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Abstract

We introduce a class of Bayesian matrix dynamic factor models that accommodates

time-varying volatility, outliers, and cross-sectional correlation in the idiosyncratic

components. For model comparison, we employ an importance-sampling estimator

of the marginal likelihood based on the cross-entropy method to determine: (1)

the optimal dimension of the factor matrix; (2) whether a vector- or matrix-valued

structure is more suitable; and (3) whether an approximate or exact factor model is

favored by the data. Through a series of Monte Carlo experiments, we demonstrate

the accuracy of the factor estimates and the effectiveness of the marginal likeli-

hood estimator in correctly identifying the true model. Applications to macroeco-

nomic and financial datasets illustrate the model’s ability to capture key features

in matrix-valued time series.
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1 Introduction

Matrix-valued time series models have recently gained significant attention for their abil-

ity to capture complex interactions across row- and column-dimensions. In macroeco-

nomics and finance, such data structures are common. A prominent example is macroe-

conomic indicators collected across multiple countries. A standard approach is to stack

the matrix into a long vector and to apply standard multivariate methods, but this often

overlooks important within-row and within-column dependencies. Research on statistical

methods for matrix-valued time series is still evolving, and matrix factor models are be-

coming popular due to their ability to reduce dimensions, particularly in high-dimensional

settings. Wang et al. (2019) introduce a factor model for such matrix-valued time series.

Subsequent work has extended this framework in various directions: Chen et al. (2020) in-

corporated linear constraints to include prior knowledge, Liu and Chen (2019) developed

a threshold version, and Chen et al. (2024) allowed for time-varying loadings.

We extend this literature by proposing a class of Bayesian matrix dynamic factor mod-

els (MDFMs) with several useful features for empirical macro-finance studies. First, we

model factor dynamics using an autoregressive (AR) process, which enables persistent

comovement and recursive forecasting.1 Second, we build an approximate factor frame-

work that allows for both temporal and cross-sectional correlations in the idiosyncratic

components.2 On the time dimension, we incorporate common stochastic volatility, fat-

tailed errors, and COVID-19 outliers, reflecting key empirical features observed in recent

macroeconomic data (e.g., Lenza and Primiceri, 2022; Carriero et al., 2024a). On the

cross-sectional dimension, we use a Kronecker structure for the idiosyncratic covariance

matrix to capture cross-row and cross-column correlations in the idiosyncratic compo-

nents. When combined with a natural conjugate prior, this structure significantly im-

proves computational efficiency.

An important challenge in practice is model comparison when multiple models are avail-

able. In particular, a key issue is determining the optimal dimensions of the factor

matrices. Researchers may also wish to compare standard dynamic factor models using

1See Sargent et al. (1977), Stock and Watson (2012), Bai and Wang (2015), and Poncela et al. (2021).
2Approximate factor models date back to Chamberlain and Rothschild (1983). Unlike exact factor

models that assume a diagonal covariance matrix for the idiosyncratic components, approximate factor
models allow weak serial or cross-sectional correlations.
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vectorized panels (VDFMs) with matrix dynamic factor models (MDFMs), or evaluate

the performance of exact versus approximate factor models.3 In this paper, we address

these questions by adopting an importance-sampling marginal likelihood estimator of

Chan and Eisenstat (2015), which uses a cross-entropy method to construct an efficient

proposal density. This method offers two key advantages. First, it relies on independent

draws from the importance-sampling density rather than correlated Markov Chain Monte

Carlo (MCMC) samples. Second, it is computationally efficient and straightforward to

implement. Specifically, this method identifies the “optimal” parameters within a given

parametric density family by minimizing the Kullback-Leibler divergence to the posterior

distribution. Chan and Eisenstat (2015) have shown that these “optimal” parameters

correspond to the maximum likelihood estimators if we treat the posterior samples as

observed data of the parameters. Since the importance-sampling density is designed to

closely approximate the posterior distribution, the resulting marginal likelihood estimator

is highly efficient and exhibits low variance.

Our paper builds on recent works by Yu et al. (2024) and Qin et al. (2025), who propose

matrix dynamic factor models with matrix autoregressive factor evolution. While their

work focuses on modeling factor dynamics under the matrix factor framework, our ap-

proach complements this line of research by incorporating additional features crucial for

macro-financial applications, including time-varying volatility, outlier adjustments, and

cross-sectional correlations in the idiosyncratic components. We further adopt a fully

Bayesian framework with identification restrictions to uniquely identify loadings and fac-

tors for economic interpretation, and we conduct extensive model comparison exercises

to determine the factor matrix dimension, model structure (VDFM vs. MDFM), and the

nature of idiosyncratic correlations (exact vs. approximate factor models).

Through a series of Monte Carlo experiments, we demonstrate that the proposed esti-

mator works well in practice. In particular, we show that our factor estimates are close

to their true values. In addition, our results suggest that the larger the sample size is,

the more accurate factor estimates are. Moreover, we find that the marginal likelihood

estimator can correctly identify the true model.

We illustrate the usefulness of the proposed MDFMs using two datasets. The first dataset

3For convenience, we refer to the vector version as VDFM, where “v” stands for “vector”, in contrast
to “m” for “matrix”.
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includes 10 quarterly macroeconomic indicators for 19 countries, covering 115 quarters

from 1995.Q1 to 2023.Q3. The second dataset is a 10 × 10 Fama-French monthly panel

spanning from January 1990 to June 2024 (414 observations). Several key findings emerge

from our analysis. First, models with stochastic volatility yield higher marginal likeli-

hoods for both datasets, indicating clear benefits from incorporating time-varying volatil-

ity. The international macroeconomic panel favors an MDFM with a 1× 2 factor matrix

and cross-sectional correlations in the idiosyncratic components, while the Fama-French

panel favors a VDFM with five factors. Second, the estimated factor loadings reveal clear

patterns that can be used to group both rows (countries or sizes) or columns (indica-

tors or book equity to market equity ratios). Finally, we observe high volatility in both

applications during major global events, including the Great Recession, the COVID-19

pandemic, and the Russia–Ukraine war.

The rest of this paper is organized as follows. In Section 2 we specify the proposed dy-

namic matrix factor model, with detailed discussion of motivation, identification, priors,

Bayesian estimation and a useful extension. Section 3 introduces an importance-sampling

marginal likelihood estimator for the purpose of determining the dimension of factor ma-

trix. Monte Carlo studies are presented in Section 4 to demonstrate the accuracy of

the factor estimates as well as the performance of the marginal likelihood estimator. In

Section 5, we illustrate the usefulness of our model employing two empirical applications.

Lastly, Section 6 concludes.

2 The Dynamic Factor Model for Matrix-valued Time

Series

Building on the framework established by Wang et al. (2019), we introduce a dynamic

factor model for matrix-valued time series. We follow the spirit of the approximate dy-

namic factor model proposed by Chamberlain and Rothschild (1983) and allow cross-row

and cross-column correlations. We then incorporate time-varying volatility and outlier

adjustments, discuss identification restrictions, and outline the Bayesian priors and es-

timation process. Lastly, we extend the model to include heteroskedastic time-varying

volatility.
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2.1 The Model

Consider observing an n × k data matrix Yt at time t. To better illustrate, assume

Yt is a macroeconomic data matrix drawn from multiple nations at time t, where the

rows correspond to n countries and the columns correspond to k variables. Consider the

following dynamic factor model:

Yt = AFtB
′ + Et, vec(Et) ∼ N (0, ωtΣc ⊗Σr), (1)

vec(Ft) = Hρ1vec(Ft−1) + . . .+Hρqvec(Ft−q) + ut, ut ∼ N (0,Λ), (2)

where A and B are loading matrices of dimensions n× p1 and k × p2, respectively, Ft is

a p1 × p2 latent factor matrix. Σr and Σc are row- and column-wise covariance matrices

with dimensions n × n and k × k, respectively. The p1p2 × p1p2 covariance matrix Λ is

a diagonal matrix: Λ = diag(λ2
1,1, . . . , λ

2
p1p2,p1p2

). The autoregressive coefficient matrices

Hρ1 , . . . ,Hρq capture the persistence of the factors as well as their correlation.

The bilinear form AFtB is crucial for capturing the cross-country and cross-variable

dependencies. For example, the i-th row of Yt is

Yi,.,t = Ai,.FtB
′ + Ei,.,t, i = 1, . . . , n,

where Yi,.,t denotes the i-th row of the data matrix, Ai,. represents the i-th row of the

loading matrix A, and Ei,.,t is the i-th row of the matrix Et. It is evident that the i-th

row of the data matrix is a linear combination of the rows of FtB
′, weighted by the i-th

row of A. Similarly, the j-th column of the data matrix is a linear combination of the

columns of AFt, weighted by the j-th column of B′. Thus, A reflects how countries

load on latent factors, while B reflects how indicators respond to them. The rows and

columns of Ft can be interpreted as common factors influencing countries and indicators,

respectively.

2.1.1 Important Features of the Model

Based on the matrix factor model by Wang et al. (2019), our model introduces two key

features: dynamic factors and cross-sectional correlations with time-varying volatility in

the idiosyncratic components.
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Incorporating factor dynamics is crucial, as economic indicators often exhibit persistent

deviations from trend following shocks. For instance, GDP growth may remain subdued

long after a recession. The autoregressive process in (2) can effectively capture such

persistence and potentially improve modeling and forecasting performance.

The other key feature of model (1)–(2) is the Kronecker-structured covariance of the

vectorized error, vec(Et), which introduces both flexibility and interpretability. This

structure allows for cross-sectional correlation in the idiosyncratic components, making

the model an approximate factor model rather than an exact one. Approximate factor

models, introduced by Chamberlain and Rothschild (1983), have been widely applied in

macroeconomics (e.g., Forni et al., 2001; Stock and Watson, 2005).

The Kronecker structure also separates row-wise and column-wise covariances. In partic-

ular, for any row, the conditional covariance is Cov(Y′
i,.,t |A,Ft,B) = ωtσ

2
r,i,iΣc, for i =

1, . . . , n. Similarly, for any column, the conditional covariance is Cov(Y.,j,t |A,Ft,B) =

ωtσ
2
c,j,jΣr, j = 1, . . . , k. Σr and Σc can then be interpreted as the row-wise and column-

wise covariances that are not explained by the common components.

Computationally, this structure enables efficient sampling: with conjugate priors, the

conditional posteriors of (A,Σr) and (B,Σc) follow matrix-normal-inverse-Wishart dis-

tributions, allowing for joint updates rather than element-wise sampling for the loading

matrices A and B (see Section 2.4). Finally, the model flexibly accommodates time-

varying volatility and outliers via the latent scale ωt. For homoskedasticity, one can

simply set ωt = 1 for all t.

2.1.2 Time-varying Volatility and Outlier Adjustment

It is useful to allow for time-varying volatility in modeling macroeconomic data in em-

pirical macroeconomics or finance.4 The conditionally Gaussian framework in (2) can

accommodate a variety of stochastic volatility processes. We extend our model by accom-

modating three popular specifications in the literature: the common stochastic volatility

model of Carriero et al. (2016), the explicit outlier component of Stock and Watson

4See, for example, the discussions on the importance of incorporating time-varying volatility in vector
autoregressions (VARs) by Cross and Poon (2016), Chan and Eisenstat (2018), and Chan (2023), and in
factor models by Aguilar and West (2000), Chib et al. (2006), Kastner et al. (2017), and Li and Scharth
(2022).
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(2016), and the t-distributed innovations of Jacquier et al. (2004).

Specification 1. Common stochastic volatility

An important example is the common stochastic volatility model introduced in Carriero

et al. (2015). In particular, let ωt = eht , and assume that the log-volatility ht follows a

stationary AR(1) process with 0 mean:

ht = ϕht−1 + uh
t , uh

t ∼ N (0, σ2
h), (3)

for t = 2, ..., T , where it is assumed |ϕ| < 1 and the initial state h1 is assumed to have a

Gaussian prior: h1 ∼ N (0, σ2
h/(1− ϕ2)).

Specification 2. The explicit outlier component

Another widely-adopted specification after the COVID-19 pandemic is the explicit outlier

component proposed in Stock and Watson (2016). In specific, the outlier indicators

enter the model in a scale factor, denoted ωt = o2t . ot follows a mixture distribution

that distinguishes between regular observations ot = 1 and outliers with ot ⩾ 2. The

probability that outliers occur is po, which is assumed to have a beta prior.

Specification 3. Fat-tailed innovations

This specification characterizes the infrequent occurrences of outliers by incorporat-

ing a latent variable ωt = q2t , where q2t follows an inverse-gamma distribution: q2t ∼
IG(l/2, l/2). Then the marginal distribution of the vectorized error has a multivariate t

distribution with zero mean, scale matrixΣc⊗Σr, and degree of freedom l. t-distributions

have fatter tails than normal distribution, and thus may provide better fit for data with

infrequent occurrences of outliers.

2.1.3 Relations to Vectorized Factor Models

A natural benchmark to model (1)-(2) is a typical VDFM defined as follows:

yt = Mft + εt,

ft = Hρft−1 + νt.
(4)

where M is a nk×p loading matrix, while ft is a p×1 vector of factors. p is the number of
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factors and we assume p = p1×p2 for better comparison to the MDFM. The matrix Hρ is

a k-dimensional diagonal matrix consisting of autoregressive coefficients for the evolution

process of these factors.

The MDFM can be viewed as a restricted version of the VDFM in (4), where the factor

loadings possess a Kronecker product structure. Specifically, model (1) can be written

as:

vec(Yt) = (B⊗A)vec(Ft) + vec(Et). (5)

This structure formulation significantly reduces the dimensionality of the parameter

space. In particular, model (1) requires estimating only np1 + kp2 loading parameters,

compared to nk × p1p2 parameters in the unrestricted DFM in (4).

However, if the Kronecker structure imposed by (1) is not supported by the data, the

VDFM may provide a better fit. He et al. (2024) propose a family of randomized speci-

fication tests to formally test for the presence of this matrix structure. In this paper, we

adopt a Bayesian model comparison approach by estimating the marginal likelihoods of

competing models, as detailed in Section 3.

2.2 Identification

MDFMs defined in (1)-(2) cannot be identified without further restrictions. For this

reason, research in this field focuses on estimating the column space of the factor loadings,

as which is uniquely identifiable. This approach proves beneficial when the objective is to

group countries (rows) or variables (columns) based on the pattern of the column space of

the loading matrices and to make forecasts using the estimates of common components.

However, this strategy may pose challenges for the interpretation of the factors.

In the literature of DFMs, a commonly imposed set of restrictions is that the factor

loading matrix is a lower triangular matrix with ones on the diagonal, accompanied by

the assumption that the idiosyncratic error vec(Et) is independent of the latent factors

vec(Ft). We follow that spirit and propose a set of sufficient identification assumptions

for MDFMs. The proofs are provided in the Supplemental Appendix Section 1.

Assumption 1 Factors and idiosyncratic errors are independent of each other.
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Assumption 2 Factor series are independent of each other. Hρl
is diagonal matrix, for

l = 1, . . . , q. Cov(ut) = Ip1p2 .

Assumption 3 One of the matrices of factor loadings, A or B, are lower-triangular

matrices with ones on the diagonal, while the other one is a lower-triangular matrix with

strictly positive diagonal elements.

Proposition 1 Consider the matrix dynamic factor model in (1) and (2). Under As-

sumptions 1-3, the dynamic factors Ft and the loading matrices A and B are uniquely

identified.

Note that a variation is that we restrict the diagonal elements of both A and B to be

ones, while allowing Cov(ut) to be a positive diagonal matrix rather than an identity

matrix, as specified in Assumption 4–5.

Assumption 4 Factor series are independent of each other. Hρl
is diagonal matrix, for

l = 1, . . . , q. Cov(ut) is a positive definite diagonal matrix.

Assumption 5 Factor loading matrices, A and B are lower-triangular matrices with

ones on their diagonal.

Proposition 2 Consider the matrix dynamic factor model in (1) and (2). Under As-

sumptions 1, 4, and 5, the dynamic factors Ft and the loading matrices A and B are

uniquely identified.

Another identification issue in (1)–(2) is that with the structure in the covariance matrix

for the vectorized error, the covariances Σr and Σc can only be identified up to scale.

That is, there exist a constant m ∈ R \ {0}, such that Σc ⊗ Σr = Σ̃c ⊗ Σ̃r, where

Σ̃c = mΣc and Σ̃r = m−1Σr. To fix the scale, we normalize the (1, 1) element of Σc to

be 1.

An important implication of the lower triangular structure of the factor loading matrices,

as specified in Assumption 3 and 5, is that the order of rows and columns in data matrix
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Yt “define” the rows and columns of the factor matrix. In specific, the first row of the

data matrix is the first row of the factor matrix plus the idiosyncratic error, and so forth.

The same logic applies to the columns. The hierarchical structure adopted here thereby

provides an additional layer of interpretability by linking factors to specific rows and

columns of the data matrix. As a result, the ordering of the data plays a pivotal role in

interpreting both the factor matrix and the loading matrices.

While our model (1)–(2) offers a parsimonious and interpretable framework for model-

ing matrix-valued time series, it is important to acknowledge its limitations. One key

assumption (Assumption 2) is that the elements of the factor matrix are i.i.d. In prac-

tice, this assumption may not hold. One way to extend the model is to allow for such

dependencies via a vector or matrix autoregressive process for Ft. Considering that in-

corporating these additional features alongside time-varying volatility and cross-sectional

dependence in the idiosyncratic components would increase model complexity and pose

further identification challenges, we opt for a framework that strikes a balance between

flexibility and complexity, and we leave such generalizations to future research.

2.3 Priors

We use natural conjugate priors for the transpose of factor loadings: A′ and B′. In

addition, we use inverse-Wishart priors for Σr and Σc:

Σr ∼ IW(νr,Sr), (vec(A′) |Σr) ∼ N (vec(A′
0),Σr ⊗VA′),

Σc ∼ IW(νc,Sc), (vec(B′) |Σc) ∼ N (vec(B′
0),Σc ⊗VB′).

(6)

where VA′ and VB′ are p1 × p1 and p2 × p2 symmetric matrices, respectively.

Intuitively, this prior means that if a country’s idiosyncratic variance is large, the prior

allows more uncertainty in its corresponding element inA. In addition, if the idiosyncratic

components of two countries are correlated, the prior treats it as plausible that these two

countries might respond to latent factors in correlated ways, while still allowing the data

to overturn this if needed. To see this more concretely, consider the covariance between

the i-th and j-th countries (rows) in A:

Cov(Ai,.,Aj,. |Σr) = Σr,i,jVA′ ,
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where Σr,i,j denote the (i, j)-th element of Σr. Therefore, the corresponding prior corre-

lation of the loadings is Σr,i,j/
√
Σr,i,iΣr,j,j, implying that countries with more correlated

idiosyncratic components are encouraged to have more correlated factor loadings. An

analogous interpretation holds for the columns (indicators) through Σc and B.

In practice, we can adopt diagonal matrices for hyperparameter matrices Sr and Sc, based

on the belief that there is no cross-sectional correlation in idiosyncratic components.

The autoregressive coefficient, i.e., the diagonal elements of Hρ, is assumed to have a

truncated normal prior on the interval (−1, 1):

ρj,k,l ∼ N (ρj,k,l,0, Vρj,k,l)11(|ρj,k,l| < 1), j = 1, ..., p1, k = 1, ..., p2, l = 1, . . . , q,

where 11( · ) denotes the indicator function.

The prior variance λ2
j,k is assumed to have a inverse-gamma prior: IG(νλj,k

, Sλj,k
). We

also treat the first q values of Ft as unknown, and use the following prior

fj,k,l ∼ N

(
0,

λ2
j,k

1−
∑q

m=1 ρ
2
j,k,m

)
, l = 1, . . . , q.

2.4 Bayesian Estimation

Posterior draws can be obtained by sequentially sampling from: (1) p(A′,Σr|Y,B,F,Σc);

(2) p(B′,Σc | Y,A,F,Σr); (3) p(vec(Ft) | Yt,A,B,Σr,Σc,ω
2,ρ), t = 1, . . . , T ; (4)

p(λ2
j,k | fj,k, ρj,k), j = 1, . . . , p1, k = 1, . . . , p2; (5) p(ρj,k,l | fj,k, λ2

j,k), j = 1, . . . , p1, k =

1, . . . , p2, l = 1, . . . , q; (6) p(ωt |A,Ft,B,Σc,Σr), t = 1, . . . , T .

With the natural conjugate prior, we can fully exploit the structure of the data matrix

and the Kronecker form of the idiosyncratic components to directly sample the loading

matrices, rather than sampling their free elements iteratively, thereby improving compu-

tational efficiency. To sample these loadings with identification restrictions outlined in

Section 2.2, we adopt the approach proposed by Cong et al. (2004). To sample the covari-

ance matrix Σc with the first element fixed at 1, we use the algorithm proposed by Nobile

(2000). Sampling the latent factors and parameters such as λ, ρ, as well as stochastic

volatility and outliers, is relatively straightforward and is discussed in detail in Supple-
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mental Appendix Section 2. In the following, we focus on the implementation of Step

1–2, which involves sampling (A′,Σr | · ) and (B′,Σc | · ) under parameter restrictions.

Step 1. Sampling from (A′,Σr |Y,B,F,Σc)

We sample (A′,Σr) conditional on the latent factors and other parameters from a normal-

inverse-Wishart distribution:

(A′,Σr | · ) ∼ NIW(Â′,K−1
A′ , ν̂r, Ŝr), (7)

where

KA′ = V−1
A′ +

T∑
t=1

ω−1
t FtB

′Σ−1
c BF′

t, Â′ = K−1
A′

(
V−1

A′A
′
0 +

T∑
t=1

ω−1
t FtB

′Σ−1
c Y′

t

)

ν̂r = νr + Tk, Ŝr = Sr +A0V
−1
A′A

′
0 +

T∑
t=1

ω−1
t YtΣ

−1
c Y′

t − ÂKA′Â′.

We can sample the normal-inverse-Wishart distribution in (7) in two steps. First, we

sample from the inverse Wishart distribution for Σr marginally. Then given Σr, we can

sample from the normal distribution of (A′ | · ).

With the constraints on the structure of A′ for identification, we cannot directly sample

from the above normal distribution. Here we outline the sampling scheme for A′ with

the constraints. To that end, we first represent the restrictions as a system of linear re-

strictions. For example, for A′, we represent the restrictions that A is a lower triangular

matrix with ones on the diagonal using MA′vec(A′) = a0. Assuming n > p1, MA′ is

a p1(p1 + 1)/2 × np1 selection matrix, and a0 is a p1(p1 + 1)/2 × 1 vector consisting of

ones and zeros. Then we apply Algorithm 2 in Cong et al. (2004) or Algorithm 1 in

Chan and Qi (2024) to efficiently sample (vec(A′) | · ) ∼ N (vec(Â′),Σr⊗K−1
A′ ) such that

MA′vec(A′) = a0. In particular, one can first sample vec(A′
u) from the unconstrained

conditional posterior distribution in Step 1. It is important to note that given the Kro-

necker structure in the covariance matrix of the posterior, i.e., (Σr ⊗K−1
A′ ), we are able

to sample from the matrix normal distribution, and thus facilitate the computation. In

particular, we first sample a p1×n matrix of independent samples from a standard normal

distribution, denoted as Z. Then let

A′
u = Â′ +C−1′

KA′ZC
′
Σr
, (8)

12



where CKA′ and CΣr are the Cholesky decomposition of KA′ and Σr. One can show

that (A′
u | · ) ∼ MN (Â′,K−1

A′ ,Σr), where MN denotes the matrix normal distribution.

Therefore, (vec(A′
u) | · ) ∼ N (vec(Â′),Σr ⊗K−1

A′ ).

Given the unrestricted A′
u, we return

vec(A′) = vec(A′
u) + (Σr ⊗K−1

A′ )M
′
A′

(
MA′(Σr ⊗K−1

A′ )M
′
A′

)−1
(a0 −MA′vec(A′

u)),

which can be realized by the following four steps:

(1) Compute C = CΣ−1
r

⊗CKA′ , where CΣ−1
r

is the lower Cholesky factor of Σ−1
r , and

CKA′ is the lower Cholesky factor of KA′ ;

(2) Solve CC′U = M′
A′ for U;

(3) Solve MA′UV = U′ for V;

(4) Return vec(A′) = vec(A′
u) +V′(a0 −MA′vec(A′

u)).

It can be shown that A′ follows the distribution (A′ | · ,MA′vec(A′) = a0).

Step 2. Sampling from (B′,Σc |Y,A,F,Σr)

Similar to step 1, (B,Σc) are drawn from a normal-inverse-Wishart distribution:

(B,Σc | · ) ∼ NIW(B̂′,K−1
B′ , ν̂c, Ŝc),

where

KB′ = V−1
B′ +

T∑
t=1

ω−1
t F′

tA
′Σ−1

r AFt, B̂′ = K−1
B′

(
V−1

B′ B
′
0 +

T∑
t=1

ω−1
t F′

tA
′Σ−1

r Yt

)

ν̂c = νc + Tn, Ŝc = Sc +B0V
−1
B′ B

′
0 +

T∑
t=1

ω−1
t Y′

tΣ
−1
r Yt − B̂KB′B̂′.

We sample (B′,Σc | · ) in two steps. First, we sample Σc marginally from (Σc | · ) ∼
IW(Ŝc, ν̂c) with the restriction that σc,1,1 = 1. We use the algorithm by Nobile (2000)

for this step, outlined below:

(1) Exchange row/column 1 and n in the matrix Ŝc. Denote this matrix as ŜTrans
c .

(2) Construct a lower triangular matrix ∆ such that

� δii equal to the square root of χ2
ν̂c+1−i for i = 1, . . . , n− 1;
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� δnn = (lnn)
−1, where lnn is the (n, n)-th element in the Cholesky decomposition

of (ŜTrans
c )−1, denoted as L

� δij equal to N (0, 1) random variates, i > j.

(3) Set Σc = (L−1)′(∆−1)′∆−1L−1.

(4) Exchange the row/column 1 and n of Σc back.

Then we sample from a normal distribution for B:

(vec(B′) |Y,A,F,ΣrΣc) ∼ N (vec(B̂′),Σc ⊗K−1
B′ ),

which can be done using the algorithm described in step 1.

2.5 An Extension: Heteroskedastic Time-Varying Volatility

A more flexible way to model time-varying volatility is to incorporate heteroskedastic

stochastic volatility processes for each of the variables included, as first proposed by

Cogley and Sargent (2005) in a vector autoregression setting. To that end, we assume

the idiosyncratic component has a different covariance matrix as follows:

vec(Et) ∼ N (0,Dt) , (9)

where Dt = diag(eh1,1,t , eh2,1,t , . . . , ehn,k,t) is a diagonal matrix. The log-volatility follows

a stationary AR(1) process with 0 mean similar to (3).

Compared to the specification in (1), this extension contains nk stochastic volatility

processes, which can accommodate more complex volatility patterns. However, these

volatility processes are assumed independent and there will be no cross-sectional corre-

lation for rows and columns in the idiosyncratic components, which can be unrealistic in

many practical applications. Moreover, this comes at a cost of more intensive posterior

computations since natural conjugate priors cannot be applied to (9). Ultimately, there is

always a trade-off between model complexity and computational burden, and the choice

of specification depends on the application and its specific goals.
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3 Model Comparison Using the Marginal Likelihood

When multiple models are available, a major challenge for practitioners is the lack of tools

for comparing these models. In this section, we employ an importance-sampling estimator

of the marginal likelihood to conduct model comparison. In particular, we are interested

in determining the optimal dimension of the factor matrix, selecting between the VDFM

and the MDFM, and distinguishing between exact factor models and approximate factor

models.

3.1 A Bayesian Approach to Model Comparison

A natural Bayesian approach of model comparison involves computing the marginal like-

lihood for each available model and selecting the model that yields the highest marginal

likelihood. Using marginal likelihoods for model comparison has several advantages.

First, it accounts for model complexity and avoids overfitting by integrating over the

entire parameter space, rather than replying on point estimates. This penalizes over-

parameterized models, as more complex models spread probability mass over a larger pa-

rameter space, leading to lower marginal likelihoods unless justified by the data. Second,

marginal likelihood is a consistent model selection criterion–if the true data-generating

process is included in the set of candidate models, the marginal likelihood will asymptot-

ically favor the correct model as more data becomes available. Moreover, Bayes factors,

which are based on the ratio of marginal likelihoods between competing models, provide

a direct measure of relative evidence in favor of one model over another.

Despite its strong theoretical foundation and automatic penalty for overfitting, marginal

likelihood is often criticized for its high computational cost, especially in high-dimensional

settings. For this reason, several alternative methods have been proposed. For example,

Lopes and West (2004) introduced a reversible jump MCMC algorithm for moving be-

tween models that allows movement between models with different numbers of factors,

while Lee and Song (2002) developed a path sampling approach to compute the Bayes

factor efficiently. Additionally, Bhattacharya and Dunson (2011) and Lee et al. (2022)

inferred the number of factors by zeroing out a subset of the loading elements using

Bayesian variable selection priors.
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3.2 Estimating the Marginal Likelihood via Importance Sam-

pling

In this paper, instead of computing the marginal likelihood directly, we estimate it using

an importance-sampling estimator, which significantly reduces computational complexity

while maintaining accuracy. Specifically, let θ denote the unknown parameters, g(θ)

be the importance sampling density, and p(θ) be the prior distribution. The marginal

likelihood is estimated as follows:

p̂IS(y) =
1

N

N∑
n=1

p(y | θn)p(θn)

g(θn)
, (10)

where θ1, ...,θn are independent draws from the importance sampling density g(θ). It is

clear that this estimator is unbiased and consistent, assuming g dominates p(y | · )p( · ).

The efficiency of the estimator depends critically on the choice of g. Ideally, if g is close to

the posterior distribution, the estimator will have low variance. In this paper, we employ

the cross-entropy method proposed by Chan and Eisenstat (2015) to find the optimal

density within a given parametric family of distributions by minimizing the Kullback-

Leibler divergence of the posterior distribution from the importance sampling density.

This approach has two major advantages. First, using the importance-sampling density

is convenient as it generates independent draws instead of correlated MCMC draws. Sec-

ond, since the importance density is close to the posterior, the estimator exhibits low

variance, requiring only a few thousand samples for accurate estimation. Specifically,

Chan and Eisenstat (2015) show that, for a given parametric family of densities, the op-

timal hyperparameters correspond to the maximum likelihood estimators when posterior

samples are treated as observed data.

To further facilitate computation and reduce the estimator’s variance, we integrate out

the factors from the likelihood function. While a closed-form expression for the integrated

likelihood is available, directly computing the inverse of the covariance matrix in high-

dimensional datasets is computationally prohibitive. Therefore, we employ the Kalman

filter to efficiently integrate out the factors. Further details on integrating the factors and

the choice of the importance sampling density are provided in Supplemental Appendix

Section 3.
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3.3 The Choice of the Importance Sampling Density

After integrating out the factors, the importance density is denoted as

f(θ;v) = f(A,B,Σr,Σc,ρ,λ,ω;v)

=f(A;A,DA) · f(B;B,DB) · f(Σr; νr,Ψr)·

f(Σc; νc,Ψc) · f(ρ;ρ,Dρ) · f(λ; νλ, Sλ) · f(ω;vω).

(11)

For the parametric family, we use Gaussian densities for f(A;A,DA), and f(B;B,DB),

where A and B are the means, while DA and DB are the covariance matrices. We use

inverse-Wishart densities for f(Σc; νc,Ψc), and f(Σr; νr,Ψr), where νc and νr are degrees

of freedom, while Ψc and Ψr are scale matrices. The truncated normal density on the

interval (−1, 1) is used for f(ρ;ρ,Dρ), where ρ and Dρ are the mean and covariance

matrix. Moreover, we use inverse-gamma distributions for f(λ; νλ, Sλ).

Recall that we consider three specifications for time-varying volatility, ω. In the first

specification, the log-volatility h follows an AR(1) process with an autoregressive coeffi-

cient ϕ and corresponding innovations σ2
h. We use a normal distribution for h, a truncated

normal on (−1, 1) for ϕ and an inverse-gamma distribution for σ2
h.

The optimal hyperparameters for the truncated normal and inverse-gamma distributions

can be conveniently estimated via maximum likelihood estimation. However, handling

h presents challenges. In specific, if we use a normal importance sampling density of

the form N (ĥ,K−1
h ), one can obtain ĥ and K−1

h analytically, where Kh is a T × T full

matrix. This approach has two key drawbacks. First, sampling from a Gaussian density

with large full covariance matrix is computationally intensive. Second, in Kh there are

T (T + 1)/2 parameters to be estimated. This means that a large number of posterior

draws is needed to ensure accurate estimation.

To address these problems, we follow Chan (2023) and impose a restricted family of

Gaussian density that exploits an AR process for the latent states h, which includes

the prior density of h in (3) as a special case. This restriction significantly reduces the

parameter space from T + T (T + 1)/2 to 2T + 1. Furthermore, this specification allows

for analytical solutions for the autoregressive coefficients in the AR process, making the

mean and covariance matrix of the normal importance sampling density straightforward
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to obtain. We refer the reader to Chan (2023) for further details.

For the outlier components o, we employ a discrete distribution over a predefined grid

during estimation.5 As a result, the probability of each grid point can be computed using

the posterior draws of o. We then use the beta distribution for the the outlier probability

po. For the fat-tailed innovations, we adopt an inverse-gamma distribution for q2t . Further

details on the procedure can be found in Supplemental Appendix Section 3.

4 Monte Carlo Studies

In this section, we first assess the accuracy of the factor estimates by comparing them to

their true values across datasets of varying sizes. Then, we evaluate whether the marginal

likelihood estimator can accurately identify the true model.

4.1 Performance of Factor Estimators under Different Sample

Sizes and Dimensions of Factor Matrices

The data are generated according to (1) and (2) with q = 1. The parameters are drawn

as follows: the free parameters in A and B are drawn from the uniform distribution,

U(0, 1), and ρj,k is drawn from U(0.8, 0.9) for j = 1, . . . , p1, k = 1, . . . , p2. We set Σc to

0.3Ik, Σr to 0.5In, and λ2
j,k to 1 for j = 1, . . . , p1, k = 1, . . . , p2. To assess the accuracy

of our factor estimates, we consider sample sizes (n, k) ∈ {(10, 10), (20, 15), (30, 20)} and

observation lengths T ∈ {200, 500, 1000}. The factor matrices are preset to dimensions

(p1, p2) = (3, 2) or (p1, p2) = (5, 5).

For models with smaller factor matrix (p1 = 3 and p2 = 2), we use a Gibbs sampling

chain of 10,000 iterations after 5,000 burn-in draws. For larger factor matrix orders

(p1 = 5, p2 = 5), we extend the sampling chain to 20,000 iterations after 10,000 burn-in

draws.6 We calculate the posterior mean as the point estimate for the factors and compare

5Following Carriero et al. (2024b), we use (1, 20) as the support (grid) for o.
6We found that for p1 = 3, p2 = 2, convergence is typically achieved within 5,000 burn-in draws,

even with initial factor values drawn randomly from a standard normal distribution. However, when the
dimension of the factor matrix is large (p1 = p2 = 5), setting proper initial values is crucial to shorten
the Markov chain. Estimates from a VDFM (1,000 posterior draws after 1,000 burn-in draws) work well
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these to the true factors. Specifically, we project the true factors onto the estimates to

obtain adjusted R2 values for each factor series in the factor matrix.

Figure 1–2 represent the adjusted R2 for (p1, p2) = (3, 2) and (p1, p2) = (5, 5), respectively.

Each row corresponds to a different sample size.7 Each column represents a different

length of observations with the first column corresponding to T = 200. Each color block

represents the adjusted R2 for a specific element in the factor matrix. For instance, the

upper-left block of the first subplot in Figure 1 corresponds to the adjusted R2 from

regressing the true value of f1,1,. on the estimates f̂1,1,., for (n, k, T ) = (10, 10, 200).

The color intensity in these figures reflects the magnitude of the adjusted R2; darker

colors indicate higher values. For better visualization, the minimum of the color axis is

set to 0.9, as the smallest adjusted R2 we have obtained is 0.91. More details on the

adjusted R2s are provided in Supplemental Appendix Section 4.

Overall, our factor estimates closely match the true values. Moreover, a comparison across

columns reveals that larger observation lengths T yield better estimates. A comparison

across rows shows that larger sample sizes lead to more accurate estimates. Comparing

the two figures, it is evident that smaller factor matrix dimensions result in better es-

timates. These findings suggest that increasing the number of observations and sample

size improves the accuracy of factor estimates. This is in line with the theory in VDFM

and static matrix factor model.8

Figure 1: Adjusted R2 from regressing the true factors on the estimates: p1 = 3, p2 = 2

as initial values. Geweke statistics are computed to ensure the convergence of Markov chains.
7For example, the first row represents (n, k) = (10, 10), while the second row represents (20, 15).
8See, e.g., Bai (2003) for inferential theory in vectorized factor model and Chen and Fan (2023) for

that in static matrix factor model.
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Figure 2: Adjusted R2 from regressing the true factors on the estimates: p1 = 5, p2 = 5

4.2 Can the Marginal Likelihood Estimator Identify the Correct

Dimension of the Factor Matrix?

To evaluate the performance of the marginal likelihood estimator in correctly identifying

the true dimension of the factor matrix, we estimate log marginal likelihoods for models

with a variety of combinations of (p1, p2). Specifically, we use four datasets from Section

4.1:

Dataset 1: n = 10, k = 10, T = 500; true dimension: p1 = 3, p2 = 2.

Dataset 2: n = 20, k = 15, T = 500; true dimension: p1 = 3, p2 = 2.

Dataset 3: n = 10, k = 10, T = 500; true dimension: p1 = 5, p2 = 5.

Dataset 4: n = 20, k = 15, T = 500; true dimension: p1 = 5, p2 = 5.

For datasets with a true dimension of factor matrix: (p1, p2) = (3, 2), we estimate models

with p1 and p2 ranging from 1 to 5. For datasets with a true dimension of (5, 5), we

estimate models with p1 and p2 ranging from 3 to 7.

Figures 3 presents the estimates for log marginal likelihoods for the four datasets. Two

key findings are noteworthy. First, in all the four datasets, the estimates correctly identify

the true order; that is, the estimates are the largest when (p1, p2) are set to their true

values. Second, the log marginal likelihood estimates exhibit a consistent pattern. Before

the true order is reached, the estimates increase monotonically, reflecting an improving
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model fit. After reaching the true order, the estimates decrease monotonically, indicating

that additional factors do not contribute significantly to the model fit and may introduce

overfitting. For example, when true order is (p1, p2) = (3, 2), the sequence log p̂(y | p1 =
1) < log p̂(y | p1 = 2) < log p̂(y | p1 = 3) and log p̂(y | p1 = 3) > log p̂(y | p1 = 4) >

log p̂(y |p1 = 5) is observed. Similarly, log p̂(y |p2 = 1) < log p̂(y |p2 = 2) and log p̂(y |p2 =
2) > log p̂(y | p2 = 3) > log p̂(y | p2 = 4) > log p̂(y | p2 = 5).

Figure 3: Log marginal likelihood estimates for the four datasets. From top left to bottom
right, the panels correspond to (n, k, p1, p2) = (10, 10, 3, 2), (20, 15, 3, 2), (10, 10, 5, 5), and
(20, 15, 5, 5). Each line represents a different value of p2, and the blue dot represents the
true value for p1 and p2.

4.3 Can Marginal Likelihood Distinguish VDFM from MDFM?

In this subsection, we examine the ability of the marginal likelihood estimator to correctly

identify the underlying factor structure. Specifically, we generate data from two types

of dynamic factor models: a VDFM defined in Equations 4 and an MDFM. When the
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true model is VDFM, the free elements in loading matrix M are randomly drawn from

a uniform distribution U(−1, 1), and the error covariance matrices for εt and νt are set

to identity matrices. The autoregressive coefficients in the factor evolution equation are

drawn from a uniform distribution U(0.7, 0.95). When the true model is MDFM, the free

elements in the two loading matrices A and B are drawn from the uniform distribution

U(0, 1), the row-wise and column-wise covariance matrices Σr and Σr are 0.5In and

0.3In, respectively. The autoregressive coefficients in the factor evolution equation are

drawn from U(0.8, 0.9). The covariance matrices for factor evolution equation are identity

matrices.

First, we generate data using the MDFM with factor matrices of sizes (1 × 2), (2 × 1),

and (2×2), and estimate the marginal likelihood of each (true) model. Then we compare

these marginal likelihoods with those of VDFMs specified with kf = 1, 2, . . . , 6 factors,

where kf denotes the number of factors in the VDFM. Figure 4 shows the log marginal

likelihood estimates under different model specifications. The left, middle, and right

panels correspond to MDFMs with (p1, p2) = (1, 2), (2, 1), and (2, 2), respectively. The

black line shows the log marginal likelihood estimates for the VDFMs, while the red

dashed line indicates the marginal likelihood of the true MDFM.

The results clearly show that the marginal likelihood for the true model (MDFM) is higher

than for any of the VDFM alternatives. Interestingly, the VDFM achieves its highest

marginal likelihood when its number of factors matches the total number of factors in the

corresponding MDFM. For instance, the VDFM performs best when kf = 2 for MDFMs

with (p1, p2) = (1, 2) and (2, 1), and when kf = 4 for (p1, p2) = (2, 2).

Figure 4: Log marginal likelihoods under the VDFM relative to the true model – a MDFM
with a 2× 2 factor matrix. A negative value indicates that the correct model is favored.

Next, we generate data from the VDFM with kf ∈ 1, 2, 3 and estimate the log marginal

likelihood for each true model. We compare these values with those from MDFMs with
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(p1, p2) ∈ (1, 1), (1, 2), (2, 1), (2, 2). Figure 5 presents the log marginal likelihood estimates

under different model specifications. The left, middle, and right panels correspond to

VDFMs with kf = 1, 2, and 3, respectively. The black dashed line indicates the log

marginal likelihood of the true VDFM, while the bars represent those of the competing

MDFMs. In all three cases, the true model achieves a higher marginal likelihood than

the alternatives.

Figure 5: Log marginal likelihoods under the MDFM relative to the true models – VDFMs
with one (left panel), two (middle panel) and three factors (right panel). A negative value
indicates that the correct model is favored.

4.4 Can the Marginal Likelihood Estimator Distinguish Ap-

proximate DFMs from Exact DFMs?

In this subsection, we investigate whether the marginal likelihood estimator can correctly

identify the structure of the idiosyncratic components. Specifically, we assess whether the

estimator can distinguish an exact matrix factor model (i.e., without stochastic volatility

or cross-sectional correlations) from approximate alternatives. To this end, we generate

100 datasets from the following models:

MDFM-exact: A matrix factor model with a diagonal covariance matrix and no

stochastic volatility.

MDFM-cross: A matrix factor model with a Kronecker-structured covariance matrix

and no stochastic volatility.

MDFM-sv: A matrix factor model with a diagonal covariance matrix and a common

stochastic volatility.

The free elements in the two factor loading matrices A and B are drawn from a normal

23



distribution N (0, 0.32). The row-wise and column-wise covariance matrices are drawn

from inverse-Wishart distributions: Σr ∼ IW(n + 2, In) and Σc ∼ IW(k + 2, Ik). The

log-volatility follows an AR(1) process with an autoregressive coefficient of 0.97 and

innovation variance 0.1. The covariance matrix in the factor evolution equation is 0.1Ip1p2 ,

and the AR coefficients are drawn from U(0.8, 0.9).

We generate 100 datasets with dimensions (n, k, T ) = (20, 20, 100). The dimension of the

factor matrix (p1, p2) = (2, 2). For each dataset, we estimate the log marginal likelihoods

under the MDFM-exact, MDFM-cross and MDFM-sv specifications. Then we subtract

the log marginal likelihood of the true model from those of the competing models. A

negative value indicates that the marginal likelihood is larger for the true model.

Figure 6 shows boxplots of the differences in log marginal likelihoods relative to the true

model. The left, middle and right panel corresponds to cases where the true model is

MDFM-exact, MDFM-cross, and MDFM-sv, respectively. In all cases, the true model

achieves the highest marginal likelihood, suggesting that the estimator effectively identi-

fies the correct structure in the idiosyncratic component.

Figure 6: Boxplots of differences of log marginal likelihoods relative to the true model:
MDFM-exact (left panel), MDFM-cross (middle panel) and MDFM-sv (right panel). A
negative value indicates that the correct model is favored.

5 Empirical Applications

In this section, we demonstrate the usefulness of the Bayesian matrix dynamic factor

models with two applications. In the first application, we use a multinational macroeco-

nomic panel, while in the second application, we use the Fama-French 10×10 panel. The

optimal factor structure is determined using the proposed marginal likelihood estimator.
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5.1 Multinational Macroeconomic Panel

We apply the matrix dynamic factor model to the macroeconomic panel constructed

from OECD database. The dataset comprises 10 quarterly indicators of 19 countries

from 1995.Q1 to 2023.Q3 for 115 quarters. The countries include developed economies

from North America, Europe, Asia and Oceania. The indicators include real GDP, price

indices, labor unit cost, unemployment, international trade and household consumption.

Each time series is adjusted for stationarity through first differencing or logarithmic

differencing, and standardized by demeaning and dividing by their standard deviations.

Detailed descriptions of the dataset and transformation methods are provided in the

Supplemental Appendix Section 5.

While theoretically one could compute marginal likelihood estimates to assess different

orders of countries and variables, this approach is computationally intensive due to the

large number of combinations. For this reason, we prioritize the global and regional eco-

nomic significance of countries and the relationships among variables when ordering the

data. Particularly, in terms of countries, we order the US the first, due to its status as the

largest economy and its significant influence on the global economy. The UK, Australia,

Germany and Japan follow, due to their significant position in the corresponding regional

economy. Among the indicators, real GDP is prioritized as it serves as the critical mea-

sure of real economic activity, following by Headline CPI, given its importance as a key

inflation indicator closely tied to price dynamics. We put labor unit cost the third, since

it is crucial for insights into productivity.

We then employ the method for marginal likelihood estimation introduced in Section 3

to determine the optimal factor structure. Tables 1–2 report the log marginal likelihood

estimates for VDFMs and MDFMs. Comparing the VDFM without stochastic volatility

to its counterpart with common stochastic volatility (the left and right panel of Table 1),

we find that the data strongly favor the inclusion of stochastic volatility. A similar pattern

is observed for the MDFMs (in Table 2). Additionally, the results indicate that the model

with cross-sectional correlation is preferred over the exact one, suggesting that accounting

for both cross-sectional correlation and time-varying volatility leads to improved model

performance. Notably, the marginal likelihood for the VDFM is maximized with five

factors, while the approximate MDFM achieves a better fit with a more parsimonious

1 × 2 factor matrix Ft. This suggests that ignoring the matrix structure can lead to
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overestimation of the number of factors in VDFM. The 1× 2 factor matrix implies that

the variation is larger across indicators than across countries.

Table 1: Log marginal likelihood estimates using VDFMs

LDFM-exact LDFM-sv

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

-26361 -24786 -23602 -23017 -22715 -21642 -21272 -20910

(0.1) (0.3) (0.9) (1.3) (0.2) (0.6) (0.7) (1.0)

k = 5 k = 6 k = 7 k = 8 k = 5 k = 6 k = 7 k = 8

-22944 -23001 -23107 -23280 -20862 -21130 -21202 -21371

(1.6) (1.6) (2.3) (4.3) (2.0) (3.2) (4.2) (6.0)

Table 2: Log marginal likelihood estimates using MDFMs

MDFM-exact MDFM-cross MDFM-cross-sv

p2 = 1 p2 = 2 p2 = 3 p2 = 1 p2 = 2 p2 = 3 p2 = 1 p2 = 2 p2 = 3

p1 = 1 -26472 -24796 -23493 -17968 -17930 -17950 -16144 -16140 -16164

(0.2) (0.3) (0.7) (0.3) (0.4) (0.8) (0.6) (0.4) (0.5)

p1 = 2 -26310 -24607 -23221 -18007 -17979 -18068 -16260 -16265 -16337

(0.1) (0.4) (0.4) (0.4) (0.4) (1.4) (0.5) (0.6) (1.0)

p1 = 3 -26164 -24469 -23012 -18051 -18058 -18150 -16336 -16386 -16464

(0.3) (0.6) (0.7) (0.3) (0.8) (0.6) (0.7) (0.7) (1.1)

The latent structure of the global macroeconomy can be interpreted through the esti-

mated row and column factor loading matrices. We sort these estimates and compute the

posterior probabilities that the differences between neighboring values are greater than 0.

We then group countries and indicators by comparing these posterior probabilities against

a 0.9 threshold: when the probability exceeds 0.9, it indicates that the neighboring values

are significantly different, so they are placed in separate groups.

Figure 7 displays the bar plot of sorted estimates for Â.9The 19 countries are grouped

into four categories: (1) Japan; (2) seven European countries and Korea; (3) six other

9Since the factor matrix has only one row, A is effectively a 19 × 1 vector. However, we retain the
notation A for consistency.

26



European countries along with two Oceania countries; and (4) two North American coun-

tries. The fact that the two North American countries fall into the same group suggests

that geographic proximity influences the grouping, but geography is clearly not the only

factor. For example, Japan and Korea are placed in different groups, while Oceania and

several European countries are grouped together.

Figure 7: Bar plots of sorted estimates for loading matrix A. The 19 countries are
categorized into 3 distinct groups based on the posterior probabilities that the differences
between neighboring values are greater than 0. The stars on the country labels show the
significance level of the corresponding estimates. There is no significance level on USA
because we fix the corresponding element in A to be 1.

Figure 8 contains two rows of subplots. The first row presents bar plots of sorted estimates

for B̂, while the second row shows factor estimates and their 90% credible intervals.

Notably, the first factor representing the real economic activity clearly capture the 2008

Great Recession and the disruptions caused by the COVID-19 pandemic, though the

early 2000s recession is less pronounced. The second factor captures price dynamics, but

do not directly affect the real output as measured by real GDP. Figure 9 compares the

four-quarter moving average of the second factor estimates with the moving average of

growth rates of Brent crude oil price. The comovement between the two series is evident,

particularly during periods of significant events such as the 2002–2003 Iraq war and civil

unrest in Venezuela, the 2008–2009 Great Recession and OPEC’s production cuts, the

2014–2016 oil price collapse and the 2022 Russian invasion of Ukraine.

Based on the first column of the factor loading matrix (b1), the ten variables are grouped

into four clusters: Group 1 (unemployment), Group 2 (food CPI and core CPI), Group

3 (real GDP, energy CPI, headline CPI, and household consumption), and Group 4 (im-

ports, labor unit cost, and exports). The real activity factor has stronger impacts on
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international trade and labor unit cost, while also having a positive, albeit less pro-

nounced, impact on consumption, headline CPI, and energy CPI. However, its effects on

core CPI and food CPI are not statistically significant. Additionally, it negatively affects

unemployment.

The second column of the factor loading matrix (b2) organizes the variables into a dif-

ferent set of four clusters: Group 1 (core CPI, household consumption, food CPI, and

unemployment), Group 2 (imports, labor unit cost, and exports), Group 3 (headline

CPI), and Group 4 (energy CPI). The price factor has strong positive impacts on energy

prices, with less effect on labor unit cost and international trade. It has statistically

insignificant positive effects on core CPI and negative effects on consumption, food CPI,

and unemployment.

Figure 8: Bar plots of sorted estimates for loading matrixB and plots for factor estimates.
The stars show the significance level of the corresponding estimates. According to impacts
of the two column factors, the variables can be divided into 4 groups. The shaded area
of plots for the factors is the 90% credible intervals.

Figure 10 presents the estimates for stochastic volatility and their standard deviations.

The high volatility around 1997 reflects the turbulence of the Asian financial crisis, par-
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ticularly in Japan and Korea. Expectedly, increased volatility is also observed during the

Great Recession and the COVID-19 pandemic.

Figure 9: Yearly moving average of standardized growth rates of Brent crude oil price
and the second column factor estimates.

Figure 10: Estimates for stochastic volatility: ω̂t = exp(ĥt/2)

Figure 11–12 are heatmaps of estimates for column-wise and row-wise covariance matrix

in the idiosyncratic component. From Figure 11, it is obvious that headline CPI is

positively correlated with its disaggregated components: energy CPI, core CPI and food

CPI. In addition, unemployment is negatively correlated with real GDP, labor unit cost,

consumption, core CPI and imports. Labor unit cost is positively correlated with both

exports and imports. In Figure 12, we can see that idiosyncratic risks for countries

in European Union are correlated, including Germany, France, Norway, Netherlands,

Austria, Denmark, Spain, Finland, Sweden, Luxembourg, Italy and Portugal. UK is

weakly correlated to EU as well.
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Figure 11: Heatmap of estimates for Σc

Figure 12: Heatmap of estimates for Σr
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5.2 Fama-French 10 × 10 Panel

In this application, we investigate the usefulness of the dynamic matrix factor model on

the Fama-French return series, which was studied by Wang et al. (2019), Yu et al. (2022)

and He et al. (2024). The data include monthly returns of 100 portfolios, structured

in a 10 by 10 matrix according to ten levels of sizes (market equity) and ten levels of

ratio of book equity to market equity (BE/ME).10 The return series span from January

1990 to June 2024 (414 observations).11 Following Chang et al. (2023), we impute the

missing values by the weighted averages of the three previous months, i.e., set yi,j,t =

0.5yi,j,t−1 + 0.3yi,j,t−2 + 0.2yi,j,t−3 for missing yi,j,t. To account for market conditions, we

follow Wang et al. (2019), Yu et al. (2022), and He et al. (2024) and subtract the monthly

excess market return from each series. We then standardize the data by subtracting the

mean and dividing by the standard deviation. The standardized market-adjusted return

series of the portfolios can be found in Supplemental Appendix Section 5.

Empirical evidence shows that small-cap stocks tend to earn higher average returns than

large-cap stocks, while value stocks (high BE/ME) tend to outperform growth stocks (low

BE/ME). To account for these cross-sectional return patterns, Fama and French (1992)

introduce the Small Minus Big (SMB) and High Minus Low (HML) factors to explain

return variations across stocks with varying size and book-to-market ratios. Motivated

by this framework, we reorder the size and BE/ME ratios in the data matrix. Specifically,

portfolios are ordered by size across rows, with small-cap (SMALL) portfolios listed first,

followed by medium-cap (ME5), and then large-cap (BIG) portfolios. Similarly, columns

are arranged by book-to-market ratio, with high BE/ME (HiBM) portfolios on the left,

followed by medium (BM5), and then low BE/ME (LoBM) portfolios.

Table 3–4 report the log marginal likelihood estimates for both VDFMs and MDFMs.

The results clearly indicate a strong preference for models with stochastic volatility, re-

gardless of whether the VDFM or MDFM is used. Additionally, a comparison between the

MDFM-exact and MDFM-cross reveals that accounting for cross-sectional correlation in

idiosyncratic component further improves model performance. Among the MDFM spec-

ifications, the 2× 2 MDFM with both cross-sectional correlation and stochastic volatility

10The data is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html.
11We do not include data earlier than 1990 because there are many missing values in the early years.
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achieves the highest marginal likelihood (–42,951), although it remains slightly lower

than that of the 4-factor VDFM (–42,943). The best overall performance is attained

by the 5-factor VDFM with stochastic volatility, which yields a marginal likelihood of

–42,877. These results suggest that the data favor the more flexible VDFM specification

over the more structured MDFM, despite the marginal likelihood’s built-in penalty for

model complexity. For illustration, we use the MDFM with a factor matrix of dimensions

(p1, p2) = (2, 2) and stochastic volatility in the subsequent analysis.

Table 3: Log marginal likelihood estimates using VDFM

VDFM-exact VDFM-sv

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

-51647 -47191 -46217 -45940 -46096 -43942 -43069 -42943

(0.1) (0.2) (0.4) (0.5) (0.4) (0.4) (0.5) (0.8)

k = 5 k = 6 k = 7 k = 8 k = 5 k = 6 k = 7 k = 8

-45787 -45729 -45792 -45886 -42877 -43007 -43155 -43328

(0.6) (0.9) (1.0) (1.0) (0.7) (0.8) (1.6) (0.8)

Table 4: Log marginal likelihood estimates using MDFM

MDFM-exact MDFM-cross MDFM-cross-sv

p2 = 1 p2 = 2 p2 = 3 p2 = 1 p2 = 2 p2 = 3 p2 = 1 p2 = 2 p2 = 3

p1 = 1 -51867 -49622 -49382 -47210 -46809 -46739 -43527 -43163 -43161

(0.2) (0.3) (0.4) (0.2) (0.4) (0.4) (1.3) (1.4) (1.4)

p1 = 2 -49603 -47130 -46572 -46897 -46557 -46164 -43304 -42951 -43024

(0.3) (0.4) (0.4) (0.4) (0.4) (0.7) (2.0) (0.9) (2.9)

p1 = 3 -49285 -46847 -46177 -46928 -46553 -46087 -43406 -43075 -43027

(0.4) (0.5) (0.9) (0.6) (0.9) (0.8) (1.3) (1.2) (1.4)

Figure 13 shows the estimates for row loading matrices (the first and second panel from

left) and column loading matrices (the third and fourth panel). In specific, the two sub-

plots correspond to Â.,1 (first), Â.,2 (second), B̂.,1 (third) and B̂.,2 (fourth). Both the size

(row) loadings and the BE/ME (column) loadings have shown cross-sectional patterns.

Particularly, the small-cap factor exerts a strong influence on smaller portfolios, with its
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impact gradually decreasing as portfolio size increases, eventually turning negative for

large-size portfolios. The medium-cap factor similarly influence portfolios with similar

sizes, with its influence tapering off as the portfolio size shifts either smaller or larger.

Similar patterns go for BE/ME factors.

Figure 13: Estimates for row loading matrices (the first and second panel from left) and
column loading matrices (the third and fourth panel). The gray area represents the 90%
credible interval.

Figure 14 shows estimated posterior densities, histograms of posterior draws, priors, as

well as the posterior estimates of autoregressive coefficients (ρ) for the factor evolution

process. All the six posterior densities have little mass on value 0, and the posterior

estimates are around 0.2 or 0.3. This suggests that an AR process for factor evolution is

supported by the data.

Figure 14: Posterior densities, histograms of posterior draws, priors and posterior esti-
mates for autogressive coefficients ρ

Figure 15 shows the estimates and standard deviations of stochastic volatility for stock

returns over time. Clearly, the volatility of stock returns exhibits considerable variation

throughout the observed period. Notably, the volatility peaks around February 2000,

about one month before the onset of the dot-com bubble burst. Additionally, signifi-
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cant spikes in volatility are observed during the 2008 financial crisis and the COVID-19

pandemic.

Figure 15: Estimates and standard errors of stochastic volatility: exp(h/2)

6 Conclusion and Future Research

In this paper, we propose a new class of dynamic factor models tailored to high-

dimensional matrix-valued time series, incorporating cross-sectional correlations in the

idiosyncratic components, time-varying volatility and outlier adjustments. We develop

an MCMC algorithm for Bayesian estimation and introduce an importance-sampling

estimator for the marginal likelihood to facilitate Bayesian model comparison. Monte

Carlo simulations demonstrate the accuracy of the factor estimates and the ability of

the marginal likelihood estimator to correctly identify the true model. Applications to

macroeconomic and Fama-French panels highlight the model’s ability to uncover inter-

esting structures in high-dimensional data.

This research opens several avenues for future work. First, a structural matrix factor

model could be developed to study the transmission of shocks across countries. Second,

it would be valuable to assess the forecasting performance of matrix factor models com-

pared to traditional approaches using vectorized panels. Finally, the current specification

requires the number of factors to match the product of the matrix dimensions; a sparse

matrix factor model could be designed to automatically select the most relevant latent

factors.
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