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Correcting for selection error



• Based on work by my PhD student An-Chiao (Anne) Liu 
(and colleague Sander Scholtus)

Correcting for selection error



• Probability sampling according to well-designed 
sampling design enables one to obtain valid estimates 
for population parameters of interest

• However, collection of probability samples is time-
consuming and expensive

Probability samples



• Nowadays wide diversity of new data sources (e.g. big 
data, register data, and opt-in online) provide massive 
amount of information at low cost 

• However, some groups of units may be 
overrepresented in these data sources and other 
groups underrepresented

• As these nonprobability samples do not come from 
known sampling design, it is hard to obtain unbiased 
estimates for population parameters of interest

Nonprobability samples



• We are interested in estimated population mean of 

continuous target variable 𝑌 based on nonprobability 

sample

• Goal is to correct for selection bias in nonprobability 

sample

Selection error



• There are many (classes of) approaches
 (Re-)weighting approaches where weights are assigned to units 

in nonprobability sample

 Modelling approaches where model is assumed for 
nonprobability data

 Mass imputation where all non-observed units in population are 
imputed

 For each of these classes of approaches many different 
approaches have been developed 

Approaches for correcting selection error



• Calibration
 Use available information on (sub)totals of background variables 

to correct for selectivity

• Poststratification
 Divide observed data into (small) strata and correct for 

selectivity in each stratum by using stratum total

• Sample matching
 Match each unit in nonprobability sample to nearest neighbour 

in probability sample and use weights associated to that nearest 
neighbour

Re-weighting approaches



• Pseudo-weights
 Construct pseudo-weights that can be used for estimation and 

analysis purposes

 Often probability sample is used to “borrow” design weights 
from

 There are several different variants of pseudo-weighting

 We will look at two variants of pseudo-weighting

Re-weighting approaches



• When we have weights, estimating population 
parameters is usually quite easy

• Survey weights for a probability sample with common 
background variables as nonprobability sample provide 
lot of information with respect to good weights for 
nonprobability sample

• We adjust survey weights from probability sample to 
account for differences with respect to selectivity 
between nonprobability sample and probability sample

How does it work?



• Elliott & Valliant (2017) proposed weighting method 

for correcting selection bias

 Appears to work well in many cases

 Drawback: not suitable for large inclusion fractions 

• We proposed variant that is suitable for larger 

inclusion fractions and dependency between samples

 Suitable for (selective) administrative datasets where units can 

be identified

Selection error: pseudo-weighting



• We have nonprobability sample NPS in which target 
variable 𝑌 and auxiliary variables 𝑿 are observed

• We also have probability sampling PS in which 
variables 𝑿 are observed (but 𝑌 is not)

Situation



• Let 𝑆𝑖
∗ ∈ 0,1 denote inclusion indicator for NPS

• Let 𝑆𝑖 ∈ 0,1 denote inclusion indicator PS

Situation



1. For all units in population, Pr(𝑖 ∈ NPS) and Pr(𝑖 ∈ 𝑃𝑆) are 

nonzero

2. Auxiliary variables 𝑿 govern inclusion mechanism of NPS 

3. Inclusion weights 𝑑 for inclusion in PS are available or can be 

computed for all units in both PS and NPS

4. Sampling fractions of PS and NPS are small so that they do not 

overlap

5. Inclusion in NPS and PS is independent after conditioning on 𝑿

Assumptions by Elliott & Valliant (2017)



Pr 𝑆𝑖
∗ = 1 𝒙𝑖 = 𝒙𝑜 =

Pr 𝒙𝑖 = 𝒙𝑜 𝑆𝑖
∗ = 1 Pr 𝑆𝑖

∗ = 1

Pr 𝒙𝑖 = 𝒙𝑜

=
Pr 𝒙𝑖 = 𝒙𝑜 𝑆𝑖

∗ = 1 Pr 𝑆𝑖
∗ = 1 Pr 𝑆𝑖 = 1 𝒙𝑖 = 𝒙𝑜

Pr 𝑆𝑖 = 1 Pr 𝒙𝑖 = 𝒙𝑜 𝑆𝑖 = 1

∝
Pr 𝒙𝑖 = 𝒙𝑜 𝑆𝑖

∗ = 1

Pr 𝒙𝑖 = 𝑥𝑜 𝑆𝑖 = 1
Pr 𝑆𝑖 = 1 𝒙𝑖 = 𝒙𝑜

Pseudo-weights derived by Elliott & Valliant (2017)



• Here differences between NPS and PS are quantified

How does it work?



• Avoiding direct estimation of Pr 𝑥𝑖 = 𝑥𝑜 𝑆𝑖
∗ = 1 and 

Pr 𝑥𝑖 = 𝑥𝑜 𝑆𝑖 = 1 Elliott and Valliant (2017) use 
discriminant analysis on combination of NPS and PS

• Set 𝑍𝑖
𝐸𝑉 = 1 for units from NPS and 𝑍𝑖

𝐸𝑉 = 0 for units 
from PS

• Note that 𝑍𝑖
𝐸𝑉 = 1 if 𝑆𝑖

∗ = 1 and 𝑍𝑖
𝐸𝑉 = 0 if 𝑆𝑖 = 1

Pseudo-weights derived by Elliott & Valliant (2017)



Pr 𝑥𝑖 = 𝑥𝑜 𝑍𝑖
𝐸𝑉 = 1

Pr 𝑥𝑖 = 𝑥𝑜 𝑍𝑖
𝐸𝑉 = 0

=
Pr 𝑍𝑖

𝐸𝑉 = 1 𝑥𝑖 = 𝑥𝑜 ΤPr 𝑥𝑖 = 𝑥𝑜 Pr 𝑍𝑖
𝐸𝑉 = 1

Pr 𝑍𝑖
𝐸𝑉 = 0 𝑥𝑖 = 𝑥𝑜 ΤPr 𝑥𝑖 = 𝑥𝑜 Pr 𝑍𝑖

𝐸𝑉 = 0

∝
Pr 𝑍𝑖

𝐸𝑉 = 1 𝑥𝑖 = 𝑥𝑜

Pr 𝑍𝑖
𝐸𝑉 = 0 𝑥𝑖 = 𝑥𝑜

Pseudo-weights derived by Elliott & Valliant (2017)



Combining expression for 
Pr 𝑆𝑖

∗ = 1 𝒙𝑖 = 𝒙𝑜

with expression for
Pr 𝑥𝑖 = 𝑥𝑜 𝑍𝑖

𝐸𝑉 = 1

Pr 𝑥𝑖 = 𝑥𝑜 𝑍𝑖
𝐸𝑉 = 0

leads to

Pr 𝑆𝑖
∗ = 1 𝑥𝑖 = 𝑥𝑜 ∝ Pr 𝑆𝑖 = 1 𝑥𝑖 = 𝑥𝑜

Pr 𝑍𝑖
𝐸𝑉 = 1 𝑥𝑖 = 𝑥𝑜

Pr 𝑍𝑖
𝐸𝑉 = 0 𝑥𝑖 = 𝑥𝑜

Pseudo-weights derived by Elliott & Valliant (2017)



• Now we are able to estimate differences between NPS 
and PS

How does it work?



• Estimated pseudo−weight is inverse of estimated
propensity

𝑤𝑖,𝐸𝑉 = 𝑑𝑖
෢Pr 𝑍𝑖

𝐸𝑉 = 0 𝑥𝑖 = 𝑥𝑜
෢Pr 𝑍𝑖

𝐸𝑉 = 1 𝑥𝑖 = 𝑥𝑜

• Estimated 𝑤𝑖,𝐸𝑉 can be plugged into, for example,
Hajek estimator Τσ𝑖∈𝑁𝑃𝑤𝑖,𝐸𝑉𝑦𝑖 σ𝑖∈𝑁𝑃𝑤𝑖,𝐸𝑉 for
estimating population mean of target variable 𝑦

Pseudo-weights derived by Elliott & Valliant (2017)



• Fit model with dependent variable 𝑍𝑖
𝐸𝑉 = 1 for units from NPS, 

𝑍𝑖
𝐸𝑉 = 0 for units from PS

𝑂𝑖 =
Pr(𝑍𝑖

𝐸𝑉 = 1|𝒙𝑖 = 𝒙𝑜)

Pr(𝑍𝑖
𝐸𝑉 = 0|𝒙𝑖 = 𝒙𝑜)

• Estimate odds 𝑂 in NPS

• Pseudo-weights are given by

𝑤𝑖,𝐸𝑉 ∝
𝑑𝑖
𝑂𝑖

Summary: pseudo-weights Elliott & Valliant (2017)



1. For all units in population, Pr(𝑖 ∈ NPS) and Pr(𝑖 ∈ 𝑃𝑆) are 

nonzero

2. Auxiliary variables 𝑿 govern inclusion mechanism of NPS 

3. Inclusion weights 𝑑 for inclusion in PS are available or can be 

computed for PS and for NPS

4. Sampling fractions of PS and NPS are small so that they do not 

overlap

5. Inclusion in NPS and PS is independent after conditioning on 𝑿

4. We can identify overlapping units in PS and NPS

Our assumptions



• Our fourth assumption (“we can identify overlapping 
units in PS and NPS”) is useful for countries with 
registers on the population

Our assumptions



• Target population 𝑈 is divided into three non-
overlapping subpopulations: 𝑈 = 𝐴 ∪ 𝐵 ∪ 𝐶 with 

 𝐴 = 𝑖: 𝑆𝑖
∗ = 𝑆𝑖 = 1 , units in both NPS and PS

 𝐵 = 𝑖: 𝑆𝑖
∗ + 𝑆𝑖 = 1 , units in either NPS or PS

 𝐶 = 𝑖: 𝑆𝑖
∗ + 𝑆𝑖 = 0 , units in neither NPS nor PS

• Within subpopulation 𝐵, define 
 𝑍𝑖 = 1 if 𝑆𝑖

∗, 𝑆𝑖 = 1,0

 𝑍𝑖 = 0 if 𝑆𝑖
∗, 𝑆𝑖 = 0,1

Proposed method



• We look at non-overlapping part of NPS and PS

• This enables us to quantify differences between NPS 
and PS

How does it work?



• We have 

Pr 𝑆𝑖 = 1, 𝑖 ∈ 𝐵 𝒙𝑖 = 𝒙𝑜
= Pr 𝑆𝑖 = 1 𝒙𝑖 = 𝒙𝑜 Pr 𝑆𝑖

∗ = 0 𝑆𝑖 = 1, 𝒙𝑖 = 𝒙𝑜

• By design, inclusion probability of unit 𝑖 in PS does not 
depend on 𝑆𝑖

∗ after conditioning on 𝒙𝑖 , so we also have

Pr 𝑆𝑖
∗ = 1, 𝑖 ∈ 𝐵 𝒙𝑖 = 𝒙𝑜

= Pr 𝑆𝑖
∗ = 1 𝒙𝑖 = 𝒙𝑜 Pr 𝑆𝑖 = 0 𝒙𝑖 = 𝒙𝑜

Proposed method: the “easy” part



• We can derive

Pr 𝑆𝑖
∗ = 1, 𝑖 ∈ 𝐵 𝒙𝑖 = 𝒙𝑜

= Pr 𝑆𝑖 = 1, 𝑖 ∈ 𝐵 𝒙𝑖 = 𝒙𝑜
Pr 𝑍𝑖 = 1 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

Pr 𝑍𝑖 = 0 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

𝑂𝑖 =
𝑃 𝑍𝑖 = 1 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

𝑃 𝑍𝑖 = 0 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

can be estimated by any model that is suitable for binary class 
probability estimation, e.g. logistic regression or some 
machine learning method

Proposed method: the “hard” part



• We can derive

Pr 𝑆𝑖
∗ = 1, 𝑖 ∈ 𝐵 𝒙𝑖 = 𝒙𝑜

= Pr 𝑆𝑖 = 1, 𝑖 ∈ 𝐵 𝒙𝑖 = 𝒙𝑜
Pr 𝑍𝑖 = 1 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

Pr 𝑍𝑖 = 0 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

𝑂𝑖 =
𝑃 𝑍𝑖 = 1 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

𝑃 𝑍𝑖 = 0 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

can be estimated by any model that is suitable for binary class 
probability estimation, e.g. logistic regression or some 
machine learning method

Proposed method: the “hard” part



• This expression enables us to quantify differences 
between NPS and PS

How does it work?



𝑂𝑖 =
Pr 𝑍𝑖 = 1 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

Pr 𝑍𝑖 = 0 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

• Can be estimated by any model that is suitable for 
binary class probability estimation, e.g. logistic 
regression or some machine learning method

Proposed method: the “hard” part



• Independent samples: inclusion in NPS is independent 
of inclusion in PS

• Dependent samples: inclusion in NPS depends on 
inclusion in PS

Dependent and independent samples



• In this case we have 

Pr 𝑆𝑖 = 1, 𝑖 ∈ 𝐵 𝒙𝑖 = 𝒙𝑜
= Pr 𝑆𝑖 = 1 𝒙𝑖 = 𝒙𝑜 Pr 𝑆𝑖

∗ = 0 𝒙𝑖 = 𝒙𝑜
= ΤPr 𝑆𝑖

∗ = 0 𝒙𝑖 = 𝒙𝑜 𝑑𝑖

Proposed method for independent samples



• Combining everything we found we get 

෢Pr 𝑆𝑖
∗ = 1 𝒙𝑖 = 𝒙𝑜 =

෡𝑂𝑖
෡𝑂𝑖+𝑑𝑖−1

where 𝑂𝑖 is estimated using

Pr 𝑍𝑖 = 1 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

Pr 𝑍𝑖 = 0 𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵

• Pseudo-weights are given by 

𝑤𝑖,𝑖𝑛𝑑 =
1

෢Pr 𝑆𝑖
∗ = 1 𝒙𝑖 = 𝒙𝑜

= 1 +
𝑑𝑖 − 1

෠𝑂𝑖

Proposed method for independent samples



In this case we have

Pr 𝑆𝑖
∗ = 1 𝒙𝑖 = 𝒙𝑜

=
Pr 𝑆𝑖 = 1 𝒙𝑖 = 𝒙𝑜
Pr 𝑆𝑖 = 0 𝒙𝑖 = 𝒙𝑜

𝑂𝑖Pr 𝑆𝑖
∗ = 0 𝑆𝑖 = 1, 𝒙𝑖 = 𝒙𝑜

Proposed method for dependent samples



• For dependent samples we also need to estimate 
probability of being included in NPS given being 
included in PS

How does it work?



• Pr 𝑆𝑖
∗ = 0 𝑆𝑖 = 1, 𝒙𝑖 = 𝒙𝑜 can be modeled on units in PS

• For example logistic regression can be used: 

log
Pr 𝑆𝑖

∗ = 1 𝑆𝑖 = 1, 𝒙𝑖 = 𝒙𝑜
Pr 𝑆𝑖

∗ = 0 𝑆𝑖 = 1, 𝒙𝑖 = 𝒙𝑜
= 𝛽𝑇𝒙𝑖

• This leads to 
෢Pr 𝑆𝑖

∗ = 0 𝑆𝑖 = 1, 𝒙𝑖 = 𝒙𝑜 = 1/(1 + exp ෠𝛽𝑇𝑥𝑖 ) ≡ ෠𝐿𝑖

• Pseudo-weights are given by

𝑤𝑖,𝑑𝑒𝑝 =
1

෢Pr 𝑆𝑖
∗ = 1 𝒙𝑖 = 𝒙𝑜

=
𝑑𝑖 − 1

෠𝑂𝑖 ෠𝐿𝑖

Proposed method for dependent samples



1. Remove overlapping units in PS and NPS

2. Fit model using non-overlapping units with dependent variable 𝑍 =

1 for units from NPS, 𝑍 = 0 for units from PS

𝑂𝑖 =
Pr(𝑍𝑖 = 1|𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵)

Pr(𝑍𝑖 = 0|𝒙𝑖 = 𝒙𝑜 , 𝑖 ∈ 𝐵)

3. Estimate odds O in NPS and calculate pseudo-weights by

𝑤𝑖,𝑖𝑛𝑑 = 1 +
𝑑𝑖 − 1

𝑂𝑖

Summary method for independent samples



• Steps 1 and 2 are the same as for independent samples

3. In PS, fit the model with dependent variable 𝑆∗

log
Pr 𝑆𝑖

∗ = 1 𝑆𝑖 = 1, 𝑥𝑖 = 𝑥𝑜
Pr 𝑆𝑖

∗ = 0 𝑆𝑖 = 1, 𝑥𝑖 = 𝑥𝑜
= 𝛽𝑇𝑥𝑖

Pr 𝑆𝑖
∗ = 0 𝑆𝑖 = 1, 𝑥𝑖 = 𝑥𝑜 = 1/(1 + exp 𝛽𝑇𝑥𝑖 ) ≡ 𝐿𝑖

4. Estimate 𝑂 and 𝐿 in NPS and calculate pseudo-weights: 

𝑤𝑖,𝑑𝑒𝑝 =
𝑑𝑖 − 1

𝑂𝑖𝐿𝑖

Summary method for dependent samples



• We use pseudo-population bootstrapping to estimate variance 

of estimators based on estimated pseudo-weights

 Pseudo-population bootstrapping is suitable for many target 

parameters, estimation models, and sampling designs

• Pseudo-populations are created from NPS with [𝑤𝑖] copies and 

bootstrap samples are drawn from it

• Bootstrap variance gives quality measure for estimates based on 

estimated pseudo-weights

Variance estimation



• We need to take into account that NPS is selective and 
needs to be corrected by means of pseudo-weights

• Standard bootstrap does not do this

• Using NPS and pseudo-weights, we construct pseudo-
populations that resemble true population

• We use those pseudo-populations to replicate process 
of drawing NPS and PS and using proposed method on 
NPS and PS
 We do this many times and calculate variance over replications

How does it work?



1. Estimate ෠𝑂𝑖 , and weights of NPS (𝑤𝑖 = 𝑤𝑖,𝑖𝑛𝑑)

2. Normalize weights by Τ𝑤𝑖𝑁 σ𝑖𝜖𝑁𝑃𝑤𝑖 to obtain 
σ𝑖𝜖𝑁𝑃𝑤𝑖 = 𝑁

3. Used controlled rounding to round 𝑤𝑖 to its ceiling 
with probability 𝑤𝑖 − 𝑤𝑖 and to its floor otherwise 
to obtain 𝑤𝑖 such thatσ𝑖𝜖𝑁𝑃 𝑤𝑖 = 𝑁

4. Create pseudo-population by copying unit 𝑖 𝑤𝑖 times

Pseudo-population bootstrap: part 1 



5. Draw bootstrap probability sample (𝑆𝑃) from pseudo-
population according to design of PS, with inclusion 
probabilities Τ1 𝑑𝑖

6. Draw bootstrap nonprobability sample (𝑆𝑁𝑃) from pseudo-
population with inclusion probabilities Τ1 𝑤𝑖

7. Remove overlapping units in 𝑆𝑃 and 𝑆𝑁𝑃 and then estimate 
෠𝑂𝑖 to estimate weights and target parameter for pair 𝑆𝑃
and 𝑆𝑁𝑃

8. Repeat steps 5-7 for 𝑅 times to acquire 𝑅 estimates

9. Compute bootstrap variance of the 𝑅 estimates

Pseudo-population bootstrap: part 2



• Estimated population mean for bootstrap sample 𝑟

෠𝜃𝑟 =
σ𝑖∈𝑁𝑃𝑤𝑖𝑦𝑖
σ𝑖∈𝑁𝑃𝑤𝑖

• Bootstrap estimate

ത𝜃 =
σ𝑟=1
𝑅 ෠𝜃𝑟
𝑅

• Bootstrap variance

෢Var ෠𝜃 =
σ𝑟=1
𝑅 ෠𝜃𝑟 − ത𝜃

2

𝑅 − 1

Pseudo-population bootstrap: part 3



44

• We evaluated our approach in a simulation study and 

compared it with several other approaches

 Naïve estimator

 Without removing overlap 𝑤𝑖𝑛𝑑,2

 Other methods: Elliott and Valliant (2017); Chen, Li, and Wu 

(2020); Valliant and Dever (2011); Wang, Valliant, and Li (2021); 

Kim and Wang (2019)

Simulation study



• We used registered data from Dutch Online Kilometer 
Registration, which contains around 6.7 million records of 
privately owned cars in the Netherlands in 2012

• Variables include registration year of car, engine type of car, 
age of car owner, and target variable 𝑦 mileage of car

• Population of simulation study is simple random sample 
without replacement of size 100,000 drawn from register

• Target parameter is population mean of 𝑦: ത𝑦 = 11741.79

Simulation study



• Both PS and NPS are drawn by fixed-size unequal 
probability sampling without replacement

• When drawing two dependent samples, units already 
drawn in PS are given smaller chance to be included in 
NPS

Simulation study



• To evaluate performance of considered methods over 𝑀 =
1,000 independent replications we computed:

 Relative bias (in percentages)

1

𝑀
෍

𝑚=1

𝑀
𝑦𝑚 − ത𝑦

ത𝑦
× 100%

 Root mean square error (RMSE)

RMSE =
1

𝑀
෍

𝑚=1

𝑀

𝑦𝑚 − ത𝑦 2

Τ1 2

Evaluation measures



Relative bias



RMSE



• We set number of pseudo-populations 𝐷 equal to 1 
and ran pseudo-population bootstrap 500 times

• For independent samples we also set 𝐷 equal to 10 
and ran pseudo-population bootstrap 50 times to 
illustrate effect of multiple pseudo-populations

• (Non)probability bootstrap samples drawn by fixed-size 
random systematic sampling given known inclusion 
probability for PS or estimated propensities for NPS

• True variances estimated by means of Monte Carlo 
simulation

Simulation for variances estimates



• Relative Bias (%) of the estimated variances and the Coverage 
Rate of the confidence intervals (%) of the variance estimates

Variance estimation



• All four assumptions are important ones that many be 
violated in practice

1. For all units in population, Pr(𝑖 ∈ NPS) and Pr(𝑖 ∈ 𝑃𝑆) are 

nonzero

2. Auxiliary variables 𝑿 govern inclusion mechanism of NPS 

3. Inclusion weights 𝑑 for inclusion in PS are available or can be 

computed for PS and for NPS

4. We can identify overlapping units in PS and NPS

When can we apply method?



• General overviews
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