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Abstract

This paper gives a brief discussion on two alternative weighting procedures.

Weighting with and without explicitly modeling for the response mechanism, which

are known as the direct weighting and the weighting approaches. The generalized

regression estimator benchmarks the weighting methods while a general double

weighted Horvitz-Thompsom estimator represents the direct weighting approach.

A general reliance on the strenght of the correlation between the auxiliary vari-

ables, the response behavior and the study variables prevailing mostly on weighting

approaches, is shown to be inappropriate in some cases, that is, it increases the bias

of the resulting estimator. On the other hand, the traditional use of simple models

in representation of the true response behavior is addressed through an example in

which it is shown to be adequate under very specific assumptions.

1 Introduction

In adjusting for nonresponse, weighting is a commonly used approach by survey method-

ologists. Weighting relies on auxiliary variables, which can be defined as variables on
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which information is available for respondents and nonrespondents. In weighting for non-

response adjustment the role of auxiliary variables is crucial in reducing the nonresponse

errors. Rizzo, Kalton, and Brick (1996), pointed out that the selection of auxiliary vari-

ables could be more important than the weighting scheme. Furthermore, Särndal (2011)

also claims that in case of bias inflation by nonresponse, access to powerful auxiliary

variables becomes the key in minimizing the problem. These auxiliary variables are de-

manded to predict: (a) the propensities to respond and (b) the key survey variables to

effectively adjust for nonresponse (West and Little, 2012).

Use of auxiliary variables in estimation can be found in for example, Bethlehem (1988),

Estevão and Särndal (2000), Kalton and Flores-Cervantes (2003), Särndal and Lundström

(2005), Särndal (2007). In practice there is a wide choice of variables (Särndal and

Lundström, 2008), and one needs to decide on their selection for effective adjustment. The

literature provides some suggestions to guide in selection of auxiliary variables. Särndal

and Lundström (2008) propose a selection device based on the variability of the reciprocals

of estimated propensities. The propensities are determined under the assumption that the

auxiliary variables satisfy some pre-specified condition. Geuzinge, Rooijen and Bakker

(2000) propose a selection indicator based on a product of correlations arising from (a) and

(b). In adjusting for nonresponse using the regression estimator, Bethlehem and Schouten

(2004) and Schouten (2007) propose a selection based on minimizing a maximal absolute

bias of the estimator. The method relies on computing an interval for the maximal

absolute bias and selecting those variables that minimize its width.

Searching for auxiliary variables satisfying the requirements (a) and (b) simultaneously

may be a difficulty task. Survey practices involve many variables of interest, as Kott

(2013) comments on Brick’s (2013) discussion paper, one can seldom encounter auxiliary

variables fulfilling (b) for every variable of interest in a multipurpose survey. Kreuter and

Olson (2011) also noted the same difficulty. Furthermore, as we illustrate with a simple

example in Section 3, fulfilling requirements (a) and (b) simultaneously does not generally

guaranty effectiveness in bias protection for target estimates, it may even introduce rather

than remove the bias. Perhaps it is on the nonresponse adjustment methods that do not

explicitly model the response behavior that prevail the requirement (a) and (b) to effective

adjust. We illustrate through an example that it may not be appropriate to entirely rely

on correlation relations between the variables involved in the study. Adjustment methods

where the response behavior is explicitly modeled the primary goal is in observing those

variables that are linked to response pattern, thus, the estimation of targets is viewed as

second objective after the estimation of the response model. However, the approach is

also challenging in the sense that it is hard or even impossible to guess the appropriate

response behavior in which some may have simple forms while others complex. Simple

models like the logit and probit models are usually used in representation of the true

response model. We use a telephone survey case to show that such simple models are
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adequate under very specific assumptions.

2 Weighting for nonresponse adjustment

Suppose a sample s = {1, 2, ..., k, ..., n} of size n is drawn from a population U =

{1, 2, ..., k, ..., N} of size N with a probability sampling design p(s), yielding sample in-

clusion probabilities πk = Pr(kεs) > 0 and corresponding design weights dk = 1/πk for

all k ∈ U . Let y and x be the survey variable of interest and an L-dimensional column

vector of auxiliary variables, respectively. We want to estimate Y =
∑

U yk.

In the prospect of producing good adjustment weights, the weighting methods relie on

the proper use of available auxiliary information (e.g. Falk, 2012; Brick, 2013). We

can emphasize here weighting in two directions, that is, with and without an explicit

modeling of response function. The paper by Kim and Kim (2007) points out that the

weighting procedures for nonresponse adjustment are mainly made by applying one of

the two approaches: the weighting adjustment or the direct weighting adjustment.

2.1 The weighting adjustment

In the weighting adjustment the auxiliary information is embedded into the estimation

of targets in which case it improves the efficiency of the resulting estimators. The gener-

alized regression (GREG) estimator is an example of this kind of adjustment.

Assume the following relation between y and x described through the model:

ζ : yk = βtxk + εk, k = 1, .., N (1)

where β is an L-dimensional column vector of model parameters and εk is a zero-mean

random variable with Vζ(εk) = σ2
k.

The generalized regression (GREG) estimators for Y based on the relation between y and

x given by equation (1), are class of estimators of the form

Ŷreg =

(∑
U

xk −
∑
s

dkxk

)t

B̂s +
∑
s

dkyk (2)

where B̂s = (
∑

s dkxkx
t
k)
−1∑

s dkxkyk.
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According to Cobben (2009), the GREG estimator was introduced by Särndal (1980) and

Bethlehem and Keller (1987). The GREG estimator (2) is extensively studied in Särndal,

et. al (1992), its properties rely on the sampling design and close linear fit between y

and x, without explicitly depending on whether (1) is true or not. In this setting, the

regression estimator (2) is deemed model assisted rather than dependent (Särndal, 2007).

The model dependent regression estimator is extensively reviewed in Fuller (2002). The

regression estimator can be written in a simpler form as a weighted sum of the values of the

survey variable. This is done by writing (
∑

U xk −
∑

s dkxk)
t (
∑

s dkxkx
t
k)
−1∑

s dkxkyk

as
∑

s dkMkyk, where Mk = (
∑

U xk −
∑

s dkxk)
t (
∑

s dkxkx
t
k)
−1

xk. Thus, equation (2)

becomes

Ŷreg =
∑
s

wkyk (3)

with wk = dk(1 +Mk).

This particular form of the regression estimator is advantageous in that the weights wk

can be applied to any survey variable and have the following property:∑
s

wkxk =
∑
U

xk (4)

Furthermore, when
∑

U xk can be constructed by just adding up xk in the sampling frame,

a number of regression estimators can be constructed. However, observing xk, k = 1, .., N

is not a requirement for the regression estimator based on (1), it suffices to know only∑
U xk, which can be information obtained from others sources.

Letting M∗
k = (

∑
U xk −

∑
s dkxk)

t (
∑

s dkzkx
t
k)
−1

zk, where zk is a vector of auxiliary

variables conceptually different, but of the same dimension as xk, we obtain a more

general regression estimator given in (5). In this case the regression estimator resembles

the instrumental variable regression estimator learned from econometric theory.

ŶIV reg =

(∑
U

xk −
∑
s

dkxk

)t

B̂IV s +
∑
s

dkyk. (5)

where B̂IV s = (
∑

s dkzkx
t
k)
−1∑

s dkzkyk.

In our case where sampling is followed by nonresponse (e.g. An, 1996; Fuller and An,

1998; Singh and Kumar, 2011), the GREG estimator (5) is given by

ŶIV reg∗ =

(∑
U

xk −
∑
r

dkxk

)t

B̂IV r +
∑
r

dkyk (6)

where B̂IV r = (
∑

r dkzkx
t
k)
−1∑

r dkzkyk and r is the set of respondents.

Let us assume that the condition λtzk = 1 holds for all k, where λ is independent of k.
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The equation (6) becomes

ŶIV reg∗ =
∑
U

xtkB̂IV r (7)

The expected mean of ŶIV reg∗ is

E
(
ŶIV reg∗

)
≈
∑
U

xtkBIV θ (8)

where BIV θ = (
∑

U θkxkz
t
k)
−1∑

U θkzkyk and θk = Pr(kεr|kεs).

Equation (8) says that the bias of the regression estimator is almost entirely depending

on the properties of the response based regression coefficients B̂IV r. If all θk = 1, then

the regression estimator is approximately unbiased for
∑

U yk. The following interesting

statement is given by Cobben (2009): “Practical experience (at least in the Netherlands)

shows that nonresponse often seriously affects estimators like means and totals, but less of-

ten causes estimates of relationships to be biased. Particularly if relationships are strong,

i.e. the regression line fits the data well, the risk of finding wrong relationships is small”.

Furthermore, Bethlehem (1988) show to hold the following relation between the BIV θ and

B = (
∑

U zkx
t
k)
−1∑

U zkyk:

BIV θ −B =

(∑
U

θkz
t
kxk

)−1∑
U

θkek (9)

where ek = yk − xtkB.

Equation (9) says that the estimator (7) is approximately unbiased for Y if the linear fit

between yk and xtk is strong or the regression errors are uncorrelated with the response

probabilities. Thus, the need for strong relatioships between the explanatory variables,

the response probabilities and the variables of interest.

• The auxiliary variable may introduce bias

Fuller and An (1998) enphasize that the level of bias reduction depends on the relations

between the auxiliary variable, the variable of interest, and the response probability. In

this section we provide a simple example in which a candidate auxiliary variable satisfying

the requirements of being correlated with both the variable of interest and the probability

of response turns the resulting GREG estimator biased while a simple expanded HT

estimator provides with approximately unbiased estimation.
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Let us assume the following relationship:

yk = β0 + β1xk + ek

θk = Pr(kεr|kεs)
(10)

Assume the following conditions in (10):

1.
∑

U ek = 0 and
∑

U xkek = 0

2.
∑

U θkyk =
∑

U θk
∑

U yk/N

3.
∑

U θkxk 6= 0 and
∑

U θkek 6= 0

Then, the expanded Horvitz-Thompson estimator for the total of y is approximately

unbiased. To obtain this result, let

Ŷexp =
N∑
r dk

∑
r

dkyk

Then

NearBias(Ŷexp) = N
E(

∑
r dkyk)

E(
∑

r dk)
−
∑

U yk = N
∑

U θkyk∑
U θk

−
∑

U yk

= N
∑

U θkyk−
∑

U θk
∑

U yk∑
U θk

= N2cov(θk,yk)

Nθ̄
= N cov(θk,yk)

θ̄
= 0

because cov(θ, y) = 0.

One special case of the regression estimator is the ratio estimator. It is obtained from (6)

by setting xk = xk and zk = 1. The ratio estimator is in the literature suggested to have

smaller bias due to nonresponse than the expansion estimator. Then the approximate

bias for the GREG estimator is given by

NearBias(ŶRA) =
N2x̄σθe∑
U θkxk

(11)

where x̄ = N−1
∑

U xk, σθe = cov(θ, e) and in the model (10) we assume β0 = 0. Thus,

generally the ratio estimator has a nonzero approximate bias resulting from the choice of

auxiliary variable.

Defining xk = zk = (1 xk)
t equation (7) gives another well known estimator, the

simple linear regression, which is also suggested to be more efficient than the expansion

estimator. In this case the bias of the regression estimator is given by:

NearBias(Ŷreg) =
σxF

∑
U θkek − σxθ

∑
U Fkek

θ̄F̄ x− F̄ 2
(12)

where Fk = θkxk, σxF = cov(x, F ), σxθ = cov(x, θ), F̄ = N−1
∑

U Fk, F̄ x = N−1
∑

U Fkxk

and in (10) we longer assume β0 = 0.
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Again the bias of this estimator is generaly nonzero. Simple examples considered here

show that the recommendation of selecting “powerful” auxiliary variables in the sense of

being correlated with variables of interest and response probability may introduce bias

due to nonresponse instead of reducing it.

2.2 The direct weighting adjustment

In the direct weighting adjustment it is assumed that the functional form of the response

probability is known and given by θk = p(·zk), where zk is a vector of model variables. The

primary goal is to estimate this function so that the observed values of the target variable

are double weighted, that is, each yk is multiplied by dkθ̂
−1
k . The target population Y

can then be estimated by

Ŷnr =
∑
r

dkθ̂
−1
k yk (13)

The estimator (13) is widely suggested in the literature of nonresponse adjustment (see

e.g. Chang and Kott, 2008; Kim and Park, 2010; Kim and Riddles, 2012). The properties

of Ŷnr are conditioned on the properties of θ̂. For example, consistency of Ŷnr may depend

on the correct specification of the function θ. Thus wrongly specified θ may lead into

an inconsistency of Ŷnr. Given the limitation on knowlegde of the response mechanism

(Särndal and Lundström, 2005) it is difficult to suggest whether a proposed response

mechanism is the appropriate or no. Simple models as logit and probit have been widely

used in application (e.g. Chang and Kott, 2008). An immediate question raised is when

can these simple models be used? We discuss this issue in the following example of

nonresponse in a telephone survey.

• Response probability modeling

An attempt to make contact with a unit in the sample and collect a response can be

seen as a random trial. The possible outcomes in one attempt in a telephone survey are

illustrated in Figure 1. When calling it may result in a contact (c) with probability γ, or

a fail in making a contact (c̄) with probability (1− γ).

Given a contact is made it may result in a response (r), a refusal to participate (r̄), or

an agreement to call back later (CL). Conditionally on c, let the probabilities of these

outcomes be denoted by δr, δr̄, and δCL, respectively.

Factors affecting the probability of a contact include the telephone number is not correct,

the unit cannot at the time respond to a telephone call and, the respondent is not willing

to respond to an unknown incoming call number. If a contact is made, other factors are

involved in a decision to respond, refuse or agree to a contact later. The presentation of

the survey, the topic of the survey and the time required to respond come into play.
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   Trial (random)    

   γ   γ     

         

   c      

  rδ    CLδ     

   rδ       

 r  r   CL  c   

 
r = response, r  = refusal, CL = call later, 
c  = no contact, γ  = probability of contact (c), 

aδ  = probability of outcome a given c 

 
Figure 1: Tree diagram of potential outcome of a 

contact trial in a telephone survey. 

From the tree diagram, the probabilities of the outcomes of the trial are Pr(r) = θ1 = γδr,

Pr(r̄) = θ2 = γδr̄, Pr(CL) = θ3 = γδCL and Pr(c̄) = (1 − γ) = γ̄. If the outcome of

the trial is either a fail to make contact or an agreement to call back, a second trial to

get a response from the unit can be made. The same potential outcomes are possible.

However, it is here assumed that given an agreement of calling back later, contact is made

and the outcome is either a response (r) or a nonresponse (r̄).

Consider a sequence of contact trials and let Pt denote a column vector of probabilities

of the outcomes (r,r̄, CL, c̄) at trial t. The sequence of trials can be modeled as a

stochastic process with a transition matrix Γt. For t ≥ 2 this matrix contains probabilities

conditionally on the outcome of the (t − 1)th trial. Thus, Pt = ΓtPt−1(t ≥ 2) with

P 1 =
(
θ1 θ2 θ3 γ̄

)t
.

There are some information on the transition matrix. First, the response and nonresponse

outcomes are absorbing, and above the outcome CL is assumed to yield either a response

or a nonresponse in the following trial. If γ̄ < 1 these assumptions will eventually yield

either a response or a nonresponse in a sequence of trials.
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Suppose Γt = Γ2 for all t ≥ 2, and consider

Γ2 =


1 0 θ31 θ1

0 1 θ32 θ2

0 0 0 θ3

0 0 0 γ̄


The fourth column in the matrix equals P 1, meaning the conditional probabilities in a

trial following upon a series of no contacts are the same, they do not change with the

number of trials earlier made. With this model the probabilities of the different outcomes

can be expressed as P t = Γt−1
2 P1 and letting the number of trials converge to infinity

yields the probability vector

P∞ =


λr + θ31λCL

λr̄ + θ32λCL

0

0


using the definitions of θj(j = 1, 2, 3). This model then shows the probability of a response

from a unit being made up of three unknown probabilities, i.e. Pr(r) = λr + θ31λCL.

Adding the assumption λCL = 0 yields the traditional dichotomy of response/nonresponse

suggesting modeling λr with e.g. a normal or a logistic distribution function. The same

modeling approach can also be motivated if θ31 = 0.

A different case is obtained by setting θ31 = 1 whereby Pr(r) = λr + λCL, and the

modeling of Pr(r) using probit or logit models is less appropriate. Rather, these models

imply modeling of nonresponse, i.e. Pr(r̄), due to their symmetry. With a distribution

function F having a symmetric density and Pr(r̄) = F (−xtα) ,then Pr(r) = 1−Pr(r̄) =

F (xtα). If the distribution is asymmetric it’s appropriate to model nonresponse instead

of response.

A final special case of interest is obtained with θ31 = λr/(λr + λr̄), which corresponds to

the independence of irrelevant alternative (IIA) assumption underlying the conditional

logit model (Luce, 1959). Under the IIA assumption Pr(r) = λr/(λr +λr̄). Now suppose

λa = eVa/(eVr + eVr̄ + eVCL) (aε {r, r̄}) where V· are nonrandom scalars. Then Pr(r) =

eVr/(eVr + eVr̄) = eVD/(1 + eVD), where D = Vr − Vr̄, and the logit model is obtained.

In the discrete choice literature (e.g. McFadden, 1974) Vr, Vr̄ and VCL represent system-

atic parts of the utilities of choosing the alternatives r, r̄ and CL, respectively. The utili-

ties for the units are obtained by adding individual specific components εa (aε {r, r̄, CL})
yielding Ua = Va + εa. Under the maximum utility paradigm, the unit selects the alter-

native yielding maximum utility, that is a unit responds if Ur > max(Ur̄, UCL).

Let x denote a vector characterizing the respondent and Va = xtαa such that Ua = xtαa+

εa (aε {r, r̄, CL}). Suppose εa (aε {r, r̄, CL}) are independent and identically Gumbel
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distributed, then Pr(r) = ex
tαD/(1 + ex

tαD) where αD = αr − αr̄ (e.g. McFadden, 1974).

Again the logit model is obtained.

3 Discussion

Sampling theory shows how to utilize randomization for valid, objective inference from

empirical observations. Its application in the social sciences and for official statistics pro-

duction is, however, hampered by nonresponse, because the theory assumes observations

are obtained for all units in the sample. Thus, this excellent theory cannot be applied as

is in practice.

There are early suggestions on how to correct for nonresponse where the theory is applied

in two or more steps. One example is the Hansen and Hurwitz (1946) method, where a

subset of the set of nonrespondents are sampled and measured. A similar idea is given by

Bartholomew (1961). Again, however, for these theories to work in practice, full response

is required when sampling from the subset of nonrespondents. Another problem is the

extra time required for completion of the study.

Later the view of response being an outcome of a random trial was adopted. Oh and

Scheuren (1983) consider this interpretation as a quasi randomization approach when

treating the response set generated as a second sampling phase with an unknown second

phase sampling design. However, the idea makes standard theory on estimation applicable

by using estimated response probabilities.

Using a model means by its definition use of approximations. A model cannot be assumed

correct and valid inference cannot be guaranteed from its application. Estimators based

on estimation of response probability functions are therefore biased and inconsistent and

the size of bias is unknown. An essential part here is how well the model approximates

the true response probabilities. One popular alternative is the simple binary logit model.

This paper contributes with conditions under which the logit model is correct and, it

is interesting to note how contributions in the discrete choice literature can be adapted

in modeling response probabilities. The results presented here are based on a proposed

model of the possible outcomes of a contact trial, and the logit model is obtained under

very restrictive assumptions on this model. In particular the response probability is

obtained as a function of several probabilities of different events. An approximation with

the cdf of the logistic distribution is therefore too simple.

Another approach for nonresponse adjustments based on the random response interpre-

tation is weighting, where auxiliary information are used to adjust design weights to

capture response probability patterns. Here the method does not require a known form

of or the variables in the response probability function. There are plenty results in the

literature showing this approach to be successful in reducing bias due to nonresponse.
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In this paper a question rarely raised in the literature is considered and can be formulated

as: how does weighting affect estimates if the response set mean is unbiased? One

potential reason for this problem not being addressed is, the adaptation of concepts on

the relation between the study variable and the generation of the response set from the

model based inference literature, e.g. MAR (missing at random) and MCAR (missing

completely at random), and ignorable and nonignorable nonresponse.

For estimation of population means or totals in the finite population framework such

concepts may be misleading. MCAR is a stronger concept than MAR, usually meaning

that if MCAR holds, so does MAR. Methods derived to handle MAR cases then also

encompasses the MCAR cases. However, this may not be true in the finite population

context for similar concepts; MCAR might hold but not MAR.

If MCAR is defined as
∑

U θkyk = θ̄
∑

U yk, and Ux = {x : xk = x, kεU} then MCAR

does not imply
∑

Ux
θkyk = θ̄

∑
Ux
yk. The same argument can be derived by considering

a random draw from the population and observing y and R. Then MCAR defined as

F (y|R = 1) = F (y|R = 0) does not imply F (y|R = 1, x) = F (y|R = 0, x), where F (·)
denotes the cdf.

4 Conclusions

Results show weighting adjustments for nonresponse may yield biased estimators while

the simple expansion estimator is approximately unbiased. This issue has to be considered

when choosing auxiliary variables and new indicators or tests must be developed.

Simple models of response probabilities do not capture the complex process of attempts

for contacts and choice of the unit to respond or not. This discrepancy is a source of

bias and models capturing the characteristics of the data collection process have to be

developed. Graph models in combination with models for discrete choice data may here

provide new tools for modeling response probabilities.
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