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Abstract

Nonresponse is a major impediment to valid inference in sample surveys. In the

nonresponse scenario, the driver of successful estimation is the efficient use of avail-

able auxiliary information. As electronic devices provide considerable data storage

capacities, at the estimation stage it is natural for survey statisticians to face large

datasets of auxiliary variables. It is unwise to use all available data as doing so

may lead to poor estimators, especially if some variables are strongly correlated.

Furthermore, selecting a subset of available auxiliary variables may not be the best

alternative given the issues related to selection criteria. In this paper, we propose

reducing the dimensions of the original set of auxiliary variables by using principal

components. The use of principal components in place of the original auxiliary

variables is evaluated via two calibration approaches, linear calibration using no

explicit response model and propensity calibration of a known response model. For
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the latter, we propose selecting components based on their canonical correlation

with the model variables. The results of two simulation studies suggest that using

principal components is appropriate, as it offers the great advantage of reducing

the computational burden.

Key words: Weighting, Nonresponse, Calibration, Principal components

1 Introduction

When adjusting for nonresponse in sample surveys, auxiliary information plays a promi-

nent role in successful estimation. Rizzo, Kalton and Brick (1996) note that, providing

it is carefully chosen, the particular adjustment scheme used at the estimation stage is

not that important. The relation with the study variable or response pattern is usually

taken as a benchmark in the choice of auxiliary variables (see Särndal and Lundström,

2005, p. 110; Kreuter and Olson, 2011). Calibration estimation (Deville and Särndal,

1992), initially designed to reduce sampling error in surveys with complete response,

was eventually extended to surveys affected by nonresponse, (see, e.g., Lundström and

Särndal, 1999; Kott, 2006). The method relies on an efficient choice of auxiliary variables.

When many auxiliary variables are available, calibrating on all of them may lead to

‘over-calibration’, the term used by Guggemos and Tillé (2010). According to Särndal

and Lundström (2005), a problem may arise when the candidate auxiliary vector contains

variables likely to cause multicollinearity or variables with highly skewed distributions.

These problems may result in a very inefficient estimator almost less efficient than, for

example, the Horvitz-Thompson estimator (Cardot, Goga, and Shehzad, 2014).

Large sets of auxiliary variables have also been considered by many authors in various

estimation settings, as in the following examples, Bardsley and Chambers (1984) propose

a ridge-type estimator in the context of model-based estimation, an approach that re-

laxes the principle that the calibration weights ‘exactly’ reproduce the totals of known

characteristics by holding only ‘approximately’. Guggemos and Tillé (2010) introduce

a penalized calibration estimator. Bilen, Khan, and Yadav (2010) suggest a principal

component approach for reducing the multicollinearity and dimensions of the auxiliary

variables in a regression context. Cardot, Goga, and Shehzad (2014) propose calibration

on reduced data via principal components (PCs) in surveys with complete response.

Variable selection criteria are also suggested in the literature as an alternative way to deal

with large sets of auxiliary variables and related problems. McHenry (1978) suggests an
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algorithm to select the best subset of auxiliary variables in the context of multiple re-

gression or multivariate analysis. Silva and Skinner (1997) suggest a selection criterion

based on the variability of the regression estimator. Särndal and Lundström (2005, 2007)

propose a selection device based on the variability of estimated inverse propensities de-

termined under the assumption that the auxiliary variables satisfy some pre-specified

condition. The variable selection is conditioned on an increase in the variability of the

inverse propensities. A potential auxiliary variable must predict the key survey variables

and the propensities to respond. Geuzinge, Rooijen, and Bakker (2000) propose a selec-

tion indicator based on the product of (a) the correlation between the auxiliary vector and

the study variables and (b) the correlation between the auxiliary vector and the response

propensity. When adjusting for nonresponse through regression estimation, Bethlehem

and Schouten (2004) and Schouten (2007) propose a selection based on minimizing the

maximal absolute bias of the estimator; the method relies on computing an interval for

the maximal absolute bias and selecting those variables that minimize its width.

The common practice of using a subset of the full set of potential auxiliary variables

and discarding others may result in the loss of important information. For example, in a

regression context, it is known that the R2 tends to decrease with the removal of regres-

sors from the regression equation. This phenomenon can be interpreted in many ways,

but in some cases is due to the loss of valuable information. Furthermore, most of the

suggested selection algorithms are computationally intensive and, impractical for large

sets of candidate auxiliary variables.

In this paper, we calibrate on reduced data via principal components. Thus, we account

for the exponential growth in computing time due to dimensionality in the auxiliary data

and most importantly, the problem of large weights due to outliers is also accounted

turning the estimator more efficient. The idea was initially suggested by Cardot, Goga,

and Shehzad (2014) in surveys with complete response, and we extend it to estima-

tion in surveys affected by nonresponse. Furthermore, the ideas in Cardot, Goga, and

Shehzad (2014) are centered on the Greg-type-calibration (the complete response linear

calibration), while we study this and the propensity score calibration estimators in the

nonresponse context. Note that the use of principal components in weighting does not

stand for data interpretation, but is a tool for alleviating the problem of managing high-

dimensional auxiliary data. Specifically, the PCs approach assists in the construction of

new auxiliary variables from the original variables by taking into account all available

candidate variables through linear combinations. Furthermore, we implement a rejection

of PCs based on their canonical correlation (Hotteling, 1936) with the model variables.
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Two calibration estimators are considered in the paper:

1. Linear calibration (LC) using no explicit form of response model (Särndal and

Lundström, 2005)

2. Instrumental variable or propensity score calibration (PSC) with an explicit form

of response model (Chang and Kott, 2008)

This suggests two sources of auxiliary information for estimation: an X(N×P ) data matrix

carrying information on the N population elements of a P -dimensional vector of auxiliary

variables and an H(m×L) data matrix carrying information on the m respondent elements

of an L-dimensional vector of instrumental variables. The LC estimator uses only the

first source of auxiliary information, while the PSC combines the two sources.

The rest of the article is organized as follows: section 2 provides background information

on calibration estimators for nonresponse adjustment; section 3 provides a summary the-

oretical framework on principal components; section 4 provides a theoretical combination

of calibration estimators and principal components; section 5 provides numerical support

for section 4; and the final section discusses the results.

2 Calibration Estimators

Define a finite population, U , of distinguishable units indexed by integers 1, 2, ..., k, ..., N .

A probability sample, s, of distinguishable elements indexed by integers 1, 2, ..., k, ..., n

is drawn from U according to a probability sampling design, p(s), yielding the first- and

second-order inclusion probabilities, πk = P (k ∈ s) and πkl = P (k&l ∈ s), respectively

for all k, l ∈ {1, 2, ..., N}, where πkk = πk. Suppose that data are observed for subset

r ⊂ s with |r| = m. The elements of r are assumed to be generated by a random process,

q(r), on s. Thus, each element k ∈ r is associated with probability θk = P (k ∈ r|k ∈ s).
The random process q(r) on a given s is usually termed a response mechanism, while θk

is the response probability for the individual k. Here, it is assumed that events k ∈ r and

l ∈ r for a given s are independent of one another given that k 6= l.

Calibration estimators were introduced by Deville and Särndal (1992) in the context of

surveys with complete response; the approach was then extended to surveys affected by

nonresponse. In this context, Särndal and Lundström (2005) define the calibration esti-

mator for total ty =
∑

U yk as,

t̂ycal = wt
(r)y(r) (1)
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where w(r) = vec{wk}m and y(r) = vec{yk}m are m-dimensional column vectors of

calibrated weights wk and study variable values yk respectively. The term ‘calibrated

weights’ means that the weights satisfy the calibration property Xt
(r)w(r) = Tx, where

Tx =
∑

U Xk and Xk being the transpose of the kth line of X(N×P ). Calibrated weights,

wk, are constructed to be as close as possible to the reciprocals of the sample inclusion

probabilities, dk = 1/πk, according to a distance metric Ω
(
w(r); d(r)

)
, while satisfying the

above calibration property. Using Lagrange reasoning, calibrated weights can be derived

by minimizing the following function:

Ω(w(r); d(r)) + γt
(
Tx −Xt

rw(r)

)
where γ is a column vector of Lagrange multipliers, d(r) = vec{dk}m. The resulting

calibrated weights take the form

wk = dkh(γtXk) (2)

where h = ψ−1, ψ = ∂Ω/∂w.

A different choice of Ω leads to a different weight system, wk. Deville and Särndal (1992)

establish conditions under which any choice of distance function leads to estimators that

are asymptotically equivalent to the regression estimator obtained through a Chi-square-

type distance measure. Thus, the choice of distance measure may be influenced by the

computational aspects or other properties of wk, such as its non-negativity or degree of

stability.

Using the Chi-square distance, i.e., Ω(w(r); d(r)) =
(
w(r) − d(r)

)t
(2D)−1

(
w(r) − d(r)

)
,

with D = diag {d1, d2, ..., dk, ..., dm}, leads to the linear calibrated weights of the form

wk = dk + dkγ
tXk (3)

where γ =
(
Xt

(r)DX(r)

)−1 (
Tx −Xt

(r)d(r)

)
.

The linear calibration estimator for ty is:

t̂ycal = wt
(r)y(r) = dt(r)e(r) + Tt

x

(
Xt

(r)DX(r)

)−1
Xt

(r)Dy(r) (4)

where, e(r) = vec {ek}m and y(r) = vec {yk}m are m-dimensional column vectors of residu-

als ek = yk−ŷk and study variable values yk respectively, and ŷk = Xt
k

(
Xt

(r)DX(r)

)−1
Xt

(r)Dy(r).

In the complete response context, estimator (4) is equivalent to the GREG estimator

(Särndal, Swensson and Wretman, 1992) derived under superpopulation model ξ, which
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assumes a linear relationship between the survey variable, yk, and the auxiliary vector,

Xk, given by ξ : yk = βtXk + εk. Since, Xt
(s)d(s) is unbiased for Tx, the weights (3) are

in average equal to dk which leads to zero average differences yk − ŷk.

Under nonresponse, the unbiasedness property mentioned above do not generally hold.

In this case auxiliary information makes a difference for the properties of the calibration

estimator.

3 A brief summary of principal components

Suppose that X is defined as in Section 1 except that each Xj, j = 1, ..., P is rescaled to

zero mean and unit variance, then, XtX is the covariance matrix of X. Let (λj,bj; j =

1, ..., P ) be eigenvalue-eigenvector pairs of XtX. The jth principal component is given

by Zj = btjX =
∑P

l=1 bljXl with the properties cov(Zj,Zi) =

{
0, j 6= i

λi, j = i
, bj is a

P -dimensional column vector and the λi′s satisfy λ1 ≥ λ2 ≥, ...,≥ λP ≥ 0. The propor-

tion of total variance accounted for by the first R < P principal components is given by(∑R
i=1 λi/

∑P
i=1 λi

)
× 100%.

Suppose now that X = X(s), that is, auxiliary data observed only at sample level. The

covariance matrix of X(s) is estimated without bias by XtDX, where

D = diag {d1, d2, ..., dk, ..., dn}. The estimated principal components are given by Ẑj =

b̂tjX(s) =
∑P

l=1 b̂ljXl(s). The pair (λ̂j, b̂j; j = 1, ..., P ) comprise the eigenvalue and eigen-

vector of XtDX.

4 Calibrating on principal components

The calibration estimator in the principal components setting can be derived by solving

the following problem:

min Ω(wpc
(r); d(r))

sub : Zt
(r)w

pc
(r) = Tz

, (5)

4.1 The linear calibration estimator based on principal compo-

nents

If we follow the same reasoning that led to weights (3), we will then arrive at principal

components calibrated weights given by
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wpc
k = dk − dkγt(pc)Zk (6)

where, γ(pc) =
(
Zt

(r)DZ(r)

)−1 (
Tt
z − Zt

(r)d(r)

)
and Zk = {Zk1, Zk2, ..., ZkR|R < P} is

the vector whose elements are the retained components. The nonresponse principal-

components-based calibration estimator for ty is given by

t̂ycal(pc) = dt(r)e
pc
(r) + Tt

z

(
Zt

(r)DZ(r)

)−1
Zt

(r)Dy(r) (7)

Where epc(r) = vec

{
yk − Zt

k

(
Zt

(r)DZ(r)

)−1
Zt

(r)Dy(r)

}r
.

4.2 The propensity score calibration based on principal compo-

nents

Consider a framework of unit response resulting according to a known parametric model,

φ−1(·; Hk). Observe that this model is known only up to an unknown L-dimensional

vector of parameters, δ = δ∗, where δ ∈ Υ, dim(Hk) = L 6 R and R is the number of

selected PCs. Then, the model parameters can be estimated from the calibration con-

straint below (see Kott, 2012)

Zt
(r)Φ(δ)d(r) −Tz = 0 (8)

where dim(Z(r)) = m×R and Φ(δ) = diag {φ(δ; H1), φ(δ; H2), ..., φ(δ; Hk), ..., φ(δ; Hm)}.
This is a principle suggested by Chang and Kott (2008). The solution to (8) is the mini-

mizer of the objective function:

(
Zt

(r)Φ(δ)d(r) −Tz

)t
Wn

(
Zt

(r)Φ(δ)d(r) −Tz

)
. (9)

When L = R, the form of weighting matrix Wn of dimension R×R is irrelevant, as system

(8) is just identified, otherwise Wn is a suitably chosen nonnegative definite matrix.

Note that Zk is an R-dimensional column vector of retained principal components of P

originals. Under this setting, to make the system of equations (8) feasible, the minimal
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requirement is that the number of PCs in Zk be at least L retained components.

Having estimated the response model parameter, δ∗, the calibration estimator for ty (the

propensity score calibration) is

t̂PSC(pc) =
∑
r

dkφ(δ̂
t

(pc)Zk)yk, (10)

where δ̂(pc) is the estimated value of δ. To obtain δ̂(pc), Beaumont (2006), propose an

iterative procedure based on the Taylor approximation of (8), similar to the procedure

suggested by Binder (1983). We apply a slightly different perspective in the estimation

of δ in (8).

Assume the following conditions to hold:

1. Function φ(δ) is continuous and twice differentiable with respect to δ.

2. Epq

(
Zt

(r)Φ(δ)d(r) −Tz

)
= 0 if and only if δ = δ∗ for all δ ∈ Υ

3. Set Υ is a compact set .

4. Epq

[(
Zt

(r)Φ(δ)d(r) −Tz

)(
Zt

(r)Φ(δ)d(r) −Tz

)t]
is finite

5. Zt
(r)Ψ(δ)H = ∂

∂δ

(
Zt

(r)Φ(δ)d(r) −Tz

)
=
∑

r dkφ1(Hk; δ)ZkH
t
k exists and is contin-

uous in Υ, where φ1(Hk; δ) = ∂φ(Hk; δ)/∂δ and the m×m diagonal matrix Ψ(δ)

has its kth diagonal element given by dkφ1(Hk; δ)

6. Zt
(r)Ψ(δ)H is a full-column rank matrix.

Define the quadratic distance as follows:

(
Zt

(r)Φ(δ)d(r) −Tz

)t Wn

2

(
Zt

(r)Φ(δ)d(r) −Tz

)
(11)

The solution to (8) is defined as the minimizer of objective function (11). In the gen-

eralized method of moments setting, minimizing (11) is equivalent to solving the set of

estimating equations defined by

(
Zt

(r)Ψ(δ)H
)t

Wn

(
Zt

(r)Φ(δ)d(r) −Tz

)
= 0 (12)

We use the following approximation:

(
Zt

(r)Φ(δ∗)d(r) −Tz

)
≈
(
Zt

(r)Φ(δ̂(pc))d(r) −Tz

)
+
(
Zt

(r)Ψ(δ̂(pc))H
)

(δ∗ − δ̂(pc)) (13)
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Introducing equation (13) into (12) yields the following updating equation:

δ̂
1

(pc) ≈ δ̂
0

(pc) +
[(

Zt
(r)Ψ

0H
)t

Wn

(
Zt

(r)Ψ
0H
)]−1 (

Zt
(r)Ψ

0H
)t

Wn

(
Zt(r)Φ(δ0)d(r) −Tz

)
(14)

where Ψ 0 = Ψ (δ̂
0

(pc)) . In (10), δ̂(pc) is the value of δ̂
1

(pc) obtained upon convergence of (14).

In the appendix section we provide the derivation of the asymptotic variances of the esti-

mated coefficients of the propensity functions when population- or sample-level auxiliary

information is used. A comparison of these variances shows that sample-level auxiliary

information provides more accurate estimated coefficients than population-level does.

4.3 Suggested retention criterion (a canonical correlation-based

criterion)

Many authors have discussed PCs retention criteria, for example, Jolliffe (1972, 1973,

1982), Cadima and Jolliffe (1995), Jolliffe, Trendafilov, and Uddin (2003), and McCabe

(1984), though there is no unified recommendation on this matter (Johnson and Wichern,

2007). Common practice is based on one or combinations of the following three criteria:

the eigenvalue-one, scree plot, and proportion of total variance explained criteria. Mans-

field, Webster, and Gunst (1977) noted that it is common in PCs analysis for significant

data variation to be accounted for by the first few components. According to these cri-

teria, the components with small variability are excluded. Note, however that we are

not concerned with interpreting PCs, instead using them as a tool for constructing new

auxiliary variables that take into account all original candidate auxiliary variables.

In a canonical correlation setting, the goal is to determine sets of linearly independent

vectors for two groups of variables that result in the maximum correlation between the

projections of these variables onto the space spanned by these linearly independent vec-

tors. According to Borga (2001), the correlation between two sets of multidimensional

variables, if it exists, may be blurred if an inappropriate coordinate system is used to

represent the variables. However, in canonical correlation, each of the two sets is linearly

transformed, so that the corresponding pairs of coordinates of these transformed variables

have the maximum correlation.

Observe that H = {H1, H2, ..., HL}t is an L-dimensional vector of model variables, Z(r) ={
Z1(r), Z2(r), ..., ZR(r)

}t
= Z̃ is an R-dimensional vector of retained principal components,

and let PH be the projection of H onto the space spanned by linear combinations of its
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elements and suppose that PZ̃ is the analogous projection of elements in Z̃. We want to

approximate the correlation (ρ̃H,Z̃) of sets H and Z̃ by the canonical correlation defined

by max
PH,PZ̃

Γ
(
PHHt,PZ̃Z̃t

)
.

ρ̃H,Z̃ ≡ max
PH,PZ̃

Γ
(
PHHt,PZ̃Z̃t

)
= max

PH,Pz̃

[
PH

(
HtZ̃

)
Pt

Z̃

]
[PH (HtH) Pt

H]1/2
[
PZ̃

(
Z̃tZ̃

)
Pt

Z̃

]1/2 (15)

We can equivalently reformulate (15) as
max

[
PH

(
HtZ̃

)
Pt

H

]
sub

 [PH (HtH) Pt
H]

1/2
= I[

PZ̃

(
Z̃tZ̃

)
Pt

Z̃

]1/2
= I

(16)

Using Lagrange multiplier principle, (16) is solved by maximizing the objective function

L(µ,P) =
[
PH

(
HtZ̃

)
Pt

Z̃

]
−
{
µt

H

[
PH

(
HtH

)
Pt

H − I
]
− µt

Z̃

[
PZ̃

(
Z̃tZ̃

)
Pt

Z̃
− I
]}

/2

yielding the system of equations


∂L
∂PH

=
(
HtZ̃

)
Pt

Z̃
− µt

H (HtH) Pt
H = 0

∂L
∂PZ̃

=
(
HtZ̃

)t
Pt

H − µtZ̃
(
Z̃tZ̃

)
Pt

Z̃
= 0

(17)

Premultiplying the first equation in (17) by PH and subtracting PZ̃ times the second

equation from the first, gives the Lagrange coefficients a solution of µZ̃ = µH = µ.

Assuming that HtH is invertible, the first equation gives

µPt
H =

(
HtH

)−1 (
HtZ̃

)
Pt

Z̃
, (18)

and after appropriate replacements in the second, we get

(
HtZ̃

)t
(HtH)

−1
(
HtZ̃

)
Pt

Z̃
−µ2

(
Z̃tZ̃

)
Pt

Z̃
, which is equivalent to writing this last equa-

tion as

Qx = λRx (19)

where Q =
(
HtZ̃

)t
(HtH)

−1
(
HtZ̃

)
, x = Pt

Z̃
, λ = µ2 and R =

(
Z̃tZ̃

)
.
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Equation (19) is in the form of a generalized eigenvalue equation (Parra and Sajda, 2003).

Let, R = MM t be a Cholesky decomposition of R; then (19) becomes

(
M−1QM−1t)M tx = λM tx⇔ Q̃x̃ = λx̃,

which is the standard eigenvalue equation. Solving this, we obtain a solution for PZ̃,

which naturally leads to a solution for PH in (18). These solutions represent the optimal

projections of the variables in
{

Z̃
}

and {H} onto spaces spanned by their respective

linear combinations. The coordinate systems resulting from PZ̃, and PH are mutually

maximally correlated. See, for example, Borga (2001) and Hardoon, Szedmak and Shawe-

Taylor (2004), for more insight on canonical correlation analysis.

Our PCs selection criterion is based on the value of the canonical correlation between the

PCs and the instrumental variables. The PCs are selected in order of their appearance

and the canonical correlations are used to measure the representativeness of the selected

components. The canonical correlations are calculated in a forward stepwise manner: the

first canonical correlation is the correlation between the instrumental vector and a vector

comprinsing the first PC; the second canonical correlation is the maximal correlation be-

tween the instrument vector and the vector comprising the first two PCs, and so on. The

values of these canonical correlations are obtained in an increasing order. The stopping

rule is based on the amount by which this correlation increases from a previous step to

the actual step. If the addition of a further component to the vector of PCs does not

significantly change the correlation among these two groups, then that component and

the remaining components are discarded from the final auxiliary vector.

Remark 1. Unlike ZtZ, which is a diagonal matrix with eigenvalues of XtX being

its diagonal elements, matrix Z̃tZ̃ is no longer a diagonal since Z̃ is made of

elements of Z falling into response set r.

Remark 2. We maximize the relation (H, Z̃) rather than (H,Z) as the latter is im-

possible because information on H is assumed to be known at response level.

The variables’ distributions are generally distorted by nonresponse and the

resulting correlation is expected to deviate from the true correlation. This is

not of concern here, as the main goal is to guarantee at the response level

selected auxiliary variables closely linked to the instruments.
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5 Simulation Study

This section provides empirical illustrations of the points discussed in the previous sec-

tions. It is known, that the principal components data reduction approach is effective

when the relations among the variables involved are strong. In this article, we present

two simulation studies: in the first study, the structure of correlation among the variables

is very strong, the first principal component alone explaining more than 90% of the total

data variation, as can be observed in Figure 1; in the second study, the structure of cor-

relation among the variables is weak, and several components are needed to meaningfully

explain the total variation of the data, as illustrated by, the scree plot shown in Figure 2.

The data source for the first study is ‘Unemployment and median household income

for the U.S., States, and counties, 2006–2014’ from the Unemployment – Bureau of

Labor Statistics – LAUS data. The data are freely and publicly accessible for use at

http://www.bls.gov/lau/. According to the source, ‘the concepts and definitions un-

derlying LAUS data come from the Current Population Survey (CPS), the household

survey that is the official measure of the labor force for the nation. State monthly model

estimates are controlled in real time to sum to national monthly labor force estimates

from the CPS. These models combine current and historical data from the CPS, the

Current Employment Statistics (CES) program, and State unemployment insurance (UI)

systems’.

The data source for the second study is ‘Small Area Income and Poverty Estimates

(SAIPE)’, which is a 1989, 1993, and 1995–2013 dataset, also freely and publicly acces-

sible at http://www.census.gov/did/www/saipe/. According to the source, ‘Small Area

Income and Poverty Estimates (SAIPE) are produced for school districts, counties, and

states. The main objective of this program is to provide updated estimates of income

and poverty statistics for the administration of federal programs and the allocation of

federal funds to local jurisdictions’.

5.1 Simulation setup

5.1.1 Study 1

From the data of the first study we selected 27 quantitative variables. We applied data

transformation to induce the correlation among them to a desired pattern. The trans-

formed variables are named v1 to v27. For example, from uncorrelated variables x1 and x2

we can generate new corresponding correlated variables v1 = x1 and v2 = sqrt(x1 ∗ x2),
respectively. The variable v27 was chosen to be the study variable and the remaining

were assumed to be auxiliaries. These data correspond to our population of 3260 obser-
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vations from which simple random samples without replacement were drawn. We also

used a dataset from a real estate survey of 4228 sampled individuals, of whom 2445 were

respondents on one of the variables. A response variable was generated by assigning

values of zero and one to nonrespondents and respondents, respectively and we fitted a

three-covariate logistic model with chosen variables vector w = {1, w1, w2}t. The cor-

relation between w1 and w2 is about 0.1, while each one of w1 and w2 has correlation

level of approximately 0.6 with the study variable. The proportion of nonzero units in

the resulting binary variable is 57%. We adapted the features of this model to our study.

The chosen variables, say, v1 and v5 have correlation level of 0.09, while having with the

study variable correlation levels of 0.5 and 0.48 respectively. The model led us to an

average response rate of 57%.

Recall that we base this article on two calibration approaches, the linear calibration

(LC) estimator of Särndal and Lundström (2005) and the propensity score calibration

(PSC) of Chang and Kott (2008). For the former estimator, we use the standard specifi-

cation of auxiliary vectors, that is, Hk = Xk = {1, v1, ..., v26}tk, while the auxiliary vectors

for the latter were defined as Xk = {1, v2, ..., v4, v6, ..., v26}tk and Hk = {1, v1, v5}tk. The

attempt to adapting the response model mentioned above to our study, led to the choice

of v1 and v5 as instrumental or model variables.

The principal components auxiliary variables for both the LC and PSC estimators were

generated from their corresponding values of Xk. The retention criterion for the LC esti-

mator was the proportion of total variance explained by the set of selected components.

This led to the selection of three out of 26 possible components in population LC, while

for the PSC estimator, the retention criterion is that suggested in subsection 3.2. Each

simulation result was based on 1000 replications. All estimators under study used the

same samples and same response sets. The properties of the estimators of interest are

the relative bias (Rel.bias = bias(θ̂)
θ
∗ 100%), the standard error (S.E. = sqrt(var(θ̂))),

and the root mean squared error (RMSE = sqrt(bias(θ̂)2 +var(θ̂)). The scree plot given

in Figure 1 below illustrates the population correlation structure of the variables in a

principal components setting.
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Figure 1: Scree plot of the auxiliary data in the first study.

5.1.2 Study 2

This is a replication of study 1 except that it uses the ‘Small Area Income and Poverty

Estimates’ data-set (size 3173), from which we select some variables from the 2006 and

others from the 2013 data, for a total of 19 variables, x1 to x19. The original data were

square root transformed and, as in study 1, variables x1 and x5 are the instrumental

variables while variable x19 was chosen as the study variable. The correlation between x1

and x5 is approximately 0.1, cor(x1, x19) = 0.52 and cor(x5, x19) = 0.45. The proportion

of total variance explained by the selected PCs is again the retention criterion used

for the LC estimator based on PCs. This criterion led to a fixed number of eight or

an average number of eight retained components, depending on whether population or

sample auxiliary information is used for estimation. The retention criterion for the PSC

estimator based on PCs is again that described in subsection 3.2. The following is the

scree plot of the principal components of the population auxiliary data used in the second

simulation study.
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Figure 2: Scree plot of the auxiliary data in the second study

5.2 Simulation results

5.2.1 Results of study 1

The results are presented in two versions, a tabular version in Tables 1–4 and a graphic

version in Figures 3–6 ( the figures are in the appendix). These representations show the

behaviour of each considered estimator when the sample size increases. For each table

or graph, the performance of the estimator is evaluated from two perspectives: when the

estimator is based on the complete original auxiliary variables (X) and when it is based

on the principal components (PCs) of the auxiliary variables.

Tables 1 and 2 show the LC estimator results when auxiliary information is observed

at the population and sample levels, respectively. Both tables show that, apart from the

tenth line in Table 2, the relative bias, standard error, and the root mean squared error

values of the principal-components-based linear calibration are smaller than the their

counterparts computed based on the original auxiliary variables.
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Table 1: LC on original population auxiliary variables vs. LC on population PCs – Study
1

Sample size Properties
Estimators

L. Calibration on X L. Calibration on PCs

300
Rel.bias(%) 5.474 1.296
S.E. 3519 935
RMSE 8661 2094

400
Rel.bias(%) 4.771 1.224
S.E. 3231 872
RMSE 7616 1973

500
Rel.bias(%) 4.462 1.222
S.E. 3083 804
RMSE 7150 1941

600
Rel.Bias(%) 3.974 1.149
S.E. 3135 846
RMSE 6544 1864

Table 2: LC on original sample auxiliary variables vs. LC on sample PCs – Study 1.

Sample size Properties
Estimator

L.Calibration on X L. Calibration on PCs

300
Rel.bias(%) 3.930 0.192
S.E. 21,936 11,202
RMSE 22,660 11,206

400
Rel.bias(%) 3.341 0.037
S.E. 17,089 9621
RMSE 17,758 9621

500
Rel.bias(%) 3.551 0.328
S.E. 14,332 8250
RMSE 15,224 8263

600
Rel.bias(%) 2.951 0.369
S.E. 12,422 7608
RMSE 13,134 7626

Tables 3 and 4 show results obtained under conditions similar to those used to obtain the

results in Tables 1 and 2, except that PSC replaces LC. The results obtained by using

PCs of the auxiliary variables are comparable to the obtained using original auxiliary

variables, this is true in both levels of auxiliary information.
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Table 3: PSC on original population auxiliary variables vs. PSC on population PCs –
Study 1.

Sample size Properties
Estimator

PS on X Time (in hr) PS on PCs Time (in hr)

300
Rel.bias(%) 0.280

7
0.153

0.35S.E. 16,182 15,912
RMSE 16,188 15,914

400
Rel.bias(%) 0.105

13
0.209

0.57S.E. 13,815 13,660
RMSE 13,816 13,663

500
Rel.bias(%) 0.338

22
0.434

0.83S.E. 11,953 11,837
RMSE 11,963 11,854

600
Rel.bias(%) 0.169

36
0.264

1.30S.E. 10,899 10,757
RMSE 10,902 10,764

Table 4: PSC on original sample auxiliary variables vs. PSC on sample PCs – Study 1.

Sample size Properties
Estimator

PS on X Time (in hr) PS on PCs Time (in hr)

300
Rel.bias(%) 0.255

0.25
0.125

0.18S.E. 16,162 16,010
RMSE 16,166 16,011

400
Rel.bias(%) 0.120

0.32
0.189

0.22S.E. 13,820 13,711
RMSE 13,821 13,713

500
Rel.bias(%) 0.353

0.45
0.421

0.23S.E. 11,952 11,834
RMSE 11,963 11,850

600
Rel.bias(%) 0.191

0.50
0.263

0.25S.E. 10,880 10,795
RMSE 10,884 10,801

5.2.2 Results of study 2

Tables 5–10 below present the results of this study. The process of evaluating the estima-

tors is similar to that used in study 1. The results of the LC, presented in Tables 5 and 6,

display consistency when comparing X-and PCs- based estimators and when comparing

population- and sample-based estimators.
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Table 5: LC on original population auxiliary variables vs LC on population PCs – Study2.

Sample size Properties
Estimator

L. Calibration on X L. Calibration on PCs

300
Rel.bias(%) 0.735 0.899
S.E. 2262 2136
MSE 2282 2168

400
Rel.bias(%) 0.810 1.077
S.E. 1871 1798
MSE 1901 1852

500
Rel.bias(%) 0.829 1.029
S.E. 1558 1529
MSE 1596 1588

600
Rel.bias(%) 0.672 0.836
S.E. 1402 1382
MSE 1429 1425

Table 6: LC on original sample auxiliary variables vs. LC on sample PCs – Study 2.

Sample size Properties
Estimator

L. Calibration on X L. Calibration on PCs

300
Rel.bias(%) 0.725 0.949
S.E. 2489 2494
MSE 2507 2525

400
Rel.bias(%) 0.882 1.205
S.E. 2068 2068
MSE 2100 2129

500
Rel.bias(%) 0.841 1.104
S.E. 1792 1814
MSE 1825 1871

600
Rel.bias(%) 0.711 0.937
S.E. 1639 1658
MSE 1666 1703

The results of the PSC estimators for the second study are displayed in Tables 7 and 8.

As the LC estimator, the PSC results are also consistent in terms of the type (X or PCs)

and level (population or sample) of the auxiliary information used.
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Table 7: PSC on original population auxiliary variables vs. PSC on population PCs –
Study 2.

Sample size Properties
Estimator

PSC on X PSC on PCs

300
Rel.bias(%) 1.345 1.566
S.E. 3748 3791
MSE 3789 3846

400
Rel.bias(%) 1.627 1.925
S.E. 3293 3385
MSE 3362 3478

500
Rel.bias(%) 1.487 1.848
S.E. 2921 2994
MSE 2985 3091

600
Rel.bias(%) 1.757 2.072
S.E. 2708 2846
MSE 2804 2973

Table 8: PSC on original sample auxiliary variables vs. PSC on sample PCs – Study 2.

Sample size Properties
Estimator

PSC on X PSC on PCs

300
Rel.bias(%) 1.347 1.480
S.E. 3634 3643
MSE 3676 3695

400
Rel.bias(%) 1.482 1.701
S.E. 3166 3219
MSE 3226 3296

500
Rel.bias(%) 1.559 1.648
S.E. 2775 2815
MSE 2849 2897

600
Rel.bias(%) 1.778 1.908
S.E. 2567 2651
MSE 2672 2767

The results shown in Tables 9 and 10 comprise estimated model parameters in the PSC

estimation using the data of the second study.
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Table 9: Estimated model coefficients (population auxiliary information – Study 2.)
Coefficient estimates

True coefficients
(δ0, δ1, δ2)

(1.311, -0.199, -0.083)

Sample size
PSC on X PSC on PCs

δ̂0 δ̂1 δ̂2 δ̂0 δ̂1 δ̂2

300
1.129 -0.182 -0.044 1.097 -0.188 -0.026

(0.197) (0.008) (0.011) (0.247) (0.012) (0.014)

400
1.125 -0.174 -0.052 1.079 -0.176 -0.035
0.149 0.006 0.008 (0.213) (0.010) (0.010)

500
1.147 -0.178 -0.056 1.096 -0.179 -0.038

(0.133) (0.005) (0.006) (0.182) (0.008) (0.009)

600
1.140 -0.178 -0.054 1.092 -0.179 -0.037

(0.117) (0.005) (0.005) (0.190) (0.007) (0.008)

Table 10: Estimated model coefficients (sample auxiliary information – Study 2.)
Coefficient estimates

True coefficients
(δ0, δ1, δ2)

(1.311, -0.199, -0.083)

Sample size
PSC on X PSC on PCs

δ̂0 δ̂1 δ̂2 δ̂0 δ̂1 δ̂2

300
1.139 -0.177 -0.054 1.119 -0.179 -0.046

(0.092) (0.003) (0.005) (0.122) (0.005) (0.005)

400
1.149 -0.175 -0.061 1.118 -0.174 -0.052

(0.068) ( 0.003) (0.003) (0.108 ) (0.004) (0.005)

500
1.148 -0.175 -0.061 1.132 -0.175 -0.054

(0.063) (0.0002 (0.003) (0.003) (0.094) (0.004)

600
1.145 -0.175 -0.060 1.123 -0.174 -0.054
(0.06) (0.002) (0.002) (0.099) (0.003) (0.004)

6 Discussion

The results of two simulation studies are presented in the last section, and for each

study we assess two calibration approaches, the LC estimator using no explicit form of

response function and the PSC estimator with explicit functional form. Both estimators

are evaluated using the original large set of auxiliary variables (X) and using the principal

components (PCs) of the original auxiliary variables. The results of the first study are

given in two versions, tabular and graphic, while the results of the second study are given

in tabular form only. The graphic form enables the convenient visual inspection of the

estimator behaviour, while the tabular form gives a quantitative illustration. Study 1

demonstrates that the LC estimator based on principal components auxiliary variables

is always superior in terms of relative bias, standard error, and root mean squared error
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(RMSE), to its counterpart using the original auxiliary information. This is true regard-

less of the level of the auxiliary information, that is, the population or sample levels, as

demonstrated in Tables 1 and 2, respectively. There is a large discrepancy of the standard

errors and RMSEs between population- and sample-based LC estimators. The RMSE of

the population-based LC estimator based on the original auxiliary information ranges

from 6544 to 8661 while the range for its counterpart based on sample-level auxiliary

information is 13,134 to 22,660. The RMSE of the LC based on PCs auxiliary informa-

tion ranges from 1864 to 2094 and from 7626 to 11,206 for population- and sample-based

auxiliary information, respectively. Thus, the results differ greatly when comparing esti-

mators of population- and sample-based auxiliary information. Considerable differences

are also observed in the standard errors and RMSEs when comparing the estimators in

terms of the type of auxiliary information used, that is, original X- auxiliaries and PCs-

auxiliaries. This is not a surprising behaviour of the LC calibration estimator as this is

a regression-type estimator.

In the response propensity calibration approach, auxiliary information is used in esti-

mating response propensities; the estimation of population characteristics then proceeds

by adjusting the design weights through multiplication by the corresponding reciprocals of

the estimated propensities, which is usually called ‘double weighting’. Here, it is observed

that these results are more consistent and probably more realistic than the LC results.

As Tables 3 and 4 illustrate, the principal-components-based estimator provides results

similar to those obtained using the original auxiliary information. This is true regardless

of the level of information on which the estimator is based. Furthermore, the results

display consistency when comparing the properties of the corresponding estimators when

population- and sample-based auxiliary data are used. The corresponding interval ranges

of the RMSEs when using population-level auxiliary information are close to those when

sample-level auxiliary information is used. As the sample size increases, the RMSEs tend

to converge to the same level, irrespective of the type (X or PCs) or level (population

or sample) of the auxiliary information. One of the major advantages of using PCs in

place of the original auxiliary variables is the computational effort measured in terms

of computational time; as reported in Tables 3–4, due to dimensionality reduction, the

principal-components-based estimates are computed much more quickly than are the es-

timates based on the original auxiliary information.

Tables 5–10 report the results of the second simulation study. In contrast to the pre-

vious study, here, the LC calibration (Tables 5–6) results are consistent regardless of the

type of auxiliary information used for estimation as well as when comparing the prop-

erties of the estimator across levels of information. The RMSEs of the estimators lie in

virtually the same interval, regardless of the level of auxiliary information (population
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or sample levels) or type (original X or PCs) . A similar observation can be made with

respect to the PSC estimator in Tables 7–8. We can still compare the performances of the

LC and PSC estimators as we are using the same set of auxiliary variables, however, in

general this may not be a fair comparison since the estimators are conceptually different

in terms of sources of auxiliary information they use.

The levels of bias are approximately the same: they are less than 0.1% in study 2 while in

study 1 some differences are observed, especially in the LC estimator where the bias level

attains 5.5%, as Tables 1 and 2 demonstrate. An interesting property of the auxiliary in-

formation in the PSC scheme, is the ability to appropriately estimate the response model.

Tables 9–10 provide the population- and sample-based model-estimated coeffcients, and

the results suggest equally good model coefficients estimates when PCs are used com-

pared with estimates resulting from the use of the original X variables. As the results

of model estimates are good, we can further improve the target estimates by performing

a two-step estimation in which the products of design weigths and the reciprocal of the

estimated response probabilities are used as initial weights in the linear calibration esti-

mator. For the lack of space, we do not provide here the results of the two-step estimation.

We observe that the data structure in study 1 is an extreme case and less realistic than

that in the second study. Both studies illustrate how the usage of principal components in

place of original auxiliary data when adjusting for nonresponse does not lead to distorted

results and has the great advantage of reducing the computational effort.

The reported PSC results based on principal components are very similar to those ob-

tained using a fixed number of components via the eigenvalue-one rule. However, the

eigenvalue-one results are worse than those of our approach based on canonical correla-

tion for very small samples. When the sample size increases, the number of selected com-

ponents converges to the number of components based on the eigenvalue-one rule. The

Figure 7 in the appendix illustrates the behaviour of our components selection method

using the data of the study 1.
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Appendix

I. Asymptotic variance of the estimated coefficients of the propen-

sity functions

Let

Epq

[(
Zt

(r)Φ(δ∗)d(r) −Tz

) (
Zt

(r)Φ(δ∗)d(r) −Tz

)t]
= Π1 + Π2 (20)

where Π1 =
∑

k∈U
∑

l∈U(πkl − πkπl)dkdlZkZ
t
l and Π2 =

∑
U dk(h(Ht

kδ
∗) − 1)ZkZ

t
k (see

Chang and Kott, 2008).

Then

Avar
√
n
(
δ̂(pc) − δ∗

)
= [FtWF]

−1
FtWΘWF [FtWF]

−1

with F = ZtΨH and Θ = Avar
[
n−1/2

(
Zt

(r)Φ(δ∗)d(r) −Tz

)]
We choose

W−1 = Θ

and obtain,

Avar
√
n
(
δ̂(pc) − δ∗

)
=
[(

ZtΨH
)t

Θ−1
(
ZtΨH

)]−1
(21)

Where, W = p lim
n→∞

Wn, is a positive definite matrix,

(ZtΨH) = p lim
n→∞

1
n
Epq

(
Zt

(r)Ψ
0H
)

and

Θ = p lim
n→∞

1

n
Epq

[(
Zt

(r)Φ(δ∗)d(r) −Tz

) (
Zt

(r)Φ(δ∗)d(r) −Tz

)t]

Alternatively, the calibration (8) is on estimated principal components, that is,

Ẑt
(r)Φ(δ)d(r) − T̂z = 0 (22)

where T̂ =
∑

s dkẐk.

Observe that,

varpq(Ẑ
t
(r)Φ(δ∗)d(r) − T̂z) = V1 + V2

where, V1 = varpEq

(
Ẑt

(r)Φ(δ∗)d(r) − T̂z|s
)

and V2 = Epvarq

(
Ẑt

(r)Φ(δ∗)d(r) − T̂z|s
)

.
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The first variance component is zero, implying that

Epq

[(
Ẑt

(r)Φ(δ∗)d(r) − T̂z

)(
Ẑt

(r)Φ(δ∗)d(r) − T̂z

)t]
=
∑

U dk(h(Ht
kδ
∗)− 1)ZkZ

t
k,

therefore, the sample version analogous to (W) in (21) is

W̃ = p lim
n→∞

1
n

∑
U dk(h(Ht

kδ
∗)− 1)ZkZ

t
k .

II. Figures

Figure 3: LC on original population auxiliary variables vs. LC on population PCs –
Study 1.
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Figure 4: LC on original sample auxiliary variables vs. LC on sample PCs – Study 1.
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Figure 5: PSC on original population auxiliary variables vs. PSC on population PCs –
Study 1.
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Figure 6: PSC on original sample auxiliary variables vs. PSC on sample PCs – Study 1.
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Figure 7: Behaviour of the number of selected components when sample sizes increase –
Study 1.
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