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Abstract

We extend the socially responsible multiobjective problem to (i) estimate optimal portfolios via reward/risk

maximization, (ii) include dependence structure between asset returns using vine copulas, and (iii) incor-

porate enhanced indexation utilizing cumulative zero-order stochastic dominance. In an application of the

MOP optimization to a sample of Eurostoxx 50 constituents, we show that the optimal MOPs provide in-

vestors with the �exibility of incorporating di�erent objectives. However, there is a trade-o� between reward

(risk) measures. Although, including social responsibility results in lower portfolio return and economic

performance, it reduces the portfolio risk. While the cumulative zero-order SD objective (in most cases)

increases the portfolio return when included in socially responsible MOPs, it reduces the portfolio risk. The

predictive models lead to MOPs with higher return and reward/risk ratios. In particular, the copula-based

MOPs achieve less tail risk.
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1. Introduction

The mean�variance framework in Markowitz (1952) is considered as a basis for modern portfolio theory

and has been the focus of many extensions and criticisms. For instance, the framework involves a nor-

mality assumption through the use of the expected return and variance. However, �nancial returns (e.g.,

equity returns) are known to follow non-normal, asymmetric distributions (Fama, 1965; O�cer, 1972; Kon,

1984). Furthermore, the framework assumes and suggests investment at the mean�variance e�cient fron-

tier. Nevertheless, investors might have other preferences than simply the expected return and variance.

In reality, investors might be willing to maximize a multidimensional utility function that incorporates sev-

eral investment characteristics (Spronk & Hallerbach, 1997; Xidonas et al., 2012). Due to the quadratic

form of risk measure, mean�variance analysis also poses computational di�culties when one is dealing with

high-dimensional portfolios (Steuer et al., 2011).

Reward/risk ratio maximization is a class of portfolio optimization that originates from the introduction

of the Sharpe ratio based on the mean-variance analysis (Sharpe, 1966, 1994). In a reward/risk optimization

(also known as optimal portfolio), the risk-averse investor seeks to maximize the risk-adjusted performance

of his portfolio. Several extensions have been made to the classical Sharpe ratio maximization based on

measuring the reward and the risk of investments. Examples of reward/risk ratios include the stable tail-

adjusted return (STARR), Sortino and the Rachev ratios. These risk-adjusted ratios are solely based on one

reward and one risk measures, and therefore, they fail to capture multiple decision criteria for the investor.

More on the optimal portfolios.

With the advancements in the �eld of operation research and multicriteria decision making (MCDM),

Markowitz's bicriteria portfolio has been extended into a MOP that can incorporate various investor pref-

erences (Steuer, 1986; Martel et al., 1988; Hallerbach & Spronk, 1997; Zopounidis, 1999; Costa & Soares,

2004; Steuer & Na, 2003; Steuer et al., 2005, 2007; Abdelaziz et al., 2007). Ehrgott et al. (2004) combine

multiattribute utility theory with Markowitz's mean�variance framework and propose a MOP model with

multiple attributes, including the return, volatility, Star Ranking, annual revenue, and 12-months and 3-year

performance. Xidonas et al. (2009) propose an integrated multicriteria framework for equity portfolio man-

agement. In their MOP problem, they consider several characteristics, namely, the variance, return, beta,

capital availability, dividend yield, and marketability. Xidonas & Mavrotas (2014) develop an integrated

mixed-integer portfolio model with objectives that include the return, mean-absolute deviation, dividend

yield, and the beta coe�cient. They also include non-convex policy constraints such as cardinality con-

straints, buy-in thresholds, and transaction costs. Fliege & Werner (2014) combine a multicriteria problem

with robust portfolio optimization and derive a convex parametrization of the robust MOP problem that

involves uncertain parameters. Applying the minimax regret and weighted-sum approach, Xidonas et al.

(2017) formulate a robust MOP problem based on the return. The literature on MOP problems also in-
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cludes constructing socially responsible portfolios (Hirschberger et al., 2013; Utz et al., 2014, 2015; Ballestero

et al., 2012). See Xidonas et al. (2012); Masmoudi & Abdelaziz (2018) for a review of di�erent programming

approaches for solving the MOP problem.

A paragraph on the socially responsible investments.

2. MOP Parametrization

In the remainder of this section, we review and introduce the objective functions included in the multiob-

jective portfolio optimization problem. We consider �ve attributes: the expected return, expectile Value-at-

Risk, social responsibility, cumulative zero-order stochastic dominance, and portfolio turnover. Combining

the weighted-sum approach and reward/risk maximization techniques, we formulate the SR MOOP problem.

2.1. Expected returns

Markowitz (1952) suggested for a d-dimensional portfolio with asset returns r̂t = (r̂1t, r̂2t, ..., r̂dt), asset

weights ŵt = (ŵ1t, ŵ2t, ..., ŵdt), and a d × 1 vector of asset means µ̂t = (µ̂1t, µ̂2t, ..., µ̂dt) at time (out-of-

sample iteration) t, the portfolio's expected return is ŵᵀ
t µ̂t.

2.2. Expectile Value at Risk

As regards portfolio risk, the extensions of classical variance used in Markowitz's framework can be

divided into two categories. The �rst includes algorithms that enable fast estimation and the inversion of

large covariance matrices, for diagonalization and factorization, for example, (Markowitz & Perold, 1981;

Markowitz et al., 1992; Konno & Suzuki, 1992; Takehara, 1993). The second category concerns the application

of alternative risk measures, for instance, mean-absolute deviation (Konno & Yamazaki, 1991), Value-at-

Risk (Morgan et al., 1996; Jorion, 1997), conditional Value-at-Risk (Rockafellar & Uryasev, 2000a), absolute

semideviation (Ogryczak & Ruszczy«ski, 1999), and expectile Value-at-Risk (Kuan et al., 2009; Bellini et al.,

2014).

Although CVaR is a coherent risk measure, in its single form, it is not elicitable. Gneiting (2011)

introduce elicitability as a measure for evaluating point forecasts, which follows backtesting a statistical

function through a scoring function. Examples of elicitable measures are expected returns, which can be

backtested through a scoring function such as root mean squared error, and VaR. As shown by Ziegel (2016),

EVaR is a coherent and elicitable risk measure and has recently been utilized in risk management as a

measure of downside risk (Delbaen et al., 2016; Bellini & Di Bernardino, 2017).

Perhaps, more details on EVaR-based portfolios.
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Newey & Powell (1987) introduced expectiles as one-parameter statistical functions. They are the solu-

tions to the problem of minimizing the expected value of an asymmetric loss function and are de�ned as:

eα(X) = argmin
η∈<

E
[
α[(X − η)2]+ + (1− α)[(X − η)2]−

]
, (1)

where α ∈ (0, 1), [.]+ = max(., 0), [.]− = −min(., 0) and X ∈ L2(Ω,F ,P, ).

Among other characteristics, expectiles provide unique solutions that can be obtained by applying the

�rst-order condition

αE
[
[X − eα(X)]+

]
= (1− α)E

[
[X − eα(X)]−

]
, (2)

where X ∈ L1(Ω,F ,P, ) (Bellini et al., 2014).

In �nancial risk management, EVaR is interpreted as the minimum value of an investment that leads to

an acceptable and su�cient gain�loss ratio. EVaR is de�ned as

EVaRα(X) = −e(1−α)(X) = e(α)(−X), ∀α ∈ [1/2, 1[. (3)

Let r̂t = {r̂mt, m = 1, ...,M} be M simulated asset returns obtained from a risk model; by setting X =

−ŵᵀ
t r̂t, the portfolio α-level EVaR at time (out-of-sample iteration) t , i.e. eαt, is obtained by setting:

αE
[
[−ŵᵀ

t r̂mt − eαt]+
]

= (1− α)E
[
[−ŵᵀ

t r̂mt − eαt]−
]
. (4)

2.3. Social responsibility

A common approach to measure social responsibility for investment funds is to use ESG scores Gasser

et al. (2017); Hirschberger et al. (2013); Utz et al. (2014, 2015). These scores consist of environmental, social

and governance components, and are provided from several rating agencies. Perhaps, more on the ESG

scores.

Denoting the ESG scores for individual assets as θt = (θ1t, θ2t, ..., θdt), the portfolio ESG score at time t

is given by ŵᵀ
t θt. As higher ESG scores are favorable, a socially responsible investor seeks to maximize the

portfolio ESG scores. Therefore, these scores can be considered as a reward measure. This is in accordance

with the reward/risk maximization suggested in Gasser et al. (2017), where the portfolio reward is considered

to be the ESG scores and risk is modeled using returns' standard deviation.

2.4. Turnover

Portfolio turnover is a measure of the amount of trading required to implement a portfolio strategy. A

high-frequent rebalancing strategy, e.g. daily, can result in higher portfolio turnover compared to that of a

low-frequent strategy such as monthly or semi-annually. The portfolio turnover is commonly used to estimate
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the transaction costs and have already been included in MOP problem (see e.g., Steuer et al., 2005, 2007).

Following DeMiguel et al. (2009), we de�ne the portfolio turnover as

ϑ(ŵt) = |ŵt − ŵt∗ |ᵀ1 (5)

where ŵt∗ denotes a vector of asset weights at the end of previous rebalancing period.

We notice for a long-only portfolio strategy, we have ϑ(ŵt) ∈ [0, 2]. When there is no rebalancing, the

portfolio has a turnover of zero. However, a turnover of 2 indicates selling all assets with a positive weight

and spending 100% of the value of the portfolio on buying the assets that are not included at the previous

rebalancing period. 1

2.5. Cumulative zero-order stochastic dominance

In the Markowitz's mean-variance framework, the investor optimizes his portfolio using reward and risk

measures that are basically point estimates of asset returns and uncertainty of these returns. Although the

mean-variance framework has been established as the most common approach in asset allocation, due to

the convenience and simplicity in estimating the mean-variance feasible portfolios, it does not consider all

risk-averse preferences, and consequently, does not follow stochastic dominance rules (see e.g., Ogryczak &

Ruszczy«ski, 1999; Blavatskyy, 2010). An alternative that is suitable for decision making under uncertainty

is stochastic dominance approach (see Levy, 1992, and references therein). In particular, the stochastic

approach is applied in asset allocation to (i) compare investment strategies (Bawa et al., 1985; Kopa & Post,

2015), and (ii) construct portfolio strategy that stochatiscally dominate a benchmark (e.g., De Giorgi, 2005;

Dentcheva & Ruszczy«ski, 2006; Luedtke, 2008).

Let R and RI denote random returns for a portfolios and an index market, with distribution functions

F (R; η) = P(R ≤ η) and F (RI ; η) = P(RI ≤ η), ∀η ∈ R. The portfolio R dominates the index RI in the

�rst order, R � RI , if

∀η ∈ R : F (R; η) ≤ F (RI ; η). (6)

For the second order stochastic dominance, R �2 R
I if

∀η ∈ R : F2(R; η) ≤ F2(RI ; η), (7)

where F2(.) is the second performance function and given by

∀η ∈ R : F2(R; η) =

∫ η

−∞
F (R;κ)dκ. (8)

1In the sense that portfolio turnover can have a value of zero, one has to be careful when including this objective as a risk

measure in a reward/risk maximization.
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We notice the relations in Eq. (6) and (7) are weak relations of the �rst order and second order stochastic

dominance, and R � RI if and only if R � RI . RI � R. Ogryczak & Ruszczy«ski (1999) show that the

second performance function F2(.) can be expressed as expected shortfall, s.t., F2(R; η) = E[(η −R)+].

The �rst and second order stochastic dominance rules are commonly applied in portfolio optimization. In

particular, several approaches are suggested for including the second order stochastic dominance constraint in

portfolio optimization problems (see Dentcheva & Ruszczy«ski, 2004, 2006; Luedtke, 2008). Leshno & Levy

(2002) suggest that the strict stochastic dominance rules might not capture the preference of any investor,

and therefore, introduce the Almost Stochastic Dominance that allows small violations from those excessive

rules. A review of other relaxations, e.g. the εSD, can be found in Kallio & Dehghan Hardoroudi (2019).

A recent approach, suggested in Bruni et al. (2017), is to consider zero-order stochastic dominance (ZSD)

s.t.

F (R−RI ; 0) = P(R−RI ≤ 0) = 0. (9)

The zero-order stochastic dominance relation, R �0 R
I , means that a portfolio with returns R is prefer-

able to an index benchmark, RI , in almost every scenario. As shown in Bruni et al. (2017), the zero-order

stochastic dominance induce arbitrage opportunities and required relaxations. Let rIt be the index return,

and δt(ŵt) = ŵ
ᵀ
t r̂t − rIt be the excess return of the portfolio w.r.t. the market index at time t. Bruni et al.

(2017) suggest that, given a tolerance ε > 0, the selected portfolio is preferred to the benchmark index w.r.t.

the cumulative zero-order stochastic dominance (CZεSD) if

∀S ⊆ T :
∑
t∈S

δt(ŵt) ≥ −ε, (10)

where epsilon captures the underperformance of selected portfolio and can be minimized using linear pro-

gramming.

Bruni et al. (2017) show that

min
S⊆T

δS(ŵt) =
∑
t∈T

[δt(ŵt)]
−, (11)

where [.]− = min{0, .}. More on the optimization of CZeSD.

2.6. Multicriteria Portfolio Problem and Optimization

In a multicriteria portfolio problem, there are several objective functions to be maximized (or minimized).

Let Λk(ŵt) be a reward function and ψq(ŵt) be a risk measure, a general multiobjective portfolio problem
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with K +Q attributes is:

maximize
ŵt

Λ1(ŵt)

...

maximize
ŵt

ΛK(ŵt)

minimize
ŵt

ψ1(ŵt)

...

minimize
ŵt

ψQ(ŵt)

subject to ŵ
ᵀ
t 1 = 1

ŵjt ≥ 0,∀j ∈ {1, 2, .., d}

(12)

To solve the portfolio optimization problem (12), di�erent approaches have emerged in the MCDM

literature including the weighted-sum, ε-constraint, goal, and compromise programming (see Masmoudi &

Abdelaziz, 2018, for a comparison of di�erent methods). In the weighted-sum approach, the weights assigned

to the objective functions, i.e., λΛk , λψq ∈ [0, 1], correspond to the investor's preferences. Furthermore, there

are several approaches to normalize the objective functions (see e.g., Cao et al., 2017; Xidonas et al., 2017)

Xidonas et al. (2017). One approach is the linear normalization using the so-called utopia and nadir points.

Let Λ̄k and ψ̄q denote the utopia solutions,
¯
Λk and

¯
ψq be the nadir points obtained from separate (individual)

optimizations. Using the weighted-sum approach, the MOP in Eq. (12) reduces to a convex optimization

s.t.

minimize
ŵt

Q∑
q=1

λψq

[
ψq(ŵt)− ψ̄q

¯
ψq − ψ̄q

]
+

K∑
k=1

λΛk

[
Λ̄k − Λk(ŵt)

Λ̄k −
¯
Λk

]
subject to ŵ

ᵀ
t 1 = 1

ŵjt ≥ 0,∀j ∈ {1, 2, .., d}

(13)

where
∑Q
q=1 λψq +

∑K
k=1 λΛk = 1. Λ̄k and ψ̄q denote the utopia solutions,

¯
Λk and

¯
ψq be the nadir points

obtained from separate (individual) optimizations.

Assume that the investor seeks to maximize a reward/risk ratio with several, i.e., K + Q, objective
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functions. Incorporating the weighted-sum approach, we de�ne the global reward/risk ratio as

λΛ1
Λ1(ŵt) + · · ·+ λΛKΛK(ŵt)

λψ1
ψ1(ŵt) + · · ·+ λψQψQ(ŵt)

. (14)

We notice in a typical (bi-criteria) reward/risk maximization, the investor maximizes the ratio without

any preference for reward or risk. However, for a multiobjective reward/risk ratio, the investor can assign

preferences for his reward and risk, i.e.,
∑Q
q=1 λψq = 1,

∑K
k=1 λΛk = 1. For instance, the investor weights a

reward measure only relative to other reward measures. More on the multiobjective reward/risk ratio.

In an optimal portfolio optimization problem the goal is to �nd the point with highest risk-adjusted

ratio (e.g., Max Sharpe ratio) from the e�cient frontier. One common approach to solve these portfolios

is fractional programming where the non-linear objective function (reward/risk ratio) can be reduced to

convex optimization (Charnes & Cooper, 1962; Dinkelbach, 1967; Stoyanov et al., 2007). Incorporating the

�ve objective functions in Sections 2.1-2.5 and the multiobjective problem in Eq. (13)-(14), we formulate

the socially responsible multiobjective optimal portfolio problem as

minimize
w̃t,ν,et,y,g,υ+,υ−

λψe

[
et − ψ̄e

¯
ψe − ψ̄e

]
+ λψδ

[∑M
m=1 ym − ψ̄δ

¯
ψδ − ψ̄δ

]
+ λψϑ

[∑d
j=1 gj − ψ̄ϑ

¯
ψϑ − ψ̄ϑ

]
,

subject to λΛµ

[
Λ̄µ − w̃ᵀ

tµt
Λ̄µ −

¯
Λµ

]
+ λΛθ

[
Λ̄θ − w̃ᵀ

t θt
Λ̄θ −

¯
Λθ

]
≥ 1,

ν > 0,

w̃
ᵀ
t 1 = ν, full investment,

0 ≤ w̃jt ≤ ν, ∀j ∈ {1, 2, .., d}, long positions only,

α

M

M∑
m=1

υ+
m −

1− α
M

M∑
m=1

υ−m = 0,

− w̃ᵀ
t r̂mt − et − υ+

m + υ−m = 0, ∀m ∈ {1, 2, ..,M},

υ+
mt, υ

−
mt ≥ 0, ∀m ∈ {1, 2, ..,M},

ym + w̃
ᵀ
t r̂mt − rImt ≥ 0, ∀m ∈ {1, 2, ..,M},

w̃jt − ŵjt∗ + gj ≥ 0, ∀j ∈ {1, 2, .., d},

ŵjt∗ − w̃jt + gj ≥ 0, ∀j ∈ {1, 2, .., d}.

(15)

where ŵjt =
w̃jt
ν .More on the auxiliary variables and linear transformations.
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3. Returns' predictive multivariate distribution

3.1. Vine Copula

In �nancial econometrics, di�erent approaches have been developed to estimate and model non-normal

multivariate �nancial returns. One of these approaches is copula modeling, in which a joint distribution

is estimated using univariate marginal distributions and a copula function (Sklar, 1959, 1973). Copulas

have gained popularity in the �nance and asset allocation �elds (Patton, 2004; Nelsen, 2007; Patton, 2009)

because (i) they allow one to model a multivariate distribution using convenient univariate econometric and

forecasting models, (ii) they provide �exibility in capturing the non-parametric dependence among nonellip-

tical random variables, and (iii) they allow one to model asymmetric tail dependence when the underlying

assets show di�erent correlations during bearish and bullish market periods. In portfolio optimization, cop-

ula modeling is particularly used for tail risk minimization (Low et al., 2013; Boubaker & Sghaier, 2013;

Kakouris & Rustem, 2014; Bekiros et al., 2015; Krzemienowski & Szymczyk, 2016; Sahamkhadam et al.,

2018; Zhao et al., 2019). Although copula models are well-established in the portfolio management �eld,

to my knowledge, only a small number of studies incorporate them into MOPs (e.g., Babaei et al., 2015;

Bilbao-Terol et al., 2016; Goel & Sharma, 2019; Xiao-Li & Xiong, 2020).

According to Sklar's theorem, any multivariate cumulative distribution function F for a random variable

set (Z1, ..., Zd) consists of a d-dimensional copula C and marginal distributions F1, ..., Fd, such that

∀z ∈ <d : F (z1, z2, . . . , zd) = C (F1 (z1) , F2 (z2) , . . . , Fd (zd)) = C (u1, u2, . . . , ud) , (16)

where zj = F−1
j (uj) , uj ∼ U [0, 1]

d
,∀j ∈ {1, 2, . . . , d}. If all the margins Fj are continuous, then C is unique

and de�ned as the joint distribution of (U1, ..., Ud) = (F1(Z1), ..., Fd(Zd)). Let Ω be the parameter set of

the copula multivariate distribution function C (u1, u2, . . . , ud|Ω) and fj be the derivative of the univariate

marginal distribution Fj . Then, the density function for the d-dimensional joint distribution is

f (z1, z2, . . . , zd) =
∂dC (F1 (z1) , F2 (z2) , . . . , Fd (zd) |Ω)

∂z1, ∂z2, . . . , ∂zd

= c (F1 (z1) , F2 (z2) , . . . , Fd (zd) |Ω)×
d∏
j=1

fj (zj) , (17)

where c is the copula density function, with log-likelihood function

L ((z1, z2, ..., zd)|Ω) =

T∑
t=1

[ d∑
j=1

logfj(ztj) + log
[
c(ut1, ut2, ..., utd|Ω)

]]
. (18)

Note that in Eqs. (16)�(17), only one copula function C is used to construct the joint distribution, which

means only one copula family is used for the entire set of marginal uniforms u1, u2, . . . , ud. While Joe (1996)
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suggests a decomposition of c into products of pair-wise densities, Bedford & Cooke (2001, 2002) derive a

graphical representation, called a regular vine (Rvine), of the pair-copula construction, in the form of nested

trees. Aas et al. (2009) develop maximum likelihood inference and estimation of three vine models with

arbitrary pair-copulas (including Archimedean families). More properties and statistical inference for vine

copulas have been developed by Joe (2014); Czado (2019).

For a d-dimensional set of continuous random variables, there exist d (d− 1) /2 pair-copulas, and the

copula density c can be decomposed into a product of these pair-copulas' densities. Using a sequence of

i = 1, 2, . . . , d−1 linked trees, the decomposition can be presented in a graphical PCC, known as the regular

vine. Let e ∈ Ei be the edge between two nodes ne, ke, representing a pair-copula cne,ke;De conditioned

on De, with copula parameter(s) Ωne,ke|De . Let uDe = {ui|i ∈ De} be the variables in the conditioning

set De. Let Cne|De be the conditional distribution of Une|UDe . When the number of trees increases, the

conditioning set De also grows, and it is common to consider only the dependence of cne,ke;De on the indexes

in De, ignoring the impact of uDe . This is the so-called simplifying assumption (see Acar et al., 2012; Ha�

et al., 2013). The copula density for a simpli�ed Rvine copula is

c (u|Ω) =

d−1∏
i=1

∏
e∈Ei

cne,ke;De
(
Cne|De(une |uDe), Cke|De(uke |uDe)|Ωne,ke|De

)
, (19)

with log-likelihood function

L (Ω|u) =

d∑
j=1

d−1∑
i=1

∑
e∈Ei

ln
[
cne,ke;De

(
Cne|De(uj,ne |uj,De), Cke|De(uj,ke |uj,De)|Ωne,ke|De

)]
. (20)

Although vine copulas are �exible in estimating tail dependency, there is a tradeo� between higher

�exibility and an increased computational load in high-dimensional settings. Therefore, truncated and

simpli�ed vine structures that allow for high-dimensional dependence estimation have been developed (see

e.g., Heinen et al., 2009; Kurowicka, 2011; Brechmann et al., 2012; Brechmann & Joe, 2015). In particular,

Brechmann et al. (2012) show how to truncate or simplify the Rvine structure. This truncation is applied

to the number of trees in the vine by setting an independence copula at each edge from a speci�c tree

I ∈ {1, 2, . . . , d− 1} to the �nal tree. The I-level truncated Rvine has density

cTruncated (u) =

I∏
i=1

∏
e∈Ei

cne,ke|De
(
Cne|De (une |uDe) , Cke|De (uke |uDe) |Ωne,ke|De

)
. (21)

In a copula-based forecasting approach, one can estimate the returns' conditional multivariate distribution

by following a series of steps. First, using a GARCH model, the standardized residuals z and their marginal

densities fj are obtained. Then, using the marginal uniforms obtained from the probability transformation,

a joint distribution is estimated using the truncated Rvine density function. Finally, drawing observations

from the joint distribution and utilizing the step-ahead mean and volatility forecasts from the GARCH
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process, the copula-based multivariate distribution is obtained. Following Nagler et al. (2019), the copula

families and truncation level are selected based on the mBICV criterion.2

3.2. Multivariate GARCH

Financial returns are known to have time-varying volatility that can be modeled employing GARCH

models. In these models, the mean of the model equation follows a recursive heteroscedastic volatility

process. The formulation of GARCH models allows taking advantage of the autocorrelation in �nancial

returns. A univariate GARCH process can model and forecast the conditional volatility of the returns of an

individual's assets, with some distributional assumptions for the error terms. However, in asset allocation,

which requires modeling and forecasting several assets' returns, one can estimate a covariance matrix using a

multivariate GARCH process. Let rt = (r1t, r2t, ..., rdt) be a vector of assets' returns; a general formulation

of the multivariate GARCH is 
rt = µt + εt,

εt = Σ
1
2
t zt,

zt ≈ (iid),

(22)

where Σ is a d× d covariance matrix and zt denotes the standardized residuals.

Since the seminal paper of Bollerslev et al. (1988), which introduced a vectorized GARCH, many ex-

tensions have been suggested. The main contributions include the constant conditional correlation model

(Bollerslev, 1990), factor-ARCH model (Engle et al., 1990), BEKK model (Engle & Kroner, 1995), dynamic

conditional correlation model (Engle, 2002), generalized orthogonal GARCH model (Van der Weide, 2002),

and multivariate realized GARCH model (Hansen et al., 2014). Dynamic conditional correlation is known

to be e�cient in modeling less biased covariance matrices (see de Almeida et al., 2018). The multivari-

ate realized GARCH is more suitable for high-frequency datasets. Nonetheless, the GOGARCH model of

Van der Weide (2002) is the appropriate model for estimating the conditional multivariate distribution of

high-dimensional assets' returns. By using unobserved components, the GOGARCH model alleviates the

curse of dimensionality.

In the GOGARCH model, the mean equation is driven not only by the recursive volatility process but

also by a set of unobserved factors et (also known as the structural errors), s.t.



rt = µt + εt,

εt = Aet,

et = H
1
2
t zt,

zt ≈ (iid),

(23)

2To model both the lower and upper tail dependence, the copula families in the Rvine structure are selected from one of the

following distributions: Gaussian, Student−t, Clayton, Gumbel, Frank, and Joe.
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whereA = Σ
1
2U is a constant and invertible matrix,U is an orthogonal matrix, andHt = diag(h1t, h2t, ..., hdt).

The factors' conditional variances hjt may be estimated using a GARCH process. The conditional covariance

matrix is given by Σt = AHtA
ᵀ. Among others, the multivariate a�ne generalized hyperbolic distribution

may be considered for the conditional distribution of zt(see Broda & Paolella, 2009, for further details).

The estimation methods for the GOGARCH model include maximum likelihood, the method of moments

(Boswijk & Van der Weide, 2011), and independent component analysis (Broda & Paolella, 2009).

3.3. Multivariate Factor Stochastic Volatility

The stochastic volatility model departs from the common GARCH model in that the conditional volatility

process is stochastic. Although the conditional volatility process in GARCH-type models is heteroscedastic

and deterministic, in factor stochastic volatility models, it is driven by a set of latent variables. The seminal

papers on using a stochastic random process for the conditional volatility include Clark (1973), Tauchen &

Pitts (1983), Hull &White (1987), and Taylor (1986). Important contributions to multivariate models include

quasi-likelihood estimation (Harvey et al., 1994), Bayesian Markov Chain Monte Carlo (MCMC) inference

(Kim et al., 1998; Jacquier et al., 2002), and multivariate factor models (Pitt & Shephard, 1999; Chib

et al., 2006). More recently, to accelerate the convergence and boost the e�ciency of the MCMC method,

Kastner et al. (2017) have used interweaving approaches (suggested in Kastner & Frühwirth-Schnatter,

2014). Their approach is appropriate not only for an e�cient estimation of the MFSV model but also for

high-dimensional datasets. Therefore, we use the model in Chib et al. (2006) and Kastner et al. (2017) to

construct MFSV-based portfolios. Let r̃t = (r̃1t, r̃2t, ..., r̃dt) be a vector of assets' returns with zero means,

and ξt = (ξ1t, ξ2t, ..., ξNt) be a vector of N unobserved latent factors. In the MFSV model, the error terms

for both the mean and the state-space equation are allowed to have time-varying variances s.t.


r̃t = Fξt +Ut(h

U
t )

1
2 εt, εt ∼ N d(0, Id),

ξt = Vt(h
V
t )

1
2 ζt, ζt ∼ NN (0, IN ),

∀j ∈ [1, d+N ] : hjt = µj + φj(hj,t−1 − µj) + σjηjt, ηt ∼ NN+d(0, IN+d),

(24)

where F is a N × j loadings matrix, Ut(h
U
t )

1
2 = diag(exp(h1t), exp(h2t), ..., exp(hdt)) denotes the d × d

matrix of the variances of assets' returns, and Vt(h
V
t )

1
2 = diag(exp(hN+1,t), exp(hN+2,t), ..., exp(hN+d,t))

is the N × N matrix with the latent factors' variances. The model-implied conditional covariance matrix

is given by Σt = FVt(h
V
t )Fᵀ + Ut(h

U
t ). The Bayesian estimation of the MFSV model includes applying

MCMC sampling and selecting prior distributions for µj , φj , and σj (see Kastner et al., 2017, for more

details on priors).
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4. Data

To construct socially responsible multiobjective optimal portfolios, we use a sample of all stocks of the

Eurostoxx 50 index. Using this sample has several advantages. First, the constituents of the Eurostoxx 50

index are highly capitalized, providing a proper representation of the Europe market. Second, this sample

provides diversi�cation bene�ts due to the number of included stocks. Finally, we include the Eurostoxx

50 index as the market index when including the CZεSD objective function. The sample runs from August

2007 to October 2020. This period is selected due to the availability of ESG scores for the constituents of

the Eurostoxx 50.

The data include daily adjusted (for splits and dividends) stock prices and the Eurostoxx 50 price index

were obtained from Eikon Thompson Reuters' Datastream. The monthly ESG scores are obtained from

Sustainalytics.

5. Empirical Analysis

To evaluate the performance of suggested socially responsible portfolio optimization method, we divide

our empirical investigation into in-sample and out-of-sample analyses. The former includes a comparison

of the multiobjective optimal portfolios based on their resulting e�cient frontier sets in an a posteriori

approach. The out-of-sample investigation includes portfolio backtesting and robustness analysis on both

the risk models. In our robustness analysis, we also consider two alternatives for EVaR, including CVaR and

mean absolute deviation (MAD).
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Fig. 1. This �gure plots expected return-EVaR-ESG Pareto frontier obtained by changing objective function weights (preference

parameters) by 2.5% in the MOP optimization (see Eq. (14)). The optimal MOPs are shown using green points (see Eq. (15)).

The brown points represent Max return/EVaR and Max ESG/EVaR portfolios. The portfolios are constructed using all stocks

included in Eurostoxx 50 index from December 8, 2016 to October 7, 2020.
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Fig. 2. This �gure plots expected return-CVaR-ESG Pareto frontier obtained by changing objective function weights (preference

parameters) by 2.5% in the MOP optimization (see Eq. (14)). The optimal MOPs are shown using green points (see Eq. (15)).

The brown points represent Max return/CVaR and Max ESG/CVaR portfolios. The portfolios are constructed using all stocks

included in Eurostoxx 50 index from December 8, 2016 to October 7, 2020.
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Table 1

Single-objective Min Risk portfolio out-of-sample performance

Portfolio Av. St.
CVaR EVaR CZεSD STARR µ/EVaR ESG

Av. Portfolio

Strategy Return Devation Turnover Wealth

Panel A: Bechmark

EQW 0.033 1.37 5.257 2.90 1.19 0.006 0.011 60.9 0.009 197

Panel B: Historical-based portfolios

Min CVaR 0.039 1.13 4.07 2.25 6.78 0.009 0.017 56.9 0.032 251

Min EVaR 0.04 1.06 3.85 2.11 6.60 0.010 0.019 59.0 0.044 268

Min MAD 0.038 1.02 3.92 2.13 5.95 0.010 0.018 62.7 0.054 256

Min CZεSD 0.033 1.33 5.07 2.81 1.53 0.006 0.012 61.4 0.022 196

Panel C: Copula-based portfolios

Min CVaR 0.045 1.05 3.78 2.08 6.39 0.012 0.022 62.9 1.01 312

Min EVaR 0.055 1.01 3.64 2.01 6.46 0.015 0.028 62.9 0.807 421

Min MAD 0.048 0.977 3.66 1.98 6.56 0.013 0.024 62.4 0.474 344

Min CZεSD 0.046 1.37 5.39 2.91 1.71 0.009 0.016 61.3 0.823 283

Panel D: MGARCH-based portfolios

Min CVaR 0.021 1.07 4.34 2.30 6.67 0.005 0.009 61.2 1.03 154

Min EVaR 0.037 1.05 4.15 2.21 6.50 0.009 0.017 61.0 0.837 249

Min MAD 0.039 1.04 4.16 2.19 6.30 0.009 0.018 61.1 0.491 260

Min CZεSD 0.036 1.33 5.07 2.80 0.830 0.007 0.013 61.3 0.479 214

Panel E: MFSV-based portfolios

Min CVaR 0.032 1.10 4.15 2.28 5.90 0.008 0.014 60.0 1.27 208

Min EVaR 0.033 1.07 4.02 2.20 5.84 0.008 0.015 60.1 1.14 219

Min MAD 0.027 1.04 3.96 2.17 5.77 0.007 0.012 60.3 0.934 185

Min CZεSD 0.036 1.34 5.10 2.81 1.32 0.007 0.013 61.6 0.852 218

Notes: This table reports out-of-sample performance for Min Risk portfolios. Portfolio returns are obtained using

rolling window estimation (with 500 days as the training sample) and portfolio back-testing from August 18, 2009

until October 7, 2020, resulting in 2853 portfolio out-of-sample net returns using 1 basis point proportional transac-

tion cost. Except for CZεSD, ESG and portfolio wealth, all measures are expressed as percentage. CVaR and EVaR

are reported at 1% level. Portfolio wealth is calculated at the end of out-of-sample assuming an initial investment

of ¿100.
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Table 2

Bi-objective optimal portfolio out-of-sample performance

Portfolio Av. St.
CVaR EVaR CZεSD STARR µ/EVaR ESG

Av. Portfolio

Strategy Return Devation Turnover Wealth

Panel A: Bechmark

EQW 0.033 1.37 5.26 2.90 1.19 0.006 0.011 61.0 0.009 197

Panel B: Historical-based portfolios

Max µ/CVaR 0.026 1.57 5.48 3.07 9.93 0.005 0.008 63.9 0.170 148

Max µ/EVaR 0.029 1.56 5.44 3.07 9.90 0.005 0.009 64.8 0.156 161

Max µ/MAD 0.035 1.53 5.37 3.03 9.36 0.006 0.011 64.8 0.135 191

Panel C: Copula-based portfolios

Max µ/CVaR 0.081 1.62 5.40 3.02 8.42 0.015 0.027 57.4 1.68 697

Max µ/EVaR 0.079 1.65 5.62 3.07 8.68 0.014 0.026 57.5 1.70 645

Max µ/MAD 0.082 1.63 5.55 3.04 8.44 0.015 0.027 58.4 1.70 715

Panel D: MGARCH-based portfolios

Max µ/CVaR 0.056 1.65 6.35 3.35 9.59 0.009 0.017 60.7 1.73 335

Max µ/EVaR 0.062 1.68 6.41 3.41 9.76 0.010 0.018 59.9 1.73 387

Max µ/MAD 0.061 1.62 6.15 3.29 9.20 0.010 0.019 60.1 1.71 395

Panel E: MFSV-based portfolios

Max µ/CVaR 0.069 1.59 5.83 3.13 8.28 0.012 0.022 60.4 1.71 494

Max µ/EVaR 0.070 1.65 6.11 3.25 8.66 0.011 0.022 60.5 1.71 502

Max µ/MAD 0.072 1.59 5.95 3.15 8.21 0.012 0.023 60.3 1.69 544

Notes: This table reports out-of-sample performance for optimal portfolios. Portfolio returns are obtained using

rolling window estimation (with 500 days as the training sample) and portfolio back-testing from August 18, 2009

until October 7, 2020, resulting in 2853 portfolio out-of-sample net returns using 1 basis point proportional transaction

cost. Except for CZεSD, ESG and portfolio wealth, all measures are expressed as percentage. CVaR and EVaR are

reported at 1% level. Portfolio wealth is calculated at the end of out-of-sample assuming an initial investment of ¿100.
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Table 3

Tri-objective optimal portfolio out-of-sample performance

Portfolio Av. St.
CVaR EVaR CZεSD STARR µ/EVaR ESG

Av. Portfolio

Strategy Return Devation Turnover Wealth

Panel A: Historical-based portfolios

Max (µ+ESG)/CVaR 0.024 1.38 4.98 2.78 8.37 0.005 0.008 71.3 0.159 150

Max (µ+ESG)/EVaR 0.026 1.33 4.89 2.71 7.97 0.005 0.01 70.8 0.149 162

Max (µ+ESG)/MAD 0.019 1.27 4.72 2.58 6.89 0.004 0.007 69.8 0.127 137

Panel B: Copula-based portfolios

Max (µ+ESG)/CVaR 0.056 1.38 4.67 2.66 7.12 0.012 0.021 64.5 1.54 378

Max (µ+ESG)/EVaR 0.057 1.39 4.63 2.64 7.24 0.012 0.022 64.3 1.55 391

Max (µ+ESG)/MAD 0.064 1.36 4.49 2.57 6.81 0.014 0.025 65.9 1.52 483

Panel C: MGARCH-based portfolios

Max (µ+ESG)/CVaR 0.044 1.47 5.76 3.05 8.17 0.008 0.014 66.2 1.62 257

Max (µ+ESG)/EVaR 0.051 1.49 5.70 3.04 8.16 0.009 0.017 65.5 1.62 309

Max (µ+ESG)/MAD 0.046 1.45 5.60 2.97 7.86 0.008 0.015 66.6 1.57 274

Panel D: MFSV-based portfolios

Max (µ+ESG)/CVaR 0.046 1.43 5.46 2.92 7.16 0.008 0.016 65.6 1.63 279

Max (µ+ESG)/EVaR 0.044 1.45 5.55 2.96 7.31 0.008 0.015 65.6 1.62 257

Max (µ+ESG)/MAD 0.053 1.40 5.24 2.80 6.80 0.01 0.019 66.5 1.57 347

Notes: This table reports out-of-sample performance for optimal MOP portfolios. Portfolio returns are obtained using rolling

window estimation (with 500 days as the training sample) and portfolio back-testing from August 18, 2009 until October 7,

2020, resulting in 2853 portfolio out-of-sample net returns using 1 basis point proportional transaction cost. Except for CZεSD,

ESG and portfolio wealth, all measures are expressed as percentage. CVaR and EVaR are reported at 1% level. Portfolio

wealth is calculated at the end of out-of-sample assuming an initial investment of ¿100. The results are obtained assuming

equal preferences for the reward measures.
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Table 4

Quad-objective optimal portfolio out-of-sample performance

Portfolio Av. St.
CVaR EVaR CZεSD STARR µ/EVaR ESG

Av. Portfolio

Strategy Return Devation Turnover Wealth

Panel A: Historical-based portfolios

Max (µ+ESG)/(CVaR+CZεSD) 0.033 1.27 4.67 2.59 5.69 0.007 0.013 69.3 0.119 201

Max (µ+ESG)/(EVaR+CZεSD) 0.033 1.26 4.56 2.55 5.70 0.007 0.013 69.4 0.12 207

Max (µ+ESG)/(MAD+CZεSD) 0.027 1.25 4.61 2.56 5.03 0.006 0.011 68.7 0.103 174

Panel B: Copula-based portfolios

Max (µ+ESG)/(CVaR+CZεSD) 0.057 1.37 4.94 2.72 5.18 0.011 0.021 64.0 1.47 384

Max (µ+ESG)/(EVaR+CZεSD) 0.056 1.37 4.92 2.73 5.37 0.011 0.020 64.0 1.48 376

Max (µ+ESG)/(MAD+CZεSD) 0.055 1.34 4.80 2.68 5.09 0.012 0.021 64.9 1.44 375

Panel C: MGARCH-based portfolios

Max (µ+ESG)/(CVaR+CZεSD) 0.050 1.39 5.19 2.83 5.86 0.010 0.018 65.2 1.55 318

Max (µ+ESG)/(EVaR+CZεSD) 0.053 1.40 5.24 2.85 6.04 0.010 0.019 64.9 1.56 344

Max (µ+ESG)/(MAD+CZεSD) 0.052 1.38 5.19 2.83 5.75 0.010 0.018 65.6 1.52 337

Panel D: MFSV-based portfolios

Max (µ+ESG)/(CVaR+CZεSD) 0.049 1.38 5.23 2.81 5.27 0.009 0.017 65.4 1.55 310

Max (µ+ESG)/(EVaR+CZεSD) 0.049 1.39 5.32 2.86 5.45 0.009 0.017 65.3 1.55 303

Max (µ+ESG)/(MAD+CZεSD) 0.053 1.36 5.15 2.76 5.02 0.010 0.019 66.0 1.50 353

Notes: This table reports out-of-sample performance for optimal MOP portfolios. Portfolio returns are obtained using rolling window

estimation (with 500 days as the training sample) and portfolio back-testing from August 18, 2009 until October 7, 2020, resulting in

2853 portfolio out-of-sample net returns using 1 basis point proportional transaction cost. Except for CZεSD, ESG and portfolio wealth,

all measures are expressed as percentage. CVaR and EVaR are reported at 1% level. Portfolio wealth is calculated at the end of out-of-

sample assuming an initial investment of ¿100. The results are obtained assuming equal preferences for the reward (risk) measures.
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Table 5

Penta-objective optimal portfolio out-of-sample performance

Portfolio Av. St.
CVaR EVaR CZεSD STARR µ/EVaR ESG

Av. Portfolio

Strategy Return Devation Turnover Wealth

Panel A: Historical-based portfolios

Max (µ+ESG)/(CVaR-CZεSD-PT) 0.035 1.30 4.83 2.63 5.73 0.007 0.013 68.5 0.005 211

Max (µ+ESG)/(EVaR-CZεSD-PT) 0.032 1.28 4.68 2.57 5.59 0.007 0.013 68.8 0.005 198

Max (µ+ESG)/(MAD-CZεSD-PT) 0.033 1.26 4.66 2.56 4.90 0.007 0.013 68.9 0.004 206

Panel B: Copula-based portfolios

Max (µ+ESG)/(CVaR-CZεSD-PT) 0.058 1.40 5.01 2.79 5.29 0.012 0.021 65.1 0.712 396

Max (µ+ESG)/(EVaR-CZεSD-PT) 0.056 1.40 5.00 2.80 5.45 0.011 0.020 65.0 0.765 378

Max (µ+ESG)/(MAD-CZεSD-PT) 0.061 1.37 4.94 2.75 5.09 0.012 0.022 65.8 0.678 430

Panel C: MGARCH-based portfolios

Max (µ+ESG)/(CVaR-CZεSD-PT) 0.057 1.39 5.10 2.81 5.82 0.011 0.020 66.7 0.886 390

Max (µ+ESG)/(EVaR-CZεSD-PT) 0.058 1.40 5.17 2.85 6.06 0.011 0.020 66.8 0.924 398

Max (µ+ESG)/(MAD-CZεSD-PT) 0.055 1.37 5.11 2.79 5.71 0.011 0.020 67.3 0.814 369

Panel D: MFSV-based portfolios

Max (µ+ESG)/(CVaR-CZεSD-PT) 0.061 1.39 5.25 2.80 5.37 0.012 0.022 66.8 0.810 426

Max (µ+ESG)/(EVaR-CZεSD-PT) 0.060 1.40 5.37 2.84 5.50 0.011 0.021 66.6 0.850 421

Max (µ+ESG)/(MAD-CZεSD-PT) 0.062 1.35 5.08 2.71 5.02 0.012 0.023 67.0 0.748 454

Notes: This table reports out-of-sample performance for optimal MOP portfolios. Portfolio returns are obtained using rolling window

estimation (with 500 days as the training sample) and portfolio back-testing from August 18, 2009 until October 7, 2020, resulting in 2853

portfolio out-of-sample net returns using 1 basis point proportional transaction cost. Except for CZεSD, ESG and portfolio wealth, all

measures are expressed as percentage. CVaR and EVaR are reported at 1% level. Portfolio wealth is calculated at the end of out-of-sample

assuming an initial investment of ¿100. The results are obtained assuming equal preferences for the reward (risk) measures.
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Fig. 3. This �gure plots wealth trajectory for Max µ/EVaR portfolios obtained from several risk models with ¿100 initial

investment.
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Fig. 4. This �gure plots wealth trajectory for Max (µ+ESG)/EVaR portfolios obtained from several risk models with ¿100

initial investment. The results are obtained assuming equal preferences for the reward measures.
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Fig. 5. This �gure plots wealth trajectory for Max (µ+ESG)/(EVaR+CZεSD+PT) portfolios obtained from several risk models

with ¿100 initial investment. The results are obtained assuming equal preferences for the reward (risk) measures.

6. Conclusions

We suggest and study socially responsible multiobjective optimal portfolios. Applying the vine copulas

in a �rst step, we estimate a (step-ahead) multivariate distribution for the assets' returns. In addition to

the vine copula, a multivariate GARCH and a stochastic volatility model are used for comparison. Then,

drawing observations from the estimated multivariate distribution, the socially responsible multiobjective

optimal problem is solved using convex optimization.

The results indicate that optimal MOPs provide investors with the �exibility of incorporating di�erent

objectives. However, there is a trade-o� between reward (risk) measures. Although, including social respon-

sibility results in lower portfolio return and economic performance, it reduces the portfolio risk. While the

cumulative zero-order SD objective (in most cases) increases the portfolio return when included in socially

responsible MOPs, it reduces the portfolio risk. The predictive models lead to MOPs with higher return and

reward/risk ratios. In particular, the copula-based MOPs achieve less tail risk.
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