, r′)+ |I2,t(r, r′)|).

In so doing, it is convenient to also make use of the fact that P(Y + op(1) ≤ a) = P(Y ≤

a− op(1)) ≤ P(Y ≤ a + |op(1)|), where Y is a random variable and a is a constant. This

implies

P(I1,t(r, r′) ≤ −I0,t(r, r′) + |I2,t(r, r′)|)

= P(2N−1ε′tVt(β0
r′ − β0

r ) + Op(ηC−2
NT) ≤ −‖N−1/2Vt(β0

r′ − β0
r )‖

2

+ 4η‖N−1ε′tVt‖+ 24η2‖N−1V′tVt‖+ |Op(ηC−2
NT)|)

≤ P(2N−1ε′tVt(β0
r′ − β0

r ) ≤ −‖N−1/2Vt(β0
r′ − β0

r )‖
2

+ η(4‖N−1ε′tVt‖+ 24‖N−1V′tVt‖) + 2|Op(ηC−2
NT)|)

≤ P(2N−1ε′tVt(β0
r′ − β0

r ) ≤ −‖N−1/2Vt(β0
r′ − β0

r )‖
2

+ η(4‖N−1ε′tVt‖+ 24‖N−1V′tVt‖) + 2|Op(ηC−2
NT)|). (A.110)

From Loyo and Boot (2024, Proof of Lemma C.3): If Y and X are random variables and

a and b constants, then

P(X < Y + a) = P(X < Y + a, Y > b) + P(X < Y + a, Y < b)

≤ P(X < a + b) + P(Y > b). (A.111)

This result can be used repeatedly to show the following:

P(I1,t(r, r′) ≤ −I0,t(r, r′) + |I2,t(r, r′)|)

≤ P

(
2N−1ε′tVt(β0

r′ − β0
r ) ≤ −

ct(r, r′)
2

+ η(4M + 24M + 2M)

)
+ P

(
‖N−1/2Vt(β0

r′ − β0
r )‖

2 ≤ ct(r, r′)
2

)
+ P(‖N−1ε′tVt‖ ≥ M)

+ P(‖N−1V′tVt‖ ≥ M) + P(|O(C−2
NT)| ≥ M) (A.112)
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for some M > 0 and where ct(r, r′) := (β0
r′ − β0

r )
′Σv,t(β0

r′ − β0
r ). It is important to note

that from tr (AB) ≥ λmin(A)tr B and Assumption 2, we have

ct(r, r′) = tr [(β0
r′ − β0

r )
′Σv,t(β0

r′ − β0
r )] = tr [Σv,t(β0

r′ − β0
r )(β0

r′ − β0
r )
′]

≥ λmin(Σv,t)tr [(β0
r′ − β0

r )(β0
r′ − β0

r )
′] = λmin(Σv,t)‖β0

r′ − β0
r‖

2 > 0 (A.113)

whenever r′ 6= r. We are now going to bound each of the terms appearing on the

right-hand side of (A.112). In so doing, we will employ Lemma B.5 of Bonhomme and

Manresa (2015), which states that if zt is a strongly mixing process with zero mean and

tail probability P(|zt| > M) ≤ exp(1− (M/ν)κ), where M, ν, κ > 0. Then, for all δ > 0,

P

(∣∣∣∣∣ 1
T

T

∑
t=1

zt

∣∣∣∣∣ ≥ M

)
= o(T−δ). (A.114)

We will apply this lemma to the cross-sectional dimension. This is possible because un-

der Assumption 2, εi,t and vi,t are mean zero, independent and hence strongly mixing,

and with the required tails. We begin by applying Bonhomme and Manresa’s lemma to

the third term on the right-hand side of (A.112), which is possible since εi,tvi,t is mean

zero and independent over i. It follows that

P(‖N−1ε′tVt‖ ≥ M) = o(N−δ), (A.115)

For the fourth term, P(‖N−1V′tVt‖ ≥ M), we use

‖N−1V′tVt‖ ≤ ‖N−1V′tVt −E(N−1V′tVt)‖+ ‖E(N−1V′tVt)‖, (A.116)

where ‖E(N−1V′tVt)‖ → ‖Σv,t‖ ≤ c as N → ∞ for some c < ∞ by Assumption 2. By

using this last result to handle ‖E(N−1V′tVt)‖, and applying Bonhomme and Manresa’s
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Lemma B.5 to ‖N−1V′tVt −E(N−1V′tVt)‖, we obtain the following large-N bound for

P(‖N−1V′tVt‖ ≥ M):

P(‖N−1V′tVt‖ ≥ M) ≤ P(‖N−1V′tVt − E(N−1V′tVt)‖+ ‖E(N−1V′tVt)‖ ≥ M)

≤ P(‖N−1V′tVt −E(N−1V′tVt)‖+ c ≥ M) = o(N−δ).

(A.117)

Let us now consider P(‖N−1/2Vt(β0
r′ − β0

r )‖2 ≤ ct(r, r′)/2), the second term on the

right-hand side of (A.112). Because E(‖N−1/2Vt(β0
r′ − β0

r )‖2) = ct(r, r′) for N large

enough, we have

E(‖N−1/2Vt(β0
r′ − β0

r )‖
2) ≥ 2ct(r, r′)

3
. (A.118)

Hence, since P(Y ≤ −a) = P(−Y ≥ a) ≤ P(|Y| ≥ a),

P

(
‖N−1/2Vt(β0

r′ − β0
r )‖

2 ≤ ct(r, r′)
2

)
≤ P

(
‖N−1/2Vt(β0

r′ − β0
r )‖

2 −E(‖N−1/2Vt(β0
r′ − β0

r )‖
2) ≤ − ct(r, r′)

6

)
≤ P

(
|‖N−1/2Vt(β0

r′ − β0
r )‖

2 −E(‖N−1/2Vt(β0
r′ − β0

r )‖
2)| ≥ ct(r, r′)

6

)
. (A.119)

Applying Lemma B.5 of Bonhomme and Manresa to this yields

P

(
‖N−1/2Vt(β0

r′ − β0
r )‖

2 ≤ ct(r, r′)
2

)
= o(N−δ). (A.120)

We move on to the first term on the right-hand side of (A.112). If we assume that

η ≤ ct(r, r′)/(120M) and then apply P(Y ≤ −a) ≤ P(|Y| ≥ a), this term can be written
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as

P

(
2N−1ε′tVt(β0

r′ − β0
r ) ≤ −

ct(r, r′)
2

+ 30ηM
)

≤ P

(
2N−1ε′tVt(β0

r′ − β0
r ) ≤ −

ct(r, r′)
4

)
≤ P

(
|N−1ε′tVt(β0

r′ − β0
r )| ≥

ct(r, r′)
4

)
, (A.121)

which is o(N−δ) by Bonhomme and Manresa’s lemma. The fifth and final term on the

right-hand side of (A.112) is of even lower order than this and is therefore dominated

by the other terms. Hence, by putting everything together, (A.112) becomes

P(I1,t(r, r′) ≤ −I0,t(r, r′) + |I2,t(r, r′)|) = o(N−δ), (A.122)

which in view of the fact that G < ∞ in turn implies

P(Zt(βr) = 1) ≤ ∑
r′ 6=g

P(I1,t(r, r′) ≤ −I0,t(r, r′) + |I2,t(r, r′)|) = o(N−δ). (A.123)

Hence, since P(A) = E[1(A)], we arrive at

E

(
1
T

T

∑
t=1

1(r̂t(βr) 6= r0
t )

)
≤

R

∑
r=1

1
T

T

∑
t=1

E(Zt(βr))

=
R

∑
r=1

1
T

T

∑
t=1

P(Zt(βr) = 1) = o(N−δ). (A.124)

This result holds uniformly in β ∈ N . The sought result is implied by this and Markov’s

inequality (see Bonhomme and Manresa, Proof of Lemma B.4). �
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Define

Q(β) := Q(β, r̂) =
1

NT

T

∑
t=1
‖MF̂(yt − Xtβr̂t

)‖2, (A.125)

Qinf(β) := Q(β, r0) =
1

NT

T

∑
t=1
‖MF̂(yt − Xtβr0

t
)‖2, (A.126)

where r̂t = r̂t(βr). Let β̂ and β̂
inf

be the minimizers of Q(β) and Qinf(β), respectively.

Lemma A.5. Suppose that Assumptions 1 and 2 hold. Then, as N, T → ∞,

max
r∈R
‖β̂inf

r − β̂r‖
2 = op(N−δ). (A.127)

Proof: Because Q(β)−Qinf(β) = 0 if r̂t = r0
t , in the notation of the proof of Lemma A.4,

we have

Q(β)−Qinf(β) =
1

NT

T

∑
t=1

[‖MF̂(yt − Xtβr̂t
)‖2 − ‖MF̂(yt − Xtβr0

t
)‖2]

=
1
T

T

∑
t=1

1(r̂t(βr) 6= r0
t )N−1[‖MF̂(yt − Xtβr̂t

)‖2 − ‖MF̂(yt − Xtβr0
t
)‖2]

=
1
T

T

∑
t=1

1(r̂t(βr) 6= r0
t )∆t(βr0

t
, βr̂t

). (A.128)

By Assumption 2, there is a constant c < ∞ such that ‖E(N−1V′tVt)‖ ≤ c for all t and N

sufficiently large. By using this and some of the results reported in the proof of Lemma

A.4,

|∆t(βr0
t
, βr̂t

)| ≤ 40η2‖N−1V′tVt‖+ op(1) ≤ 40η2c + op(1). (A.129)
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Hence, by Lemma A.4,

|Q(β)−Qinf(β)| ≤ 1
T

T

∑
t=1

1(r̂t(βr) 6= r0
t )(40η2c + op(1)) = op(N−δ), (A.130)

which holds uniformly in β ∈ N . We now make use of this last result to bound |Q(β̂)−

Qinf(β̂)|. For any ε > 0,

P(|Q(β̂)−Qinf(β̂)| > εNδ)

≤ P(β̂ 6∈ N ) + P(β̂ ∈ N , |Q(β̂)−Qinf(β̂)| > εNδ), (A.131)

where, in view of P(A) = E[1(A)], 1(A ∩ B) = 1(A)1(B) and |Q̂(β) − Qinf(β)| =

op(N−δ),

P(β̂ ∈ N , |Q(β̂)−Qinf(β̂)| > εNδ)

= E[1(β̂ ∈ N )1(|Q(β̂)−Qinf(β̂)| > εNδ)]

≤ E

[
1

(
sup
β∈N
|Q(β)−Qinf(β)| > εNδ

)]

= P

(
sup
β∈N
|Q(β)−Qinf(β)| > εNδ

)
= o(1). (A.132)

Since β̂ is consistent by Theorem 1, we also have P(β̂ 6∈ N ) = o(1). It follows that

P(|Q(β̂)−Qinf(β̂)| > εNδ) = o(1), (A.133)

so that

|Q(β̂)−Qinf(β̂)| = op(N−δ). (A.134)
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We similarly have |Q(β̂
inf
)− Qinf(β̂

inf
)| = op(N−δ). These results can be used to show

that

0 ≤ Qinf(β̂)−Qinf(β̂
inf
) = Q(β̂)−Q(β̂

inf
) + op(N−δ) ≤ op(N−δ), (A.135)

where the first inequality holds because β̂
inf

minimizes Qinf(·), and therefore Qinf(β̂)−

Qinf(β̂
inf
) ≥ 0. Similarly, since β̂ minimizes Q(·), Q(β̂)− Q(β̂

inf
) ≤ 0, from which the

last equality follows. We can therefore show that

Qinf(β̂)−Qinf(β̂
inf
) = op(N−δ). (A.136)

Consider the left-hand side of the above equation. Use of ‖A + B‖2 = ‖A‖2 + ‖B‖2 +

2tr (A′B) gives

Qinf(β̂)−Qinf(β̂
inf
)

=
1

NT

T

∑
t=1

[‖MF̂(yt − Xt β̂r0
t
)‖2 − ‖MF̂(yt − Xt β̂

inf
r0

t
)‖2]

=
1

NT

T

∑
t=1

[‖MF̂(yt − Xt β̂
inf
r0

t
) + MF̂Xt(β̂

inf
r0

t
− β̂r0

t
)‖2 − ‖MF̂(yt − Xt β̂

inf
r0

t
)‖2]

=
1

NT

T

∑
t=1
‖MF̂Xt(β̂

inf
r0

t
− β̂r0

t
)‖2 + 2tr [(yt − Xt β̂

inf
r0

t
)′MF̂Xt(β̂

inf
r0

t
− β̂r0

t
)]

=
1

NT

T

∑
t=1
‖MF̂Xt(β̂

inf
r0

t
− β̂r0

t
)‖2, (A.137)

where the last equality holds because β̂
inf
r0

t
is an OLS estimator that satisfies the first

order condition ∑T
t=1(yt − Xt β̂

inf
r0

t
)′MF̂Xt = 01×k. We now use the arguments provided

in the proof of Lemma A.4 to take care of the estimation error coming from F̂. We then

apply the same steps as in Proof of Theorem 1 to bound ‖Vt(β̂
inf
r0

t
− β̂r0

t
)‖2. It follows
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that w.p.a.1,

Qinf(β̂)−Qinf(β̂
inf
) =

1
NT

T

∑
t=1
‖Vt(β̂

inf
r0

t
− β̂r0

t
)‖2 + |Op(C−2

NT)|

≥ 1
NT

T

∑
t=1
‖Vt(β̂

inf
r0

t
− β̂r0

t
)‖2

≥
R

∑
r=1

λmin(Sr,r)‖β̂
inf
r − β̂r‖

2

≥ ρmin

R

∑
r=1
‖β̂inf

r − β̂r‖
2

≥ ρmin max
r∈R
‖β̂inf

r − β̂r‖
2, (A.138)

where we have used that λmin(Sr,r) ≥ ρmin w.p.a.1 by Assumption 1. Hence, since

Qinf(β̂)−Qinf(β̂
inf
) = op(N−δ) and ρmin > 0 by Assumption 1,

max
r∈R
‖β̂inf

r − β̂r‖
2 = op(N−δ), (A.139)

which is what we wanted to show. �

Proof of Theorem 2.

For part (a), we use

P

(
sup

t∈{1,...,T}
|r̂t(β̂r)− r0

t | > 0

)

≤ P(β̂ 6∈ N ) + P

(
β̂ ∈ N , sup

t∈{1,...,T}
|r̂t(β̂r)− r0

t | > 0

)

≤ P(β̂ 6∈ N ) +
T

∑
t=1

P(β̂ ∈ N , |r̂t(β̂r)− r0
t | > 0)

≤ P(β̂ 6∈ N ) +
T

∑
t=1

P(β̂ ∈ N , r̂t(β̂r) 6= r0
t ), (A.140)
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where, similarly to Proof of Lemma A.4,

P(β̂ ∈ N , r̂t(β̂r) 6= r0
t ) = E[1(β̂ ∈ N )1(r̂t(β̂r) 6= r0

t )] ≤ E(1(r̂t(β̂r) 6= r0
t ))

≤
R

∑
r=1

E(Zt(β̂r)) =
R

∑
r=1

P(Zt(β̂r) = 1) = o(N−δ). (A.141)

Hence, since P(β̂ 6∈ N ) = o(1) (Theorem 1), we can show that

P

(
sup

t∈{1,...,T}
|r̂t(β̂r)− r0

t | > 0

)
= o(1) + To(N−δ), (A.142)

as required for (a).

Part (b) is a direct consequence of Lemmas A.5. The proof of the theorem is therefore

complete. �

As a preparation for our next lemma and the proof of Theorem 3, we introduce the

following notation:

Q1,r :=
1

NTr

T

∑
t=1

1(rt = r)(Vt −UBmΓt)
′εt, (A.143)

Q2,r :=
1

NTr

T

∑
t=1

1(rt = r)(Vt −UBmΓt)
′PF0εt, (A.144)

Q3,r :=
1

NTr

T

∑
t=1

1(rt = r)(Vt −UBmΓt)
′(MF0 −MF̂)εt, (A.145)

R1,r :=
1√
NTr

T

∑
t=1

1(rt = r)(V′t − Γ′tB
′
mU′)UBmγt, (A.146)

R2,r :=
1√
NTr

T

∑
t=1

1(rt = r)(V′t − Γ′tB
′
mU′)PF0UBmγt, (A.147)

R3,r :=
1√
NTr

T

∑
t=1

1(rt = r)(V′t − Γ′tB
′
mU′)(MF0 −MF̂)UBmγt. (A.148)
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We also need

b1,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)(Σv,t

[
βr Ik

]
− Γ′tB

′
mΩu)P−mΣuBmγt, (A.149)

b2,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)σ2
ε,t(Σv,t

[
βr Ik

]
− Γ′tB

′
mΩu)P−m

[
1 01×k

]′
, (A.150)

b3,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)(Σv,t

[
βr Ik

]
− Γ′tB

′
mΩu)Bmγt, (A.151)

b4,r := lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)σ2
ε,tΓ
′
tB
′
m

[
1 0k×1

]′
, (A.152)

where P−m := B−m(B′−mΩuB−m)−1B′−m and B−m is as in the proof of Lemma A.1.

Lemma A.6 below expresses the limits of R1,r, . . . , R3,r and Q1,r, . . . , Q3,r in terms of

b1,r, . . . , b4,r.

Lemma A.6. Suppose that Assumptions 1 and 2 hold. Then, as N, T → ∞,

(a) R3,r =
√

NT−1/2
r b1,r + Op(T−1/2),

(b) Q3,r =
√

NT−1/2
r b2,r + Op(T−1/2),

(c) ‖R2,r‖ = Op(N−1/2),

(d) R1,r =
√

NT−1/2
r b3,r + Op(C−1

NT),

(e) ‖Q2,r‖ = Op(N−1/2),

(f) Q1,r =
1√
NTr

T

∑
t=1

1(rt = r)V′tεt −
√

NT−1/2
r b4,r + Op(C−1

NT),

where CNT := max{
√

N,
√

T} as in Proof of Lemma A.4.

Proof: This proof is analogous to that of Lemma S.1 in Karabiyik et al. (2017) after

interchanging the time and cross-sectional dimensions. We therefore omit the details.�
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Proof of Theorem 3.

By using β̂r − β0
r = β̂

inf
r − β̂r + β̂

inf
r − β0

r and Lemma A.5,

√
NTr‖β̂r − β0

r − (β̂
inf
r − β0

r )‖ =
√

NTr‖β̂
inf
r − β̂r‖ =

√
NTrop(N−δ). (A.153)

Because Tr = O(T) by Assumption 1, we have
√

NTrop(N−δ) = o(
√

TN1/2−δ), which is

o(1) provided that
√

TN1/2−δ =
√

TN−1/2N1−δ = O(1), which it will be since T−1N →

η and δ > 1 under the conditions of the theorem. Let us therefore consider
√

NTr(β̂
inf
r −

β0
r ). The minimizer β̂

inf
of Q(·) is simply the OLS solution that takes the regimes as

known. The estimator β̂
inf
r of β0

r is therefore given by

β̂
inf
r :=

(
T

∑
t=1

1(rt = r)X′tMF̂Xt

)−1 T

∑
t=1

1(rt = r)X′tMF̂yt. (A.154)

From CBm = Im,

yt = Xtβ
0
r + F̂Bmγt − (F̂− FC)Bmγt + εt = Xtβ

0
r + F̂Bmγt −UBmγt + εt, (A.155)

which in turn implies

√
NTr(β̂

inf
r − β0

r ) =

(
1

NTr

T

∑
t=1

1(rt = r)X′tMF̂Xt

)−1

× 1√
NTr

T

∑
t=1

1(rt = r)X′tMF̂(εt −UBmγt). (A.156)

From Tr = O(T), we get CNTr = O(CNT). By using this and some of the results obtained

as a part of Proof of Lemma A.2,∥∥∥∥∥ 1
NTr

T

∑
t=1

1(rt = r)X′tMF̂Xt −
1

NTr

T

∑
t=1

1(rt = r)V′tVt

∥∥∥∥∥ = Op(C−2
NT), (A.157)
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where (NTr)−1 ∑T
t=1 1(rt = r)V′tVt → Θr as N, T → ∞ by Assumption 3. We can

therefore show that

1
NTr

T

∑
t=1

1(rt = r)X′tMF̂Xt = Θr + op(1). (A.158)

Let us now consider the numerator, which we write as

1√
NTr

T

∑
t=1

1(rt = r)X′tMF̂(εt −UBmγt) = Qr − Rr (A.159)

with obvious definitions of Qr and Rr. From Xt = F̂BmΓt − UBmΓt + Vt, MF̂ = MF̂0

and Lemma A.6, we get

Qr :=
1√
NTr

T

∑
t=1

1(rt = r)X′tMF̂εt

=
1√
NTr

T

∑
t=1

1(rt = r)(Vt −UBmΓt)
′MF̂0εt

=
1

NTr

T

∑
t=1

1(rt = r)(Vt −UBmΓt)
′εt

− 1
NTr

T

∑
t=1

1(rt = r)(Vt −UBmΓt)
′PF0εt

− 1
NTr

T

∑
t=1

1(rt = r)(Vt −UBmΓt)
′(MF0 −MF̂)εt

= Q1,r −Q2,r −Q3,r

=
1√
NTr

T

∑
t=1

1(rt = r)V′tεt −
√

NT−1/2
r (b4,r + b2,r) + Op(C−1

NT), (A.160)
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and

Rr :=
1√
NTr

T

∑
t=1

1(rt = r)X′tMF̂UBmγt

=
1√
NTr

T

∑
t=1

1(rt = r)(V′t − Γ′tB
′
mU′)UBmγt

− 1√
NTr

T

∑
t=1

1(rt = r)(V′t − Γ′tB
′
mU′)PF0UBmγt

− 1√
NTr

T

∑
t=1

1(rt = r)(V′t − Γ′tB
′
mU′)(MF0 −MF̂)UBmγt

= R1,r − R2,r − R3,r

=
√

NT−1/2
r (b3,r − b1,r) + Op(C−1

NT), (A.161)

which in turn implies

1√
NTr

T

∑
t=1

1(rt = r)X′tMF̂(εt −UBmγt)

=
1√
NTr

T

∑
t=1

1(rt = r)V′tεt −
√

NT−1/2
r br + Op(C−1

NT), (A.162)

where br := b2,r + b3,r + b4,r − b1,r.

By putting everything together, we obtain the following asymptotic representation

for
√

NTr(β̂
inf
r − β0

r ):

√
NTr(β̂

inf
r − β0

r )

=

(
1

NTr

T

∑
t=1

1(rt = r)X′tMF̂Xt

)−1
1√
NTr

T

∑
t=1

1(rt = r)X′tMF̂(εt −UBmγt)

= Θ−1
r

(
1√
NTr

T

∑
t=1

1(rt = r)V′tεt −
√

NT−1/2
r br

)
+ op(1), (A.163)
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which together with (A.153), T−1Tr → πr (Assumption 1) and T−1N → η imply

√
NTr(β̂r − β0

r )

= Θ−1
r

(
1√
NTr

T

∑
t=1

1(rt = r)V′tεt −
√

ηπ−1/2
r br

)
+ op(1), (A.164)

where we have again used that
√

TN1/2−δ = O(1). The term (NTr)−1/2 ∑T
t=1 1(rt =

r)V′tεt is asymptotically normal by a cental limit law for independent processes. The

limiting covariance matrix is given by

lim
N,T→∞

E

[
1√
NTr

T

∑
t=1

1(rt = r)V′tεt

(
1√
NTr

T

∑
t=1

1(rt = r)V′tεt

)′]

= lim
N,T→∞

1
NTr

T

∑
t=1

T

∑
s=1

1(rt = r)1(rs = r)E(V′tεtε
′
sVs)

= lim
N,T→∞

1
Tr

T

∑
t=1

1(rt = r)N−1E(V′tεtε
′
tVt)

= lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)σ2
ε,tΣv,t =: Φr, (A.165)

where we have used the fact that Vt and εt are serially and cross-sectionally uncorre-

lated (Assumption 2). They are also independent of each other with E(ε2
i,t) =: σ2

ε,t, and

therefore

N−1E(V′tεtε
′
tVt) = N−1E[V′tE(εtε

′
t|Vt)Vt] = N−1E[V′t(σ

2
ε,tIk)Vt]

= σ2
ε,tN

−1E(V′tVt)→ σ2
ε,tΣv,t (A.166)

as N → ∞. It follows that

√
NTr(β̂r − β0

r )→d N(0k×1, Θ−1
r ΦrΘ−1

r )−√ηπ−1/2
r Θ−1

r br (A.167)
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as N, T → ∞, which is what we wanted to show. �

Proof of Theorem 4.

This proof uses the same basic steps as in the proof of Theorem 2 in Westerlund (2018).

We begin by noting that under Σv,t = Σv,r (Assumption 4), we have Θr = T−1
r ∑T

t=1 1(rt =

r)Σv,r = Σv,r, which does not depend on the subsample being used (“1” or “2”). By us-

ing this, the fact that the cardinality of T` is given by |T`| = Tr/2 for ` ∈ {1, 2}, and the

limiting representation of
√

NTr(β̂r− β0
r ) provided in Proof of Theorem 3, we can show

that

√
NTr/2(β̂`,r − β0

r ) = Θ−1
r (Q`,r − R`,r) + op(1), (A.168)

where Q`,r and R`,r are defined analogously to Qr and Rr, respectively, in Lemma A.6

based on subsample `. This implies

√
NTr(β̂

spj
r − β0

r )

= 2
√

NTr(β̂r − β0
r )−

√
Tr

2
√

Tr/2
[
√

NTr/2(β̂1,r − β0
r ) +

√
NTr/2(β̂2,r − β0

r )]

= 2Θ−1
r (Qr − Rr)−

1√
2
[Θ−1

r (Q1,r − R1,r) + Θ−1
r (Q2,r − R2,r)] + op(1). (A.169)

We have already shown that under Assumption 4 Θr does not depend on the subsample

being used. The same is true for the bias terms. By using this, |T`| = Tr/2 and some of

the results of the proof of Lemma A.6,

Q`,r − R`,r =
1√

NTr/2 ∑
t∈T`,r

1(rt = r)V′tεt +
√

2ηπ−1/2
r br + op(1), (A.170)
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which in turn implies

√
NTr(β̂

spj
r − β0

r ) = Θ−1
r [2(Qr − Rr)−

1√
2
(Q1,r − R1,r + Q2,r − R2,r)] + op(1)

= Θ−1
r

[
2√
NTr

T

∑
t=1

1(rt = r)V′tεt + 2
√

ηπ−1/2
r br

− 1√
2

(
1√

NTr/2

Tr/2

∑
t=1

1(rt = r)V′tεt +
√

2ηπ−1/2
r br

+
1√

NTr/2

Tr

∑
t=Tr/2+1

1(rt = r)V′tεt +
√

2ηπ−1/2
r br

)]
+ op(1)

= Θ−1
r

1√
NTr

Tr

∑
t=1

1(rt = r)V′tεt + op(1). (A.171)

The required result is a direct consequence of this and the asymptotic normality argu-

ments of the proof of Lemma A.6. Because σ2
ε,t = σ2

ε,r and Σv,t = Σv,r for all t such that

rt = r under Assumption 4, we have

Θr = lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)Σv,t = Σv,r lim
T→∞

1
Tr

T

∑
t=1

1(rt = r) = Σv,r, (A.172)

Φr = lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)σ2
ε,tΣv,t = σ2

ε,rΣv,r lim
T→∞

1
Tr

T

∑
t=1

1(rt = r)

= σ2
ε,rΣv,r, (A.173)

and therefore the asymptotic covariance matrix simplifies to Θ−1
r ΦrΘ−1

r = σ2
ε,rΣ−1

v,r . �
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