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Boeschoten

Correcting for measurement error



• We have several data sources that can be linked on 
unit level

• Same target variable is measured (with measurement 
error) in those data sources

• We aim to correct for measurement error

• We also aim to estimate accuracy of the corrected 
data

The situation



• Over-imputation
 In over-imputation, imputation model is estimated and all 

values of target variable are imputed, including observed values

• Structural equation modelling (SEM)
 SEM can be used to model each observed value as an imperfect 

measure of underlying latent (unobserved) variable

• Latent class modelling 
• Latent class modelling can be used to model each observed 

value of categorical variable as an imperfect measure of 
underlying latent (unobserved) variable with the true values

Possible methods



• Home-ownership: available in register and observed in 
survey

• (Un)employment: employment/unemployment 
available in register and observed in Labour Force 
Survey

Examples



• Multiple Imputation
 Uses bootstrap in background

• Latent Class modelling

Two elements in Laura’s approach (MILC)



• Latent class analysis
 Statistical modelling technique with many applications

 In this workshop: focus on the use of latent class analysis for 
correcting for measurement errors in observed data
 Requires multiple measurements for each unit

Model introduction



Latent class analysis (LCA)
• Measure something that cannot be measured directly (𝑌) by 

making use of (observed) indicators (𝑿)

• Traditional applications:

• Personality traits

• Disorder types (e.g. eating disorders) 

Model introduction

𝑌

𝑋1 𝑋2 𝑋3



Notation: 
• 𝑿 = (𝑋1, 𝑋2, 𝑋3)
• Generalize to s observed 

variables

Model parameters
• True class membership probabilities 

Pr(𝑌 = 𝑦)
• Error 

probabilities Pr 𝑋𝑙 = 𝑥𝑙 𝑌 = 𝑦

Basic latent class model: parameters

𝑌

𝑋1 𝑋2 𝑋3

true classification
(not observed)

observed classifications
(with measurement errors)



• Let 𝑿 = 𝑥1, 𝑥2, … , 𝑥𝑠 denote vector of observed 
categorical variables that measure same target 
variable (e.g., in 𝑠 different datasets)

• True value with respect to variable of interest is 
represented by latent class variable 𝑌

Latent Class model for measurement error



• Latent class model estimates its model parameters by 
looking at “majority votes”

 If two out of three datasets (of equal quality) observe value 𝑎 and 
third dataset another value 𝑏, value 𝑎 is most likely to be correct

• Latent class model does the mathematics for you and 
helps with difficult decisions

 For instance when value 𝑎 is observed in two low-quality 
datasets and value 𝑏 is observed in one high-quality dataset

 You can add extra information to model, e.g. for longitudinal data 
that one dataset is generally more up-to-date than other dataset

How does it work?



• Distributions of the observed variables (𝑋1, …, 𝑋𝑠), are 
independent conditional on individuals’ score on 
latent variable:

Pr 𝑿 = 𝒙 𝑌 = 𝑦 =ෑ

𝑗=1

𝑠

Pr 𝑋𝑗 = 𝑥𝑗 𝑌 = 𝑦

Local independence assumption



• Probability of obtaining a specific response pattern 
Pr(𝑿 = 𝒙) is a weighted average of Pr(𝑿 = 𝒙|𝑌 = 𝑦)

• Interpretation: population has different groups 
(defined by 𝑌), each with its own response pattern 
(measurement errors)

• LC model is given by 

Pr 𝑿 = 𝒙 = ෍

𝑦=1

𝐿

Pr 𝑌 = 𝑦 ෑ

𝑗=1

𝑠

Pr 𝑋𝑗 = 𝑥𝑗 𝑌 = 𝑦

Mixture assumption



• LC model can be used to estimate, for each unit in the 
data, probability of belonging to particular latent 
class, given its vector of observed values:

Pr 𝑌 = 𝑦 𝑿 = 𝒙 =
Pr 𝑌=𝑦 ς𝑗=1

𝑠 Pr 𝑋𝑗 = 𝑥𝑗 𝑌 = 𝑦

σ𝑦,=1
𝐿 Pr 𝑌=𝑦 , ς𝑗=1

𝑠 Pr 𝑋𝑗 = 𝑥𝑗 𝑌 = 𝑦 ,

Posterior probabilities



• You condition on covariate
Pr(𝑿 = 𝒙|𝑄 = 𝑞)

= ෍

𝑦=1

𝐿

Pr 𝑌 = 𝑦 𝑄 = 𝑞 ෑ

𝑗=1

𝑠

Pr 𝑋𝑗 = 𝑥𝑗 𝑌 = 𝑦

• You can also condition on several covariates

• Pr(𝑿 = 𝒙|𝑄 = 𝑞, 𝑍 = 𝑧) =
σ𝑦=1
𝐿 Pr 𝑌 = 𝑦 𝑄 = 𝑞, 𝑍 = 𝑧 ς𝑗=1

𝑠 Pr 𝑋𝑗 = 𝑥𝑗 𝑌 = 𝑦

Conditioning on covariate



• Create 𝑀 completed data sets (𝑀 ≥ 2) using 
appropriate imputation procedure
 Each set consists of draws from predictive distribution of 

missing values

• Analyze each completed data set separately, treating 
all values as if they were observed

• Combine results by means of Rubin's pooling rules 
(Rubin, 1987): these rules allow one to estimate 
parameter of interest and its variance

Multiple imputation



• By creating several completed datasets and seeing how 
much variation there is between estimates based on 
those datasets, we get estimate for quality of these 
estimates

How does it work?



• Suppose we want to estimate 𝜃

 ෠𝜃𝑚= estimate of 𝜃 from 𝑚 -th completed data set

 𝑉𝑚 = estimate of variance of 𝜃 from 𝑚-th completed 
data set

Rubin’s pooling rules



• MI estimate of scalar 𝜃:

ҧ𝜃𝑀 =
1

𝑀
෍

𝑚=1

𝑀
෠𝜃𝑚

• MI estimate of variance

𝑇𝑀 = ഥ𝑉𝑀 + 1 +
1

𝑀
ഥ𝐵𝑀

 ത𝑉𝑀 =
1

𝑀
σ𝑚=1
𝑀 𝑉𝑚: within variance

 ത𝐵𝑀 =
1

𝑀−1
σ𝑚=1
𝑀 ( ෠𝜃𝑚 − ҧ𝜃𝑀)

2: between variance

Rubin’s pooling rules



• In multiple imputation uncertainty in parameters of 
imputation model needs to be taken into account

• Imputation methods that take uncertainty in 
parameters of imputation model into account are 
called proper

Multiple imputation: proper imputation



• General approach to estimate measures of accuracy, 
for instance for (sampling) variance of 

• Population total or population mean

• Model parameter

• Can be applied when sample of target population is 
available

Bootstrapping



• Typically used in two situations:
 Data with an unknown distribution or one does not want to 

make an assumption about the distribution

 Difficult to derive bias and variance from analytical formulas:

 complex estimator

 account for errors

Bootstrapping



1. Repeatedly draw bootstrap samples with replacement 
from the original sample

2. For each bootstrap sample process your data in the 
same way as you did for the original sample to obtain 
estimate for target parameter

3. Estimate the variance and bias using results of step 2

Bootstrapping procedure



• We want to estimate population parameters and/or 
their accuracy using samples from population

• We do not know true distribution of these parameters in 
population

• We do know distribution of parameters in observed 
sample

• Instead of drawing samples from population, we draw 
(bootstrap) samples from observed dataset

How does it work?



• Many different versions of bootstrapping
 Non-parametric bootstrapping

 Parametric bootstrapping

 Pseudo-population bootstrapping

 Bayesian bootstrapping

 …

Bootstrapping



Link all data sets on unit level, and proceed with 5 
steps:
1. Select 𝑀 bootstrap samples from original dataset

2. Create LC model for every bootstrap sample

3. Multiply impute latent "true" variable 𝑌 for each bootstrap 
sample: 𝑀 variables 𝑊1, … ,𝑊𝑀 are created and imputed 
by drawing from posterior distribution Pr 𝑌 = 𝑦 𝑿 = 𝒙

4. Obtain estimates of interest from imputed variables 

5. Pool the estimates using Rubin's rules for pooling (Rubin, 
1987)

MILC (Multiple Imputation and LC analysis)





• Bootstrapping is necessary to make imputation proper

MILC



• Probabilities for impossible combinations of 
values for target variable and background 
variable(s) are set to zero

MILC



• We created population containing five variables
 Three dichotomous indicators (𝑋1; 𝑋2; 𝑋3) measuring latent 

dichotomous variable (𝑌)

 Dichotomous covariate (𝑍) which has an impossible 
combination with a score of latent variable 𝑌

 Dichotomous covariate (𝑄)

Simulation study



 We considered three models

 Conditional on 𝑄 only (“unconditional model”)

 Conditional on 𝑄 and 𝑍 without preventing impossible 
combinations (“conditional model”)

 Conditional on 𝑄 and 𝑍 with preventing impossible 
combinations (“restricted conditional model”)

Simulation study



• Interested in relation between imputed latent variable 
𝑊 and 𝑍
 Cell proportions of 2 × 2 table are denoted by: 𝑊1× 𝑍1, 

𝑊2× 𝑍1, 𝑊1× 𝑍2 and 𝑊2 × 𝑍2

 𝑊1× 𝑍2 should contain 0 observations 

 We compare cell proportions of table 𝑌 × 𝑍 with cell 
proportions of 𝑊 × 𝑍 from the samples

• We are also interested in relation between 𝑊 and 𝑄
 We compare coefficient of logistic regression of 𝑌 on 𝑄 with 

logistic regression coefficient of 𝑊 regressed on 𝑄

Performance measures



• Bias of estimates of interest: estimated bias is equal to 
difference between average estimate over all 
replications and true population value

• Coverage of 95% confidence interval: proportion of 
times that true population value falls within 95% 
confidence interval constructed around estimate over 
all replications

• Ratio of average standard error of estimate over 
standard deviation of 1,000 estimates

Performance measures



• Classification probabilities: 0.70; 0.80; 0.90; 0.95; 0.99

• 𝑃(𝑍 = 2): 0.01; 0.05; 0.10; 0.20

• Sample size: 1,000; 10,000

• Logit coefficients of 𝑌 regressed on 𝑄 of log(0.45/(1 −
0.45)) = −0.2007, log(0.55/(1 − 0.55)) = 0.2007 and 
log(0.65/(1 − 0.65)) = 0.6190 corresponding to 
estimated odds ratio of 0.82, 1.22 and 1.86

 Intercept fixed to 0

• Number of imputations: 5; 10; 20; 40

Simulation conditions
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Bias of cell proportions 
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Coverage of 95% confidence interval
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𝒔𝒆/𝒔𝒅(෡𝜽)
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Bias of logistic regression coefficient



Coverage of 95% confidence interval
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𝒔𝒆/𝒔𝒅(෡𝜽)



• In principle you need three or more 
independent data sources measuring the 
same target variables

• The more data sources, the better –
especially if data sources are somewhat 
dependent

• With only two independent sources you 
need more information, e.g. subject-matter 
knowledge or from audit sample

When can we apply method?



• Over-imputation
 Blackwell, M., Honaker, J., & King, G. (2017), A Unified Approach to 

Measurement Error and Missing Data: Overview and Applications. 
Sociological Methods & Research 46(3), 303-341.

 Blackwell, M., Honaker, J., & King, G. (2017), A Unified Approach to 
Measurement Error and Missing Data : Details and Extensions. 
Sociological Methods & Research 46(3), 342-369.

• Structural equation modelling
 Scholtus, S. & B.F.M. Bakker (2013) Estimating the Validity of 

Administrative and Survey Variables by Means of Structural Equation 
Models. CBS discussion paper. https://www.cbs.nl/nl-
nl/achtergrond/2013/12/estimating-the-validity-of-administrative-
and-survey-variables-through-structural-equation-modeling-a-
simulation-study-on-robustness. 
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