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• Based on work by former master student Sofia Villalobos-
Aliste (and my colleague Sander Scholtus)

Combining probability and nonprobability samples



• Nonprobability samples are increasingly popular due to their 
convenience and low costs

• Unfortunately, nonprobability samples are often selective 
and estimators based on such data are generally biased

Nonprobability samples



• Estimates for proportions of a categorical target 
variable 𝑦 per category of a categorical background 
variable 𝑥 are available from 

 relatively small probability sample PS (size 𝑛 𝑃 ), and 

 large nonprobability sample NPS (size 𝑛 𝑁𝑃 )

• Estimator based on PS is usually unbiased, but its 
sampling variance is usually large

• Estimator based on NPS is likely to be biased, but its 
variance is generally small

Situation



• Tailor-made approaches

• Mass imputation
 Impute all population units

• Bayesian approach where information from NPS is 
used to construct prior
 Prior based on NPS and data from PS are used to calculate 

posterior distribution

• Frequentist approach where estimates from NPS and 
PS are combined by weighting them

Approaches



• Assume model for target variable, for instance 
multivariate normal model

𝑦 ~ 𝑁 𝜷𝒙, 𝜎2

where 𝒙 = 𝑥1, … , 𝑥𝑝
• Assume model for response 𝑅 (depending on 𝒙 and 𝜷)

Bayesian approach: model setup



• Conjugate prior distribution for 𝛽𝑗 (𝑗 = 1, … , 𝑝)

𝛽𝑗 ~ 𝑁 𝛽𝑗0, 𝜎𝑗0
2

𝛽𝑗0 and 𝜎𝑗0
2 are hyper parameters

Bayesian approach: general prior 



• Weakly or non-informative prior 
𝛽𝑗0 = 0

𝜎𝛽𝑗0
2 = 𝐶

where 𝐶 is large number

• Posterior distribution basically only depends on data 
from probability sample

Bayesian approach: prior 1



• Based probability and nonprobability sample

𝛽𝑗 ~ 𝑁 𝛽𝑗
𝑁𝑃 , 𝛽𝑗

𝑃 − 𝛽𝑗
𝑁𝑃 2

 መ𝛽𝑗
𝑃and መ𝛽𝑗

𝑁𝑃: ordinary least estimates from probability and 

nonprobability sample, respectively

Bayesian approach: prior 2



• Based on nonprobability sample

𝛽𝑗 ~ 𝑁 𝛽𝑗
𝑁𝑃 , 𝜎𝛽𝑗0

𝐵𝑁𝑃
2

 መ𝛽𝑗
𝑁𝑃: ordinary least estimate from non-probability sample

 Nonprobability data are bootstrapped to produce uncertainty 
measure

 𝜎𝛽𝑗0
𝐵𝑁𝑃is bootstrap standard deviation of መ𝛽𝑗

𝑁𝑃

Bayesian approach: prior 3



• Tailor-made approaches

• Mass imputation
 Impute all population units

• Bayesian approach where information from NPS is 
used to construct prior
 Prior based on NPS and data from PS are used to calculate 

posterior distribution

• Frequentist approach where estimates from NPS and 
PS are combined by weighting them

Approaches



• We propose a method that combines estimates from 
probability and nonprobability sample on aggregated 
level

• Our method does not require any unit level data

Our approach



• Categories of target variable 𝑦 are denoted as 𝑐 (𝑐 =

Notation and assumptions



• We construct combined estimator of the form

𝐷𝑘𝑐 = 𝑊𝑘𝑐
𝑍𝑘𝑐
(𝑃)

+ 1 −𝑊𝑘𝑐
𝑍𝑘𝑐
(𝑁𝑃)

where 𝑊𝑘𝑐 is weight between zero and one. 

• If Mean Square Errors (MSEs) for 𝑍𝑘𝑐
(𝑃)

and 𝑍𝑘𝑐
(𝑁𝑃)

were 
known, we could find weight 𝑊𝑘𝑐 for which MSE of 𝐷𝑘𝑐 is 
minimum 

• Optimal weight would be given by

𝑊𝑘𝑐 = ൗMSE 𝑍𝑘𝑐
(𝑁𝑃)

MSE 𝑍𝑘𝑐
(𝑃)

+ MSE 𝑍𝑘𝑐
(𝑁𝑃)

Combined estimator



• Elliott & Haviland (2007) also use a combined estimator of 
the form

𝐷𝑘𝑐 = 𝑊𝑘𝑐
𝑍𝑘𝑐
(𝑃)

+ 1 −𝑊𝑘𝑐
𝑍𝑘𝑐
(𝑁𝑃)

where 𝑊𝑘𝑐 is weight between zero and one. 

• They assumed that bias of 𝑍𝑘𝑐
(𝑁𝑃)

is known

• We estimate bias of 𝑍𝑘𝑐
(𝑁𝑃)

from PS and NPS

Combined estimator



• MSE = Variance + Bias2

• Variance estimate of 𝑍𝑘𝑐
(𝑃)

is ൗ𝑍𝑘𝑐
(𝑃)

1 − 𝑍𝑘𝑐
(𝑃)

𝑛 𝑃 − 1

• Estimator 𝑍𝑘𝑐
(𝑃)

is unbiased

• Design-based sampling variance of 𝑍𝑘𝑐
(𝑁𝑃)

is 
unknown/undefined, but – assuming that nonprobability 
sample is large – reasonable estimate might be 

ൗ𝑍𝑘𝑐
(𝑁𝑃)

1 − 𝑍𝑘𝑐
(𝑁𝑃)

𝑛 𝑁𝑃 − 1

• The big problem: bias of 𝑍𝑘𝑐
(𝑁𝑃)

cannot be estimated from 
nonprobability sample only

Estimating MSEs



• We assume simple model for bias of 𝑍𝑘𝑐
(𝑁𝑃)

• This allows us to estimate expected MSEs (EMSEs) 
under this model

• We then use 

𝐷𝑘𝑐 = 𝑊𝑘𝑐
𝑍𝑘𝑐
(𝑃)

+ 1 −𝑊𝑘𝑐
𝑍𝑘𝑐
(𝑁𝑃)

with 

𝑊𝑘𝑐 =
EMSE 𝑍𝑘𝑐

(𝑁𝑃)

EMSE 𝑍𝑘𝑐
(𝑃)

+ EMSE 𝑍𝑘𝑐
(𝑁𝑃)

Estimating MSEs: the plan



• We introduce 𝑏𝑘𝑐 = E𝑑 𝑍𝑘𝑐
(𝑁𝑃)

− 𝑍𝑘𝑐 , where E𝑑

denotes expectation under (unknown) “sampling 
design” of nonprobability sample

• Note that within each domain 𝑘 we have σ𝑐=1
𝐶 𝑏𝑘𝑐 = 0

since estimated proportions in each domain add up to 
one

Estimating MSEs: assumptions (main model)



• We assume model such that 𝑏𝑘𝑐 is distributed as 
random variable with 

 E𝑏 𝑏𝑘𝑐 = 𝛽𝑐, i.e. expected bias in category 𝑐 is 
assumed to be constant across domains, with 
σ𝑐=1
𝐶 𝛽𝑐 = 0

 Var𝑏 𝑏𝑘𝑐 = E𝑏 𝑏𝑘𝑐 − 𝛽𝑐
2 = 𝜎2

Estimating MSEs: assumptions (main model)



• In our study we also studied simpler model where we 
assumed that 𝑏𝑘𝑐 is distributed as random variable 
with 

 E𝑏 𝑏𝑘𝑐 = 0

 Var𝑏 𝑏𝑘𝑐 = 𝜎2

Estimating MSEs: simple model



• We define ෨𝑍𝑘𝑐 = E𝑑 𝑍𝑘𝑐
(𝑁𝑃)

, so 𝑏𝑘𝑐 = ෨𝑍𝑘𝑐 − 𝑍𝑘𝑐

• We find E𝑏 𝑍𝑘𝑐 = E𝑏 ෨𝑍𝑘𝑐 − 𝑏𝑘𝑐 = E𝑏 ෨𝑍𝑘𝑐

• E𝑏 𝑍𝑘𝑐
2 = E𝑏 ෨𝑍𝑘𝑐 − 𝑏𝑘𝑐

2
=

E𝑏 ෨𝑍𝑘𝑐
2 + E𝑏 𝑏𝑘𝑐

2 − 2E𝑏 ෨𝑍𝑘𝑐𝑏𝑘𝑐 = E𝑏 ෨𝑍𝑘𝑐
2 + 𝜎2

where we assume that 𝑏𝑘𝑐 is not correlated to ෨𝑍𝑘𝑐

• So, E𝑏 𝑍𝑘𝑐 1 − 𝑍𝑘𝑐 = E𝑏 ෨𝑍𝑘𝑐 1 − ෨𝑍𝑘𝑐 − 𝜎2

Flavour of computations



• Note that we could estimate E𝑏 𝑍𝑘𝑐 1 − 𝑍𝑘𝑐 by 

means of 𝑍𝑘𝑐
(𝑃)

1 − 𝑍𝑘𝑐
(𝑃)

• However, since size of PS is rather small, this is likely to 
be an inaccurate estimate

• We therefore base our estimate for 𝐸𝑏 𝑍𝑘𝑐 1 − 𝑍𝑘𝑐
on NPS in combination with model for 𝑏𝑘𝑐

Flavour of computations



• EMSE 𝑍𝑘𝑐
(𝑁𝑃)

= 𝛽𝑐
2 + 𝜎2 +

𝑣𝑘𝑐

𝑛𝑘
𝑁𝑃

−1

• EMSE 𝑍𝑘𝑐
(𝑃)

=

1

𝑛𝑘
𝑃

𝑛𝑘
𝑁𝑃

𝑛𝑘
𝑁𝑃

− 1
𝑣𝑘𝑐 + 𝛽𝑐 2E𝑏E𝑑 𝑍𝑘𝑐

(𝑁𝑃)
− 1 − 𝛽𝑐

2 − 𝜎2

• 𝑛𝑘
𝑃

and 𝑛𝑘
𝑁𝑃

are sizes of PS, respectively NPS in domain 𝑘

and 

𝑣𝑘𝑐 = E𝑏E𝑑 𝑍𝑘𝑐
(𝑁𝑃)

1 − 𝑍𝑘𝑐
(𝑁𝑃)

Expressions for EMSEs



• Unbiased estimator for 𝑣𝑘𝑐 is 𝑍𝑘𝑐
(𝑁𝑃)

1 − 𝑍𝑘𝑐
(𝑁𝑃)

• E𝑏E𝑑 𝑍𝑘𝑐
(𝑁𝑃)

is estimated by 𝑍𝑘𝑐
(𝑁𝑃)

• Ordinary least squares estimate for 𝛽𝑐 is 

 መ𝛽𝑐 =
1

𝐾
σ𝑘=1
𝐾 መ𝑍𝑘𝑐

(𝑁𝑃)
− መ𝑍𝑘𝑐

(𝑃)

• Ordinary least squares estimate for 𝜎2 is 

 ො𝜎2 =
1

𝐾−1 𝐶
σ𝑘=1
𝐾 σ𝑐=1

𝐶 መ𝑍𝑘𝑐
(𝑁𝑃)

− መ𝑍𝑘𝑐
(𝑃) 2

−
𝐾

𝐾−1 𝐶
σ𝑐=1
𝐶 መ𝛽𝑐

2

• This leads to estimates EMSE 𝑍𝑘𝑐
(𝑃)

and EMSE 𝑍𝑘𝑐
(𝑁𝑃)

• In turn this leads to 𝑊𝑘𝑐 and hence to our combined estimator

Estimating EMSEs



• We simulated population of 100,000 units and 
repeatedly drew two datasets (PS and NPS), and 
applied our estimator

• We considered
 one, four, ten, and 15 domains

 three, five, eight, and 15 categories

 a first scenario where all categories are of equal size in each 
domain, and a second scenario where categories have unequal 
sizes

Simulation study (part 1)



• We also considered

 sample sizes per domain for probability sample 𝑛 𝑃 ∈
{10, 100, 400, 900}

 sample sizes per domain for nonprobability sample 𝑛 𝑁𝑃 ∈
{100, 1000, 2000, 6000}

 two levels of selectivity for nonprobability sample: weak 
selectivity and severe selectivity

• We used full factorial design (1024 scenarios)
 we drew 𝑅 = 1000 simulations for each scenario

 for each simulation we calculated መ𝑍𝑘𝑐
(𝑃)

, መ𝑍𝑘𝑐
(𝑁𝑃)

and 𝐷𝑘𝑐

Simulation study (part 2)



• We compute root mean squared error (RMSE) per domain 𝑘 and 
category 𝑐 over the 𝑅 simulations 

 𝑅𝑀𝑆𝐸𝑘𝑐 = σ𝑟=1
𝑅 𝑍𝑘𝑐 − 𝑄𝑘𝑐,𝑟

2
/𝑅

with 𝑄𝑘𝑐,𝑟 estimate for domain 𝑘 and category 𝑐 in simulation 𝑟

( 𝑄𝑘𝑐,𝑟 is 𝑍𝑘𝑐
(𝑃)

, 𝑍𝑘𝑐
(𝑁𝑃)

or 𝐷𝑘𝑐)

• We compute 𝐴𝑅𝑀𝑆𝐸𝑘 = Τσ𝑐=1
𝐶 𝑅𝑀𝑆𝐸𝑘𝑐 𝐶

• Finally, we compute 𝑀𝐴𝑅𝑀𝑆𝐸 = Τσ𝑘=1
𝐾 𝐴𝑅𝑀𝑆𝐸𝑘 𝐾

• We also assess bias of 𝑄𝑘𝑐,𝑟 ( 𝑄𝑘𝑐,𝑟 is 𝑍𝑘𝑐,𝑟
(𝑁𝑃)

and 𝐷𝑘𝑐,𝑟) by means 

of 𝑀𝐴𝐵 = Τσ𝑟=1
𝑅 σ𝑘=1

𝐾 σ𝑐=1
𝐶 𝑍𝑘𝑐 − 𝑄𝑘𝑐,𝑟 𝑅𝐾𝐶

Evaluation criteria



Percentage of times out of 256 simulation conditions (differing with 
respect to numbers of domains and categories, and sample sizes) 
that combined estimator outperforms direct estimators in terms of 
MARMSE

Results: is combined estimator better?
Selectivity Size of 

categories
better than 

መ𝑍𝑘𝑐
(𝑃)

better than 

መ𝑍𝑘𝑐
(𝑁𝑃)

better than 
both

Weak Equal 94 64 58

Unequal 92 64 57

Severe Equal 83 84 67

Unequal 80 85 65



Average difference between MARMSE of the combined 
estimator (C) and direct estimators for probability (PS) 
and nonprobability (NPS) sample

Results: differences in MARMSE
Selectivity Size of categories Difference C–PS Difference C–NPS

Weak Equal -0.0128 -0.0035

Unequal -0.0125 -0.0037

Severe Equal -0.0079 -0.0546

Unequal -0.0073 -0.0555



Proportion (× 100%) of combined estimators with lower 
MAB than direct estimator for nonprobability sample

Results
Selectivity Size of categories Bias reduced

Weak Equal 99

Unequal 98

Severe Equal 100

Unequal 100



MARMSE of equal-size categories and severe selectivity 

Results: is combined estimator better?
𝐶 3 5

𝑛 𝑃

10 0.12 0.12 0.12 0.09 0.09 0.09 0.09 0.07

100 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03

400 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01

900 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

𝑛 𝑁𝑃 100 100 1000 6000 100 100 1000 6000



• In our simulation we found that 
 when 𝑊𝑘𝑐 ≥ 0.7, combined estimator always had lowest 

MARMSE of the three estimators

 When 𝑊𝑘𝑐 ≤ 0.6, estimator based on nonprobability sample 
always performed best

 When 0.6 < 𝑊𝑘𝑐 < 0.7, it depended on specific scenario which 
of the three estimators performed best

Results: relation with weights



Relation between weight and MARMSE



• Advantage of method is that it is not necessary to link 
two samples at level of individual observations

• It is also not important whether NPS and PS overlap or 
not

• Proposed method is quite robust
 EMSE of combined estimator is always less than or equal to 

lowest EMSE of estimators for the two samples

 Actual MSE of combined estimator is never higher than highest 
MSE of estimators for the two samples

• Proposed method is very easy to implement in R

Conclusions



• Current version of method is only suitable for PS that is 
drawn by means of simple random sampling: this could 
be extended to other sampling designs

• If microdata are available, one might consider 
correcting for selection error in NPS first and then 
apply method for combining estimates

Possible extensions



• Hard to say
 One needs reasonable estimate of variance of NPS

 Model for bias needs to be reasonable

 Weights seem to provide useful information about the latter

When can we apply method?



• Tailor-made approaches
 Kuijvenhoven, L. & S. Scholtus (2010), Estimating Accuracy for 

Statistics based on Register and Survey Data. CBS discussion 
paper, https://www.cbs.nl/nl-
nl/achtergrond/2010/11/estimating-accuracy-for-statistics-
based-on-register-and-survey-data.

• Mass imputation
• Kim, J.K., S. Park, Y. Chen & C. Wu (2021), Combining Non-

Probability and Probability Survey Samples Through Mass 
Imputation. Journal of the Royal Statistical Society Series A: 
Statistics in Society 184(3), 941-963, 
https://doi.org/10.1111/rssa.12696.
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