

The integration of educational attainment data from administrative and survey data

part 2: Estimation of census tables with mass imputation Jacco Daalmans 22 August 2023

Dutch virtual census

the state of the s

Virtual census

- Data sources already available at Statistics Netherlands
- No single data source contains all census variables.
- All data can be linked at micro level
- All variables available from (integral) administrative registers except:
 - Educationale attainment: approx. 60% of population covered
 - Occupation: approx. 3% of population covered
- Missing data need to be estimated: weighting, (mass) imputation

Virtual census

- Data sources already available at Statistics Netherlands
- No single data source contain all census variables.
- All data can be linked at micro level
- All variable available from (integral) administrative registers except
 - Educationale attainment: approx. 60% of population covered
 Occupation: approx. 3% of population covered
- Missing data need to be estimated: weighting vs (mass) imputation

Mass imputation

(Mass) imputation

 Estimate all missing information for each individual person

Compile census tables from completely filled data

Easy and attractive: results can be made for detailed subpopulations

Age	Sex	Education
Y	М	1
Y	М	8
Y	М	2
Y	М	3
Y	F (4)
Y	F	$\overline{\mathbf{M}}$
Y	F	5
Y	F	2
Y	F	 estimated
Y	F	7
Y	F	2
Y	F	3)
Y	F	4
Y	F	3
Y	F	2)
Y	F	6
0	М	3
0	М	4
0	М	8
0	М	1
0	F (2
0	F (4
0	F	Ì
0	F	

Mass imputation

Erroneous conclusions after imputation: "Dog owners who never buy dog food"

Mass imputation

- is applied for education, but not for occupation, because of higher data coverage (60% versus 3%)
- Risks of inappropriate conclusions are limited:
 - a) all census variables are used as auxiliary variables
 - -> all relevant relations are taken into account
 - b) imputations are especially made for the census.
 These are deleted afterwards to avoid misuse for other applications.

Imputation: multinomial logistic regression

- Estimate model from people with available education. Apply to people with missing education
- Explanatory variables: Other census variables & income
- Estimate probabilities for each of the 8 education categories for each person given the characteristics of that person
- Use the probabilities to derive imputations (stochastically)

Imputation multinomial regression

Imputation model estimated from Educational Attainment File (EAF)

Educational Attainment File

e

The admin data within EAF are not used for model estimation due to selectivity¹² (overrepresentation of older and higher educated people)

Research on imputation method

Machine Learning versus regression

- Machine learning (Gradient boosting & neural networks) better estimates the distribution of educational attainment for the entire Dutch population
- However, for specific subpopulations (e.g. 53 year old men) regression works much better, due to implicit variable selection in ML methods
- The main of the census is to count all kinds of subpopulations
- Therefore, regression is the most appropriate method (at this moment)

13

The end

– Thank you for listening

