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Abstract

Vector autoregressions with stochastic volatility in both the conditional mean and

variance are commonly used to estimate the macroeconomic e�ects of uncertainty

shocks. Despite their popularity, intensive computational demands when estimating

such models have made out-of-sample forecasting exercises impractical, particularly

when working with large data sets. In this article, we propose an e�cient Markov

chain Monte Carlo (MCMC) algorithm for posterior and predictive inference in such

models that facilitates such exercises. The key insight underlying the algorithm is that

the (log-)conditional densities of the log-volatilities possess Hessian matrices that are

banded. This enables us to build upon recent advances in band and sparse matrix

algorithms for state space models. In a simulation exercise, we evaluate the new

algorithm numerically and establish its computational and statistical e�ciency over

a conventional particle �lter based algorithm. Using macroeconomic data for the US

we �nd that such models generally deliver more accurate point and density forecasts

over a conventional benchmark in which stochastic volatility only enters the variance

of the model.
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1 Introduction

Unprecedented levels of macroeconomic uncertainty during the Great Recession and the

more recent COVID-19 pandemic have resulted in numerous studies highlighting the ad-

verse e�ects of uncertainty shocks both in the US and around the world.1 From an econo-

metric perspective, the workhorse model in measuring uncertainty and its e�ects on the

economy is the stochastic volatility in mean vector autoregression (SVMVAR) model (Mum-

taz and Zanetti, 2013; Mumtaz and Theodoridis, 2015, 2017a,b; Mumtaz and Surico, 2018;

Carriero et al., 2018, 2020b). These models de�ne uncertainty as common variation in

the latent log-volatilities of each equation in the VAR system. To analyze the e�ects

of uncertainty, this common component enters directly into the conditional mean of the

model. This critical modeling feature does not come without costs. From a computational

perspective, allowing the time-varying second moment of the shocks (i.e., uncertainty) to

enter the conditional mean, implies that e�cient algorithms for estimating simpler stochas-

tic volatility (SV) models�in which the time-varying second moment does not enter the

conditional mean�such as the auxiliary mixture sampler (Kim et al., 1998), can no longer

be applied. As a result, scholars have relied on either Metropolis-within-Gibbs (Jacquier

et al., 2002) or particle-Gibbs (Andrieu et al., 2010) algorithms to estimate such models;

see, e.g., Mumtaz and Zanetti (2013) for the former and Carriero et al. (2018) for the lat-

ter. While such methods are perfectly suitable for measuring uncertainty and its e�ects on

the economy, their computational demands have made out-of-sample forecasting exercises

practically infeasible, particularly when working with large data sets. Resolving this prob-

lem is critical as policy makers, private sector businesses and international organizations

all rely on macroeconomic forecasts when formulating their decisions.

In this paper we overcome this hurdle by developing an e�cient Markov chain Monte

Carlo (MCMC) algorithm that facilitates posterior and predictive inference in SVMVAR

models. The key insight underlying the algorithm is that the (log-)conditional densities of

the log-volatilities contain Hessian matrices that are banded. Having established this fact,

1The pre-pandemic literature is vast and we will not attempt to survey it here. Instead, we direct the
interested reader to excellent surveys by Bloom (2014) or Castelnuovo et al. (2017) and references therein.
For more recent papers on the e�ects of uncertainty during the COVID-19 pandemic see, e.g. Altig et al.
(2020), Baker et al. (2020), Caggiano et al. (2020) and Carriero et al. (2020a).
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we propose the use of an independence-chain Metropolis-Hastings algorithm in which the

proposal distribution is a carefully selected Gaussian distribution. It is therefore similar to

existing algorithms that have been used for the estimation of univariate models with non-

Gaussian likelihoods (Shephard and Pitt, 1997), with the key di�erence that we consider a

multivariate model and draw upon recent advances in band and sparse matrix algorithms

(Rue et al., 2009; Chan and Jeliazkov, 2009; McCausland, 2012), which have been shown

to perform e�ciently in the estimation of various state space models (McCausland et al.,

2011; Chan, 2017; Poon, 2018; Hou, 2020; Zhang et al., 2020; Leiva-Leon and Uzeda, 2021).

In a simulation exercise, we evaluate the new algorithm numerically and establish its

computational and statistical e�ciency against the state-of-the-art particle �lter algorithm,

known as particle Gibbs with ancestor sampling (PGAS) (Lindsten et al., 2014). The

proposed algorithm is signi�cantly faster than PGAS. For example, when estimating a

small model with three variables in which each variable has its own idiosyncratic stochastic

volatility component, as in Mumtaz and Zanetti (2013), our proposed method is about 20

times faster than PGAS. Importantly, this computational gain increases in both number of

variables and number of stochastic volatility terms and is therefore well suited for estimating

the SVMVAR model with a larger number of variables as in Carriero et al. (2018). We also

�nd that the proposed algorithm exhibits superior mixing properties, thereby providing

more numerically e�cient estimates. This is especially true in high dimensional models,

where we �nd that PGAS tends to mix poorly. This suggests that our algorithm is scalable

and capable of handling large SVMVARs in a way that PGAS is not.

Using our new e�cient algorithm we then carry out a macroeconomic forecasting ex-

ercise. We focus on three key macroeconomic indicators in the US economy: real GDP

growth, personal consumption expenditures (PCE) in�ation, and the e�ective federal funds

rate, both in the pre-pandemic period: 1975Q1-2019Q4 and during the recent pandemic

period: 2020Q1-2021Q1. We consider large (20 variable) and small (3 variable) variants

of the SVMVAR model with di�erent SVM structures, e.g. common and/or idiosyncratic

volatilities, as well as di�erent numbers of common volatility terms. As a benchmark model,

we use a VAR in which the SV component does not enter the conditional mean (SVVAR),

as this model has been shown to perform well against a wide range of alternative time series
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models when forecasting macroeconomic variables (e.g. Clark, 2011; Clark and Ravazzolo,

2015; Carriero et al., 2016). Overall, we �nd that models with SVM components generally

provide superior point and density forecast accuracy relative to those in which the SV

does not enter the conditional mean. Focusing on the variables individually, we �nd that

working with large datasets is especially useful when forecasting real GDP growth. The

best model is typically one in which we specify idiosyncratic SVM terms for each of the

three key macroeconomic indicators and a common SVM term for the remaining variables.

Allowing the SVM terms to have a persistent e�ect on the conditional mean via extra lags

in the model is also useful when forecasting real GDP growth. These technical insights

are especially notable because it is precisely in these computationally complex models that

our scalable algorithm is needed. When forecasting in�ation, we �nd that large models

also tend to provide superior point forecasts, however the increased estimation-uncertainty

associated with such models results in the smaller, more parsimonious model, providing

superior density forecasts. In contrast, the small SVMVAR generally provides the best

interest rate forecasts. This suggests that while accounting for macroeconomic uncertainty

via the SVMVAR generally improves both point and density forecast accuracy, the exact

form of the model speci�cation, i.e. VAR dimension and SVM structure, should be speci�ed

in accordance with the users objectives. Finally, when looking at the forecast results over

time, we observe the general pattern that while a standard SV speci�cation is su�cient

during times of tranquility, such as the Great Moderation, specifying stochastic volatility

in the mean is especially important in uncertain, unstable times, such as the Great Reces-

sion and recent pandemic period, during which macroeconomic forecasting is known to be

especially di�cult.

The rest of the paper is structured as follows. In Section 2 we present the SVMVAR

model and discuss our novel MCMC algorithm for posterior and predictive inference in

such models. Section 3 contains the simulation study which compares the computational

and statistical e�ciency of our algorithm against PGAS. Section 4 contains the forecasting

exercise in which we focus on results for GDP growth, PCE in�ation and the E�ective

Federal Funds Rate. Finally, we conclude in Section 5.
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2 The Stochastic Volatility in Mean Vector Autoregres-

sive Model

In this section, we de�ne the SVMVAR and develop an e�cient MCMC algorithm which

allows for computationally-e�cient posterior and predictive inference of the SVMVAR.

2.1 The model

The SVMVAR is a multivariate time series model for n variables of interest. We assume

a general framework in which these variables can be partitioned into g groups with each

group containing ni variables that are driven by a single group-speci�c volatility for i =

1, .., g, n =
∑g

i=1 ni. This framework accommodates everything from the unrestricted

SVMVAR (g = n and ni = 1 for all i) through cases considered in the economic uncertainty

literature where a small number of volatility processes, each estimated based on a large

number of variables, are interpreted as measures of economic uncertainty. For instance,

the unrestricted trivariate SVMVAR in which each variable has idiosyncratic volatility

used in Mumtaz and Zanetti (2013) is obtained by specifying g = 3 groups each with

ni = 1 variables, i = 1, 2, 3. Similarly, the SVMVAR of Carriero et al. (2018) can be

viewed as specifying a restricted SVMVAR with g = 2 groups of n1 = 18 and n2 = 12

variables. The former are macroeconomic variables and the latter are �nancial variables

and the two volatility processes are interpreted as macroeconomic and �nancial uncertainty,

respectively. This general set-up also facilitates the estimation of more �exible speci�cations

with di�erent combinations of common and idiosyncratic volatilities which we later exploit

in the forecasting exercise.

We use the following notation. yi,t is an ni × 1 vector that collects variables in the ith

group at time t for t = 1, .., T . yt = (y′1,t, . . . , y
′
g,t)
′ is an n × 1 vector with n =

∑g
i ni.

hi,t is the log-volatility of the ith group at time t. For later reference, we also de�ne

h·,t = (h1,t, . . . , hg,t)
′ and hi,· = (hi,1, . . . , hi,T )′.
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We write the SVMVAR as

B0yt = b +

p∑
i=1

Biyt−i +

q∑
j=0

Ajh·,t−j + εyt , εyt ∼ N (0,Σt), (1)

where B0 is an n × n lower triangular matrix with ones on its diagonal, b is an n × 1

vector of intercepts and B1, . . . ,Bp are n× n coe�cient matrices. The coe�cient matrices

A0, . . . ,Aq are of dimension n × g and capture the e�ects of the comtemporaneous and

lagged group-speci�c log-volatilities on the levels of the variables. The time-varying error

covariance matrix is diagonal2 and speci�ed as

Σt =


Ω1,t

. . .

Ωg,t

 , (2)

where Ωi,t = diag(σ2
i,1e

hi,t , . . . , σ2
i,ni
ehi,t), i = 1, . . . , g. The log-volatility associated with the

ith group of variables is assumed to evolve according to a stationary AR(1) process

hi,t = φihi,t−1 + εhi,t, εhi,t ∼ N (0, σ2
h,i), (3)

where |φi| < 1 and the initial state is initialized with hi,1 ∼ N
(
0, σ2

h,i/(1− φ2
i )
)
.

2.2 Prior

We specify a Normal prior for B = (b,B1, . . . ,Bp) based on the popular Minnesota prior

which has been shown to be a reliable choice when forecasting macroeconomic variables,

particularly when working with large datasets (see, e.g., Carriero et al., 2009, 2011; Ba«bura

et al., 2010; Koop and Korobilis, 2010; Koop, 2013; Karlsson, 2013; Carriero et al., 2015;

Cross et al., 2020).3 In recent years, VAR researchers have found forecasts to be improved

2Note that this assumption does not restrict the contemporaneous relationships between the variables
since these are modeled by B0. The diagonality assumption allows for equation by equation estimation of
the model which greatly speeds up computation, see Carriero et al. (2019).

3It is also worth noting that the MCMC algorithm developed in this paper (with minor modi�cations)
can handle any conditionally Normal prior including a wide range of global-local shrinkage priors such as
the Lasso and Horseshoe priors.
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by choosing prior hyperparameters optimally (see, e.g., Giannone et al., 2005; Chan et al.,

2019, 2020; Cross et al., 2020; Chan, 2021). In this paper, we therefore develop methods

suitable for estimating key prior hyperparameters within the context of SVMVARs.4 The

means in our Normal prior are zero. The prior covariance matrix is diagonal. For the

variances, we �rst de�ne an n× (1 + n2p) variance matrix Vb = (vb,Vb,1, . . . ,Vb,p), where

vb and Vb,i are of dimensions n×1 and p×p and collect the prior variances of corresponding

parameters in b and Bi respectively. We assume a noninformative prior for the VAR

intercepts by setting the variance vector vb = (100 . . . , 100)′. For the VAR coe�cients, we

use a Minnesota prior form:

Bi,j
l ∼ N

(
0,Vi,j

l

)
,

where Bi,j
l and Vi,j

b,l are the (i, j)th element of Bl and Vb,l and

Vi,j
l =


π1
l2
, for i = j,

π1π2si
l2sj

, for i 6= j.

Following a common Minnesota prior strategy, the scale parameters s2
i are chosen to be

the residual variances of the AR(p) models for variable i for i = 1, .., n.5 Instead of setting

the overall shrinkage parameter π1 and the cross-variable shrinkage parameter π2 to �xed

values, we treat them as unknown parameters to be estimated using noninformative priors

π1 ∝ c1, π2 ∝ c2.

We use Normal-gamma priors for the SVM coe�cient matrix, A = (A0, . . . ,Aq) and

the contemporanous matrix B0. Speci�cally, let ai, i = 1, . . . , n × g × (q + 1) and b0,j,

4Given the need for computational e�ciency in the SVMVAR, it is worth highlighting that the methods
we develop for doing so integrate out the VAR coe�cients which leads to fast mixing of the MCMC
algorithm.

5As we are using quarterly data in our forecasting exercise, the VAR lag length is set at p = 4.
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j = 1, . . . , n(n−1)
2

be the free elements in A and B0, then we assume

ai ∼ N (0, V a
i ), V a

i ∼ G(νa,
νaδa

2
), i = 1, . . . , n× g × (q + 1)

b0,j ∼ N (0, V b
j ), V b

j ∼ G(νb,
νb0 , δb

2
), j = 1, . . . ,

n(n− 1)

2
.

Furthermore, we estimate the hyperparameters in the Normal-gamma prior and assume

the following priors for them:

δa ∼ G(ca1, c
a
2), νa ∼ E(µa),

δb ∼ G(cb1, c
b
2), νb ∼ E(µb),

and we set ca1 = 0.001, ca2 = 0.001, µa = 1, cb01 = 0.001, cb02 = 0.001 and µb0 = 1.

For the variable-speci�c variance σ2
i,j, AR coe�cients and variances of the group-speci�c

log-volatility, we use the following priors:

σ2
i,j ∼ IG(αy,ij, γy,ij) for i = 1, . . . , g and j = 1, . . . , ni,

φi ∼ N (φi,0, Vφi) for |φi| < 1, for i = 1, . . . , g,

σ2
h,i ∼ IG(αh,i, γh,i) for i = 1, . . . , g.

We set the shape parameters as αy,ij = 10 and αh,i = 10. The scale parameters, γy,ij, are

set so as to match the prior mean of σ2
i,j at the residual variance of the AR(p) model of the

variable j in the ith block. For the other scale parameters, γh,i, we let γh,i = 0.12(αh,i − 1)

which implies that the prior mean of σ2
h,i is 0.12. For the AR coe�cients, we set φi,0 = 0.95

and Vφi = 0.22.

2.3 An e�cient MCMC algorithm for the SVMVAR

We develop an e�cient MCMC algorithm for drawing from the full conditional posterior

distributions of the parameters in the SVMVAR. Note that, conditional on h, the model

becomes a multivariate Normal model. Hence, standard methods exist for drawing from
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B = (b,B1, . . . ,Bp),A = (A0, . . . ,Aq) and B0. The contributions of this paper lie in the

methods for drawing h and some of the prior hyperparameters. Accordingly, we provide

detailed derivations for the latter and describe the former in Appendix A.

2.3.1 Drawing h

Since the log-volatilities enter the SVMVAR model in both the conditional mean and the

time-varying covariance matrix, the e�cient auxiliary mixture sampler developed in Kim

et al. (1998) cannot be applied. Early papers by Mumtaz and Zanetti (2013) overcame

this di�culty by using a date-by-date independence-chain Metropolis step as described

in Jacquier et al. (2002). More recently, the literature has turned to the use of particle

MCMC (PMCMC) methods, e.g. Carriero et al. (2018). While perfectly feasible for in-

sample analysis, it is well known that these algorithms can be computationally ine�cient

both in the sense of being computationally costly (i.e. computational cost is proportional

to T ) and, in the case of particle �lters, mixing poorly due to the path degeneracy issue.

In this paper, we develop an MCMC algorithm that typically is less computationally costly

(i.e. computational cost is proportional to g) and we demonstrate it mixes better. We do so

by �rst showing that the conditional posteriors of the volatility processes, (h1,·, . . . ,hg,·),

involves Hessian matrices that are banded. We then draw upon recent developments in

band and sparse matrix algorithms, to produce an e�cient MCMC algorithm for estimating

SVMVARs.

For expository purposes, we work with simpli�ed version of the SVMVAR:

yt =

q∑
i=0

Aih·,t−i + εyt , εyt ∼ N (0,Σt). (4)

Furthermore, we set the the variable-speci�c variance σ2
i,j = 1 for all i, j for expositional

simplicity.

The proposed algorithm is designed for sequentially drawing the log-volatilities h1,·, . . . ,hg,·

from their corresponding full conditional posterior distributions. We �rst introduce some

notation. Let y = (y1, . . . ,yT )′, h̃i,t = (hi,t, . . . , hi,t−q)
′ and de�ne Ãi to be an n× (q + 1)

matrix with its kth column being the ith column of Ak−1.

9



To derive the full conditional distribution of hj,· = (hj,1, . . . , hj,T )′ for j = 1, .., g, we

write equation (4) as

yt =

g∑
i=1

Ãih̃i,t + εyt , εyt ∼ N (0,Σt). (5)

Rearranging this equation by putting all terms independent of hj,· on the left-hand side

leads to

ỹjt = Ãjh̃j,t + εyt , εyt ∼ N (0,Σt), (6)

where

ỹjt = yt −
∑
i 6=j

Ãih̃i,t.

Since (ỹj1, . . . , ỹ
j
T ) are conditionally independent, the log conditional distribution of hj,· can

be expressed as

log p(hj,·|y) = log p(y|hj,·) + log p(hj,·) + c1,

=
T∑
t=1

log p(ỹjt |h̃j,t) + log p(hj,·) + c2, (7)

where c1 and c2 are normalizing constants. We suppress the other conditioning arguments

except for hj,· for notational convenience.

The conditional posterior in (7) involves a likelihood component and a prior component.

The prior component is based on (3). The likelihood component can be obtained by noting

that ỹjt is Normally distributed (see equation (6)), which gives

log p(ỹjt |h̃j,t) = −1

2
log |Σt| −

1

2

(
ỹjt − Ãjh̃j,t

)′
Σ−1
t

(
ỹjt − Ãjh̃j,t

)
+ c3. (8)

To further simplify equation (8), we write Ãj = (Ã′j,1, . . . , Ã
′
j,g)
′ and ỹjt = (ỹj

′

1,t, . . . , ỹ
j′

g,t)
′,

where Ãj,k and ỹ
j
k,t are of dimensions nk × (q + 1) and nk × 1 respectively. Then it can be
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shown that equation (8) can be simpli�ed to:

log p(ỹjt |h̃j,t) =− njhj,t
2
− 1

2
e−hj,t(ỹjj,t − Ãj,jh̃j,t)

′(ỹjj,t − Ãj,jh̃j,t)

− 1

2

∑
i 6=j

e−hi,t(ỹji,t − Ãj,ih̃j,t)
′(ỹji,t − Ãj,ih̃j,t) + c4, (9)

where both c3 and c4 are normalizing constants.

To sample hj,·, we propose an acceptance-rejection Metropolis-Hasting step with a Nor-

mal proposal with its mean and covariance matrix set to be the mode and the negative

inverse of the Hessian of the log p(hj,·|y) evaluated at the mode. To �nd the mode, the

Newton-Raphson method can be applied, which requires us to derive the gradient and Hes-

sian of the log-density log p(hi,·|y) =
∑T

t=1 log p(ỹjt |h̃j,t) with respect to hi,·. To this end,

we will �rst derive the gradient and the Hessian of log p(ỹjt |h̃j,t) with respect to h̃j,t.

Let f̃ j,t be the (q + 1) × 1 gradient vector and G̃j,t be the (q + 1) × (q + 1) Hessian of

the log density function log p(ỹjt |h̃j,t).6 f̃ i,t and G̃j,t are given by

f̃ j,t =− 1

2

(
nj − e−hj,t(ỹjj,t − Ãj,jh̃j,t)

′(ỹjj,t − Ãj,jh̃j,t)
)

dj

+

g∑
i=1

e−hi,tÃ′j,i

(
ỹji,t − Ãj,ih̃j,t

)
, (10)

G̃j,t = −1

2
e−hj,t(ỹjj,t − Ãj,jh̃j,t)

′(ỹjj,t − Ãj,jh̃j,t)djd
′
j

− e−hj,tÃ′j,j(ỹ
j
j,t − Ãj,jh̃j,t)d

′
j − e−hj,tdj(ỹ

j
j,t − Ãj,jh̃j,t)

′Ãj,j

−
g∑
i=1

e−hi,tÃ′j,iÃj,i, (11)

where dj is the jth column of the identity matrix with dimension q + 1. Using equa-

tions (10) and (11), we can construct the gradient and the Hessian of the log likelihood

6To be speci�c, the kth element of f̃ j,t is f̃ j,t
k =

∂ log p(ỹj
t |h̃j,t)

∂hj,t−k−1
and the (k, l)th element of G̃j,t is G̃j,t

k,l =

∂2 log p(ỹj
t |h̃j,t)

∂hj,t−k−1∂hj,t−l−1
and f̃ j,t

k = 0 and G̃j,t
k,l = 0 for t− k − 1 < 0 or t− l − 1 < 0.
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∑T
t=1 log p(ỹjt |h̃j,t) with respect to hj,·. To be speci�c, we have

f j =


f j1

f j2
...

f jT

 :=
T∑
t=1

∂ log p(ỹjt |h̃j,t)
∂hj,·

, (12)

Gj =



Gj
1,1 · · · Gj

q,1 0 · · · 0
... Gj

2,2
. . . . . . . . .

...

Gj
q+1,1

. . . . . . . . . . . . 0

0
. . . . . . . . . . . . Gj

T,T−q
...

. . . . . . . . . . . .
...

0 · · · 0 Gj
T,T−q · · · Gj

T,T


:=

T∑
t=1

∂2 log p(ỹjt |h̃j,t)
∂hj,·∂h′j,·

(13)

where f jt =
∑q

i=0 f̃
j,t+i
i+1 and Gj

t,t−l =
∑q−l

i=0 G̃
j,t+i
l+i+1,i+1.

Next, we derive the �rst and second order derivatives of log p(hj,·). Given the speci�cation

in equation (3), we can shown that the log conditional density of hj,· is given by

log p(hj,·) = −1

2
h′j,·H

′
jS
−1
j Hjhj,· + c5,

where

Hj =


1 0 · · · 0

−φj 1
. . .

...
...

. . . . . . 0

0 · · · −φj 1

 , Sj =



σ2
h,j

1−φ2j
0 · · · 0

0 σ2
h,j

. . .
...

...
. . . . . . 0

0 · · · 0 σ2
h,j


and c5 is a normalizing constant. Thus, it follows that

∂ log p(hj,·)

∂hj,·
= −H′jS

−1
j Hjhj,·, (14)

∂2 log p(hj,·)

∂h2
j,·

= −H′jS
−1
j Hj. (15)
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Combining the results obtained in equations (12) - (15) gives the gradient and the negative

Hessian of log p(hj,·|y):

∂ log p(hj|y)

∂hj
= fj = f j −H′jS

−1
j Hjhj,·,

−∂
2 log p(hj|y)

∂h2
j

= Kj = H
′

jS
−1
j Hj −Gj.

To �nd the mode ĥj,· we use the Newton-Raphson method and iteratively update

h
(s+1)
j = h

(s)
j + K−1

j fj, for s = 1, 2, . . ., (16)

until some convergence criterion is reached, e.g., when ||h(s+1)
j −h

(s)
j || < ε. Given this mode

and the negative Hessian evaluated at the mode Kj, the Gaussian distribution N (ĥj,.,K
−1
j )

is then used as our proposal distribution in the acceptance-rejection Metropolis-Hastings

step. Note that the resulting Kj is not guaranteed to be positive de�nite. If this is the

case, we replace Kj by K̃j = Kj + (δ − λmin)I, where λmin is the smallest eigenvalue of

Kj and δ is a small positive number. It can be shown that K̃j is always positive de�nite.

Moreover, it can be seen from equations (10) and (15) that the precision matrix Kj is a

banded matrix. Thus draws from the proposal distribution N (ĥj,.,K
−1
j ) can be e�ciently

obtained by applying the precision sampler of Chan and Jeliazkov (2009).

2.4 Drawing π

It is straightforward to derive the posterior of π = (π1, π2) conditional on the VAR coe�-

cients (B1, . . . ,Bp) and the other parameters. However, MCMC e�ciency can be improved

by integrating out the VAR coe�cients. We do this in this sub-section and develop a

Metropolis-Hastings algorithm for drawing from the resulting distribution.

Write equation (1) as

ỹt = X̃tβ + εyt , εyt ∼ N (0,Σt), (17)

where ỹt = B0yt−
∑q

j=0 Ajh·,t−j, X̃t = In⊗(1,y′t−1, . . . ,y
′
t−p) and β = vec((b,B1, . . . ,Bp)

′).
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Stacking equation (17) over t = 1, . . . , T , gives

ỹ = X̃β + εy, εy ∼ N (0,Σ),

where ỹ = (ỹ′1, . . . , ỹ
′
T )′, X̃ = (X̃′1 . . . , X̃

′
t)
′. We write the Normal prior for the VAR coef-

�cients as β ∼ N (0,Vπ
β), where the diagonal covariance matrix has its diagonal elements

vec(V′b). Note that this depends on π = (π1, π2). For simplicity, we suppress all other

conditioning arguments except β and write the full conditional distribution of π as

p(π|y,β) ∝ p(ỹ|β, π)p(β)

∝|Vπ
β |−

1
2 exp

(
−1

2

(
β′Kββ − 2β′Kββ̂

))
∝|Vπ

β |−
1
2 exp

(
1

2
β̂
′
Kββ̂

)
exp

(
−1

2
(β − β̂)′Kβ(β − β̂)

)
,

where Kβ = (X′Σ−1X + Vπ
β
−1) and β̂ = K−1

β X′Σ−1ỹ. It can be seen that the VAR

coe�cients β can be integrated out analytically leading to

p(π|y) ∝ |Vπ
β |−

1
2 exp

(
1

2
β̂
′
Kββ̂

)∫
exp

(
−1

2
(β − β̂)′Kβ(β − β̂)

)
dβ

= |Kβ|−
1
2 |Vπ

β |−
1
2 exp

(
1

2
β̂
′
Kββ̂

)
.

Since this distribution is nonstandard, we implement a Metropolis-Hastings step to obtain

draws of π using a log-Normal proposal distribution. Denote the current draw by πo =

(πo1, π
o
2). A candidate draw is taken from:

π∗1 = exp(x∗1), with x∗1 ∼ N (log π1, v1) ,

π∗2 = exp(x∗2), with x∗2 ∼ N (log π2, v2) .

The probability of accepting the candidate draw

α(πo, π∗) = min

{
1,
p(π∗|y)

p(πo|y)
× π∗1π

∗
2

πo1π
o
2

}
.
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In our forecasting exercise, we set v1 = v2 = 0.05.

The details of the other blocks of the MCMC algorithm are given in Appendix A.

3 Simulation Study

In this section, we investigate the performance of our algorithm using arti�cial data in

terms of computation time and MCMC e�ciency. We compare our algorithm with the

particle Gibbs ancestor sampling (PGAS) algorithm of Lindsten et al. (2014) which has been

used in previous stochastic volatility in mean papers such as Carriero et al. (2018). Since

the algorithm is for sampling of the latent (log-)volatilities, we work with the simpli�ed

SVMVAR in (4) as opposed to the general model in (1). For simplicity, we consider the

case where each group has the same number of variables, i.e., ñ = n1 = . . . = ng. We

then use the model de�ned in equation (4) to simulate a single data set for each of several

di�erent con�gurations of T , g and ñ. The lag order for the log-volatilities in the mean is

set at q = 2. The elements of A are drawn from a Normal distribution N (0, 0.5). We set

(φi, σ
2
i,h) = (0.95, 0.1), i = 1, . . . , g. For the PGAS, we use the bootstrap proposal in the

internal particle �lter. Computation is done using MATLAB on a desktop with an Intel

Core i7-7700 @4.20GHz processor.

3.1 Computational e�ciency

Table 1 reports the computation times for obtaining 1000 posterior draws using our pro-

posed method and PGAS. We denote PGAS-N as the PGAS method using N particles. It

is evident that our proposed method is much faster than PGAS for almost every con�gura-

tion of (ñ, g, T ). For example, our proposed method is about 20 times faster than PGAS-50

for estimating a small model (ñ, g, T ) = (1, 3, 100). It is worth mentioning that the com-

putational cost of our proposed method is roughly proportional to g. This is because the

proposed method is designed to sequentially sample g full conditional distributions corre-

sponding to h1,·, . . . ,hg,· in each MCMC draw and all T terms in each of these distributions

are drawn jointly which can be quickly done. In contrast the computational cost of the

15



PGAS is proportional to T since the particle �ltering process in the PGAS needs to se-

quentially approximate T �ltering distributions for the latent variables h·,1, . . . ,h·,T . In

practice, most of the time series data used in economics and �nance has g being much

smaller than T . For example, in our forecasting exercise, we consider 20 US quarterly time

series for the period 1960Q1-2020Q1. Hence, T = 241 but g ≤ 20. Carriero et al. (2018)

has g = 2. This highlights the practical importance of our proposed method in improving

estimation e�ciency for real economic problems.

Table 1: Computation times (in minutes) to obtain 1000 posterior draws.

T = 100 T = 300 T = 500
ñ = 1 g = 3 g = 10 g = 20 g = 3 g = 10 g = 20 g = 3 g = 10 g = 20
proposed method 0.1 0.6 1.7 0.4 1.5 4.3 0.6 2.5 6.4
PGAS-50 1.9 2.0 2.2 5.5 6.5 8.1 9.2 12.0 16.9
PGAS-100 3.5 3.8 4.3 10.8 13.1 16.7 18.7 25.4 33.9
PGAS-300 10.8 12.2 13.3 34.9 41.9 53.0 60.2 80.0 110.5

ñ = 3 g = 3 g = 10 g = 20 g = 3 g = 10 g = 20 g = 3 g = 10 g = 20
proposed method 0.1 0.7 2.4 0.4 2.0 5.6 0.8 3.1 8.7
PGAS-50 1.8 2.0 2.4 5.5 6.4 8.7 9.3 12.4 17.6
PGAS-100 3.5 4.0 4.7 10.8 13.7 17.7 18.5 25.8 35.9
PGAS-300 11.0 12.0 14.3 34.7 42.5 54.8 59.9 82.0 110.6

ñ = 5 g = 3 g = 10 g = 20 g = 3 g = 10 g = 20 g = 3 g = 10 g = 20
proposed method 0.2 0.9 3.4 0.5 2.3 7.2 0.8 3.8 11.7
PGAS-50 1.8 2.1 2.5 5.5 6.6 9.1 9.4 12.5 18.3
PGAS-100 3.6 4.0 4.9 11.0 14.0 18.1 18.8 25.8 36.3
PGAS-300 10.8 12.6 15.1 35.2 43.3 54.9 62.5 84.6 112.7

Notes: The proposed method is our Acceptance-Rejection Metropolis-Hastings algorithm pre-

sented in Section 2.3. The particle Gibbs ancestor sampling (PGAS) algorithm is developed in

Lindsten et al. (2014). We denote PGAS-N as the PGAS method using N particles, and use ñ, g
and T to respectively denote the number of variables in each group, number of groups (equal to

the number of stochastic volatility terms) and number of time series observations.

3.2 MCMC e�ciency

The only cases where PGAS is comparable to our algorithm in terms of the time taken to

produce 1, 000 draws is when T is small, g is large and a small number of particles are taken.

See, for instance, results in Table 1 for PGAS-50 when T = 100 and g = 20. However,

this takes no account of MCMC mixing. We investigate this issue by reporting ine�ciency
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factors for each of the parameters in the model. The ine�ciency factor is de�ned as

1 + 2
L∑
l=1

ρl,

where ρl is the sample autocorrelation at lag length l obtained from the MCMC draws. L

is chosen to be large enough so that the autocorrelation tapers o�. The ine�ciency factor

is used to measure the relative e�ciency loss incurred by using correlated MCMC draws

as opposed to independent draws.

The SVM model has many parameters and each will have an ine�ciency factor. We

therefore summarize them using boxplots. The ine�ciency factors for data sets simulated

from (ñ, g, T ) = (1, 3, 100) and (ñ, g, T ) = (5, 20, 500) are shown in Figure 1 and Figure 2,

respectively. These con�gurations are chosen as the smallest and largest data generating

processes in our simulation study. Results for other con�gurations lie between these two

extremes. The center line of each box is the median, the lower and upper edges of the

box represent the 25th and 75th percentiles, and the whiskers extend to the maximum

and minimum. For each approach, the ine�ciency factor is computed using 10000 retained

MCMC draws after a burnin period of 5000.

It is evident that our proposed method performs as well as PGAS for the smallest case

of (ñ, g, T ) = (1, 3, 100). It is interesting to note that increasing the particle numbers used

in PGAS only slightly reduces the ine�ciency factors for drawing the volatilities. However,

in the larger case of (ñ, g, T ) = (5, 20, 500), our proposed method performs much better

than PGAS. As shown in Figure 2, ine�ciency factors for h for some arti�cial data sets

produced by PGAS-50 and PGAS-100 go as high as 10000. Given that we are only taking

10000 draws from each algorithm this indicates that the posterior draws for some elements

h are perfectly correlated. Such poor mixing rates are a result of the path degeneracy issue

in the PGAS and this seems to be inevitable for high-dimensional problems. Using a larger

number of particles only partially alleviates the path degeneracy issue. It is evident that

our proposed method mixes much better even than PGAS-300.
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Figure 1: Boxplots of the ine�ciency factors for model with (ñ, g, T ) = (1, 3, 100).

Notes: The center line of each box is the median, the lower and upper edges of the box represent

the 25xth and 75th percentiles, and the whiskers extend to the maximum and minimum.
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Figure 2: Boxplots of the ine�ciency factors for model with (ñ, g, T ) = (5, 20, 500).

Notes: The center line of each box is the median, the lower and upper edges of the box represent

the 25th and 75th percentiles, and the whiskers extend to the maximum and minimum.
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4 Forecasting Exercise

We focus on forecasting GDP growth, PCE in�ation and the e�ective federal funds rate

over the period from 1960Q1 to 2021Q1. Since numerous studies have documented that

larger VARs tend to forecast at least as well as smaller VARs (e.g. Ba«bura et al., 2010;

Koop, 2013; Carriero et al., 2019), we consider both a large version which contains the 20

variables listed in Table 2 and a small version that contains only the key macroeconomic

indicators being forecast. The set of variables in Table 2 are similar to those used in

Carriero et al. (2019). All of the data was obtained from the Federal Reserve Bank of St.

Louis' Quarterly Database for Macroeconomic Research (FRED-QD).

Table 2: Description of the data.

FRED-ID Series Name Transformation
GDPC1 Real Gross Domestic Production ∆ log
PCECC96 Real Personal Consumption Expenditures ∆ log
CMRMTSPLx Real Manufacturing and Trade Industries Sales ∆ log
INDPRO Industrial Production Index ∆ log
CUMFNS Capacity Utilization: Manufacturing no transformation
UNRATE Civilian Unemployment Rate no transformation
PAYEMS All Employees: Total Nonfarm ∆ log
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing log
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees:Goods-Producing ∆ log
WPSFD49207 Producer Price Index by Commodity for Final Demand: Finished Goods ∆ log
PPIACO Producer Price Index for All Commodities ∆ log
PCECTPI Personal Consumption Expenditures: Chain-type Price Index ∆ log
FEDFUNDS E�ective Federal Funds Rate no transformation
HOUST Housing Starts: Total: New Privately Owned Housing Units Started log

S&P 500 S&Pâ��s Common Stock Price Index: Composite ∆ log
EXUSUKx U.S. / U.K. Foreign Exchange Rate ∆ log
TB3SMFFM 3-Month Treasury Constant Maturity Minus Federal Funds Rate no transformation
T5YFFM 5-Year Treasury Constant Maturity Minus Federal Funds Rate no transformation
AAAFFM Moodyâ��s Seasoned Aaa Corporate Bond Minus Federal Funds Rate no transformation
AMDMNOx Real Manufacturersâ�� New Orders: Durable Goods ∆ log

Notes: The data was obtained from the Federal Reserve Bank of St. Louis' Quarterly Database

for Macroeconomic Research (FRED-QD). The �rst column contains the identi�er of the series

at fred.stlouisfed.org. The second column is the series name. The third column speci�es any

transformations. There are two types of transformations. First, log denotes the natural logarithm.

Second, ∆ log denotes the change (�rst-di�erence) of the natural logarithm.

When forecasting we use the �rst 15 years of data to estimate the models and then

consider two forecast evaluation periods 1975Q1 - 2019Q4 (pre-pandemic) and 2020Q1 -

2021Q1 (pandemic). In addition to the unrestricted SVMVAR with ni = 1 for all i (so

that each equation has its own volatility), we also consider three large SVMVAR model

variants in which we restrict the SV process in di�erent ways. First, we assume there is
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one common volatility process a�ecting all variables (g = 1 and n1 = 20). Second, we

assume there is one common volatility for the three core variables and a second common

volatility for the remaining 17 variables (g = 2, n1 = 3 and n2 = 17). Third, we assume

each of the three core variables has its own volatility and the remaining variables share

a common volatility (g = 4, n1 = n2 = n3 = 1 and n4 = 17). Finally, as is standard in

the forecasting literature, we use a simpler VAR with stochastic volatility (SVVAR) as a

benchmark. The small SVVAR is used as a benchmark model, while the large SVVAR is

used as a competitive model. We highlight that the SVVAR can be viewed as a SVMVAR

in which we restrict A0, . . . ,Aq to be zero. Table 3 lists the competing models and their

acronyms. In each model we set the VAR lag order at p = 4 and consider forecast horizons

of m = 1, 4, 8, 12 quarters. For every SVMVAR, we set q = 0 lags for the SVM component.7

Table 3: Competing models

Model Description

Small SVVAR 3-variable SVVAR model with idiosyncratic SV

Large SVVAR 20-variable SVVAR model with idiosyncratic SV

Small SVMVAR 3-variable SVMVAR model with idiosyncratic SVM

Large SVMVAR 20-variable SVMVAR model with idiosyncratic SVM

Large SVMVAR-1SV 20-variable SVMVAR model with common SV

Large SVMVAR-2SV 20-variable SVMVAR model with two SV terms: One common SV for

the 3 core variables and one for the remaining 17 variables

Large SVMVAR-4SV 20-variable SVMVAR model with four SV terms: Idiosyncratic SV for

the 3 core variables and one common SV for the remaining 17 variables

Notes: The 3-variable models contain real GDP growth, personal consumption expenditures (PCE)

in�ation and the e�ective federal funds rate. The 20-variable models contain these three variables

plus the additional 17 variables speci�ed in Table 2.

4.1 Pre-pandemic Results

In this section we report the results for the pre-pandemic period: 1975Q1 - 2019Q4. Tables

4 and 5 respectively report the root mean squared forecast errors (RMSFEs) and cumulative

log scores (i.e. sums of log-predictive likelihoods) of each variable. Results are benchmarked

relative to the small SVVAR. Results of the Diebold-Mariano test of equal forecasting ability

7As a robustness check, in Section 4.3 we discuss results in which q = 2 lags to see whether allowing for
is persistence in the volatility-in-mean process is important.
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between the small SVVAR benchmark and an alternative model are indicated using ***,**

and * to denote the 1%, 5% and 10% levels of signi�cance, respectively.

The overall story told by these tables is that, with some exceptions, adding SVM gen-

erally improves forecasts of all three macroeconomic indicators. This statement holds

particularly true beyond the one-step-ahead forecast horizon, where SVM models tend

to dominate both small and large SVVARs both in terms of RMSFEs and log-predictive

likelihoods. We now consider the forecast accuracy of each variable in some more detail.

Consider �rst GDP growth. With one exception, every SVMVAR provides superior

RMSFEs and log-predictive likelihoods relative to the small SVVAR at all forecast horizons.

The one exception is for a version of the model with a common volatility process for all

20 variables at the eight-month-ahead forecast horizon. We also observe a clear bene�t

to working with larger data sets when forecasting real GDP growth. At each horizon, a

large VAR provides superior forecast accuracy to a smaller variant. As noted previously,

the large SVVAR forecasts best at the one-step-ahead horizon, however the SVM models

then improve upon the forecast accuracy at longer horizons. The SVMVAR with four

volatility processes forecasts particularly well, although the unrestricted model with 20

distinct volatillity processes is also competitive. This reinforces the point made above

that larger values of g are associated with better forecasts. Overall, we conclude that the

incorporation of SVM and working with large data sets leads to improved forecasts of GDP

growth.

A similar story can be told for in�ation, with SVM models generally outperforming

the small SVVAR benchmark at all forecast horizons and for both forecast metrics. The

unrestricted SVMVAR and restricted SVMVAR-4SV models again forecasts well in terms

of point forecasts, however their density forecast results are mixed. In that case, a notable

�nding in relation to the issue of VAR dimension is that the small SVMVAR generally

provides superior forecast accuracy, with large SVMVARs sometimes failing to outperform

the benchmark. This is consistent with some �ndings in the in�ation forecasting literature,

e.g. Faust and Wright (2013), where simple parsimonious models are hard to beat. Overall,

we conclude that the incorporation of SVM is generally useful when forecasting in�ation.

The VAR dimension, however, should be speci�ed in accordance to the objective, i.e. large
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dimensions can provide superior point forecasts, while small dimensions are better suited

for density forecasts.

Finally, when forecasting the E�ective Federal Funds rate, we again observe that speci-

fying SVM generally improves upon simpler SV speci�cation. There is also strong evidence

in favor of using a smaller dataset, with the small SVMVAR providing the best density

forecasts beyond the one-step-ahead horizon. At the the one-step-ahead horizon, however,

the larger information set allows for greater forecast accuracy, with the large SVMVAR-

4SV and large SVVAR models respectively providing the best point and density forecasts

at that horizon. Overall, we conclude that the incorporation of SVM leads to improved

forecasts of the interest rate. Similar to the case of in�ation, the VAR dimension should

be speci�ed in accordance to the objective. In this case, large dimensions provide useful

information for short-term forecasts, while small dimensions are better suited to longer

term forecasts.

Having established that SVM is generally a useful modeling feature when forecasting

each of the individual variables, we now determine which model is best across all three

variables, on average. To that end, Table 6 contains the joint predictive likelihoods for

the three variables. With a few exceptions we observe that models with some form of

SVM tend to forecast substantially better than the small SVVAR at all forecast horizons.

This result reinforces the story told when investigating the variables on an individual basis.

Regarding forecast-horizon, we observe that the large SVVAR provides the best forecasts

at the shortest forecast horizon, however adding SVM leads to clear improvements at longer

horizons. On average, the unrestricted large SVMVAR and the restricted large SVMVAR

with four volatility processes are the best forecasting models. This suggests that allowing

for diversity across variables in terms of their volatilities is bene�cial.
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Table 4: Root Mean Squared Forecast Errors (RMSFEs) relative to a small SVVAR bench-
mark over the forecast evaluation period: 1975Q1-2019Q4

Real GDP

Models h = 1 h = 4 h = 8 h = 12 Average

Small SVMVAR 0.97* 0.96** 0.96** 0.95*** 0.96

Large SVMVAR 0.89** 0.93** 0.91 0.86* 0.90

Large SVMVAR-1SV 0.89** 0.95** 0.98 0.89* 0.93

Large SVMVAR-2SV 0.90** 0.92** 0.92* 0.90 0.91

Large SVMVAR-4SV 0.87** 0.92** 0.92 0.87** 0.89

Large SVVAR 0.87*** 0.95* 0.96 0.96 0.94

In�ation

Small SVMVAR 0.98 0.96 0.88** 0.85** 0.92

Large SVMVAR 0.94*** 0.91** 0.83*** 0.81** 0.87

Large SVMVAR-1SV 0.99 1.02 0.95 0.91 0.97

Large SVMVAR-2SV 0.97 0.94 0.88* 0.90 0.92

Large SVMVAR-4SV 0.93*** 0.91*** 0.89** 0.92 0.91

Large SVVAR 1.01 1.07 1.03 0.97 1.02

Interest Rate

Small SVMVAR 0.99 0.99 0.93** 0.87*** 0.94

Large SVMVAR 0.95 1.02 0.98 0.93 0.97

Large SVMVAR-1SV 0.97 1.01 0.97 0.92 0.97

Large SVMVAR-2SV 0.98 1.11 1.16 1.18 1.11

Large SVMVAR-4SV 0.93 0.98 0.96 0.97 0.96

Large SVVAR 0.97 1.04 0.97 0.90 0.97

Notes: Model acronyms are explained in Table 3. Bold numbers indicate the best forecast perfor-

mance at each horizon. Diebold-Mariano test are based on the benchmark Small SVVAR, ***,**

and * denote statistically signi�cant forecast improvements of a given model over the benchmark

at the 1%, 5% and 10% level of signi�cance, respectively.
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Table 5: Cumulative Log predictive likelihoods relative to a small SVVAR benchmark over
the forecast evaluation period: 1975Q1-2019Q4

Real GDP

Models h = 1 h = 4 h = 8 h = 12 Average

Small SVMVAR 2.99 6.12** 3.03 1.59 3.43

Large SVMVAR 13.78*** 9.93** 7.71 7.21 9.66

Large SVMVAR-1SV 15.68** 9.22* -1.62 5.92 7.30

Large SVMVAR-2SV 10.65* 9.86* 10.63* 8.01 9.79

Large SVMVAR-4SV 15.64** 11.39** 10.29* 14.72*** 13.01

Large SVVAR 18.78*** 7.08** 3.82 4.12 8.45

In�ation

Small SVMVAR 0.27 1.81 8.21** 9.13** 4.86

Large SVMVAR 0.60 -1.27 12.57** 8.90 5.20

Large SVMVAR-1SV -0.58 -14.34 5.76 2.28*** -1.72

Large SVMVAR-2SV -19.59 1.09 4.43 3.94 -2.53

Large SVMVAR-4SV -10.40 0.32 2.67 -0.19 -1.90

Large SVVAR 1.65 -4.77 0.76 -6.39 -2.19

Interest Rate

Small SVMVAR 1.45 9.74** 15.65*** 24.58*** 12.85

Large SVMVAR 4.34 -7.06 -11.17 3.00 -2.72

Large SVMVAR-1SV -63.84 1.27 17.51 9.28 -8.94

Large SVMVAR-2SV -45.05 -3.56 -5.16 -8.61 -15.59

Large SVMVAR-4SV -10.84 -6.29 -0.35 3.32 -3.54

Large SVVAR 7.78 -4.77 -4.64 5.94 1.08

Notes: Model acronyms are explained in Table 3. Bold numbers indicate the best forecast perfor-

mance at each horizon. Diebold-Mariano test are based on the benchmark Small SVVAR, ***,**

and * denote statistically signi�cant forecast improvements of a given model over the benchmark

at the 1%, 5% and 10% level of signi�cance, respectively.
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Table 6: Cumulative Joint Log Predictive Likelihoods (Three variables)

Models h = 1 h = 4 h = 8 h = 12 Average

Small SVMVAR 2.46 2.19** 8.77*** 5.00*** 4.61

Large SVMVAR 13.29 5.09 18.04 11.58 12.00

Large SVMVAR-1SV 19.38** -0.29 4.52*** 7.83** 7.86

Large SVMVAR-2SV -4.00 -5.72 4.87*** 10.41*** 1.39

Large SVMVAR-4SV 3.72 7.57*** 11.33* 8.98 7.90

Large SVVAR 22.80** 2.44** 6.55** -4.82 6.74

Notes: Model acronyms are explained in Table 3. Bold numbers indicate the best forecast perfor-

mance at each horizon. Diebold-Mariano test are based on the benchmark Small SVVAR, ***,**

and * denote statistically signi�cant forecast improvements of a given model over the benchmark

at the 1%, 5% and 10% level of signi�cance, respectively.

Before proceeding to the results for the recent pandemic period, it is also interesting

to investigate when the forecast improvements obtained by specifying SVM have occurred.

To that end, Figure 3 presents the cumulative joint and individual variable log-predictive

likelihoods across all four forecast horizons, benchmarked against the small SVVAR over

the forecast evaluation period.

From a historical perspective, the forecast evaluation period can be divided into four

epochs: i) the volatile period until the early 1980s, ii) the Great Moderation from the

early 1980s to the Great Recession, iii) the Great Recession and subsequent recovery and

iv) the pandemic of 2020, in addition to containing �ve NBER recessions. These episodes

are highlighted in Figure 3 by shading the NBER recession dates in dark gray and the

Great Moderation in light gray. With some exceptions, a general pattern is that most

of the large SVMVARs handled the earliest period best, but then showed relatively little

further improvement throughout the Great Moderation. When the �nancial crisis hit, the

large SVMVARs also tended to forecast better than the other models, however, with the

exception of real GDP, the relative forecast performance of most models then drops towards

the end of the Great Recession. This suggests that specifying stochastic volatility in the

mean is generally important in uncertain, unstable times, and less important during times

of tranquility, where a standard SV speci�cation is su�cient.
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Figure 3: Cumulative joint and individual predictive likelihoods over the forecast evaluation
period: 1975-2020

Notes: The panels show cumulative predictive likelihoods, relative to a small SVVAR benchmark

over the forecast evaluation period: 1975-2020, at 1-, 4-, 8- and 12-step-ahead forecast horizons.

The �rst, second and third rows contain the results for real GDP, in�ation and the interest rate,

respectively. The fourth row contains the joint cumulative predictive likelihood. The dark shaded

regions represent the �ve NBER recession dates during this period: 1980Q1-Q2, 1981Q2-1982Q4,

1990Q2-1991Q1, 2001Q1-Q4, 2007Q4-2009Q2, and the light shaded region represents the Great

Moderation period: 1985Q1-2006Q4. Model acronyms are explained in Table 3.

As discussed previously, the large SVVAR is often one of the better performing models

when forecasting one-step-ahead. At longer horizons, however, this model is usually beaten

by a comparable model which includes stochastic volatility in mean. A key insight from

Figure 3 is that the large SVVAR has generally not forecast well since the �nancial crisis,

while the large SVMVAR has done relatively well. This is especially notable for in�ation.
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We also previously found that, with some exceptions, large SVMVARs with restricted

volatility processes, such as the large SVMVAR-4SV model, generally tend to forecast well.

Focusing on the joint predictive likelihoods, we observe that these exceptions are almost

always due to very brief periods of bad forecast performance at the time of the �nancial

crisis. That is, there are several cases where forecast performance (relative to the small

VAR benchmark) deteriorates abruptly for only a single quarter or two right at the time

of the �nancial crisis. A detailed examination of results for the individual variables shows

that in�ation is the variable for which these deterioration are occurring. But even in these

cases, this brief deterioration is subsequently replaced by period of relative improvement

in forecast performance towards the end of the sample.

4.2 Pandemic Results

Point and density forecast results during the pandemic period are provided in Tables 7

and 8, respectively.8 Overall we �nd that the SVMVAR models generally forecast better

than those without SVM. This is particularly notable for the point forecasts, where the

RMSFEs for SVMVARs are always lower than the SVVARs. In terms of individual variable

performance, on average, the best SVM model improves upon the point forecast accuracy

of the small SVVAR by 12% in the case of real GDP, 5% for in�ation and 5% for the

interest rate. The real GDP improvements are especially impressive given the relatively

large �uctuations observed during this period. Turning to density forecasts, we again

observe that the SVMVARs are generally superior over the pandemic period, however the

large SVVAR is more competitive. It is especially interesting that the large SVMVARs with

common volatility, i.e. SVMVAR-1SV and SVMVAR-2SV, are delivering relatively good

forecast performance for during the pandemic. These common volatility models tended to

forecast relatively poorly prior to 2020 but are among the best performing models during

the pandemic. A likely explanation for this result is that there was a larger degree of co-

movement in macroeconomic volatility during the pandemic. This would lead to a larger

8The Diebold-Mariano test statistic converges asymptotically to a normal distribution and theory pre-
dicts an over-rejection of the null hypothesis in small samples. Given the small number of observations
during the COVID-19 pandemic, we have therefore omitted the Diebold-Mariano test statistics from Ta-
bles 7 and 8.
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increase in predictive variances during the pandemic, and the common volatility model is

designed to capture this exact phenomenon. Thus, an extreme realization would look less

unlikely for the common volatility models leading to better values for the log predictive

likelihoods. In summary, we are �nding that specifying SVM generally improves accuracy

when forecasting of macroeconomic variables and these gains are often substantial. During

the pandemic period, we are �nding that working with large SVMVARs is important and

it is precisely in these large models that our scalable MCMC algorithm are needed.
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Table 7: Root Mean Square Forecast Errors during the pandemic period: 2020-2021

Real GDP

Models h = 1 h = 4 h = 8 h = 12 Average

Small SVMVAR 0.95 1.00 1.00 0.99 0.98

Large SVMVAR 0.88 0.99 0.99 0.99 0.96

Large SVMVAR-1SV 0.97 0.99 0.98 0.99 0.98

Large SVMVAR-2SV 1.03 0.99 0.98 0.98 1.00

Large SVMVAR-4SV 1.03 1.00 0.99 0.99 1.00

Large SVVAR 0.95 0.99 0.98 0.99 0.98

In�ation

Small SVMVAR 0.95 0.95 0.92 0.98 0.95

Large SVMVAR 0.98 0.98 1.06 0.97 1.00

Large SVMVAR-1SV 0.96 0.96 0.78 0.96 0.91

Large SVMVAR-2SV 1.01 0.96 0.91 0.98 0.97

Large SVMVAR-4SV 1.14 0.92 0.76 0.88 0.93

Large SVVAR 1.16 0.94 0.89 1.12 1.03

Interest Rate

Small SVMVAR 1.03 1.07 1.16 1.31 1.14

Large SVMVAR 0.95 0.89 0.96 0.79 0.90

Large SVMVAR-1SV 1.48 0.76 0.58 1.33 1.04

Large SVMVAR-2SV 1.50 0.75 0.53 1.01 0.95

Large SVMVAR-4SV 1.20 0.75 0.71 0.69 0.84

Large SVVAR 1.19 0.77 0.55 1.30 0.95

Notes: Model acronyms are explained in Table 3. Bold numbers indicate the best forecast perfor-

mance at each horizon.
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Table 8: Cumulative Log predictive likelihoods during the pandemic period: 2020-2021

Real GDP

Models h = 1 h = 4 h = 8 h = 12 Average

Small SVMVAR -7.29 -22.56 -24.47 4.28 -12.51

Large SVMVAR -30.82 -8.34 -28.17 -14.41 -20.43

Large SVMVAR-1SV -0.64 19.74 9.76 26.52 13.84

Large SVMVAR-2SV -4.54 29.20 14.09 27.84 16.65

Large SVMVAR-4SV -128.82 -87.49 -37.00 -20.67 -68.50

Large SVVAR -7.38 -8.59 -21.90 4.20 -8.42

In�ation

Small SVMVAR 2.13 0.02 0.27 0.31 0.68

Large SVMVAR 3.11 -0.06 -0.27 -0.05 0.68

Large SVMVAR-1SV 4.48 -1.40 0.70 0.03 0.95

Large SVMVAR-2SV 3.45 -2.02 -0.76 0.18 0.21

Large SVMVAR-4SV 1.35 -0.01 1.15 0.53 0.75

Large SVVAR 1.77 0.18 0.44 -0.49 0.48

Interest Rate

Small SVMVAR -2.43 -5.77 -4.20 -1.60 -3.50

Large SVMVAR -5.84 -2.06 0.65 1.14 -1.53

Large SVMVAR-1SV 3.17 7.03 3.71 -0.52 3.35

Large SVMVAR-2SV 2.31 6.51 4.52 0.27 3.40

Large SVMVAR-4SV -4.17 2.88 3.19 1.83 0.93

Large SVVAR -2.85 1.64 4.65 -0.40 0.76

Notes: Model acronyms are explained in Table 3. Bold numbers indicate the best forecast perfor-

mance at each horizon.

4.3 Robustness

In our main analysis, we set q = 0 lags in the SVM component of the measurement equation

in the VAR model. As a robustness check, we re-did the analysis with q = 2 lags as in

Mumtaz and Zanetti (2013) and Carriero et al. (2018), to determine whether accounting
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for possible persistence in the volatility-in-mean process impacts the forecast performance.

The results, which are reported in Appendix B, are broadly consistent with those presented

in the main analysis, however some notable exceptions exist. When forecasting real GDP,

we �nd that the large SVMVAR-4SV model systematically provides the best point and

density forecast at each horizon. This model also generally provides superior forecast

accuracy over the best SVMVAR model with q = 0 lags. This suggests that allowing

persistence in the volatility-in-mean process is important for real GDP, however the same

conclusion does not always hold for in�ation and the interest rate. In the case of point

forecasts, we �nd that the RMSFEs for the best SVMVAR with q = 2 lags are competitive

with, but are generally no better than, those with q = 0. In the case of density forecasts, we

also �nd that specifying q = 2 lags generates more accurate longer run in�ation forecasts,

but provides no improvements for the interest rate over the best SVMVAR with q = 0.

Taken together, this suggests that specifying persistence in the volatility-in-mean process

is useful when forecasting real GDP, however, the more parsimonious model without any

such persistence is su�cient when forecasting in�ation and the interest rate. Moreover,

the qualitative conclusion that SVMVARs can improve upon the conventional SVVAR

benchmark is generally robust to lag selection in the volatility-in-mean process.

Our discussion in the main analysis relates to forecast performance relative to the small

SVVAR benchmark. Probability integral transforms (PITs) can be used to shed light

on absolute forecast performance. We have calculated the PITs for each variable, model

and forecast horizon. The interested reader can �nd them in Appendix B. We note here

only that the SVMVARs tend to produce predictive densities which are well calibrated.

Furthermore, where there are small departures from Uniformity in the PITs, they are less

than for the comparable SVVAR models. In�ation and the interest rate forecasts are

particularly well-calibrated. For GDP growth there is some evidence of poor calibration

in the small models indicating that their predictive variances are too large. In light of

the discussion relating to the pandemic, this makes sense. The larger predictive variances

produced by the benchmark model, which were problematic in pre-pandemic times, were

of bene�t during the pandemic, in the sense that the extreme pandemic realizations did

not lie so far out in the tails of the predictive distribution.
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5 Conclusion

Macroeconomic VARs with stochastic volatility in both the conditional mean and variance

have been widely used to document the adverse economic consequences of uncertainty in

recent years, however intensive computational demand have made out-of-sample forecasting

exercises practically infeasible, particularly when working with large data sets. In this

paper, we develop an e�cient MCMC algorithm for posterior and predictive inference

in such models. The key insight underlying the algorithm is that the (log-)conditional

densities of the (log-)volatilities possess Hessian matrices that are banded. This enables us

to build upon recent advances in band and sparse matrix algorithms to e�ciently sample

the log-volatilities in SVMVAR models.

In a simulation exercise, we evaluate the new algorithm numerically and establish its

computational and statistical e�ciency over the state-of-the-art particle �lter algorithm,

particle Gibbs with ancestor sampling (PGAS). The proposed MCMC algorithm is shown

to be signi�cantly faster than PGAS. It also possesses superior mixing properties, thereby

providing more numerically e�cient estimates. This is especially true in high dimensional

models, where we �nd that PGAS tends to mix poorly. This suggests that our algorithm

is scalable and capable of handling large SVMVARs in a way that PGAS is not.

Using macroeconomic data for the US we �nd that such models generally provide supe-

rior point and density forecasts relative to a commonly used benchmark in which stochastic

volatility only enters the variance of the model. One exception is for the one-step-ahead

density forecasts in the pre-pandemic period, in which the large SVVAR model is tough

to beat. When looking at the forecast results over time, however, we observe the general

pattern that while a standard SV speci�cation is su�cient during times of tranquility, such

as the Great Moderation, specifying stochastic volatility in the mean is especially impor-

tant in uncertain, unstable times, such as the Great Recession and recent pandemic period,

during which macroeconomic forecasting is a notoriously di�cult task. The SVMVAR

might therefore be of interest to policy makers, private sector businesses and international

organizations who all rely on macroeconomic forecasts when formulating their decisions.
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A Appendix: Additional Details of MCMC Algorithm

Drawing B = (b,B1, . . . ,Bp),A = (A0, . . . ,Aq) and B0

Note that the parameters in Θ = (B,A,B0) are conditionally independent across equations

and thus we can sample them equation by equation. To be speci�c, we �rst let Y =

(y1, . . . ,yT )′ and

U =


h′·,1 01×g . . . . . . 01×g

h′·,2 h′·,1 01×g . . . 01×g
...

...
. . . . . .

...

h′·,T h′·,T−1 . . . . . . h′·,T−q.


then we can rewrite equation (1) more compactly as:

YB′0 = XB′ + UA′ + E, vec(E′) ∼ N (0,Σ),

where X is the T×k matrix with its tth row being (1,y′t−1, . . . ,y
′
t−p) and Σ = diag(Σ1, . . . ,ΣT ).

Let Y1:i be the matrix collecting the �rst i columns of Y and let yi,· to be the ith column

of Y, then we can write the ith equation as

yi,· = Xbi + Uai −Y1:i−1b0,i + ei, ei ∼ N (0,Di),

where bi, ai and ei are the ith columns of B′, A′ and E respectively. The diagonal

covariance matrix Di = diag(Σ1,i,i, . . . ,ΣT,i,i) has its tth diagonal element Σt,i,i being

the ith diagonal element of Σt. The parameter vector associated with Y1:i−1 is b0,i =

(b0,i,1, . . . , b0,i,i−1)′ , where b0,i,j is the (i, j)th element of B0. Thus, we have

yi,· = Wiθi + ei, ei ∼ N (0,Di),

where θi = (b′i, a
′
i,b
′
0,i)
′ and Wi = (X,U,Y1:i−1). As the elements in Θ have independent

Normal priors θi ∼ N (0,Φi), where the covariance matrix Φi can be constructed based on

the the prior variances of Θ de�ned in the body of the paper. Standard linear regression

results can be applied to derive the full conditional distribution of θi:

(θi|•) ∼ N
(
θ̂i,Q

−1
i

)
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with • indicating the data and the remaining parameters, and the precision matrix and the
mean are given by Qi = W′D−1

i W + Φ−1
i and θ̂i = Q−1

i W′D−1
i yi,·.

Drawing (V a
i,j, δa, νa) and (V b

i,j, δb, νb)

Note that V a
i,j, i = 1, . . . , n, j = 1, . . . , g(q + 1), are conditionally independent. The full

conditional distribution of V a
i,j is given by

p(V a
i,j|ai,j, νa, δa) ∝ p(ai,j|V a

i,j)p(V
a
i,j|νa, δa)

∝ (V a
i,j)
− 1

2 exp

(
−
a2
i,j

2V a
i,j

)
× (V a

i,j)
νa−1 exp

(
−νaδa

2
V a
i,j

)
∝ (V a

i,j)
νa− 1

2
−1 exp

(
−1

2

(
νaδaV

a
i,j +

a2
i,j

V a
i,j

))
,

which is the kernel of a generalized inverse Gaussian distribution and thus we obtain

(
V a
i,j|ai,j, νa, δa

)
∼ GIG

(
νa −

1

2
, νaδa, a

2
i,j

)
.

To sample δa, we known that the full conditional distribution of δa is given by

p(δa|{V a
i,j}1≤i≤n,1≤j≤g(q+1), c

a
1, c

a
2) ∝

∏
i,j

p(V a
i,j|νa, δa)p(δa|ca1, ca2)

∝ δkaνaa exp

(
−νaδa

2

∑
i,j

V a
i,j

)
× δca1−1

a exp (−ca2δa)

∝ δc
a
1+kaνa−1
a exp

(
−

(
ca2 +

νa
2

∑
i,j

V a
i,j

)
δa

)
,

where ka = ng(q + 1). This implies that

(
δa|{V a

i,j}1≤i≤n,1≤j≤g(q+1), c
a
1, c

a
2

)
∼ G

(
ca1 + kaνa, c

a
2 +

νa
2

∑
i,j

V a
i,j

)
.
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Finally, the full conditional distribution of νa is nonstandard and its log conditional density

is given by

log p(νa|{V a
i,j}1≤i≤n,1≤j≤g(q+1), δa, µa) =ka

(
νa log

νaδa
2
− log Γ(νa)

)
+ (νa − 1)

∑
i,j

log V a
i,j

− δaνa
2

∑
i,j

V a
i,j − log µa −

νa
µa

+ c1,

where Γ(·) is the Gamma function and c1 is a normalizing constant. To obtain a proposal

distribution, we �rst derive the �rst and second order derivatives of the log-density:

d

dνa
log p(νa|{V a

i,j}1≤i≤n,1≤j≤g(q+1), δa, µa) = ka

(
log

νaδ

2
−Ψ(νa) + 1

)
+
∑
i,j

log V a
i,j −

δa
2

∑
i,j

V a
i,j −

1

µa
,

d2

dν2
a

log p(νa|{V a
i,j}1≤i≤n,1≤j≤g(q+1), δa, µa) = ka

(
1

νa
−Ψ′(νa)

)
,

where Ψ(x) = d
dx

log Γ(x) and Ψ′(x) = d2

dx2
log Γ(x) are respectively the digamma and

trigamma functions. Using the �rst and second derivatives derived above, we can use the

Newton-Raphon method to obtain the mode ν̂a and the negative Hessian evaluated at the

mode, Kνa of this log full conditional density. We then implement an independence chain

Metropolis-Hastings step to draw νa using the Normal proposal N (ν̂a, K
−1
νa ). Similar steps

can be used for sampling (V b
i,j, δb, νb).

Drawing (σ2
i,j, φi, σ

2
h,i)

To sample σ2
i,j, we let

Ê = (YB′0 −XB′ −UA′)�


e−

1
2
h1,111×n1 e−

1
2
h2,111×n2 . . . e−

1
2
hg,111×ng

...
...

...
...

e−
1
2
h1,T 11×n1 e−

1
2
h2,T 11×n2 . . . e−

1
2
hg,T 11×ng


where � is the Hadamard product. Let ei,j be the (j +

∑i−1
k=1 nk)th column of Ê, then it

can be shown that the full conditional distribution can be expressed as follows:

(
σ2
i,j|ei,j

)
∼ IG

(
αy,ij +

T

2
, γy,ij +

1

2
e′i,jei,j

)
.

Next, an independence chain Metropolis-Hastings step is used to obtain draws of φi using

a truncated Normal proposal N (φ̂i, D
−1
φ )1(|φi| < 1), where Dφ,i =

∑T
t=2 h

2
i,t/σ

2
h,i+V −1

φi
and
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φ̂i = D−1
φ

(∑T
t=2 hi,thi,t−1/σ

2
i,h + Vφiφi,0

)
. Given a draw from the proposal φ∗i , the accep-

tance probability is given by min

{
1,
(

1−φ∗2
1−φ2i

) 1
2 × exp

(
−h2i,1(φ2i−φ∗2i )

2σ2
h,i

)}
.

The full conditional distribution of σ2
h,i is inverse-Gamma:

(σ2
h,i|φi) ∼ IG

(
αh,i +

T

2
, γh,i +

1

2

(
(1− φ2

i )h
2
i,1 +

T∑
t=2

(hi,t − φihi,t−1)2

))
.
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B Appendix: Additional Results

B.1 Results setting q = 2

Table 9: RMSFEs for SVMVARs with q = 2

Real GDP

Models h = 1 h = 4 h = 8 h = 12 Average

Small SVMVAR 0.97* 0.95*** 0.95*** 0.94* 0.95

Large SVMVAR 0.89** 0.95 0.91 0.86* 0.90

Large SVMVAR-1SV 1.34 5.90 9.63 2.00 4.72

Large SVMVAR-2SV 0.96** 0.97** 0.92* 0.87 0.93

Large SVMVAR-4SV 0.88*** 0.91*** 0.90** 0.85** 0.89

In�ation

Small SVMVAR 0.98 0.95 0.89** 0.86** 0.92

Large SVMVAR 0.94** 0.94 0.84** 0.80*** 0.88

Large SVMVAR-1SV 2.10 6.12 5.60 3.43 4.31

Large SVMVAR-2SV 0.99 0.90 ** 0.83** 0.84* 0.89

Large SVMVAR-4SV 0.92*** 0.91** 0.82*** 0.81** 0.86

Interest Rate

Small SVMVAR 0.98 0.99 0.93** 0.87*** 0.94

Large SVMVAR 0.96 1.05 1.00 0.92 0.98

Large SVMVAR-1SV 6.14 25.39 5.77 10.16 11.87

Large SVMVAR-2SV 1.00 1.03 0.97 0.94 0.98

Large SVMVAR-4SV 0.94 1.01 0.94 0.88* 0.94

Notes: Model acronyms are explained in Table 3 of the paper. Bold numbers indicate the best

forecast performance at each horizon. Diebold-Mariano test are based on the benchmark Small

SVVAR, ***,** and * denote statistically signi�cant forecast improvements of a given model over

the benchmark at the 1%, 5% and 10% level of signi�cance, respectively.
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Table 10: Cumulative Log predictive likelihoods for SVMVARs with q = 2

Real GDP

Models h = 1 h = 4 h = 8 h = 12 Average

Small SVMVAR 1.17 6.17** 3.14 1.32 2.95

Large SVMVAR 12.62** 2.28 3.19 2.20 5.07

Large SVMVAR-1SV -11.45 -11.16 -3.90 -5.92 -8.11

Large SVMVAR-2SV 13.65** 7.40* 5.73 9.23 9.00

Large SVMVAR-4SV 16.12*** 13.48*** 11.98** 13.90** 13.87

In�ation

Small SVMVAR -0.37 -1.68 9.31** 8.30** 3.89

Large SVMVAR -16.73 -7.95 9.16** 5.65 -2.47

Large SVMVAR-1SV -26.12 -37.76 -11.94 -2.66 -19.62

Large SVMVAR-2SV -44.58 -7.36 16.67** 11.37 -5.98

Large SVMVAR-4SV -3.55 -2.57 14.33** 11.11 4.83

Interest Rate

Small SVMVAR -0.94 8.05** 15.87*** 26.48*** 12.37

Large SVMVAR -0.82 -9.36 -2.13 11.06 -0.31

Large SVMVAR-1SV -86.04 -32.75 -26.19 -27.29 -43.07

Large SVMVAR-2SV -32.19 4.52 12.03 11.06 -1.14

Large SVMVAR-4SV -3.93 -1.97 -1.26 5.07 -0.52

Joint

Small SVMVAR 1.89 2.97 9.53 3.90 4.57

Large SVMVAR -3.32 -9.43 12.22 1.69 0.29

Large SVMVAR-1SV -30.56 -49.72 -9.67 -21.07 -27.75

Large SVMVAR-2SV -20.59 -16.47 15.84*** 15.39*** -1.46

Large SVMVAR-4SV 10.65** 2.74*** 21.03*** 13.54*** 11.99

Notes: Model acronyms are explained in Table 3 of the paper. Bold numbers indicate the best

forecast performance at each horizon. Diebold-Mariano test are based on the benchmark Small

SVVAR, ***,** and * denote statistically signi�cant forecast improvements of a given model over

the benchmark at the 1%, 5% and 10% level of signi�cance, respectively.
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B.2 Probability Integral Transformations (Full Sample)

To distinguish between models with q = 0 and q = 2 lags in the measurement equation of the

SVMVAR models, we augment the model names using the notation 1 and 2, respectively.

For instance, the SVMVAR with q = 0 and q = 2 are respectively labeled as SVMVAR1

and SVMVAR2.

Real GDP

Figure 4: Probability Integral Transformations: One-step-ahead forecasts
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Figure 5: Probability Integral Transformations: Four-step-ahead forecasts

Figure 6: Probability Integral Transformations: Eight-step-ahead forecasts
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Figure 7: Probability Integral Transformations: Twelve-step-ahead forecasts

In�ation

Figure 8: Probability Integral Transformations: One-step-ahead forecasts
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Figure 9: Probability Integral Transformations: Four-step-ahead forecasts

Figure 10: Probability Integral Transformations: Eight-step-ahead forecasts
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Figure 11: Probability Integral Transformations: Twelve-step-ahead forecasts

Interest Rate

Figure 12: Probability Integral Transformations: One-step-ahead forecasts
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Figure 13: Probability Integral Transformations: Four-step-ahead forecasts

Figure 14: Probability Integral Transformations: Eight-step-ahead forecasts
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Figure 15: Probability Integral Transformations: Twelve-step-ahead forecasts
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