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Abstract

Time series momentum strategies are widely applied in the quantitative financial
industry and its academic research has grown rapidly since the work of Moskowitz,
Ooi, and Pedersen (2012). However, trading signals are usually obtained via simple
observation of past return measurements. In this article we study the benefits of in-
corporating dynamic econometric models to sequentially learn the time-varying im-
portance of different look-back periods for individual assets. By the use of a dynamic
binary classifier model, the investor is able to switch between time-varying or constant
relations between past momentum and future returns, dynamically combining or se-
lecting different momentum speeds during turning points, improving trading signals
accuracy and portfolio performance. Using data from 56 future contracts we show
that a mean-variance investor will be willing to pay a considerable management fee
to switch from the traditional naive time series momentum strategy to the dynamic
classifier approach.
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1 Introduction

A significant part of the hedge fund industry nowadays is based on managed futures
funds, also known as Commodity Trading Advisors (CTAs). As shown by Hurst, Ooi,
and Pedersen (2013), the returns of these funds are usually explained by simple trend-
following (aka time-series momentum) strategies on future contracts. These strategies use
the ability of past returns to antecipate future return movements. The work of Moskowitz,
Ooi, and Pedersen (2012) was the first to document the ability of time-series momentum
strategies to generate significant profits over time and among different future markets,
contradicting the random-walk theory where no past information is able to predict future
returns. The basic ideia of such strategy is to vary the position of an individual asset based
on signals of the past returns over a specific look-back period (traditionally, from one to
twelve months). Therefore, the investor goes long during periods of positive trends and
goes short during periods of downtrend.

The time-series momentum strategy is related to, but different from, the cross-sectional
momentum strategy (Jegadeesh and Titman, 1993 and Asness et al., 2013). The cross-
sectional approach explores the relative performance among different assets, buying those
assets with higher past performance (winners) and selling those with lower performance
(losers). Hence, even a security with positive but low past return can be sold if its peers
are performing better recently. On the other hand, the time-series momentum explores
the absolute performance of the own specific security, despite the performance of its peers.
Interestingly, the work of Moskowitz et al., 2012 shows that the returns of time-series
momentum strategies are not related to compensation for traditional risk factors, such
as the value and size factors, but is partially related to the momentum factor.

After the work of Moskowitz et al., 2012, the empirical literature on time-series momen-
tum has grown rapidly, finding evidences that the returns of managed funds can be ex-
plained by time-series momentum strategies (Hurst et al., 2013 and Baltas and Kosowski,
2013) and its significant performance in different asset classes in emerging and developed
markets (Georgopoulou and Wang, 2017), among common stocks (Lim, Wang, and Yao,
2018) and throughout the entire past century (Hurst et al., 2017). Using intraday data, Gao,
Han, Li, and Zhou (2018) also show that the first half-hour return on the market is able to
predict the last half-hour return. In terms of portfolio allocation, Baltas (2015), Baltas and
Kosowski (2020) and Rubesam (2020) show the benefits of correlations and risk parity for
improving portfolio diversification on time-series momentum strategies.

Recently, Hutchinson and O’Brien (2020) have showed a link between time-series mo-
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mentum returns and the business cycle, giving evidences that the returns are stronger
during both recessions and expansions. The literature has also recognized the time-series
momentum pattern in risk factors. Gupta and Kelly (2019) document robust persistence in
the returns of equity factor portfolios, showing that factor timing by time-series momen-
tum produces economically and statistically large excess performance relative to untimed
factors. Exploring this idea, Levy and Lopes (2021b) also insert a time-series momentum
structure to predict risk factors in a high-dimensional portfolio allocation.

In general, the papers cited above compare the results of different portfolios built by
the use of different look-back periods (the number of periods to consider in the past to
form a measure of momentum) or directly consider twelve months as the benchmark mea-
sure to generate momentum signs. Then, they set a buy or sell trading rule based on the
observed momentum sign. This type of decision rule is motivated by practice and the
academic literature that followed. However, we argue in this paper that the absence of an
econometric model behind decisions can lead investor to misleading trading actions. For
example, what guarantees that the returns from previous months will always indicate a
positive relationship with future returns? Each asset can respond differently not just to
the same measure of momentum but also for different look-back periods. Some assets can
have a negative (reversal) relation with shorter look-back periods and others a positive
effect. Also, this pattern can change over time. Since the environment of the financial mar-
ket is continuously changing, a pattern that was common in the 80s can differ from the
90s or during financial crisis and pandemics. Motivated by these ideas, we use a dynamic
binary classification model to infer about the future trend of returns. The approach is able
to handle look-back period uncertainty and time-varying parameters in a dynamic fash-
ion. Hence, investors can learn from past mistakes, giving lower importance to look-back
periods that have performed worse in the recent past and assigning higher probabilities
to look-back periods with higher predictability. Also, by the use of time-varying parame-
ters, the model adapts to changes in the financial environment, switching from periods of
momentum to reversal if it is empirically wanted.

The literature on return predictability is not new. The seminal paper of Welch and
Goyal (2008) shows that it is extremely hard to predict stock returns using well known
predictors in a econometric model, i.e., predictors are not able to outperform the simple
historical average of stock returns. After Welch and Goyal (2008), several other studies
have appeared in the literature trying to find bettter predictors or econometric models that
could be able to improve predictability (Campbell and Thompson, 2008, Rapach, Strauss,
and Zhou, 2010, Dangl and Halling, 2012, Johannes, Korteweg, and Polson, 2014, Chinco,
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Clark-Joseph, and Ye, 2019, Gu, Kelly, and Xiu, 2020, Liu, Pan, and Wang, 2021 and many
others). Some crucial aspects that can be found in several papers that followed Welch
and Goyal (2008) are the presence of time-varying coefficients and model combination. In
fact, the accumulated academic evidence has shown that parameter instability is able to
handle changes in market sentiment, institutional framework and macroeconomic condi-
tions. Additionally, model combination is able to dramatically improve forecasts since it
combines important economic information contained in each different predictor.

Inspired by the recent advances on the return predictability literature, our goal is to
improve trend-following strategies by the use of model selection and model combination,
where different look-back periods can be considered to build momentum measures. We
follow the approach of McCormick, Raftery, Madigan, and Burd (2012) to build our dy-
namic trend return classifier. Our classifier relies on the use of a dynamic logistic regres-
sion where parameters are able to be constant or time-varying over time and uncertainties
about how far the investor should look into the past to predict the future is dealt by the use
of dynamic model probabilities. After assigning probabilities for each model setting, we
are able to integrate uncertainties by dynamic model averaging (DMA) or dynamic model
selection (DMS). The approach is a binary counterpart of the DMA approach recently used
with great sucess in other Bayesian econometric applications (Koop and Korobilis, 2012,
Dangl and Halling, 2012, Koop and Korobilis, 2013, Catania, Grassi, and Ravazzolo, 2019
and Levy and Lopes, 2021a). Using discounting methods and distribution approxima-
tions, there is no need to use expensive simulation schemes such as Markov Chain Monte
Carlos (MCMC), which makes the whole process much faster to compute. It can be viewed
as a great advantage for quantitative investors, since the amount of assets available is
growing and trading positions are getting faster nowadays.

The binary approach of McCormick et al. (2012) was originally applied to a medical
classification problem and it was first introduced in the economic literature in Hwang
(2019) where the authors use the binary classification method to forecast recession peri-
ods. At the best of our knowledge, we are the first to introduce this dynamic approach in
a financial econometric context. Since our interest here is not to predict raw returns but
its future direction (buy or sell sign), it fits perfectly to the time-series momentum appli-
cation. The great advantage of using dynamic model probabilities is to combine different
economic informations coming from many look-back periods in a sequential fashion. As
soon as new data arrives, the model is able to adapt to new informations, assigning higher
probabilities for models using look-back periods with stronger informations.

The idea of combining information from different look-back periods has already ap-
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peared in the literature before. Han, Zhou, and Zhu (2016) show economic gains when
combining informations from short, intermediate and long-term look-back periods to build
cross-sectional momentum strategies. More recently, the works of Garg, Goulding, Har-
vey, and Mazzoleni (2020) and Garg, Goulding, Harvey, and Mazzoleni (2021) explore the
impacts of turning points on time series momentum strategies. They show evidences of
an increase in the presence of trend breaks in the last decade, leading to a negative impact
on final portfolio performance. It happens due to the fact that after a trend reverses its di-
rection, trend-following strategies tend to place bad bets since past momentum can reflect
an old and inactive trend direction. The authors propose a trading rule where information
of both fast and slow momentum look-back periods are considered if it identifies a turn-
ing point. Also, by the use of a machine learning technique, the work of Jiang, Kelly, and
Xiu (2020) use stock-level prices images to detect future price directions instead of using
returns information. They apply a convolutional neural network model to classify future
return signals and perform a cross-sectional portfolio strategy based on these signal pre-
dictions. The authors found robust evidences that image-based predictions are powerful
to predict future returns.

Additionally to the increase in trend breaks in the last decade, in Section 5 we also dis-
cuss a topic not well explored by the academic literature on time series momentum: the
impacts of the 2009 market rebound on portfolio performance and drawdowns. Similar
to the momentum crash observed on cross-sectional momentum strategies after the Great
Financial Crisis (Barroso and Santa-Clara, 2015 and Daniel and Moskowitz, 2016), tradi-
tional time series momentum portfolios also suffered from strong trend breaks, leading
to huge losses as soon as old negative trends reverted to positive ones. Motivated by the
literature on time-series momentum and return predictability, our goal is to provide an
econometric solution to deal with trend reversals, minimizing portfolio drawdowns.

The great advantage of our classifier model compared to the works mentioned above is
its ability to sequentially learn the importance of each look-back period individually and
for each asset in parallel. Using a dynamic model, we are able to understand the time-
varying behavior among different momentum speeds individually and assign higher or
lower speed probabilities which are updated from most recent data observations. Hence,
as soon as a market correction or rebound seems to appear in the data, slower momen-
tum measures start to receive lower probabilities while faster momentum probabilities
increase, influencing final predictions. Therefore, the dynamic classifier approach is able
to deal with turning points problems in a customizable and automatic fashion. Also, by
allowing time-varying parameters, the model introduces higher flexibility to capture pos-
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itive or negative relations among past accumulated returns and future returns. Hence, for
some periods of time, past returns can induce reversal but in others, momentum.

Using futures data from 1980 to September 2020 on 56 assets across four asset classes
(equity indices, commodities, currencies and government bonds) we build time-series mo-
mentum strategies using information from our dynamic classifier model and compare
with the standard naive time-series momentum where the investor just buy or sell each
asset based on specific previous returns. We show that the dynamic classifier approach
not only produces better out-of-sample accuracy about the future return directions, but
also improves significantly portfolio performances. The model specification using time-
varying parameters and DMS to predict future trend signals generated a 52% increase in
annualized out-of-sample Sharpe ratios compared to the naive approach benchmark. The
constant parameter counterpart of the DMS approach also performed quite well, deliver-
ing a 44% Sharpe ratio increase compared to the benchmark. We also show that by the
use of DMS or DMA, our dynamic binary classifier was able to explore sudden turning
points during the 2009 momentum crash. While the naive time series momentum strat-
egy produced strong losses during the crash period (25% of cumulative return losses in
16 months), applying dynamic momentum speed selection with time-varying parameters
earned 22% of total cumulative return gains in the same period. Finally, in the same spirit
of Fleming, Kirby, and Ostdiek (2001), we show that a mean-variance investor will be
willing to pay 425 basis points as annualized management fee to switch from the stan-
dard naive time-series momentum strategy to our dynamic classifier approach with time-
varying parameters and look-back period selection.

The rest of the paper is organized as follows. Section 2 explains the traditional time-
series momentum strategy and how to create portfolios based on specific look-back peri-
ods. Section 3 describes the econometric methodology behind the dynamic classifier. In
Section 4 we describe the data used and explore the empirical results of dynamic portfo-
lios strategies, both in terms of out-of-sample predictability and economic performance. In
Section 5 we discuss the economic performance during the well known 2009 crash period
and the subsequent years. Finally, Section 6 concludes.

2 Standard Time-Series Momentum Strategy

In this Section we descrive how the most common time-series momentum is performed.
The definitions are based on the main literature on time series momentum cited above, in
special the work of Moskowitz et al. (2012). Let rit represent the log-return of security i
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at month t. We can define MomL
it as the momentum measure at time t for security i and

look-back period L as:

MomL
it =

L

∑
l=1

ri,t−l (1)

which is basically the cumulative return from the previous L periods until time t − 1.
Using the momentum measure, we can find trading signals. For example, if MomL

it ≥ 0,
it represents a long position (+1) and MomL

it < 0 indicates a short position (-1) on asset i.
It is common practice in the literature to size each asset position so that it has an ex ante
annualized volatility target of σtg = 40% (Moskowitz et al., 2012). Hence, the position size
is chosen to be 40%/σt, where σt is the ex-ante asset volatility estimate. In this manner, the
time-series momentum return for asset i at time t will be:

rTSMOM,L
it = sign(MomL

it)
σtg

σit
rit (2)

The usual volatility model applied in the literature is the EWMA volatility measure.
The annualized volatility can be represented as

σ2
it = D

∞

∑
l=0

(1− δ)δl (ri,t−1−l − r̄i)
2 (3)

where D is the number of observations within a year and δ is a decay factor1 We recog-
nize the simplicity of this volatility measure to capture the right movements of returns
volatilities. However, it is important to highlight here that our goal in this study is not
to perform volatility timing strategies, but to show performance improvements via signal
predictions based on momentums. In order to approximate our study as closely as possi-
ble to the format used by the literature and to fairly compare our results we use the same
volatility model for all different strategies in the paper. Differently from the work of Kim,
Tse, and Wald (2016), where the authors argue that time-series momentum strategies are
driven by volatility scaling, we show in our results significant portfolio improvements by
just modeling return signals instead of volatilities.

Considering a holding period of one month, the return of the overall portfolio diversi-
fying across the Nt assets available at time t is simply

1We consider in this work δ = 0.97. We also tested for different values and main results remained similar.
Since the focus of this study is to improve return signal predictions, we argue that as soon as the same decay
factor is applied to all different strategies, the results are not driven by the volatility measure.
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rTSMOM,L
pt =

1
Nt

Nt

∑
i=1

sign(MomL
it)

σtg

σit
rit (4)

Note that in the standard time-series momentum strategy, return signals are based just
on the observation of past returns, i.e., there is an absence of an econometric model to
infer about the correct future return directions and we argue here that it can dramatically
reduce the final portfolio performance. Since the standard time-series momentum strategy
does not take into account the relationship between past momentum measure and future
returns and how it changes over time, the investor is giving up the opportunity to learn
about new economic environments to improve signal forecasts and possibly is incurring
in misleading trading positions. This is why, for now on, we will refer to the standard
time-series momentum strategy as naive.

3 Dynamic classifier method

Now we describe in details the dynamic classifier model used in this paper. It is mainly
inspired by the work of McCormick et al. (2012) and can be viewed as an econometric sub-
stitute for the traditional naive time-series momentum approach. As before, the investor
wishes to antecipate the future direction of asset returns in order to set long or short po-
sitions. Therefore, we still have a binary classification problem. The great difference now
is that decisions will be based on a statistical model that is able to better digest today’s
information complexity to infer about the future return direction and improve trading
decisions.

The econometric method is based on a dynamic logistic regression model for each indi-
vidual return series. The model is written in state-space form, where st represent a binary
response of a individual asset return, i.e., st = 1 when returns are greater or equal to
zero and st = 0, otherwise. Let xt be a d-vector containing a set of possible momentum
measures as predictors for the specific asset return signal. Then:

st ∼ Bernoulli(pt) (5)

where

logit(pt) = log
(

pt

1− pt

)
= x′tθt (6)
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θt = θt−1 + ωt, ωt ∼ N (0, W t) (7)

where pt is the probability of a positive return signal and the d-vector θt contains regres-
sion coefficients representing the relationships among momentum and future return di-
rection and also an intercept coefficient. Note that coefficients are allowed to evolve over
time as random-walks. Here, we initially consider a single arbitrary model containing a
specific set of momentum predictors xt. Later, in the next section we explore our dynamic
momentum learning procedure where different models with different momentum predic-
tors are considered. For now, consider the existence of K possible look-back periods we
may use and let xt contain only one of the 2K possible combination of predictors we may
include in the particular model.2

Let Dt−1 represents the whole information available until time t − 1, i.e., Dt−1 =

s1, . . . , st−1. Hence, the posterior distribution for coefficients at time t− 1 is

θt−1 | Dt−1 ∼ N (mt−1, Ct−1)

where mt−1 and Ct−1 represent the posterior mean and covariance for θt−1 at time t− 1 .
The prediction equation for time t given information until time t− 1 is given by

θt | Dt−1 ∼ N (at, Rt)

where at = mt−1 and by the use of a discount factor 0 < λt ≤ 1 we can obtain the
predicted covariance matrix of states as Rt =

Ct−1
λt

. The use of discounting methods sim-
plifies estimation and is widely applied in the bayesian literature. It can be viewed as a
way to discount more heavily past information. A discount factor lower than 1 imposes
time-variation in coefficients while λt = 1 set coeficients to be constant (see West and Har-
rison, 1997, Prado and West, 2010 and Raftery, Kárnỳ, and Ettler, 2010 for details about
discounting methods).

After computing the prior state distribution for time t, we are able to generate a return
signal prediction for the specific asset as:

ŝt|t−1 =
1

1 + e−x′tat
(8)

which will be used to portfolio decisions as we explain in Section 4.

2Hence, for instance, we could have xt =
[
1, MomL=1

it , MomL=6
it , MomL=12

it
]

or even xt =[
1, MomL=2

it , MomL=8
it
]
.
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At time t, the investor observes st and is able to update her state estimates by the Bayes’
rule:

p (θt | Dt) ∝ p (st | θt) p (θt | Dt−1) (9)

which is simply the product of the likelihood at time t and the prediction equation for θt

defined above. Since Equation (9) is not available in closed-form, McCormick et al. (2012)
approximate this posterior with a normal distribution. Let l(θt) = logp (st | θt) p (θt | Dt−1)

and Dl(θt) and D2l(θt) being its first and second derivative. The mean of the approximate
distribution will be the mode of Equation (9) and its estimate will be given by

mt = at − D2l(θt)
−1Dl(θt) (10)

and the state variance is updated by Ct = −D2l(θt)−1.
In order to apply DMA or DMS (see below) and tune discount factors, the predictive

likelihood will be taken into account:

p (st | Dt−1) =

ˆ
θt

p (st | θt,Dt−1) p (θt | Dt−1) dθt (11)

However, since this integral is not available in closed form, a Laplace approximation is
used such that:

p (st | Dt−1) ≈ (2π)d/2
∣∣∣{D2l (θt)

}−1
∣∣∣1/2

p (st | Dt−1, θt) p (θt | Dt−1) (12)

which makes computation much faster, since no expensive simulation schemes are re-
quired. In order to tune λt, we propose a grid of values for λt and sequentially select over
time the one such that Equation (12) is maximized. In our empirical section below, we
use λt ∈ {0.98, 0.99, 1} for the time-varying parameter (TVP) setting. Hence, our approach
is able to induce higher or lower degree of variability in coefficients if it is empirically
suited. For the constant parameter (CP) case, no discounting is applied, so we fix λ = 1
for all periods of time.

3.1 Dynamic momentum learning

Considering the uncertainty around which look-back period brings more information
about future direction of returns, now we explain how momentum (speed) uncertainty
can be inserted in our dynamic classifier model. Suppose there are K possible look-back
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periods an investor may consider for a time-series momentum strategy for a specific as-
set. Since there is uncertainty about the amount of economic information each look-back
period may provide to infer the future direction of returns and what is the best speed (or
combination of speeds), the investor is faced with the problem of momentum uncertainty.
How is an investor able to understand the complexity of the trend structure just by look-
ing at past returns? There are several different paths that may define a positive or negative
trend. For instance, one asset may have a slower (long period) positive momentum trend,
but a fast (short period) negative momentum. Also, there are cases of long and short pos-
itive (negative) momentum trends, but negative (positive) intermediate trend. We argue
here that those patterns are changing over time, since the financial market is continuously
adapting to new environments. Therefore, the idea of dynamic momentum learning is to
compute all the M = 2K possible models3 in parallel and assign dynamic model proba-
bilities for each one in such way that the investor is able to sequentially learn from past
model mistakes, switching to model settings that are performing better in the recent past
or combining all of them weighting by their model probabilities.

Denote πt−1|t−1,i = p(Mi | Dt−1) as the posterior probability of a model i with a
specific subset of momentum predictors at time t − 1.4 Following Raftery et al. (2010)
and McCormick et al. (2012), the predicted probability of the model i given all the data
available until time t− 1 can be expressed as:

πt|t−1,i =
πα

t−1|t−1,i

∑M
l=1 πα

t−1|t−1,l

, (13)

where 0 ≤ α ≤ 1 is another discounting (forgetting) factor. The main advantage of using
α is avoiding the computational burden associated with expensive MCMC schemes to
simulate the transition matrix between possible models over time. This approach has also
been extensively used in the Bayesian econometric literaure in the last decade (Koop and
Korobilis, 2013, Zhao, Xie, and West, 2016, Lavine, Lindon, West et al., 2020 and Beckmann,
Koop, Korobilis, and Schüssler, 2020). After observing new data at time t, we update
model probabilities following a simple Bayes’ rule:

3Hence, the model space will be determined by different momentum measures (look-back periods). In
our work we exclude the case of zero predictors, so actually we consider M = 2K − 1 possible models.

4Initially, we assign equal probabilities for all M = 2K different models: π0|0,i =
1
M for all models i.
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πt|t,i =
πt|t−1,i pi (st | Dt−1)

∑M
l=1 πt|t−1,l pl (st | Dt−1)

. (14)

which is the posterior probability of model i at time t and pi(st | Dt−1) is the predictive
density of model i evaluated at st. Note that the predictive densities have already been
computed as we have shown in Equation (12), which implies that no extra computations
are required here to update model probabilities. Hence, upon the arrival of a new data
point, the investor is able to measure the performance of each model i and to assign higher
probabilities for those models that generate better out-of-sample performance.

One possible interpretation for the forgetting factor α is through its role to discount
past performance. Combining the predicted and posterior probabilities, we can show that

πt|t−1,i ∝
t−1

∏
l=1

[pi (st−l | Dt−l−1)]
αl

. (15)

Since 0 < α ≤ 1, Equation (15) can be viewed as a discounted predictive likelihood,
where past performances are discounted more than recent ones. It implies that models that
generated higher out-of-sample performance in the recent past will receive higher predic-
tive model probabilities. The recent past is controlled by α, since a lower α discounts more
heavily past data and generates a faster switching behavior between models over time and
α = 1 represents no forgetting information. The value of αt is sequentially selected over
time such that it maximizes the average predictive likelihood over all different model:

αt = arg max
αt

M

∑
l=1

πt|t−1,l pl (st | Dt−1) (16)

Similar to the discount factor λt, we propose a grid of values αt ∈ {0.99, 1} such that
the model can switch between forgetting and no-forgetting information over time.

Using predictions for each individual model i, ŝi
t|t−1, we compute the dynamic model

average prediction (ŝDMA
t|t−1 ) weighting by each individual model probability:

ŝDMA
t|t−1 =

M

∑
l=1

πt|t−1,l ŝ
l
t|t−1 (17)

while dynamic model selection (DMS) is applied by simply selecting the model i with the
highest predicted model probability, πt|t−1,i, for period t, .

For each asset available, the investor can apply the whole procedure described above
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and classify long or short position for individual assets based on different out-of-sample
signal predictions. In the next section we explain in details the time-series momentum
strategy using the dynamic classifier approach and describe the data used in our empirical
study.

4 Dynamic Portfolio Allocation

Now we discuss how to incorporate output informations from the dynamic classifier ap-
proach as inputs in a dynamic time-series momentum strategy. Supposing there are Nt

assets available for investing at time t, instead of considering sign(MomL
it) as a signal

classifying long or short positions, the investor will use the DMA or DMS classification
prediction for each individual asset to generate trading signals for her portfolio. Hence, if
ŝt|t−1 ≥ c it indicates a long position (sign(r̂t|t−1) = +1) and if ŝt|t−1 < c we have a short
position (sign(r̂t|t−1) = −1) in that specific asset, where c represents a cutoff selected by
the investor. The most direct and simple cutoff choice is to consider c = 0.5 or to apply
a sequential grid search to maximize out-of-sample accuracy for each individual asset. In
our empirical results we show results using both approaches. Therefore, the return of the
overall time-series momentum portfolio using DMA will be given by

rTSMOM−DMA
pt =

1
Nt

Nt

∑
i=1

sign(ŝDMA
t|t−1,i)

σtg

σit
rit (18)

and the return of the time-series momentum portfolio with signals obtained from the DMS
procedure will be given by

rTSMOM−DMS
pt =

1
Nt

Nt

∑
i=1

sign(ŝDMS
t|t−1,i)

σtg

σit
rit (19)

where results with constant and time-varying parameters are shown in the empirical sec-
tion. We also show portfolio performances when, instead of using model combination or
selection, we use models with single predictors. For example, when we display results
for TVP-12m, we are referring to a model using the twelve month momentum measure as
the only predictor and time-varying parameters are allowed. In this case, portfolios are
formed as in Equations (18) and (19), where signals are coming from this specific single
predictor model.

Using these simple diversified portfolios, we follow the majority of the works related
to time-series momentum strategies. It allows us to evaluate the real economic improve-
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ments due exclusively to our dynamic classifier method using momentum combination
or momentum selection compared to the standard time-series momentum classification
and not due to volatility timing effects.5 We let volatility timing in time-series momentum
strategies as a future research extension to our approach.

Therefore, for each period of time, using the method described above, the investor
uses signal forecasts for each individual asset ŝit as inputs in the dynamic portfolio, sizing
each position based on ex ante volatilities as in Equation (18). Since the number of assets
available for investors at the beginning of the sample does not comprise the entire data
sample, it is important to notice that the number of assets which enters the portfolio Nt

varies over time.
In our empirical study we will consider several specification in order to compare the

benefits of using time-varying parameters, model averaging and model selection to the
naive time series momentum (Naive-TSMOM). We show statistical and economic results
for Naive-TSMOM strategies considering fixed look-back periods of 1, 2, 4, 6, 8, 10 and
12 months. Then, we also report performances when using this same fixed look-back
periods when the trading signals are obtained from our dynamic classifier model. That is,
when there is no model uncertainty and a single momentum measure is applied within
our econometric model. In this cases, we divide results for look-back periods of 1, 2, 4,
6, 8, 10 and 12 months for constant parameters (CP: λ = 1) and also when time-varying
parameters are allowed (TVP: λt ∈ {0.98, 0.99, 1}). The CP specification can be viewed
as a recursive static logistic regression. Finally, we show results for both CP and TVP
when DMA and DMS approaches are applied, meaning that the investor is dynamically
learning momentum speed probabilities and averaging or selecting predictions based on
those probabilities.

4.1 Data

Following Rubesam (2020), we use data of continuous prices for 56 futures contracts
downloaded from Refinitiv/Datastream for the period from January 1980 to September
2020. The data covers 12 developed market equity index futures, 25 commodity futures,
11 developed sovereign bond futures and 8 currency pairs futures. The contracts are rolled
over the last trading day of the expiry month and adjusted at the roll date to avoid arti-
ficial returns. Since our methodology is inherently built for one-step ahead predictions

5For correlation/volatility timing and the benefits of risk parity allocations in time-series momentum
strategies we refer to Baltas and Kosowski (2020) and Rubesam (2020). Kim et al. (2016) also explore the
effects of volatility scaling on time-series momentum strategies.
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and daily portfolio rebalancing prevents the best exploitation of longer momentum effects
and increases transaction costs, we decide to follow the great majority of the literature and
use monthly log-returns in our study. We consider one month as holding period, that is,
we rebalace portfolios in a monthly basis. Tables (8) and (9) in the Appendix provide a
statistical summary of future contracts and its start dates.

In our analysis we use the first three years (36 months) of data for each individual asset
as a training period for our models and use the rest of the subsequent periods as an out-
of-sample evaluation period. Hence, as soon as a new asset is available in the data set, it
enters in the portfolio just three years later. Although the naive time series momentum
strategy does not rely on a econometric approach and does not require a training period,
in our empirical results we also discard the same initial sample window in order to fairly
compare all approaches with the same data set.

4.2 Out-of-Sample Predictability

We analyse how the proposed dynamic econometric specifications perform in terms of
out-of-sample forecasting by comparing models via mean absolute errors (MAE). In order
to provide an overall metric considering all different asset returns and its particular dif-
ferent periods within the real portfolio application, we decided to stack all asset returns
as they were a single series and average absolute error considering the sum of the test
sample periods of each asset. More specifically, consider that for each asset i the training
period ends at month Ttrain,i and its number of months in the test sample is Ttest,i, hence
we compute MAE of an econometric approach j as:

MAEj =
∑i ∑T

t=(Ttrain,i+1) |ŝit − sit|
∑i Ttest,i

(20)

where T is the last month of our sample (September, 2020). Differently from an econo-
metric forecasting model, the naive strategy does not provide a probability prediction per
se, so the investor should buy or sell based only on the sign of past accumulated returns.
Therefore, we compare absolute errors within different econometric models, where the
chosen benchmark is the binary classifier using the twelve months momentum as the only
predictor and using constant parameters (CP-12m). We report relative percentage perfor-
mance improvements

(%)MAEj = 1− MAEj

MAECP−12m (21)
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Hence, positive numbers represent a percentage reduction in terms of out-of-sample
forecasting error compared to the statistical model using just the look-back period of 12
months and constant parameters.

Since the forecasted value from our dynamic classifier approach is an estimate for the
probability of a positive return, a true positive (TP) occurs when the specific model fore-
casted a probability of positive returns greater or equal than a cutoff c and it coincides
with a positive realized return, while a true negative (TN) occurs when the model fore-
casted a value lower than the cutoff c and it coincides with a negative realized return. At
the other hand, false positives (FP) and false negative (FN) represent the case where the
realized return is the opposite to what the forecasted values were indicating. As in Jiang
et al. (2020), we compute classification accuracy as:

Accuracy =
TP + TN

TP + TN + FP + FN
where again we consider the sum of TP, TN, FP and FN for all assets available to compute
total accuracy for each strategy approach. In our main results we consider a cutoff c =

50%. However, as a robustness test, we also report results considering cross-validation
procedures to sequentially select the best cutoff among different values in two grids and
for each asset individually over time. The first cross-validation procedure (CV1) considers
a grid c ∈ {0.49, 0.491, ..., 0.509, 0.51} and the second cross-validation procedure (CV2)
considers c ∈ {0.45, 0.46, ..., 0.54, 0.55}. Those are reasonable grids of values, since much
higher or lower values tend to induce mislieading trading signals. The idea of the grid
search CV is to select the c such that it produces the highest accuracy rate over time. The
CV is repeated once a month and we use the last three years of out-of-sample accuracy
observations to select the best c. In this sense, such smaller grid of values also avoids
aditional computational burden, since the procedure is repated several times for each asset
available. Inspired by a Bayesian Decision Theory perspective, we show in the Appendix
an additional portfolio exercise where the investor maximizes an expected utility where
probabilities of different scenarios are coming from our classifier models. Table (1) below
shows the results for forecast performance without CV (c = 50%), for both CV procedures
and the MAE metric.

From Table (1), the column referring to MAE shows forecast error reductions for dif-
ferent models compared to the CP classifier approach using a twelve month momentum
predictor. Both DMA and DMS demonstrate higher improvements, specially when TVP
are allowed. We can note that DMS has a slightly better performance compared to DMA
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Table 1: Out-of-Sample Forecast performance (%)

Acc (c = 50%) Acc (CV1) Acc (CV2) MAE

CP

DMA 53.1 53.0 52.9 0.342
DMS 53.3 53.2 53 0.470
1m 52.7 52.7 52.8 0.067
2m 52.5 52.6 52.8 −0.017
4m 52.7 52.6 52.5 0.097
6m 52.7 52.7 52.5 0.038
8m 53.0 52.6 52.6 0.162
10m 52.9 52.8 52.3 0.083
12m 52.4 52.2 52.3 0

TVP

DMA 53.1 53.1 53 0.407
DMS 53.1 53.2 53.1 0.502
1m 52.8 52.8 52.9 0.176
2m 52.4 52.7 53 −0.6
4m 52.8 52.6 52.8 0.098
6m 52.7 52.6 52.9 0.045
8m 52.5 52.8 52.7 0.138
10m 52.5 52.6 52.3 0.056
12m 52.2 52.4 52.2 0.012

Naive-TSMOM

1m 50.1
2m 51.0
4m 51.2
6m 51.2
8m 51.4
10m 52.2
12m 52.3

The table reports out-of-sample forecast performance from classifier models for constant parameters (CP)
and time-varying parameters (TVP), considering single predictors (1m, 2m, 4m, ..., 12m) or applying
dynamic model averaging (DMA) or dynamic model selection (DMS) with all predictors in the model
space. CV stems for cross-validation, where the grid from CV1 range from 0.49 to 0.51 and CV2 ranges
from 0.45 to 0.55. The bottom panel shows accuracy from the naive time-series momentum strategy
(Naive-TSMOM).
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and none of the models using a single preditor was able to outperform model selection
or combination. Focusing on classification accuracy, the first column of Table (1) shows
results when a single cutoff c = 50% is applied for all assets and for all periods of time.
Since this accuracy can be obtained from a signal, the Naive-TSMOM is able to infer about
this trading signals by just looking to past momentum measures. The bottom panel of the
table shows a good performance for Naive-TSMOM when longer look-back periods are
considered. Indeed, the Naive-TSMOM of twelve months generated a forecast accuracy of
52.3%. This is in line with the empirical academic research, where the look-back period of
twelve months is the main setting for many studies (Moskowitz et al., 2012 and Rubesam,
2020).

The first and second panels of Table (1) show that by the use of a binary classifier ap-
proach, forecast accuracy can be considerably improved. It is interesting to note that i) for
model settings with a single momentum predictor and short look-back periods, the per-
formance tend to be better than longer look-back periods, the opposite to what is observed
from Naive-TSMOM strategies, ii) single predictor models with constant parameters and
longer look-back periods tend to perform better than their time-varying parameter coun-
terparts, while for shorter look-back periods time-varying parameters are slightly better
than their constant parameter counterpart, and iii) model combination and selection were
able to significantly increase out-of-sample classification accuracy. For both CP and TVP,
DMA and DMS delivered accuracies higher than 53%, with DMS-CP being of 53.3%. In the
next sections we show that, although DMS-CP performed slightly better than DMS-TVP in
terms of total accuracy, the TVP version has greater versatility to recognize sudden turin-
ing points, reducing drawdowns and performing better during bad periods for time-series
momentum strategies, which ends up improving its final economic performance.

Although results in Table (1) may still seem low, differently from other binary classifi-
cation applications and literatures, it is important to remember that in the context of return
predictability where forecasting is a huge challange, any tiny accuracy improvement can
be translated in strong economic improvements across time for the investor (Chinco et al.,
2019, Gu et al., 2020 and Jiang et al., 2020). In fact, Jiang et al., 2020 show evidences that
small accuracy gains in the order of 1% is able to be translated into considerable Sharpe
ratio gains for trading strategies based on these predictions.

In order to test the robustness of results for different cutoffs, we let them change over
time and for each individual asset. The second and third columns from Table (1) show
results when c are coming from a cross-validation procedure, where each column utilizes a
different grid of possible values, as explained above. In fact, the results are still robust with
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small improvements for the TVP in the CV1 case for longer look-back periods and the DMS
approach, whereas for the CP counterpart the results are slightly improved for shorter
look-back periods and harmed for longers and model combination and selection. In the
CV2, there is a small improvement for short momentums in both the TVP and CP models.
In general, the results are still quite similar when c = 50% and model combination and
selection continue to show accuracy gains compared not just to single predictor models
but specially to the Naive-TSMOM strategy.

4.3 Economic Performance

At the end of each month, the investor observes the data available and predicts the fu-
ture directions of returns for the end of the next month. After obtaining forecasting out-
puts (and calibrating signals cutoffs when applying the cross-validation procedure), the
investor is then able to use the prediction outputs as inputs in a portfolio allocation prob-
lem, sequentially rebalancing her portfolio. Using predictions from each model setting,
we build portfolios as in Equations (18) and (19).

In order to show economic improvements for investors, we show important measures
of portfolio performance such as annualied mean excess returns (Mean), volatilities (Vol.),
Maximum Drawdowns (Max DD) and Sharpe Ratios (SR). The latter is commonly used
among practicioniers in the financial market and by academics. Despite its popularity,
SR is an unconditional measure and is not well suited for dynamic allocations with time-
varying and sequential predictions (see Marquering and Verbeek, 2004). Also, they do
not take into account the investor risk aversion. In order to overcome this problems and
improve our model comparisons, we follow Fleming et al. (2001) and provide a measure
of economic utility for investors. We compute ex-post average utility for a mean-variance
investor with a quadratic utility and calculate the performance fee that an investor will be
willing to pay to switch from the standard time-series momentum strategy to the dynamic
classifier method (DCM):

T−1

∑
t=0
{(RDCM

p,t+1 −Φ)− γ

2(1 + γ)
(RDCM

p,t+1 −Φ)2} =
T−1

∑
t=0
{RNaive−12m

p,t+1 − γ

2(1 + γ)
(RNaive−12m

p,t+1 )2} (22)

where γ is the investor’s degree of relative risk aversion, RDCM
p,t is the gross return of

the specific DCM portfolio and RNaive−12m
p,t is the gross return from the Naive-TSMOM

strategy portfolio when a look-back period of twelve months is considered. As in Fleming
et al. (2001), we report our estimates of Φ as annualized management fees in basis points
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using γ = 10 as risk aversion. Notice that Φ is computed by equating the average utility
from the investor applying the Naive-12m strategy with the average utility of the DCM
portfolio (or any other alternative specification).

In an effort to bring our results as closer as possible to a real world example, we follow
Baltas and Kosowski (2020) and Rubesam (2020) and report results net of transaction costs.
Both rebalancing and rollover costs are taken into account. Each asset class will rely on
different transaction costs following the same values in basis points reported in Baltas and
Kosowski (2020).

First, we show in Table (2) annualized results when no CV is performed to obtain the
cutoffs. Hence, c = 0.5 is selected for all periods of time and for all assets. All time-
series momentum strategies are scaled to an ex-post annualized volatility of 10%. Focusing
in the bottom panel of Table (2), which refers to the Naive TSMOM strategy, we note
similar performances to other studies. When using L = 12 months, the strategy performed
particularly well over the last decades. It delivered a SR of 0.81 and 8.1% of annualized
average excess return, both metrics being higher than using shorter look-back periods.
For instance, a naive strategy using 6 months look-back period would deliver almost the
half of the traditional 12-month look-back period strategy. Additionally, shorter look-back
period strategies tend to generate much higher portfolio turnovers, which also harm final
performance due to transaction costs. Within the Naive-TSMOM group, all shorter look-
back period strategies have presented lower maximum drawndowns than the 12-month
strategy. Finally, in terms of utility gains, an investor applying any shorter momentum
speed would be willing to pay an annualized managment fee from 89 to 411 bps to use the
naive-approach with 12-month look-back period.

When we focus on econometric approaches, the results differ to the naive approach.
We first notice that using the 12-month momentum as a single predictor does not imply a
better portfolio performance and the 1-month predictor was able to deliver strong perfor-
mances, in a comparable magnitude to the 12-month naive benchmark. Single predictor
models tend to induce much lower portfolio turnovers than the naive approach, specially
when constant parameters are applied. In fact, the constant parameter group delivered
similar or even better results compared to the time-varying parameter case, except for 1
and 6-month momentum predictors. However, when model selection or averaging are
applied to different momentum predictors, models with time-varying parameters appear
with superior performance compared to its CP counterpart. The DMS-TVP approach was
able to dramatically improve portfolio performance compared to the naive approach, gen-
erating an annualized Sharpe ratio of 1.23, representing an increase of more than 50%,
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Table 2: Economic Performance of TSMOM strategies (c = 50%)

Turnover Mean Vol. Max.DD SR Φ

CP

DMA 67.9 10.5 10.0 15.1 1.05 240.4
DMS 79 11.7 10.0 17 1.17 366.3
1m 64 8.1 10.0 22.1 0.81 −7.9
2m 53.2 6.2 10.0 24.2 0.62 −187.1
4m 50.2 8.0 10.0 20.1 0.80 −17.9
6m 46 8.3 10.0 18 0.83 12.6
8m 44.4 9.3 10.0 14.4 0.93 121.9
10m 42.3 9.3 10.0 16.9 0.93 122.5
12m 43.1 7.0 10.0 15.7 0.70 −110.6

TVP

DMA 85.6 10.6 10.0 13.1 1.06 254.5
DMS 101.3 12.3 10.0 14.8 1.23 425.1
1m 79.6 8.6 10.0 15.3 0.86 42.7
2m 67 6.0 10.0 25.9 0.60 −210.6
4m 58.1 7.5 10.0 26.5 0.75 −62.1
6m 53.4 9.0 10.0 21.2 0.90 86.0
8m 55.8 8.4 10.0 16.8 0.84 22.8
10m 54.4 7.3 10.0 20.2 0.73 −82.8
12m 55.3 6.1 10.0 20.1 0.61 −203.6

Naive

1m 305.9 3.9 10.0 23.0 0.39 −411.5
2m 207.2 5.0 10.0 12.2 0.50 −307.1
4m 144.6 4.9 10.0 15.6 0.49 −313.8
6m 114.4 4.2 10.0 16.7 0.42 −388.0
8m 98.1 5.2 10.0 19.3 0.52 −288.7
10m 82.5 7.2 10.0 20.7 0.72 −89.0
12m 77.1 8.1 10.0 25.3 0.81 0.0

The table reports economic performance from classifier models using constant parameters (CP) and time-
varying parameters (TVP), considering single predictors (1m, 2m, 4m, ..., 12m) or applying DMA or
DMS with all predictors in the model space. The bottom panel shows performances from naive time-series
momentum strategies with different look-back periods. Results consider a classifier cutoff of c = 50%
and strategies are scaled to an ex-post annualized volatility of 10%.
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while its CP counterpart delivered a SR of 1.17. For both CP and TVP panels, DMA per-
formed better than any individual momentum predictors but worse than model selection.
One important aspect of model selection and combination is the ability to reduce maxi-
mum drawdowns with higher reductions when TVP are allowed. While the naive bench-
mark suffered a drastic maximum drawdown of 25.3% (see Section 5 for a deeper discus-
sion on drawdowns and the 2009 momentum crash), the DMA-TVP suffered a maximum
drawdown of 13.1%, almost half the size of the losses obtained from the naive benchmark.
In terms of monthly turnover, both model selection and combination increase position
changes over time compared to single predictor models and the naive approach, specially
for TVP models. However, this turnover increase is more than compensated with higher
accuracy and portfolio returns.

Our results confirm that dynamically combining economic informations from differ-
ent look-back periods using DMA or sequentially selecting the best look-back periods by
DMS improves portfolio performance, being consistent with our previous out-of-sample
accuracy results. The last column of Table (2) shows that a mean-variance investor will
be willing to pay 425 bps as annualized management fee to switch from the naive 12-
month time-series momentum strategy to our dynamic classificer approach with momen-
tum speeds selection and time-varying coefficients. The economic performances are still
strong when using DMA and/or constant parameters.

In order to investigate portfolio performances within different asset classes, in Figure
(1) we show the differences in Sharpe ratio across equities, bonds, commodities and cur-
rencies (FX). First, it is interesting to notice the diversification effect when we allow to
combine different asset classes in the same portfolio, because none of the individual asset
classes in Figure (1) was able to deliver a Sharpe Ratio as high as in the whole portfo-
lio in Table (2). Our dynamic binary classifier method performed specially better among
commodities, an asset class traditionally explored in CTAs by the use of trend-following
strategies. Regardless of the model specification, applying our econometric approach to
commodities delivered substantial improvements compared to the naive benchmark, with
even stronger results for TVP-DMS. There was also a small improvement among bonds
and similar performance compared to the naive benchmark for equities. The only asset
class where our econometric approach clearly performed worse than the benchmark was
for the FX class.

In Tables (3) and (4) we show results when the classifier cutoffs are obtained from cross-
validation procedures, as described in Section (4.2). Out-of-sample portfolio performances
are still robust for different cutoffs. Model selection and averaging continue to improve
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Figure 1: Sharpe Ratios by asset classes

final performance outcomes not just in terms of Sharpe Ratios but also in terms of utility
gains for the investor. For CV1 in Table (3), DMS-TVP was able even to slightly improve
compare to the fixed c = 50% case. A mean-variance investor would pay 439 bps to give
up the naive benchmark strategy to the DMS-TVP in this setting, while she would pay 349
bps for its CP counterpart. For the CP panel the performance is still similar, but with tiny
decreases, while for TVP there was small improvements in the overall evaluation.

For the second cross-validation procedure (CV2) in Table (4), performances are still
strong compared to the naive time-series momentum strategy. There are small portfolio
outcomes declines related to those observed when c = 50%, but results are still consis-
tent, with DMS and DMA delivering important improvements and TVP outperforming
its CP counterpart. It is interesting to notice smaller portfolio turnovers than previous
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Table 3: Economic Performance of TSMOM strategies (c from CV1)

Turnover Mean Vol. Max.DD SR Φ

CP

DMA 65.9 9.9 10.0 20.1 0.99 179.4
DMS 79.1 11.6 10.0 17.8 1.16 349.3
1m 61 8 10.0 26.1 0.80 −16.5
2m 50.8 6.4 10.0 23.7 0.64 −168.3
4m 49.4 8 10.0 21.5 0.80 −14.6
6m 44.7 8.1 10.0 21.7 0.81 −7.3
8m 43.7 8.5 10.0 20.4 0.85 32.9
10m 43 8.9 10.0 18.2 0.89 74.5
12m 44.4 6 10.0 19.1 0.60 −214.4

TVP

DMA 84 10.3 10.0 14 1.03 220.5
DMS 97 12.4 10.0 14.6 1.24 439.2
1m 75.5 8.3 10.0 16.1 0.83 20.5
2m 62.5 6.1 10.0 27.1 0.61 −203.6
4m 55.7 6.5 10.0 28.1 0.65 −165.2
6m 48.3 8 10.0 19 0.80 −12.3
8m 51.8 8.2 10.0 17.6 0.82 6.8
10m 50.6 7.4 10.0 17.7 0.74 −69.8
12m 51.5 6.3 10.0 18.4 0.63 −177.8

The table reports economic performance from classifier models using constant parameters (CP) and time-
varying parameters (TVP), considering single predictors (1m, 2m, 4m, ..., 12m) or applying DMA or
DMS with all predictors in the model space. Classifier cutoffs are obtained from a sequential cross-
validation procedure over time for each individual asset, where c ∈ {0.49, 0.491, ..., 0.509, 0.51}. All
strategies are scaled to an ex-post annualized volatility of 10%.

results. Table (4) shows that a mean-variance investor would pay 278 bps to give up the
naive benchmark strategy to the DMS-TVP, while she would pay 240 bps for its CP coun-
terpart. The DMA setting also performed well, with SR higher than 0.90 for both CP and
TVP. Finally, model selection and combination were able to reduce maximum drawdowns,
regardless of the dynamics on coefficients.

The results in this section confirm that the discretionary way of building trading po-
sitions based solely on the observation of past momentum is not enough to distinguish
between future uptrends or downtrends. By ignoring the time-varying patterns of dif-
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Table 4: Economic Performance of TSMOM strategies (c from CV2)

Turnover Mean Vol. Max.DD SR Φ

CP

DMA 59.2 9.5 10.0 22.4 0.95 138.1
DMS 68.2 10.5 10.0 18.2 1.05 239.8
1m 49.3 7.8 10.0 28.8 0.78 −35.9
2m 44.5 7.7 10.0 25.1 0.77 −44.9
4m 44.4 8.1 10.0 23.6 0.81 −2.9
6m 39.5 7.7 10.0 24.1 0.77 −39.2
8m 41.6 8.8 10.0 17.9 0.88 70.0
10m 44.2 8.2 10.0 16.6 0.82 11.4
12m 38.5 6.3 10.0 20.8 0.63 −177.8

TVP

DMA 67.5 9.3 10.0 18.7 0.93 121.6
DMS 77.2 10.9 10.0 17.9 1.09 277.9
1m 57.1 8.5 10.0 22.7 0.85 40.0
2m 50 7.2 10.0 26.4 0.72 −96.5
4m 44.6 7.4 10.0 23.2 0.74 −69.6
6m 42 8.3 10.0 19.9 0.83 21.9
8m 44 8.1 10.0 19.9 0.81 −2.3
10m 45.1 7.4 10.0 18.1 0.74 −70.3
12m 42.3 6.6 10.0 15.9 0.66 −149.7

The table reports economic performance from classifier models using constant parameters (CP) and time-
varying parameters (TVP), considering single predictors (1m, 2m, 4m, ..., 12m) or applying DMA or
DMS with all predictors in the model space. Classifier cutoffs are obtained from a sequential cross-
validation procedure over time for each individual asset, where c ∈ {0.45, 0.46, ..., 0.54, 0.55}. All
strategies are scaled to an ex-post annualized volatility of 10%.
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ferent momentum speeds and its relations with future returns, the investor is giving up
the opportunity to sequentially learn about trend instabilities to improve trading signals.
Also, although we observe just small economic gains on introducing dynamics on coeffi-
cients compared to CP models, it enabled the investor to learn the time-varying relations
between momentum speeds and future returns and, as we show in the next section, this
time-varying pattern was highlighted during the 2009 TSMOM crash. Therefore, we ar-
gue here that by the use of a dynamic classifier model and momentum speed learning,
the investor is benefited not just in terms of higher Sharpe Ratio and returns, but also by
an increase in final utilities after accounting for a risk aversion measure and considerable
reduction on portfolio drawdowns, reducing losses during bad periods for time series
momentum strategies.

5 The 2009 Crash and subsequent periods

As we previously discussed, the dynamic classifier was able to dramatically reduce draw-
downs. In this section we explore the benefits of automatically let the model learn a
turning point indicating a market rebound. It is well known the failure of momentum
strategies during market rebounds, in particular the 2009’s. Daniel and Moskowitz (2016)
investigates cross-sectional momentum crashes and show that the 2009’s was largely im-
pacted by the market rebound. After a period of negative trends, at March of that year
the market started to strongly recover. However, at that time, the 12 months momentum
strategy was mainly selling assets with high betas (strong positive correlation with the
market) and buying assets with low betas (strong negative correlation with the market).
As soon as the market recovered, the momentum strategy faced huge losses, since it was
selling assets with strong positive recovery and buying assets with weak recovery or even
negative growth.

In the present study we investigate a similar pattern for the naive time-series momen-
tum strategy. During March 2009, the naive benchmark started to suffer huge losses that
lasted until June 2010, accumulating a total loss of 25.3%, representing its maximum draw-
down in the last four decades. The literature has already recognized the weakness of
TSMOM strategies after the Great Recession (Baltas and Kosowski, 2020, Garg et al., 2020
and Garg et al., 2021), where the usual explanation goes from higher asset correlations
to the increase of trend breaks but, at the best of our knowlegde, the literature have not
discussed the special period of the 2009 market rebound. This important drawback from
naive time-series momentum strategies and the lack of academic discussion on the subject
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motivate us to explore this problematic period and to show how our dynamic classifier
approach is able to deal with trend breaks with great sucess.

The great weakness of time-series and cross-sectional momentum strategies is its lack
of ability on recognizing such turning points. A longer momentum speed strategy is not
able to recognize a sudden trend break, so the investor keeps following a trend that no
longer exists. At the other hand, a very short momentum speed is able to identify new
trends when they start to appear, but fails to enter in more stable medium/longer trends.
Additionally, sticking to a short momentum speed strategy tend to be less profitable and
riskier. Therefore, the great challange is to recognize the periods when this new trends
begin by considering informations from fast momentum signals or learning when older
long trends disappear. However, we argue here that those patterns are not clear from
the simple observation of past returns. Hence, the investor can rely on an econometric
approach that is able to digest those patterns in the data. By the use of a dynamic model,
the time-varying relations between different momentum speeds and return signals can be
capture. Therefore, our dynamic binary classifier approach suits quite well to this kind of
decision making problem, since by the use of model selection or model averaging we are
able to assign dynamic probabilities for different iterations of momentum speeds, moving
from an old type of trend to a new one if it is empirically desirable.

In Table (5) we compare the performance of the dynamic classifier method and the
Naive-TSMOM during the crash period. The second column of the table shows the accu-
mulated return during the crash, where the Naive-TSMOM benchmark suffered 25.3% of
losses. In fact, one aspect that is not well discussed in the literature is that the naive bench-
mark was able to recover from those losses just at the end of 2014! The 8 and 10-month
naive strategies also delivered negative returns during the crash period, while shorter mo-
mentum straties were able to survive the crash period with positive returns. Interesting,
the 4-month naive strategy presented a Sharp ratio of 0.83, while the 12-month benchmark
had a strong negative return adjusted by risk of -1.57.

Table (5) gives evidences of failure in traditional longer TSMOM signals to antecipate
drastic trend changes. At the other hand, by looking for the first and second panels of the
table, we notice that our dynamic binary classifier was able to perform extremely better
than the naive approach. As it was expected, fast momentum predictors delivered a very
high accumulated returns, in speciall when TVP are allowed. The 1-month single predic-
tor for the TVP setting obtained 41.3% of total accumulated excess returns during the crash
period with a impressive Sharpe Ratio of 2.04. The only look-back period delivering a neg-
ative performance was the 12-month single predictor, but the losses were tiny compared to
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Table 5: TSMOM Crash: 2009m03 - 2010m06

Turnover Accumul. Mean Vol. SR Φ

CP

DMA 64.3 9 6.8 9.7 0.70 3, 582
DMS 73.9 16 11.6 10.3 1.12 4, 159
1m 67.1 31.5 21.2 11.5 1.85 5, 396
2m 50.1 30.6 20.7 11.8 1.75 5, 278
4m 46.1 23.7 16.5 10.4 1.59 4, 842
6m 38.8 14.4 10.3 8.2 1.27 4, 207
8m 47.1 9.4 7.0 8.8 0.79 3, 688
10m 48.1 3.4 2.9 10.6 0.28 2, 989
12m 44.5 −4.7 −3.1 11.1 −0.28 2, 187

TVP

DMA 94 15.4 11.0 9.0 1.22 4, 222
DMS 92.3 22.1 15.6 11.8 1.32 4, 541
1m 87.9 41.3 26.9 13.2 2.04 6, 003
2m 60 27.5 19.1 13.4 1.42 4, 803
4m 51.6 30.5 20.6 11.2 1.84 5, 346
6m 56.2 10.7 8.0 10.5 0.76 3, 660
8m 53.1 6.2 4.8 9.7 0.50 3, 320
10m 63.2 0.4 0.7 9.8 0.07 2, 781
12m 45.7 −2.4 −1.4 10.6 −0.13 2, 441

Naive

1m 249.7 6.3 4.9 10.0 0.49 3, 305
2m 180.9 11.2 8.7 13.6 0.64 3, 369
4m 114.7 11 8.2 9.9 0.83 3, 752
6m 84.6 1.9 1.9 11.2 0.17 2, 791
8m 73.3 −6.3 −4.1 13.6 −0.30 1, 778
10m 59.5 −14.9 −11.3 13.6 −0.83 976
12m 72.1 −25.3 −20.9 13.3 −1.57 0.0

The table reports economic performance during the time-series momentum crash period (2009m03 until
2010m06) from classifier models using CP and TVP, considering single predictors (1m, 2m, 4m, ..., 12m)
or applying DMA or DMS with all predictors in the model space. Results consider a classifier cutoff of
c = 50%.
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the naive approach. However, as mentioned before, sticking solely to a very fast look-back
period can induce lower performances in the long-run, then recognizing the time-varying
importance of different momentum speeds is crucial for a stronger portfolio with lower
risk and drawdowns. Since the DMA and DMS settings were built exactly with the goal
of learning different momentum speed dynamics, we can notice that they provide strong
portfolio performances not just on the long-run as we have shown in last sections, but also
during the 2009 momentum crash period. Table (5) also makes clear the advantage of al-
lowing time-varying parameters, since during bad periods the economic relations among
financial data can change in a matter of few periods. When the investor considers the
DMS-TVP approach, she is able to obtain 22.1% of accumulated returns during the mo-
mentum crash with a robust SR of 1.32! It means that a mean-variance investor would pay
4,541 bps to switch from the 12-month naive approach to the DMS-TVP method.

In order to provide evidences that the dynamic classifier method with TVP is capable
of learning from past mistakes and assign higher probabilities for those look-back periods
that are performing better in the recent past and reducing probabilities for trends that
no longer exists, Figure (2) shows inclusion probabilities for momentum predictors of 1,
2, 10 and 12-months, averaged across all different assets. For a given asset, a inclusion
probabilitity (IP) for a specific momentum speed L can be defined as

IPL =
M

∑
j=1

1(j⊂J)p
(

Mj|Dt
)

where J represents the subset of models containing the specific momentum predictor L
and 1(j⊂J) is an indicator function taking the value of 1 if the model j is cointained on J.
Hence, a higher IPL means that models with the momentum predictor L are performing
better in the recent past and then receiving higher model probabilities. Since we average
IPL for all assets available at the time period, Figure (2) can give us a sense of the over-
all importance of longer ou shorter trends over time and in special the 2009 momentum
Crash.

It is evident that as soon as the rebound starts at the beginning of 2009, models with
look-back period of 10 and 12-month momentum predictors sequentially received lower
probabilities while the 1-month momentum predictor increase in importance. The 2-
month momentum predictor continued to oscillate around its older inclusion probabili-
ties, but remaining higher than longer momentum predictors. It is interesting to notice
that since the 2009 Crash, longer momentum speeds remained much less important than
faster momentum speeds, in line with recent evidences on the increase of trend breaks
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Figure 2: Mean inclusion probabilities - Momentum speeds

since 2010 (Baltas and Kosowski, 2020, Garg et al., 2020 and Garg et al., 2021 ). At the same
time, the 1-month look-back period remains as the predictor with highest inclusion prob-
abilities. In fact, although longer trends were more important than they are nowadays,
the 1-month momentum already had greater importance even before the Great Recession.
Therefore, Figure (2) gives evidences that sequentially learning the importance of each
momentum speed, combining or selecting those different informations to generate out-
of-sample signal forecasts was able to deal with the 2009 trend break problem with great
sucess, as Table (5) highlights.
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Table 6: Economic Performance: 2010m07 - 2020m09

Turnover Mean Vol. Max.DD SR Φ

CP

DMA 65 9.7 10.0 14.8 0.97 470.6
DMS 80.4 11.8 10.0 10.4 1.18 698.9
1m 64.7 11.8 10.0 10.1 1.18 692.9
2m 47.9 9.8 10.0 11.2 0.98 484.5
4m 47.4 7.0 10.0 18.9 0.70 197.2
6m 41.7 8.1 10.0 14.9 0.81 311.1
8m 38.3 9.0 10.0 12.5 0.90 407.5
10m 35.7 9.0 10.0 16.8 0.90 406.3
12m 35.2 8.7 10.0 15.5 0.87 372.7

TVP

DMA 93.4 9.4 10.0 12.8 0.94 440.1
DMS 114.5 11.0 10.0 13.7 1.10 609.3
1m 82.7 9.3 10.0 11.1 0.93 433.5
2m 60.5 7.2 10.0 14 0.72 222.6
4m 54.2 7.4 10.0 17 0.74 233.5
6m 48.1 8.4 10.0 13.5 0.84 338.2
8m 45.5 7.5 10.0 17.2 0.75 246.8
10m 39.0 6.3 10.0 21.2 0.63 128.3
12m 48.4 6.1 10.0 21.7 0.61 108.2

Naive

1m 356.8 0.8 10.0 27 0.08 −412.7
2m 225.3 5.4 10.0 13 0.54 31.6
4m 163.8 2.9 10.0 19.5 0.29 −216.0
6m 127.7 2.8 10.0 17.4 0.28 −219.2
8m 118.5 2.4 10.0 13.5 0.24 −265.8
10m 95.1 5.4 10.0 16.3 0.54 38.8
12m 89.1 5.0 10.0 15.5 0.50 0.0

The table reports economic performance after the time-series momentum crash period (2010m07 until
2020m09) from classifier models using CP and TVP, considering single predictors (1m, 2m, 4m, ...,
12m) or applying DMA or DMS with all predictors in the model space. Results consider a classifier
cutoff of c = 50%. All strategies are scaled to an ex-post annualized volatility of 10%.
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5.1 The post-Crash period

After the Great Recession, the number of turning points increased considerably for differ-
ent assets. Garg et al. (2020) show that there is a negative relation among the number of
turning points and Sharpe Ratios of TSMOM strategies. In order to show the robustness
of our dynamic classifier approach on the subsequent periods of the 2009 Crash, Table (6)
displays portfolio results from July 2010 to September 2020.

Our results confirm the weakness of the Naive-TSMOM strategies on the post Great
Financial Crisis, as observed in the works of Rubesam (2020), Garg et al. (2020) and Bal-
tas and Kosowski (2020). The naive benchmark strategy obtained a Sharpe ratio of 0.50
during the period, which means a reduction of about 40% compared to the whole sample
evaluated before and the results remain weaker regardless of the look-back period consid-
ered.

When our binary classifier is applied, the optics is still very optimistic. Indeed, what
can be seen is a much stronger performance for the subsequent period of the 2009 Crash
compared to the Naive-TSMOM. For any single predictor setting, the performances are
better than the naive benchmark. Portfolio improvements are observed regardless of the
dynamics induced in coefficients. The DMS-TVP was able to generate a Sharpe Ratio of
1.10, a 120% increase in relation to the naive benchmark, which would require an annual-
ized management fee of 609.3 bps for the investor give up the traditional naive benchmark
to start using the DMS-TVP model. It is interesting to notice that, for this particular sam-
ple period, the CP setting performed even better than the model settings where TVP are
allowed. The DMS-CP have showed a Sharpe ratio of 1.18, representing 698.9 bps as man-
agement fees to use switch from the naive benchmark to this particular model setting.
These results demonstrate evidence of no incremental performance for dynamics on co-
efficients and a simple constant parameter binary classifier model is able to successfully
deal with the amount of turning points in the post 2009 Crash. The most important pat-
tern observed in the period is the strong performance of the single 1-month momentum
predictor. The results are in line with Figure (2), where the 1-month look-back emerged
with higher inclusion probabilities than longer/slower momentum measures.

Finally, just for the sake of curiosity, one of the highest drawdowns from the naive
benchmark strategy was exactly during the Covid period. Since April 2020 to September
of that year, the traditional 12-month time-series momentum strategy accumulated 8.6%
of return losses. The performance was not worse in 2020 because many assets at the very
beginning of the year were signaling negative momentum such that, when the market
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really suffered huge losses in March, the strategy was able to profit from negative trends,
earning 8.7% in that month. Hence, from March to Semptember, the naive benchmark
accumulated just 0.6% of losses. At the other hand, the DMS-TVP was able to deliver
18.4% of accumulated returns from March to September. Its CP counterpart, the DMS-CP
model, also performed quite well in this period, earning 15.0% of accumulated returns.

Therefore, Table (6) gives evidences that the the dynamic classifier performance is ro-
bust even for periods of higher trend breaks. Since dynamic model probabilities are able
to dynamically assign higher or lower probabilities to models with different momentum
speeds, as we have showed in Section 3, new financial environments are not enough to
weaken its final portfolio performance. What we actually see is the oposite, where period
of higher changes in financial trends are accompanied by better returns adjusted for risk.

6 Conclusion

Since the work of Moskowitz et al. (2012), the literature on trend-following strategies has
grown rapidly and its applicability has spread throughout the financial industry. How-
ever, there is still a lack of discussion of how to incorporate econometric models to help in-
vestors to learn about better momentum speeds over time. From the investor perspective,
the better understanding of the time-varying relations from past accumulated returns and
future return signals are crucial for portfolio construction. Recent evidences has shown
that standard discretionary time series strategies tend to suffer stronger breaking trends
and crashes, which dramatically harm portfolio returns adjusted for risk.

In this study we propose the use of a dynamic binary classifier model where investors
can sequentially learn the sensitivities between past returns and future signals. Imposing
time-varying parameters, the model is able to adapt to changes in the financial market,
moving faster from momentum to reversal if it is empirically wanted. Also, by the use of
dynamic model probabilities, the approach is able to recognize sudden turning points, se-
quentially switching from slow to fast momentums after a market rebound, dramatically
reducing drawdowns and momentum crashes. Our results show not just better forecast-
ing accuracy gains compared to the naive time series momentum strategy but also that
an investor using the dynamic classifier approach earns annualized Sharpe Ratios much
higher than the naive benchmark. We analyze different model specifications, cutoffs and
subsamples and results still have shown robustness. The performances remained quite
strong even after the Great Financial Crisis. Considering a mean-variance investor with a
quadratic utility, we show that she will be willing to pay an annualized management fee
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of 425.1 basis points to switch from the naive 12 months time series momentum strategy
to our dynamic classifier approach with model selection and time-varying coefficients.
Therefore, it generates not just strong portfolio performance, but great economic utility
gains for investors. We show that utility gains are even higher during the 2009 momen-
tum Crash and in the last decade. Those are good news for portfolio managers who are
interested in improving trend investment strategies in a unstable financial world with high
model uncertainties and rapid and complex changes over time.

The strong results obtained using future contracts, in special among commodity fu-
tures, motivate us to consider as an extension for future research the use of a larger set
of commodities to be analyzed. Also, we also pretend to extend to a larger cross-section
of equity returns. Inspired by the recent works of Jiang, Kelly, and Xiu (2020) and Kelly,
Moskowitz, and Pruitt (2021), where the authors also apply econometric forecasting mod-
els to portfolio construction, our future interest is to test the dynamic classifier approach
for cross-sectional momentum strategies, building long-short portfolios by different quan-
tiles of model ranking predictions. We believe that this extension can be seen as a strong
return forecasting model competitor for the recent advances in the momentum literature.
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Appendix: Aditional Results

Bayesian portfolio decision

We explain here the implicit cutoff selection obtained from an Bayesian decision perspec-
tive. The main goal of the Bayesian investor is to sequentially select the action that maxi-
mizes expected utility. For each period of time t and for each asset available i, the investor
is faced with two simple actions within the set of possible actions A = {Long, Short}, i.e.,
she can open a long or short position for asset i. After the realization of the true return
value, each given action can produce a different utility for the investor and this utility will
depend on the actual return direction for that period t. If the investor went long an asset
and after observing its true direction it was actually up (positive), then the investor should
receive a positive utility gain. The same would apply if she went short an asset that was
actually down (negative). When the action made by the investor does not match the ac-
tual direction, she should lose utility. The Table below summarizes the possible actions
and their final outcomes.

Actual Directions
Positive Negative

Actions (A) Long UL,P UL,N

Short US,P US,N

where

• UL,P is the utility when a Long position is opened and the actual return was Positive;

• UL,N is the utility when a Long position is opened and the actual return was Nega-
tive;

• US,P is the utility when a Short position is opened and the actual return was Positive;

• US,N is the utility when a Short position is opened and the actual return was Negative

Since we consider a quadratic utility for the mean-variance investor in the same spirit
of Equation (22), we compute:

• UL,P = R̄(+) −
γ

2(1+γ)
σ̄(+)
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• UL,N = R̄(−) −
γ

2(1+γ)
σ̄(−)

• US,P = −R̄(+) −
γ

2(1+γ)
σ̄(+)

• US,N = −R̄(−) −
γ

2(1+γ)
σ̄(−)

where the bar upscript represents historical sample estimates until the decision period and
the signs subscripts in parentheses filter for positive or negative historical observations.
Hence, the investor considers those utility estimates as possible final outcomes before as-
suming a specific action.

At the end of time t− 1, the investor will choose the action that maximizes his expected
utility for time t, where the expected utility for each action will depend on the forecasting
output for asset i from the model she is considering. As an example, suppose the investor
is willing to open a position on a specific asset i and will consider to use DMA as a fore-
casting model to decide the probability of a positive return on the next period. Hence, she
will use the forecasting output as in Equation (17) to compute expected utility for a Long
position (E[U(Long)]) and for Short position (E[U(Short)]):

E[U(Long)] = ŝDMA
t|t−1 UL,P + (1− ŝDMA

t|t−1 )UL,N

and

E[U(Short)] = ŝDMA
t|t−1 US,P + (1− ŝDMA

t|t−1 )US,N

If E[U(Long)] ≥ E[U(Short)], the investor opens a long position on asset i, and goes
short otherwise.

Table (7) below show results when the investor sequentially applies the mechanism
explained above for each asset available across time. It is important to highlight here
that the Bayesian decision is applied just to produce trading position signs, but portfolio
construction and weighing still follows the same structure as Equations (18) and (19).

The general conclusions in Table (7) follow the same we have obtained before in the
main body of the paper.
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Table 7: Economic - Expected Utility decision

Turnover Mean Vol. Max.DD SR Φ

CP

DMA 68.2 10.3 10.0 14.5 1.030 214.480
DMS 79.7 11.2 10.0 14.5 1.120 306.910
1m 75.4 7.3 10.0 25.3 0.730 −87.470
2m 59.5 6.2 10.0 23 0.620 −186.910
4m 52.9 8 10.0 20.4 0.8 −11.260
6m 45.7 8.1 10.0 14.1 0.810 −7.260
8m 45.6 8.8 10.0 18.4 0.880 69.840
10m 43.9 8.8 10.0 17.1 0.880 62.780
12m 42.6 6.3 10.0 17.5 0.630 −183.630

TVP

DMA 78 10.5 10.0 11.8 1.050 238.070
DMS 92.4 11.1 10.0 12.5 1.110 302.450
1m 80.1 8.9 10.0 16.5 0.890 82.040
2m 63 6.3 10.0 25.8 0.630 −177.340
4m 55.4 6.9 10.0 26.1 0.690 −118.730
6m 49.6 7.6 10.0 16.7 0.760 −49.180
8m 47 9.2 10.0 12.9 0.920 106.040
10m 47.1 8.2 10.0 16.7 0.820 7.380
12m 47.8 6.4 10.0 15.4 0.640 −175.440

The table reports economic performance from classifier models using constant parameters (CP) and time-
varying parameters (TVP), considering single predictors (1m, 2m, 4m, ..., 12m) or applying DMA or
DMS with all predictors in the model space. Classifier cutoffs are implicit obtained from a sequential
Bayesian decision problem, where the investor selects the best trading action based on its expected utility.
All strategies are scaled to an ex-post annualized volatility of 10%.
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Descriptive Statistics

Table 8: Summary Statistics of Futures Contracts

Futures Start.Date Mean Vol SR

Equities
S&P500 1982-05 8.7 15.4 0.36
Nasdaq 100 1999-09 7.4 24.7 0.23
S&P Canada 60 1999-10 4.5 20.5 0.15
FTSE 100 1984-06 4.6 18.1 0.1
DAX 1990-12 7 22.2 0.25
CAC 40 1999-02 0.7 21 -0.02
IBEX 35 1992-05 2.1 23.8 0.03
FTSE MIB 2004-04 -2.3 25.3 -0.08
AEX 1988-11 5.1 20.3 0.14
SMI 1990-12 7.8 16.2 0.36
Nikkei 225 1990-10 0.3 21.2 -0.1
ASX SPI 200 2000-06 4.2 22.3 0.17

Bonds
US Tsy Note 2-year 1990-07 1.3 1.5 -0.74
US Tsy Note 5-year 1988-06 2.7 3.9 -0.02
US Tsy Bond 10-year 1982-06 4.4 6.6 0.14
US Tsy Bond 30-year 1980-01 4.6 11.1 0.05
Euro Schatz 2-year 1998-11 0.7 9.6 -0.07
Euro Bobl 5-year 1999-02 2.4 9.7 0.11
Euro Bund 10-year 1998-11 3.8 10.2 0.24
Euro Buxl 30-year 2005-10 6.1 12.4 0.4
UK Long Gilt 1982-12 2.4 12.2 -0.07
Canadian 10-year 1989-10 3.3 9.1 0.09
Japanese 10-year 1987-01 3.9 12.4 0.08

Currencies
AUD/USD 1983-04 0.8 36.6 -0.08
CAD/USD 2007-08 -4.8 40.1 -0.12
CHF/USD 2006-02 -3.2 33.1 -0.12
EUR/USD 1990-05 0.5 51.3 -0.08
GBP/USD 2005-11 -2 47.1 -0.07
JPY/USD 2007-01 0.4 27 0.02
NZD/USD 1980-01 3.1 17.4 -0.05
SEK/USD 1980-01 6.4 34.5 0.08
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Table 9: Summary Statistics of Futures Contracts (Continued)

Futures Start Date Mean Vol. SR

Commodities
Light crude oil 1980-01 0.6 25.1 -0.12
Brent crude oil 1980-01 -0.9 32.7 -0.15
Heating oil 1980-01 1.3 15.3 -0.18
Natural gas 1980-02 1.2 17.8 -0.15
RBOB gasoline 1980-01 1.4 36.3 -0.04
Copper 1980-01 0.7 27.3 -0.12
Gold 2006-04 3.4 36.5 0.11
Palladium 2006-04 2.6 24.1 0.07
Platinum 2006-04 4.6 31.7 0.15
Silver 1980-01 1.1 24.6 -0.09
Feeder cattle 2006-04 3.5 33.3 0.11
Live cattle 1980-01 -0.4 30 -0.14
Lean hogs 1980-01 -1.2 35.3 -0.19
Corn 1980-01 -0.3 30.5 -0.15
Oats 1980-01 2.6 35.4 -0.02
Soybean oil 1980-01 0.4 31.8 -0.16
Soybean meal 1980-01 -0.5 41.3 -0.08
Soybeans 1987-02 2.7 11.4 0.01
Wheat 1980-01 -0.3 8.8 -0.49
Cocoa 1980-01 -0.7 11.9 -0.38
Coffee 1999-04 -0.3 9.7 -0.16
Cotton #2 1980-01 -0.5 10.2 -0.42
Lumber 1980-01 -1.1 11.6 -0.44
Orange juice 1997-06 2.2 12.8 0.04
Sugar #11 2004-05 -1.7 11.2 -0.23
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