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Abstract

We investigate the impact of shrinkage estimation techniques for the moments
of asset returns on risk-parity portfolios. In contrast to mean-variance port-
folios, the risk contributions of individual assets in risk-parity portfolios are
fixed a priori. This additional restriction is commonly found to stabilize em-
pirical portfolio weights in time. We show that the marginal risk-budget for
each portfolio asset indeed serves as a natural shrinkage target and hence
provide a new perspective on risk-parity portfolios. In an extensive empiri-
cal application, we compare and combine the various shrinkage strategies to
popular risk-based approaches from the literature. We find that while using
shrinkage estimators in risk-parity portfolios enhances out-of-sample perfor-
mance based on various criteria, traditional covariance shrinkage estimators
dominate all other strategies in high-dimensional settings.
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1 Introduction

Risk parity (RP ) is a cross-sectional portfolio allocation technique in which each
asset contributes the same amount to the total portfolio volatility. While it says
nothing about expected returns, an input most difficult to estimate precisely, it lim-
its the risk contribution of individual assets. This appealing property makes such
strategies especially popular among practitioners. Recently, RP has also gained
some interest from academia due to its well documented performance in empirical
analysis (Chaves et al., 2011). Some studies such as Clarke et al. (2013) and Lee
(2014), among others, find that RP is superior to traditional strategies such as
equal- and value-weighting as well as other weighting techniques that incorporate
other moments of asset returns. Further, Maillard et al. (2010) provide theoretical
arguments about RP and show for example, that a negative relationship exists be-
tween RP asset weights and RP asset betas, which coincides with the findings of
Frazzini and Pedersen (2014) that low beta assets outperform high beta assets.

RP is often compared to the Markowitz (1952) minimum variance (MV ) portfolio.
The main input parameter to both the RP and MV strategies is the variance-
covariance matrix of the asset returns: a property difficult to estimate when (i)
the correlations among assets is high, i.e. in times of market crashes, or when (ii)
the number of assets is high relative to the number of observations. A popular
method that has been shown to improve the risk-return properties of mean-variance
portfolios that contain estimation errors (Fabozzi et al., 2007) is called shrinkage.
This technique tries to mitigate estimation error by simply averaging over various
models. For example, Ledoit and Wolf (2004a) demonstrate how linearly shrinking
the asset covariance matrix enhances the performance of such portfolios. More re-
cently, Ledoit and Wolf (2017) also propose a non-linear shrinkage technique and
demonstrate how this further increases Sharpe ratios of empirical portfolios. The
latter shrinkage technique especially is an important breakthrough in risk-budgeting
techniques such as RP for numerous reasons. Maillard et al. (2010) show that RP
can be expressed as a minimum variance portfolio optimization with an additional ,
non-linaer, constraint for equalizing the asset risk budgets. Also, the authors show
that the volatility of RP lies between the volatility of the minimum variance port-
folio and that of the equally-weighted portfolio. This implies that RP results from
a shrinkage between these two portfolio.

The equal weighting (EW ) scheme is an heuristic approach to overcome estimation
error by disregarding plug-in estimates for the asset moments altogether. However,
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disregarding the asset characteristics makes certain properties of EW portfolios,
such as the level of diversification, highly sensitive to the underlying asset universe.
For example, if the risk of the underlying assets vary significantly, a high risk con-
centration and a limited degree of diversification are attained, as the weights of the
riskiest and the least risky assets in EW are identical. While EW strategies are
employed on a broad scale by mutual and pension funds (Benartzi and Thaler, 2001;
Windcliff and Boyle, 2004), it is viewed as an arbitrarily manner of deconcentration
by equally spreading the initial wealth across all assets. As a matter of fact, the
notion of deconcentration in EW has led to the development of RP portfolios, which
aim to deconcentrate the portfolio from a risk perspective, where each asset con-
tributes to the same amount of risk to the overall portfolio risk. Amenc et al. (2012)
argue that such techniques are classified as adhoc allocation schemes, due to their
reliance on the notion of deconcentration and the absence of a theoretical framework.

We investigate the impact of shrinkage estimation techniques for the moments of as-
set returns in risk parity portfolios. Given the number of assets in the asset universe,
the risk contributions of individual assets in RP portfolios are fixed a priori. This
additional information is commonly found to stabilize empirical portfolio weights
over time. Accordingly, we assess whether an asset’s risk budget in the RP opti-
mization serves as a natural shrinkage target, and whether the parity element of RP
is beneficial in improving portfolio performance relative to conventional linear and
non-linear regularization techniques. We therefore bridge the gap between mean-
variance and risk parity portfolios in a unique way. We test our results in asset
allocation and high-dimensional portfolios and find that the marginal risk-budget
for each portfolio asset indeed serves as a natural shrinkage target, in which RP

weights are a results of shrinking MV weights towards EW weights. Hence, we
provide a new perspective on risk parity portfolios. In higher dimensions however,
we find that risk parity strategies can not compete with shrinkage solutions to MV

portfolios; a clear indication that parity shrinkage in RP has its limits.

Using shrinkage techniques in RP portfolios is not new. This study is related to
Ardia et al. (2017), who assess the impact of estimation errors in the asset variance-
covariance matrix in various risk-based portfolios; among them the RP strategy.
Using Monte Carlo simulation methods, they find that equal-risk-contribution and
inverse-volatility weighted portfolio weights are relatively robust to covariance mis-
specification while the MV portfolio weights are highly sensitive to errors in both
the estimated variances and correlations. While their study only operates in small

2



dimensions with 5 to 30 assets, we investigate the impact of shrinkage estimation
techniques also in high dimensions, where RP portfolios are typically not applied.
Accordingly, it is important not only to study where the regularization benefits come
from, but also to understand where the limitations arise.

The remainder of this study is organized as follows. Section 2 motivates our study
by showing the impact of estimation error on RP andMV portfolios in a simulation
study. Section 3 shows that the parity element in RP acts as a natural shrinkage
device. Section 4 describes the empirical setup and briefly defines other conventional
shrinkage and heuristic weighting techniques in the literature. RP , MV , and the
strategies in section 4 are assessed in a multi asset allocation setting as well as in
high-dimensional equity portfolios in sections 5 and 6. Section 7 concludes.

2 A motivational example

Academia has often focused on mean-variance portfolios (Markowitz, 1952), in which
the portfolio weighting is governed by the risk preferences of the investor and the
diversification benefits of individual assets. Despite the theoretical elegance and
intuitiveness of the mean-variance framework, it did not fare well in practice and
resulted in highly concentrated, underperforming, and simply “wrong” portfolios
(Michaud, 1989). The observed underperformance of mean-variance optimized port-
folios is due to the fact that the deterministic input parameters, namely the asset
return vector and the asset covariance matrix, can only be estimated with severe
estimation errors.1 The only applied exception of mean-variance optimized portfo-
lios is MV , which only attempts to minimize portfolio risk whilst neglecting asset
returns. Numerous studies such as Chopra and Ziemba (1993), Clarke et al. (2006),
and Chow et al. (2011) document the outperformance of MV in equity markets.
However, MV has its shortcomings and a main issue is its high concentration in low
volatility assets (Chan et al., 1999; Clarke et al., 2011; DeMiguel et al., 2009).

To provide some more empirical intuition for the reader, we follow Jobson and Ko-
rkie (1980) to illustrate the difference between RP andMV in terms of its sensitivity
to plug-in estimates. We randomly select N = 10, 50, 100 assets from stocks that
are listed in the NYSE, AMEX, and NASDAQ exchanges. In each scenario, we
estimate the asset moments for the mean, µ̂t, and the variance-covariance-matrix,

1See for example Best and Grauer (1991); Chopra and Ziemba (1993); Jobson and Korkie
(1980); Michaud (1989)).
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Σ̂t, and accordingly determine the "true" RP and MV portfolios and compare them
with 10,000 estimated portfolios, which are computed based on 250 hypothetical
returns that are simulated using a multivariate normal distribution with the "true"
return vector (µ̂t) and "true" covariance matrix (Σ̂t). The purpose of the simulation
is to evaluate how close these simulated portfolios are compared to the true port-
folio when increasing the number of assets held in the portfolio. The results of the
simulation experiment are illustrated in Figure B.1.

In fact, our results are in line with Jobson and Korkie (1980) for MV . Simulated
MV portfolios either yield a higher return with a higher variance or are suboptimal
allocation compared with the true MV portfolio. Furthermore, the difference in
MV between the true portfolio and estimations thereof increases with the number of
assets. Meanwhile, the simulated RP portfolios are heavily concentrated around the
true RP portfolio, which lies roughly in the center of all simulated portfolios. This
observation holds true regardless of the number of assets considered. The results
suggest that RP can be better estimated using plug-in estimates, as the simulated
portfolios lie closely around the true portfolio. Also, simulated RP portfolios can not
only be suboptimal compared to the true portfolio, but can also dominate the true
RP portfolio in the mean-variance space. Accordingly, the results imply that the
RP technique, by strictly defining the total risk contribution of each asset, induces
a structure on the portfolio weights and hence can be deemed as a form of portfolio
regularization.

3 Methodology

RP portfolios constitute a middle-ground betweenMV and EW . They maintain the
notion of deconcentration as in EW whilst considering single and joint asset total
risk contributions so that all assets contribute equally to the portfolio risk. Although
MV equalizes asset risk contributions, it does so merely on a marginal basis. This
implies that a minimal change in the weight of any asset in MV should result in the
same ex-ante change in overall portfolio risk. However, the total risk contributions
are generally not equal, which causes portfolio risk to be mainly concentrated in a
few assets, foregoing the benefits of diversification. Maillard et al. (2010) show that
risk parity can be denoted as the minimum variance portfolio with an additional
risk budget constraint, formally it can be expressed as
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y∗ = arg min
√
y′Σy, s.t.


∑n
i=1 ln yi > c

y > 0
, (1)

where the optimal portfolio weights ω∗ = {ω∗1, . . . , ω∗N}, which sum up to 100%, are
determined as ω∗i = y∗i /

∑N
j=1 y

∗
j ∀i = 1, . . . , N . γ is an arbitrarily chosen constant

and Σ describes the asset variance-covariance matrix. Indeed, Maillard et al. (2010)
show that, based on the risk budget determined by γ, the volatility of RP lies be-
tween those of MV and EW , i.e. σMV < σRP < σEW .2

An alternative to overcoming estimation error is to adjust the plug-in estimates ob-
jectively or subjectively, which can be based on the expectations of fund managers,
asset pricing theories, or a combination of both (Black and Litterman, 1992). How-
ever, most prominently applied are various statistical methods that are less prone to
sampling errors or fat-tail effects in the data. Among them are shrinkage techniques,
which are a routine of averaging various estimators.3 The notion underlying shrink-
age is that portfolios that yield a stable performance regardless of market phases,
namely portfolios that are more robust to estimation errors and model risk, are bet-
ter suited for investors, especially risk-averse investors. This property is paramount
in finance, given that financial returns are heavily entailed with extreme returns or
fat-tails that typically have a significant impact on the portfolio optimization process
and performance. Hence, shrinkage techniques reduce the impact of fat-tails and
estimation errors, yielding more conservative portfolios that perform well regardless
of market conditions (Fabozzi et al., 2007).

Shrinkage techniques date back to James and Stein (1961) and typically consist
of: (i) An arbitrary estimator such as historical plug-in estimates, (ii) a structured
shrinkage target, and (iii) a parameter that determines the shrinkage intensity be-
tween (i) and (ii). James and Stein (1961) show that the benefit of shrinkage tech-
niques is a lower mean-squared error than the plug-in estimate for the cost of a
typically biased shrinkage target. This is true for any shrinkage intensity parameter
larger than zero.

2For more information on the derivation of these properties of RP as well as the constant γ,
refer to Maillard et al. (2010), Appendix B, pp. 68-69.

3Other methods to mitigate the effect of estimation errors include Bayesian techniques (Barry,
1974), the Bayesian approach in combination with asset pricing models (Pástor, 2000), robust
optimization models (Garlappi et al., 2007), Bayesian robust optimization techniques (Wang, 2005),
robust estimation methods (DeMiguel and Nogales, 2009), and employing portfolio constraints
(Jagannathan and Ma, 2003).
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Linear shrinkage in risk parity

Provided our previous arguments, the RP strategy can be defined as a simple form
of portfolio regularization. While shrinkage and factor approaches reduce dimen-
sionality by reducing the number of estimable parameters, risk parity induces a
structure on the portfolio weights by restricting the risk contribution of individual
assets to the total portfolio variance.

Provided N assets, let r = {r1, . . . , rN} be a collection of the N asset returns and
ω = {ω1, . . . , ωN} the corresponding portfolio weight vector. The portfolio variance
is defined by σ2

p(ω) = ω′Σω = ∑N
i=1 ω

2
i σ

2
i +∑N

i=1
∑
i 6=j ωiωjσij, where Σ is the N ×N

variance-covariance matrix of r with variances σ2
i and covariances σij. The marginal

risk contribution of a single asset i towards the total portfolio is ∂σp(ω)
/
∂ωi. Given

that the total portfolio volatility is the sum of the individual risk contributions of
all assets, σp(ω) = ∑N

i=1

(
ωi × ∂σp(ω)

/
∂ωi

)
, the risk budgeting portfolio is defined

by

ωrp =
{
ω ∈ [0, 1]N :

N∑
i=1

ωi = 1, ωi ≥ 0, ωi × (Σω)i = bi × (ω′Σω)
}
, (2)

where ωi is the ith element of the weight vector, (Σω)i denotes the ith element of the
corresponding vector and bi ≥ 0 is the weight risk budget for asset i with∑N

i=1 bi = 1.
For the equally-weighted risk contribution (RP ) portfolio case in which bi = bj ∀i, j,
Maillard et al. (2010) show that σp(ωmv) ≤ σp(ωrp) ≤ σp(ωEW ).

The question now is how shrinkage approaches and the risk budgeting restriction are
related in a portfolio context. Let us start with the most basic setup of a bivariate
RP portfolio. With ω = (ω1, 1− ω1) and σ2

1 and σ2
2 denoting the variances of asset

1 and 2, it can be shown that for a long-only case (0 ≤ ω1 ≤ 1), the unique RP
portfolio solution to Equation 1 is

ωRP =
(

σ−1
1

σ−1
1 + σ−1

2
,

σ−1
2

σ−1
1 + σ−1

2

)
=
(

σ2

σ1 + σ2
,

σ1

σ1 + σ2

)
. (3)

This reveals the enriching property of the RP portfolio: The higher the variance
in asset 2, the higher the weight of asset 1 and vice versa. Further, assuming that
assets 1 and 2 are uncorrelated (ρ12 = 0), then the RP portfolio coincides with the
minimum-variance portfolio (ωRP = ωMV ).4

4It holds that ωMV =
(

σ2−σ12
σ1+σ2−2σ12

, σ1−σ12
σ1+σ2−2σ12

)
where σ12 = ρ12σ1σ2 and ρ12 is the correlation
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The empirical counterpart with estimated variance-covariance matrix is

ω̂RP =
(

σ̂−1
1

σ̂−1
1 + σ̂−1

2
,

σ̂−1
2

σ̂−1
1 + σ̂−1

2

)
=
(

σ̂2

σ̂1 + σ̂2
,

σ̂1

σ̂1 + σ̂2

)
, (4)

where

Σ̂ =
 σ̂2

1 σ̂12

σ̂12 σ̂2
2

 = 1
T − 1

T∑
t=1

(rt − r̄) (rt − r̄)′ , with (5)

r̄ =
(

1
T

T∑
s=1

rs,1, . . . ,
1
T

T∑
s=1

rs,N

)
. (6)

While for low N inverting the estimated variance-covariance matrix (Σ̂) to obtain
the RP portfolio weights is not very costly in terms of estimation errors, it becomes
a problem for larger asset universes or more correlated markets. Typically, dimen-
sion reduction techniques such as factor modeling or shrinkage towards a shrinkage
target are valid attempts to mitigate estimator errors. A traditional shrinkage es-
timator for the variance-covariance matrix by Ledoit and Wolf (2004a) shrinks the
sample variance-covariance matrix estimate towards the identity matrix (I). Given
a shrinkage intensity κ ∈ [0, 1], the approach yields

Σ̂∗ = κ I + (1− κ)Σ̂

=
κ 0

0 κ

+ (1− κ)
 σ̂2

1 σ̂12

σ̂12 σ̂2
2


=
κ+ (1− κ)σ̂2

1 (1− κ)σ̂12

(1− κ)σ̂12 κ+ (1− κ)σ̂2
2

 (7)

Since we assumed σ12 = 0 making the off-diagonals in Σ̂∗ equal to zero, the RP
portfolio for this case and replacing the traditional variance-covariance matrix with
a shrinkage equivalent yields

ω̂∗RP =


1√

κ+ (1− κ)σ̂2
1

1√
κ+ (1− κ)σ̂2

1

+ 1√
κ+ (1− κ)σ̂2

2

,

1√
κ+ (1− κ)σ̂2

2

1√
κ+ (1− κ)σ̂2

1

+ 1√
κ+ (1− κ)σ̂2

2

 .

coefficient between assets 1 and 2.
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It directly follows that

lim
κ→0

ω̂∗RP =
(

σ̂2

σ̂1 + σ̂2
,

σ̂1

σ̂1 + σ̂2

)
(8)

lim
κ→1

ω̂∗RP =
(1

2 ,
1
2

)
. (9)

Hence, we see that the shrinkage approach forces the RP portfolio towards the naive
EW portfolio.

4 Empirical setup

Strategies

Given the results of Section 3, the question arises as to how RP fares compared to
other shrinkage-based allocation schemes. The following section briefly describes the
allocation techniques employed in the empirical analysis, which consist of heuristic
weighting schemes as well as the most prominent shrinkage techniques in the liter-
ature. Table A.1 provides an overview of all strategies investigated in our study.

Inverse volatility

The inverse volatility strategy(V OLA) is a heuristic allocation scheme that assigns
weights according to asset volatilities, formally it is defined as

ω̂i = 1/σ̂i∑N
i=1 1/σ̂i

, (10)

where σ̂i is the estimated volatility of asset i.5 The weight of an asset i equals
its inverse volatility divided by the sum of inverse volatilities for all assets. As a
results, V OLA overweights low volatility stocks and underweights high volatility
stocks. Hence, it is related to the low-volatility effect (Baker et al., 2011), which
has been shown to outperform other heuristic weighting schemes such as equal- and
value-weighting (Anderson et al., 2012). However, the total portfolio volatility is not
minimized with V OLA since asset covariances are not considered in the weighting
process.

5This strategy is also referred to as naive risk parity, as it equalizes the risk contributions of
assets when the correlations among assets are (almost) identical. See Maillard et al. (2010).
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Linear shrinkage

Further, we employ the Ledoit and Wolf (2004a,b) linear shrinkage techniques, which
can be described as an optimally weighted averages of the sample variance-covariance
matrix of the asset universe (Σ̂) and a shrinkage target (F̂ ). The shrinkage approach
can be expressed as follows

Σ̂LWLS = κF̂ + (1− κ)Σ̂,

where α denotes the shrinkage intensity, Σ̂ represents the sample variance-covariance
matrix, and F̂ describes the shrinkage target. We employ two different shrinkage
targets, which are the constant correlation model (MVCCM ; RPCCM) (Ledoit
and Wolf, 2004a) and an identity matrix with dimension N (MV ID;RPID) (Ledoit
and Wolf, 2004b). Further, the shrinkage intensity κ is chosen accordingly to the
references, minimizing the quadratic loss between the true and the estimated covari-
ance matrices.6

Non-linear shrinkage

Recently, a new class of shrinkage methods has emerged, which are referred to
as non-linear shrinkage techniques. Unlike linear shrinkage, in which all variance
and covariance parameters shrink towards the corresponding target with the same
amount, nonlinear shrinkage approaches shrink the eigenvalues of the estimated
variance-covariance matrix. Thus, depending on how far these parameters lie from
the shrinkage target, translates into regularized variance parameters and ultimately
portfolio weights in a nonlinear fashion. In this study, we will focus on the analyt-
ical non-linear shrinkage technique proposed by Ledoit and Wolf (2017) as this is
superior in terms of computational power and feasibility as compared with numer-
ical approaches such as Abadir et al. (2014), and Lam (2016), among others. The
analytical non-linear shrinkage estimator Σ̂LWNLS is determined by

Σ̂LWNLS = UT δ̂
o
TUT with δ̂oT := Diag

(
φ̂oT (λT,1), . . . , λT,N)

)
,

where UT := [uT,1, . . . , uT,N ] is a (full) orthogonal matrix whose columns are the sam-
ple eigenvectors uT,i, λT,i denotes the sample eigenvalues, and φ̂oT (x) represents the
optimal shrinkage function.7 We employ this technique on the risk parity (RPNLS)
and minimum variance (MVNLS) portfolios.

6For more information the reader is refered to Ledoit and Wolf (2004a,b).
7For more information on the derivation of φ̂oT (x) see Ledoit and Péché (2011), Theorem 3.
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Empirical setup

Data were collected from Datastream and consist of daily total return price in-
dices, which are price indices that are adjusted for dividends and stock splits, from
01.01.1994 to 30.09.2019. We employ an out-of-sample rolling-window approach as
in DeMiguel et al. (2009). Each data set consists ofM = 6, 783 business days, where
the asset moments are estimated based on the previous T = 250 days. Portfolios
are held for θ = 20 business days and are then rebalanced using the previous T
business days. We test the portfolios in Table A.1 in different settings. These are:
(1) In a multi asset allocation where T � N and the risk-return properties of dif-
ferent asset classes vary to greater extent than when only considering assets within
a certain class such as equity or bonds; and (2) high dimensional equity portfolios
where plug-in estimates are quite unreliable (Jobson and Korkie, 1980).8

Let Pi,t be the price of asset i at time t and Di,t be the dividend payment of asset i
in period t, then the total return of asset i in period t+ 1 (ri,t+1) is defined as

ri,t+1 = Pi,t+1 +Di,t

Pi,t
− 1. (11)

Accordingly, the total return of a strategy j with j ∈ {1, . . . , 10} (we compare 10
different strategies in total) and N assets at time t+1 is rj,t+1 = ∑N

i=1(ri,t+1× ω̂i,j,t),
where ω̂i,j,t represents the weight of asset i for strategy j at time t. At rebalancing,
a trade of |ω̂i,j,t+1 − ω̂i,j,t+ | occurs for each asset i held in strategy j, where ω̂i,j,t+
denotes the weight of asset i for strategy j immediately before rebalancing at time
t+ 1, which is determined as ω̂i,j,t+ = ω̂i,j,t × (1 + ri,t+1). Following DeMiguel et al.
(2009), let ξ represent a proportional transaction cost paid for each asset when
rebalancing the portfolio, then the total cost incurred from trading all assets for
portfolio j is obtained by ξ × ∑N

i=1|ω̂i,j,t+1 − ω̂i,j,t+ |. As a result, the wealth from
investing in strategy j at time t+ 1 is determined as

Wj,t+1 = Wj,t(1 + rj,t+1)(1− ξ
N∑
i=1
|ω̂i,j,t+1 − ω̂i,j,t+ |), (12)

where the return net of transaction costs for strategy j is given by (Wj,t+1/Wj,t)− 1
with Wj,t+1 and Wj,t describing wealth at time t + 1 and t, respectively. Moreover,
as in DeMiguel et al. (2009), the turnover of strategy j is defined as the average sum
over time of the absolute value of the trades incurred for all assets or formally

8Typically, when the number of observations T is not significantly larger than the number of
assets N , a portfolio is referred to as a high dimensional portfolio.
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Turnoverj = 1
M − T

M−T∑
t=1

N∑
i=1

(|ω̂i,j,t+1 − ω̂i,j,t+ |). (13)

Turnover measures the average percentage of total wealth that is traded at each re-
balancing period and is related to the transaction costs incurred when implementing
a strategy j. It is noteworthy to mention that a portfolio strategy which is superior
in gross terms, that is in the absence of transaction costs, might not be optimal to
implement when transaction costs are taken into account.

5 Applications in multi asset allocation

To demonstrate how RP fares compared with the aforementioned strategies, we an-
alyze the characteristics of each strategy in an asset allocation setting, where all
strategies are rebalanced on a monthly basis. The data set comprises of equities and
bonds of all developed countries according to the MSCI classification.9 Equities are
represented by the MSCI total return indices and are denoted in USD. Bond markets
are denoted by the Datastream 10 year government bond indices, and are hedged to
USD according to the interest rate parity model using the Thomson Reuters spot
and 1 month forward rates. Commodities are described by the Bloomberg Commod-
ity Index and are denoted in USD. Table A.2 reports the risk-return characteristics
of RP , EW , MV , and the shrinkage techniques highlighted in Table A.1.

All strategies result in a positive growth of wealth over time. In gross terms, MV

yields the highest terminal wealth ($340.40), followed by RPNLS ($299.57), RP
($290.09), and MVCCM ($283.96), while other shrinkage and heuristic strategies
yield a much lower gross wealth of circa $240. However, MV is the most concen-
trated portfolio with an HHI of 53%. Shrinkage techniques decrease the portfo-
lio concentration, with MV ID yielding the lowest concentration of 17.45% while
MVCCM yields an HHI of 32.85%. EW is the least concentrated portfolio by def-
inition (2.36%), followed by V OLA (3.88%), whereas the simple RP yields an HHI
of 10.43%.

Secondly, shrinkage techniques for RP do not necessarily improve portfolio charac-
teristics and generally do not vary significantly from RP . RP yields slightly better
results than its shrinkage counterparts in terms of return, volatility, maximum draw-
down, and even turnover. Nevertheless, the variation as mentioned earlier remains

9We exclude Hong Kong, Israel, and Singapore due to insufficient historical bond data.
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marginal and merits no significant improvements. In terms of net Sharpe ratio,
only RPNLS (0.29) yields a value on par with RP (0.28), whilst RPID (0.24) and
RPCCM (0.23) underperform. This indicates that, unlike for the case of MV , the
regularization implied by the risk budget constraint on the weights of RP portfo-
lios is quite stark and no longer enables the portfolio weights of significant further
alteration.

Since a higher portfolio concentration typically results in a higher turnover ratio and,
thus, higher transaction costs, the results change regarding net terminal wealth. MV

performs worst due to having the highest turnover ratio (4.94), which translates into
transaction costs of roughly 54% of total gross wealth, resulting in a terminal net
wealth of merely $156.81. This result coincides with the findings of Best and Grauer
(1991), Michaud (1989), among others, that mean-variance optimized portfolios are
highly sensitive to estimation risk, and typically result in high turnover ratios which
ultimately leads to a significant underperformance relative to other weighting tech-
niques. Meanwhile, RP yields the highest net terminal wealth of roughly $260,
followed by V OLA ($235.11) and EW ($224.97). Prominent shrinkage techniques
pose an improvement compared to MV , albeit remaining suboptimal compared to
RP and the heuristic techniques in terms of net terminal wealth.

All portfolio returns are leptokurtic; indicating the existence of fat-tails in the return
distribution. This is in line with the longstanding finding that financial returns are
heavily entailed with extreme returns or fat-tails. Interestingly, although the tradi-
tional view on financial returns is that they are negatively skewed (Fama, 1965) and
despite the presence of financial crises in our sample period, not all portfolios exhibit
negatively skewed gross returns. RP and MV ID pose virtually no skewness, while
MV reveals a positive skewness of 0.51. These results imply that in the absence of
transaction costs, these allocation strategies are effective in mitigating the extreme
negative returns that occur during market turbulences. Nonetheless, all portfolio
returns are negatively skewed when taking transaction costs into account.

Regarding the maximum drawdown (MDD), which is the maximum loss during the
sample period, MVCCM and MVNLS perform best in both gross and net terms.
MV shows a quite low gross MDD (23.98%), but due to the high transaction costs, it
results in a net drawdown of 35.83%. Heuristic strategies, namely EW and V OLA,
exhibit the MDD along with MV ID of roughly 50%, while RP results in a draw-
down of 40%. Finally, albeit MV yielding the highest Sharpe ratio of 0.66 in gross
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terms, it yields the lowest ratio in net terms of 0.17. MVCCM has the highest
ratio of 0.39, whereas MVNLS and RP result in a ratio of roughly 0.30. The ob-
served outperformance of MVCCM coincides with the findings of Ledoit and Wolf
(2004a), who find that MVCCM performs best for samples with N < 100 assets.

To better understand the portfolio dynamics we also assess the performance mea-
sures over time in Figure B.1. In terms of historical performance, MV shows the
highest terminal wealth. However, the only strategy to show positive performance
during the 2008 financial crisis isMV ID, an indication that naive diversification can
be beneficial during market turmoils. While the differences in Sharpe ratio dynamics
are not very profound, only MV based portfolios reduce portfolio volatility signifi-
cantly. The same is true for the realized CVaR, where the magnitude for the MV

shrinkage and non-shrinkage strategies is much smaller than for EW , V OLA, and
the RP variants. RP dominates the variance regularization completely in the tails
of the portfolio return distribution as the CVaR is identical for all RP strategies.

6 Applications in high-dimensional portfolios

Next, we assess the strategies in equity portfolios and the effect of dimensionality on
portfolio performance, where we randomly select three cases with N = 50, 100, 250
equities from all stocks listed in the NYSE, AMEX, and NASDAQ exchanges. The
data set is nominated in USD, consists of total return price indices, and ranges from
01.01.1994 to 31.12.2019. Tables A.3–A.5 report the results of the out-of-sample
performance of each strategy for N = 50, 100, and 250, respectively.

The distribution of portfolio returns remain unchanged to Section 5, where almost
all strategies exhibit negatively skewed returns. MV is the most concentrated port-
folio in all cases of N and exhibits the largest turnover rate, supporting Michaud
(1989) that the mean-variance optimization using plug-in estimates results in highly
concentrated and unstable portfolios. As the asset universe increases, not only does
the concentration and turnover of MV increase substantially, but the return of
the portfolio also drastically decreases whilst its volatility spikes. Again, this is in
line with Michaud (1989) and Best and Grauer (1991), among others, that mean-
variance optimized portfolios behave as error maximizers instead of achieving the
mean-variance efficient portfolio, thereby deteriorating their risk-adjusted perfor-
mance. As a result, MV performs well only for the case of N = 50 where it yields a
Sharpe ratio of 0.63 net of transaction costs, thereby being suboptimal to only the
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covariance shrinkage strategies of Ledoit and Wolf (2004a,b), whereas its net Sharpe
ratio declines with N yielding the lowest net Sharpe ratio of 0.25 for N = 250.

Regarding heuristic weighting schemes, EW yields stable albeit modest risk-adjusted
returns for all N . As the number of assets increases, the risk-adjusted return of EW
improves while the turnover remains quite low at around 0.35% of portfolio volume,
yielding a higher net Sharpe ratio than MV for N = 250. V OLA as well as RP
display very similar properties, which are yet better than EW . The Sharpe ratio of
both strategies increases with the number of assets and is almost identical for both
strategies, although V OLA exhibits a significantly lower turnover ratio of roughly
0.34.

Covariance shrinkage techniques provide mixed results. MV ID andMVCCM yield
the highest Sharpe ratios before and after transaction costs for all cases of N . The
difference in risk-adjusted performance is minimal for N = 50 and 100, but the gap
widens significantly for N = 250 withMV ID andMVCCM respectively yielding a
Sharpe ratio of 0.73 and 0.91 net transaction costs. Meanwhile, MVNLS seems to
shrink the portfolio towards EW as the number of assets increases, where MVNLS

is identical to EW for N = 250 in all portfolio characteristics. These results con-
tradict the findings of Ledoit and Wolf (2019), who using Monte Carlo simulations
find that non-linear shrinkage of the covariance matrix performs better than linear
shrinkage in high dimensional portfolios. Our results indicate that a more structured
shrinkage target, that is linear shrinkage of all parameters to a unified shrinkage
target, results in a better risk-adjusted performance for MV portfolios than impos-
ing less structure as in individual shrinkage targets via non-linear shrinkage.

Finally, shrinking the covariance matrix in RP results in a deterioration of portfolio
performance for all cases of N , regardless of the approach. This result is in line with
those of Section 5 and further reinforces the notion of the inflexibility of the asset
weights in RP portfolios due to the risk budgeting constraint. Altogether, shrinkage
techniques seem to exhibit some merits when applied in MV optimized portfolios,
but do not yield significant benefits for variations thereof such as RP .10

10We refrain from including the rolling performance measures for the high dimensional portfolios
in this study for parsimony. These results are available upon request from the authors.
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7 Conclusion

In this study we investigate the impact of shrinkage estimation techniques for the
variance-covariance matrix of asset returns in risk parity portfolios for different as-
set universe dimensions. While we provide theoretical and empirical evidence that
risk budgeting on the asset level serves as a regularization mechanism, most impor-
tantly this chapter combines two strands of literature: Using mean-variance linear
and non-linear shrinkage techniques in risk parity portfolios. In this, we provide a
unique and novel perspective on risk parity portfolios.

We find that: (i) RP is a shrinkage variant that works well in lower dimensions; (ii)
Combining RP with shrinkage estimators of the variance-covariance matrix yields
even better returns in lower dimensions, but seems suboptimal for larger asset uni-
verses; (iii) pure shrinkage estimators for MV portfolios dominate all RP variants
in higher dimensions, indicating that fixing the risk contribution of individual assets
does not mitigate the effects of estimation errors and even dominates regularization
effects from more stable variance estimators. A further argument for this is that
for large N , the equal risk budgeting constraint does not decrease portfolio variance.

Future research should consider combinations of mean-variance and risk parity port-
folios that specifically account for a better portfolio allocation rule that captures the
best of both worlds; for example through an optimal shrinkage intensity similar to
DeMiguel et al. (2013). Applications should also include more asset classes such
as currencies or private equity, account for fat-tail distribution through a typical
GARCH model as in Ardia et al. (2017) or even be concerned with more practical
considerations in asset liability and risk management.

15



References

Abadir, K. M., W. Distaso, and F. Žikeš (2014). Design-free estimation of variance
matrices. Journal of Econometrics 181 (2), 165–180.

Amenc, N., F. Goltz, and A. Lodh (2012). Choose Your Betas: Benchmarking
Alternative Equity Index Strategies. Journal of Portfolio Management 39 (1),
88–111.

Anderson, R. M., S. W. Bianchi, and L. R. Goldberg (2012). Will My Risk Parity
Strategy Outperform? Financial Analysts Journal 68 (6), 75–93.

Ardia, D., G. Bolliger, K. Boudt, and J.-P. Gagnon-Fleury (2017). The impact
of covariance misspecification in risk-based portfolios. Annals of Operations Re-
search 254 (1), 1–16.

Baker, M., B. Bradley, and J. Wurgler (2011). Benchmarks as Limits to Arbitrage:
Understanding the Low-Volatility Anomaly. Financial Analysts Journal 67 (1),
40–54.

Barry, C. B. (1974). Portfolio Analysis Under Uncertain Means, Variances, and
Covariances. Journal of Finance 29 (2), 515–522.

Benartzi, S. and R. H. Thaler (2001). Naive Diversification Strategies in Defined
Contribution Saving Plans. American Economic Review 91 (1), 79–98.

Best, M. J. and R. R. Grauer (1991). On the Sensitivity of Mean-Variance-Efficient
Portfolios to Changes in Asset Means: Some Analytical and Computational Re-
sults. Review of Financial Studies 4 (2), 315–342.

Black, F. and R. Litterman (1992). Global Portfolio Optimization. Financial Ana-
lysts Journal 48 (5), 28–43.

Chan, L. K. C., J. Karceski, and J. Lakonishok (1999). On Portfolio Optimiza-
tion: Forecasting Covariances and Choosing the Risk Model. Review of Financial
Studies 12 (5), 937–974.

Chaves, D., J. Hsu, F. Li, and O. Shakernia (2011). Risk Parity Portfolio vs. Other
Asset Allocation Heuristic Portfolios. Journal of Investing 20 (1), 108–118.

Chopra, V. K. and W. T. Ziemba (1993). The Effect of Errors in Means, Vari-
ances, and Covariances on Optimal Portfolio Choice. Journal of Portfolio Man-
agement 19 (2), 6–11.

16



Chow, T.-M., J. Hsu, V. Kalesnik, and B. Little (2011). A Survey of Alternative
Equity Index Strategies. Financial Analysts Journal 67 (5), 37–57.

Clarke, R., H. de Silva, and S. Thorley (2006). Minimum-Variance Portfolios in the
U.S. Equity Market. Journal of Portfolio Management 33 (1), 10–24.

Clarke, R., H. de Silva, and S. Thorley (2011). Minimum-Variance Portfolio Com-
position. Journal of Portfolio Management 37 (2), 31–45.

Clarke, R., H. de Silva, and S. Thorley (2013). Risk Parity, Maximum Diversifi-
cation, and Minimum Variance: An Analytic Perspective. Journal of Portfolio
Management 39 (3), 39–53.

DeMiguel, V., L. Garlappi, and R. Uppal (2009). Optimal Versus Naive Diver-
sification: How Inefficient is the 1/N Portfolio Strategy? Review of Financial
Studies 22 (5), 1915–1953.

DeMiguel, V., A. Martin-Utrera, and F. J. Nogales (2013). Size matters: Optimal
calibration of shrinkage estimators for portfolio selection. Journal of Banking &
Finance 37 (8), 3018–3034.

DeMiguel, V. and F. J. Nogales (2009). Portfolio Selection with Robust Estimation.
Operations Research 57 (3), 560–577.

Fabozzi, F. J., P. N. Kolm, D. A. Pachamanova, and S. M. Focardi (2007). Robust
Portfolio Optimization and Management. John Wiley & Sons.

Fama, E. F. (1965). The Behavior of Stock-Market Prices. Journal of Busi-
ness 38 (1), 34–105.

Frazzini, A. and L. H. Pedersen (2014). Betting against beta. Journal of Financial
Economics 111 (1), 1–25.

Garlappi, L., R. Uppal, and T. Wang (2007). Portfolio Selection with Parameter and
Model Uncertainty: A Multi-Prior Approach. Review of Financial Studies 20 (1),
41–81.

Jagannathan, R. and T. Ma (2003). Risk Reduction in Large Portfolios: Why
Imposing the Wrong Constraints Helps. Journal of Finance 58 (4), 1651–1683.

James, W. and C. Stein (1961). Estimation with Quadratic Loss. In Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Contributions to the Theory of Statistics, pp. 361–379. Berkeley, CA:
University of California Press.

17



Jobson, J. D. and B. Korkie (1980). Estimation for Markowitz Efficient Portfolios.
Journal of the American Statistical Association 75 (371), 544–554.

Lam, C. (2016). Nonparametric eigenvalue-regularized precision or covariance ma-
trix estimator. Annals of Statistics 44 (3), 928–953.

Ledoit, O. and S. Péché (2011). Eigenvectors of some large sample covariance matrix
ensembles. Probability Theory and Related Fields 151 (1-2), 233–264.

Ledoit, O. and M. Wolf (2004a). Honey, I Shrunk the Sample Covariance Matrix.
Journal of Portfolio Management 30 (4), 110–119.

Ledoit, O. and M. Wolf (2004b). A well-conditioned estimator for large-dimensional
covariance matrices. Journal of Multivariate Analysis 88 (2), 365–411.

Ledoit, O. and M. Wolf (2017). Nonlinear Shrinkage of the Covariance Matrix
for Portfolio Selection: Markowitz Meets Goldilocks. Review of Financial Stud-
ies 30 (12), 4349–4388.

Ledoit, O. and M. Wolf (2019). The Power of (Non-)Linear Shrinking: A Review
and Guide to Covariance Matrix Estimation. University of Zurich, Department
of Economics, Working Paper No. 323, Revised Edition.

Lee, W. (2014). Constraints and Innovations for Pension Investment: The Cases of
Risk Parity and Risk Premia Investing. Journal of Portfolio Management 40 (3),
12–20,6.

Maillard, S., T. Roncalli, and J. Teïletche (2010). The Properties of Equally
Weighted Risk Contribution Portfolios. Journal of Portfolio Management 36 (4),
60–70.

Markowitz, H. (1952). Portfolio Selection. Journal of Finance 7 (1), 77–91.

Michaud, R. O. (1989). The Markowitz Optimization Enigma: Is ’Optimized’ Op-
timal? Financial Analysts Journal 45 (1), 31–42.

Pástor, L. (2000). Portfolio Selection and Asset Pricing Models. Journal of Fi-
nance 55 (1), 179–223.

Wang, Z. (2005). A Shrinkage Approach to Model Uncertainty and Asset Allocation.
Review of Financial Studies 18 (2), 673–705.

Windcliff, H. and P. P. Boyle (2004). The 1/n Pension Investment Puzzle. North
American Actuarial Journal 8 (3), 32–45.

18



A Tables

Table A.1: List of Employed Portfolio Strategies

№ Strategy Definition Abbreviation

Panel A: Heuristic Weighting Techniques
1 Equally Weighted Portfolio EW

2 Inverse Volatility Portfolio V OLA

Panel B: Minimum Variance Portfolios
3 Minimum Variance Portfolio MV

4 Minimum Variance Portfolio with Linear Covariance Matrix
Shrinkage using the Identity Matrix Model

MV ID

5 Minimum Variance Portfolio with Linear Covariance Matrix
Shrinkage using the Constant Correlation Model

MVCCM

6 Minimum Variance Portfolio with Non-Linear Covariance Ma-
trix Shrinkage

MVNLS

Panel C: Risk Parity Portfolios
7 Risk Parity Portfolio RP

8 Risk Parity Portfolio with Linear Covariance Matrix Shrink-
age using the Identity Matrix Model

RPID

9 Risk Parity Portfolio with Linear Covariance Matrix Shrink-
age using the Constant Correlation Model

RPCCM

10 Risk Parity Portfolio with Non-Linear Covariance Matrix
Shrinkage

RPNLS
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B Figures

Figure B.1: Portfolio Sharpe Ratio under Estimation Error

(a) Minimum Variance

(b) Risk Parity

Notes: This figure illustrates the difference in the risk-return properties between the true portfolio
and 10,000 simulated portfolios for the cases of N = 10, 50, 100 assets. The true portfolio is
determined by the ex post sample moments, whereas the simulated portfolios are determined by
plug-in estimates for 250 simulated returns.
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Figure B.2: Global Portfolio Performance Measures over Time

(a) Historical Performance

(b) Realized Sharpe

(c) Realized Volatility

(d) Realized CVaR

Notes: This figure illustrates the differences in gross historical performance, realized Sharpe ratio,
realized volatility and realized Conditional Value at Risk (CVaR) between the different portfolio
strategies outlined in Table A.1. The gray shaded areas indicate U.S. recessions as reported by
NBER. The results in Panels (b) to (d) are calculated based on a rolling window of 60 monthly
portfolio realized return observations.

25


	Introduction
	A motivational example
	Methodology
	Empirical setup
	Applications in multi asset allocation
	Applications in high-dimensional portfolios
	Conclusion
	Tables
	Figures

