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Abstract

This appendix provides additional details on proof of identification, priors, the

posterior sampler, marginal likelihood estimation, simulation results and data.
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1 Proof of Propositions

1.1 Proof of Proposition 1

Proof of Proposition 1: Without the loss of generality, we prove one of the two cases in
Proposition . That is, we assume Var(w;) = I,,,, and A is a lower-triangular matrix
with ones on the diagonal, while B is a lower-triangular matrix with strictly positive

diagonal elements.
As shown in (1.1]), we may identify a rotation of Fy, given by CF,D’.

Y, = AC"'CF,D'(D)"'B' + E, (1.1)

where C and D are p; X p; and ps X po invertible matrices.

We use f‘t to denote the rotated factor matrix: f‘t = CF;D’, and we use E to denote the
vectorized Fy: f, = (D ® C)f;.
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Then the rotated factor loadings AC™! needs to be a lower triangular matrix with ones

on the diagonal as well, that is,
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For (I.2)) to hold, we must have ¢; ; = 0 for any i, j such that i < j and ¢;; = 1, or C™*

is lower triangular with ones on the diagonal.

Similarly,
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For (1.3) to hold, we must have d;; = 0 for any i,j such that ¢ < j, or D™' is lower
triangular given the assumption that b; # 0, b}; # 0, for i =1, ..., ps.

Define f; = vec(F;). Consider the case ¢ = 1, we rewrite (2)) as follows
ft = prt—l -+ Wy, (14)
where H, is a diagonal matrix with p = (p114,..., Ppipps) oOn the diagonal. u, =

(U 1ty eey Upy pot)s W ~ N(0,Ay), where Ay = diag()\il/(l — pil), ey /\12)17132/(1 — 1012214)2))
for t =1, and A; = diag(A,,..., A2 ) fort =2,..,T.

T p1L,p2

Define M = D ® C, multiply (1.4) by M on both side, we have

Mft = Mprt,1 + Mut. (15)

Therefore
f, = MH,M'f,_, + Mu,. (1.6)

The observation equation after the rotation becomes

Y, = AC'F,(D)'B' + E,. (1.7)

Given the condition that Var(u;) = I,,,,, Var(Mu,) should be an identity matrix as well.



That is, MVar(u, )M’ = L,,,,. Therefore, we have MM’ =1,,,,,. Or M is an orthogonal

matrix. Therefore, we have
MM =1 DeC)(D®C) =1< (DD')® (CC') =1,

which holds if and only if DD’ = I,, and CC’ = I,,, given that C and D are lower

triangular matrices and the diagonal elements of C is ones.

This means that C and D are orthogonal matrices. An orthogonal matrix that is lower
triangular must be diagonal. Therefore, the rotation matrix C is an identity matrix.
Given that b; > 0 for ¢ = 1, ..., ps, we must have that the rotation matrix D is also an

identity matrix.

This proves that the proposed assumptions in MDFM1 fully identify the factor matrix

and the factor loading matrices.

1.2 Proof of Proposition 2

Proof of Proposition 2: Similar to the proof of proposition 1, the rotated factor loadings
C~! needs to be a lower triangular matrix, as shown in . Additionally, given we have
ones on the diagonal of A, C~! needs to have ones on its diagonal as well. Similarly, D!
needs to be a lower triangular matrix with ones on its diagonal. Therefore, the matrix

M is a lower triangular matrix with ones on its diagonal.

Again, we need Cov(Mu,) = Cov(w), i.e., MA,M' = A;, where A, is a diagonal matrix.
Given that the diagonal elements in Ay must be larger than 0, this requires that m, ; for
all i > j must be zero, for MA;M’ to only have non-zero terms on its diagonal and match

A;. Therefore, M must be identity matrix.

This proves that assumptions [I} [4] and 5] fully identifies the factor matrix and the factor

loading matrices.



2 Bayesian Estimation for MDFM with Stochastic
Volatility

Recall the dynamic factor model for matrix-valued time series with stochastic volatility

Yt = AFtB/ —+ Et7 VeC(Et) ~ N(O, UJtEC X 27‘)7 (28)
vec(F;) = Hp vec(Fy—q) + ... + Hp vec(Fi—g) + 1w, u ~ N(0,A), (2.9)

where A is a n X p; matrix of factor loadings, B is a k£ X py matrix of factor loadings, F,
is a p; X po latent matrix-valued time series of common factors, E; is a n x k idiosyncratic
component, vec( - ) is a vectorizing function, H,, is a diagonal matrix of autoregressive
coefficients (p14, ..., Ppipoi)s L = 1,...,¢, and A, is a covariance matrix for the error in

factor evolution process.

We use a natural conjugate prior for the transpose of factor loadings: A’ and B’. In

addition, we use inverse-Wishart prior for 3, and X.:

3, ~IW(,,S,), (vec(A)|Z,) ~ N(vec(Ay), E, @ Var), (2.10)
3.~ IW(1,,S.),  (vec(B)|E,) ~ N (vec(B)), = ® V). '

The autoregressive coefficient p;j; is assumed to have a truncated normal prior on the
interval (—1,1):

pj,k,l ~ TN(pj,k,l,vafpj,k’l)a ] = 17 -y P1, k= 17 -y P2, l= 17 e q.

. . 2 . . . .
The prior variance \j, is assumed to have a inverse-gamma prior: ZG(vy,,,S,,). We

also treat the first ¢ factors as unknown, and use the following prior

Fire ~ N\ 0, <=7~ , l=1,....q.

2
m=1 pj,k,m

For identification, we use assumptions [I], 4] and 5l We employ Markov Chain Monte
Carlo (MCMC) methods to obtain a draw from the joint posterior of the latent factors

and parameters of the model. Specifically, the following steps are carried out:



1. Sampling from (A’ %,|Y,B,F,X.)
We sample (A’, ¥,) conditional on the latent factors and other parameters from a normal-

inverse-Wishart distribution:
(Al, Er| ’ ) ~ NIW(Kla K;}a /I/\T7 §7‘)7

where

T T
Ka =Vy +Y w 'FBS'BF, A =K, (V;}Ag +) wglFtB'zle;)
t=1 t=1

T
Dy =v,+Th, S, =8, +AVaAl+ > w 'Y, 5'Y, — AKa/A'.

t=1

With the constraints for identification, we cannot directly sample from the above normal-
inverse-Wishart distribution. Here we outline the sampling scheme for A’ with the struc-
ture constraints. To that end, we first represent the restrictions as a system of linear
restrictions. For example, for A’, we represent the restrictions that A is a lower tri-
angular matrix with ones on the diagonal using Ma/vec(A’) = ag. Assuming n > py,
Mas = (m; ;) is a p1(p1 +1)/2 x npy selection matrix, and ag is a py(p1 +1)/2 x 1 vector
consisting of ones and zeros. Then we apply Algorithm 2 in Cong et al.| (2004) or Algo-
rithm 1 in [Chan and Qi (2024) to efficiently sample (vec(A')| - ) ~ N (vec(A’), 3, @Ky)
such that Ma/vec(A’) = ap. In particular, one can first sample vec(A’)) from the uncon-

strained conditional posterior distribution in Step 1, and then return
vec(A') = vec(A)) + (£, @ K )M}y, (Ma/(Z, ® K;})Mg,)fl (ag — Masvec(Al)),

which can be realized by the following four steps:

(1) Compute C = Cx1 ® Cx,,, where Cy,1 is the lower Cholesky factor of X!, and
Cx,, is the lower Cholesky factor of Ka;

(2) Solve CC'U = M/,, for U;

(3) Solve M/ UV = U’ for V;

(4) Return vec(A’) = vec(Al) + V'(ag — Marvec(Al)).

2. Sampling from (B, 3.[Y, A F. %,)



Similar to step 1, (B, X,) are drawn from a normal-inverse-Wishart distribution:
(B, =] - )NIW(B', Kg!, 7., S.),
where

T T
Kp = Vg + Y w 'FJAS'AF, B =Ky (VB}Bg + ZwtngA/zrlYt>
t=1 t=1

T
D.=ve+Tn, S.=S.+BoVg'Bj+ > w 'YX 'Y, - BKpB'

t=1

We sample (B, X.| - ) in two steps. First, we sample 3. marginally from (3.[Y, A, F, %,) ~
IW(§C, ve+Tn) with the normalization restriction that 0., = 1. This can be done using

the algorithm in|Nobile|(2000) described below. Then we simulate (vec(B')[Y, A, F, X, 3,) ~
N (vee(B), B, ® Kg/), which can be done using the algorithm described in step 1.

The algorithm in Nobile| (2000)) can be realized by the following steps:

(1) Exchange row/column 1 and n in the matrix S.. Denote this matrix as §CT”‘”S.
(2) Construct a lower triangular matrix A such that
e J;; equal to the square root of X%c+1—i fori=1,...,n—1;
® Oun = (lun) 7Y, where 1, is the (n, n)-th element in the Cholesky decomposition
of (STmens)=1 denoted as L
e 0;; equal to N(0,1) random variates, i > j.
(3) Set X, = (L7YY(A-tyA~lL~!
(4) Exchange the row/column 1 and n of ¥, back.

3. Sampling from (vec(F,)|Y;, A, B, X, 3, w? p),t=1,...,T
We sample the factors by ¢. Specifically, conditional on parameters, vec(F,) from a normal

distribution:
(vec(Fy)| ) ~ N (£, K¢ '),

where

Ki, = w; 'B'ES'BoA'STA+AY, £ =K' [0 (B'S, @ A'S; Hvee(Y,) + A Hf, 1]



Step 4. Sampling from (A2, [f;x,p;k), J=1,..,p,k=1,...,p

It is clear that ()\ik\fj,k,pj,k) ~ ZG(Vx,,; 5N, ), where Dy, = vy, + %, and Sy, =
1 2 2 T 2
Snie + 3 | 20iet [ (L= 20 Piaem) + 2iega (fime — Piei fige—1 — o — Pimafing) } :

Step 5. Sampling from (p;/fjx, A7,), Jj=1,..,p,k=1,...,p

Note that p;; is a ¢ x 1 vector: pjr = (pjr1,---:Pjkg)- We rewrite as follows:

£ =Fjrpin + Wik, i~ N0\ Ir ), (2.11)
where £, = (fjkq+1,-- - figr), and
fika fike o Jikg
~ Jik2 fiks o Jikgn
Fjr= . .
fjvva_q fjvva_q+1 T f]vva

Following (Chib and Greenberg| (1994) and Chan and Jeliazkov| (2009), we design an
Metropolis-Hastings algorithm with proposal pj , ~ N(pjks K;jlk), where K, = nglk +
f‘;kﬁjk/)\gk, pir =K, (V! piro+ ﬁ;kﬁk/Afk) The proposed value p%, is accepted
with probablity

a (p p* ) —min{1 fN(fj:k:11q|07 /\?,k/(l - Zm p;k,%c,m>:[q)
MH ks M, - ) .
PR (B 1:0|0 AT/ (1= 32, 05 ) o)

5. Sampling the time-varying volatility
For clearer illustration, assume that we have only one type of time-varying volatility. The

following three steps correspond to each type.

5.1 Common stochastic volatility: sampling from (h|Y, A F, B, X X,)

The conditional posterior for h is not a standard distribution. In this paper, we follow
Chan| (2017) for this purpose. In particular, we first obtain the mode of the log density
of (h|-) as well as the negative Hessian evaluated at the mode, denoted as h and Ky,
respectively. Then we use N/ (ﬁ, K, 1) as the proposal distribution, and sample h using an
acceptance-rejection Metropolis-Hasting step. Samplers for ¢ and o? are standard and

we omit the details in this paper.



5.2 The explicit outlier components: sampling from (o,p,|Y, A, F, B, 3. %,)

We follow |Stock and Watson| (2016) to discretize the support of o; to simplify estimation.
Specifically, we use a grid with points at 1,2, 3, ..., 20. The likelihood can be easily evalu-
ated at these grid points. Finally, a draw from the full conditional posterior distribution

of o, can be obtained using the inverse transform method.

The conditional distribution of p,, is a Beta distribution:

(poi Oi) ~ B(apoi + na, bpoi + nl)a

where n; = Zthl I(0;+ = 1) is the number of “regular” periods, and ny = T—Zthl I(o;: =

1) is the number of “outlier” periods.

5.3 Fat-tailed innovations: sampling from (¢?|Y, A F, B, X, %), t = 1,....T
Conditional on the factors and parameters, the posterior for ¢? has an inverse-gamma

distribution:

(@] +) ~ZG((nk +1)/2,(s{ +1)/2),

where s? = tr[X.1(Y; — AF,B)X(Y; — AF,B)].

10



3 Estimating Marginal Likelihoods

This section describes the method we use to obtain integrated likelihood and the
importance-sampling densities and the choice of the importance sampling density. For

illustration, we consider ¢ = 1.

3.1 Integrated Likelihood

Model can be rewritten as follows

y: = (B (039 A)ft + Et, Ep N(O, Zc (24 27«>,

) . . (3.12)
f|P7QNN(O7 [Hp(IT®Q) HP] ) )
System (3.12]) can be rewritten as follows
y=Ir® A®B)f+e, e~N0Ir®X.3%,)),
) . . (3.13)
f|p,ﬂ~/\f<0, [H (I @ Q)""H,)] ) .
It is easy to integrate out f and we can get the following likelihood
y|AB 2.3, Q p~N(¥,Dy), (3.14)
where
y = E[E (y | f,A,B,EC, Ervﬂap) | A,B,Ec, Ervﬂap]
=E[(Ire B A)f|A B, X3, Q,p
=(I;® B A)E[f|A,B, X, %, Q p
=0,
and

Dy, =E{|[Var(y | f,A,B, 2., %,,Q,p) | -} + Var (Ely | f,A,B, 2., %,, Q]| -)]
=r9%.0% +(Ir®BoA)H,(I; Q) 'H,)| (I e B ® A).

11



It can be very costly to compute the inverse of the covariance matrix f)y. Therefore,
here we use Kalman filter. In particular, it is not difficult to show that the marginal

distribution for f; = vec(F,) is as follows:

(fl | P, A) NN(OuAl)
(ft|p’A>NN(OaAt+HpAt—1H;3)7 7(;:27"%71

where for t =2,...,T, Ay = diag(A\}, A3, ..., A2 ), and for t = 1, Ay = diag(A? /(1 —

P1,p2

p%,l)v )\g,l/<1 - p%,l)? teey )‘gl,pg/(l - p;201,p2))' HP = diag(pl,bpllv s pp1,p2)

Therefore, the integrated likelihood at time t is:
(yt | A, B> Eca 27“) ~ N(Oa ]:_)Yt)7

where

D, =X.93,+(BA)A (B @A)
Dy, =3.®%, +(BRA)(A+H,AH)B ®A"), t=2..T

)

3.2 Finding the Optimal Importance-sampling Densities

The next step is to find the maximum likelihood estimators for the hyperparameters in

the importance-sampling density. The importance-sampling density is denoted as

f(0;v) = f(A,2,9,p;V)

_ _(3.15)
= f(A;A, D) - f(Be; Ve, ve) - f(Z9,,00) - f(Asva,S0) - f(p; p, Dp).

In terms of the parameteric family, we use Gaussian density for f(A;A,D,), where
A and D are the corresponding mean and covariance matrix. We use inverse Wishart
densities for f(3.;v., V,) as well as f(X,; v, U,). We use inverse gamma density for We
use the truncated normal density on the interval (—1,1) for f(p;p,D,), where p and D,
are the corresponding mean and covariance matrix. we use inverse-gamma distribution

for f(A; vy, S)).

In order to obtain the maximum likelihood estimators for the parameters in inverse

12



Wishart distribution, we first use maximum likelihood estimation on the Wishart dis-
tribution given the posterior samples, and then compute the degree of freedom and scale

matrix of the inverse Wishart distribution using Lemma 1.

Lemma 1: X follows an inverse Wishart distribution if K = X! follows a Wishart

distribution, formally expressed as
SAIWi(§—d+ 1,8 ) e K="~ W,(6,P), (3.16)

where d is the dimension of the matrix 3, ¢ is the degree of freedom of the Wishart

distribution, and W is the scale matrix.

A Wishart distribution is defined as:

o—d

’K| 2 { 1 —1}
——————exp —=tr(K¥ .
2%|@|§Fd(g) 2 ( )

1

f(K“I]?(S):

We assume that each matrix is drawn independently from the same Wishart distribution
W(W,6). Therefore, we can model the joint distribution as:

M §—d—1

K| 2 1 -1
Ky Ky | 9,6) = [] s exp { —=tr(K, & 1)}
2% [®|2T, (%) 2

m=1
The log-likelihood function is therefore

M M
log f(Ki, ..., Kar [ ¥,0) = — MTlOgQ - 5710%|‘I’| — Mlogly (g) +

§—d—1 1 (& »
TmZ:llogKM — §tr (Tnzﬂ K, ¥ .

The first derivative of the log-likelihood function with respect to the scale matrix ¥ is

equal to
M
leg(f(Kl, 7KM | ‘1’,(5)) M(; 1\1171 Z Km‘llil’

— — \Ilil —
qv 5 *3

(3.17)

m=1

where two results are used

13



o|X —
19X = XX,

9, OwAXTH _ -1 AxX-L,

From equation (3.17)) we obtain a function of the MLE of W with respect to the degree

of freedom ¢

T, mle 1 z
T = — K. (3.18)
m=1

In order to obtain the MLE for the degree of freedom, a straightforward way is to find the
first order condition and second order condition to maximize the log-likelihood function

with respect to 6. We then use the Newton-type methods to find the estimate for 5.

In particular, the first derivative of the log-likelihood function after we plug in (3.18) is

M ZKm

m

9% == (10g2+1)+710g6 710g

M ) 1
- 7¢d (5) + B §10g|Km|-

(3.19)

The second derivative is

@210gf(K1,...,KM|5) Md M 2) 1
4% 5(5.

04?2 20

Maximum likelihood estimators for parameters for normal distributions and inverse

gamma distributions are straightforward to obtain so that we omit the details here.

14



4 Additional Simulation Results

Table 4.1: Adjusted R? from regressing the true factors on the estimates: p; = 3, py = 2

(n, k) T = 200 T = 500 T = 1000
098 098 099 097  0.98 0.99
(10, 10) 0.98 0.96  0.98 0.98  0.98 0.99
096 096 099 099  0.98 0.99
Average 0.97 0.98 0.98
1.00 098  1.00 099  1.00 0.99
(20,15) 0.97 098 099 0.98  1.00 0.99
0.99 099 099 097 098 0.98
Average 0.98 0.99 0.99
1.00 098  1.00 1.00  1.00 0.99
(30,20) 099 098 099 099  0.99 0.99
0.99 098 098 098  0.99 0.99
Average 0.99 0.99 0.99
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Table 4.2: Adjusted R? from regressing the true factors on the estimates: p; =5, p, = 5

(n, k) T = 200 T = 500 T = 1000

0.97 0.98 0.95 0.97 0.97 0.99 0.98 0.97 0.95 0.97 0.99 0.99 0.99 0.98 0.98

0.96 0.97 094 0.97 0.97 0.98 0.97 097 0.93 0.97 0.98 0.97 098 0.97 0.98
(10, 10) 0.97 0.96 097 0.97 0.97 0.97 0.96 0.95 0.92 0.98 0.98 0.97 0.98 0.98 0.98

0.96 0.96 0.93 0.95 0.96 0.97 0.98 0.96 0.94 0.98 0.96 0.96 0.95 0.95 0.97

0.95 0.96 0.95 0.93 0.95 0.98 0.97 096 0.91 0.96 0.99 0.98 0.98 0.97 0.98
Average 0.96 0.96 0.98

0.99 099 099 0.99 0.96 0.99 098 099 0.98 0.99 099 099 099 0.99 0.97

099 099 099 098 094 0.99 097 099 0.97 0.99 0.99 099 099 0.99 0.98
(20, 15) 0.99 0.99 0.99 0.98 0.96 0.99 098 098 0.97 0.99 099 099 099 0.99 0.97

098 098 098 0.98 0.98 099 095 098 0.97 0.98 099 099 099 0.99 0.97

098 097 098 097 0.95 0.98 097 096 0.96 0.96 099 098 099 0.98 0.97
Average 0.98 0.98 0.99

1.00 1.00 0.99 0.99 0.92 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.97 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99
(30,20) 0.99 0.99 0.99 097 0.96 1.00 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.99

0.97 0.98 0.99 0.99 0.91 0.98 0.99 0.99 0.97 0.99 1.00 0.99 0.99 0.99 0.99

0.99 0.99 0.98 0.99 0.97 0.97 0.99 0.98 0.97 0.98 0.99 0.99 0.99 0.99 0.99
Average 0.98 0.99 0.99

16



5 Data: Multinational Macroeconomic Panel and
Fama-French 10 x 10 Panel

Table describes the list of variables we use for the first application. We attach the
link of the website we downloaded the specific variable to the variable name in the table.

The second column of |5.3]is the stationarity transformation for each variable.

Table 5.3: List of variables

Variable Transformation
Real GDP No transformation
Consumption Alog(z)
Labor unit costs Ax
Unemployment Ax
Headline CPI Ax
Energy CPI Ax

Food CPI Ax

Core CPI Ax
Imports Alog(x)
Exports Alog(x)

17


https://data-explorer.oecd.org/vis?df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_NAMAIN1%40DF_QNA_EXPENDITURE_GROWTH_OECD&df[ag]=OECD.SDD.NAD&df[vs]=1.0&pd=1990-Q1%2C2024-Q1&dq=Q..OECD%2BTUR%2BG7%2BUSA%2BGBR%2BCHE%2BSWE%2BESP%2BPRT%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BKOR%2BJPN%2BITA%2BISR%2BDEU%2BFRA%2BFIN%2BDNK%2BCAN%2BAUT%2BAUS...B1GQ......G1.&to[TIME_PERIOD]=false&vw=ov
https://data-explorer.oecd.org/vis?df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_NAMAIN1%40DF_QNA_EXPENDITURE_USD&df[ag]=OECD.SDD.NAD&df[vs]=1.1&dq=Q..OECD%2BG7%2BUSA%2BGBR%2BCHE%2BSWE%2BESP%2BPRT%2BNOR%2BNLD%2BNZL%2BMEX%2BLUX%2BKOR%2BJPN%2BITA%2BIRL%2BDEU%2BFRA%2BFIN%2BDNK%2BCAN%2BAUT%2BAUS.S1M..P3.....LR..&pd=1990-Q1%2C2024-Q2&to[TIME_PERIOD]=false
https://data-explorer.oecd.org/vis?fs[0]=Frequency%20of%20observation%2C0%7CQuarterly%23Q%23&fs[1]=Topic%2C1%7CEconomy%23ECO%23%7CProductivity%23ECO_PRO%23&pg=0&fc=Topic&snb=1&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PDB%40DF_PDB_ULC_Q&df[ag]=OECD.SDD.TPS&df[vs]=1.0&dq=OECD%2BUSA%2BGBR%2BCHE%2BSWE%2BESP%2BPRT%2BNOR%2BNZL%2BNLD%2BLUX%2BKOR%2BJPN%2BITA%2BIRL%2BDEU%2BFRA%2BFIN%2BDNK%2BCAN%2BAUT%2BAUS.Q.ULCE..IX...S.&pd=1990-Q1%2C2024-Q1&to[TIME_PERIOD]=false
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Figure 5.1: The ten macroeconomic indicators (by columns) for 19 countries (by rows).
The horizontal axis represents time and the vertical axis represents the standardized
growth rates. The ranges of the vertical values are not the same. The order of countries
and indicators is the order adopted in the estimation.
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Figure 5.2: The return series of the portfolios structured by different levels of sizes (rows)
and book equity to market equity ratio (columns). Note that we have rearranged the order
of rows and columns. The horizontal axis represents time and vertical axis represents the
standardized monthly returns. The ranges of the vertical values are not the same.
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6 Additional Results: Fama-French 10 x 10 Panel

Estimates for X
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BMS8 0.04 0.08 0 0.11 0.12 0.01 0.05 0.12 0.05 025
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Figure 6.3: Heatmap of estimates for 3.

Estimates for %,

SMALL 0.21 0 0.01 0 002 002 0 0.01 0 0.01
ME5 0 042 002 0 0.01 0 003 001 003 002
BIG oo1 ooz [JEEEH oo 0 0.1 001 005  -003 004 Value
ME2 0 0 001 | 027 001 002 002 002 002  -001
ME6 002 001 0 001 [[049 | o004 001 003 001 004 I 06
ME9 0.02 0 0.1 002 oos [HOBIN o 007  -001 005 04
ME3 0 003 001 002 001 0 033 001 002  -0.01 02
MES 001 001 005 -002 003 007 -001 [HOSOM o 0.07 0.0
ME4 0 003  -003 002 001  -001 002 0 0.4 0.02
ME7 001 002 004 001 004 005 001 007 002 [NOSAN

o QP‘\’\’ “?,‘9 Q© \g\"(ﬁ' \g\?ﬁ’ ‘,3?3’ g\‘?ﬁ’ \g\?g’ @?)‘ “\61

Figure 6.4: Heatmap of estimates for 3,
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