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1 Introduction

Time-varying parameter vector autoregressive (TVP-VAR) models are commonly used in

finance and macroeconomics to capture dynamic relations across variables, regime shifts

and/or structural changes in economic processes (see Primiceri, 2005; Cogley and Sargent,

2005; Dangl and Halling, 2012). These models typically assume that the parameters evolve

over time according to a simple stochastic process such as a random walk. While being

rather flexible and parsimonious, this assumption does not allow to examine the extent to

which covariates cause changes in the time-varying parameters (TVPs) over time. Moreover,

wrongly assuming a random walk state equation could negatively impact predictive accuracy

because it essentially implies a smoothness prior on the coefficients. This might be at odds

with the rapid shifts we have observed in financial time series such as bond yields and thus

could negatively impact predictive accuracy.

The literature has dealt with the issue of selecting the appropriate law of motion for time-

varying parameters (TVPs) by estimating different models separately and then using model

selection criteria to discriminate between competing specifications (see, e.g., Sims and Zha,

2006; Koop et al., 2009; Hauzenberger, 2020). But, to the best of our knowledge, no attempt

has been made to develop models that rely on a large set of competing laws of motion for

the coefficients and decide which one describes the data best.

This paper proposes a flexible approach to TVP-VARs that efficiently integrates out

uncertainty with respect to the state evolution equation. The approach assumes that the

TVPs depend on a potentially large panel of covariates. These covariates are commonly

labeled effect modifiers which can be partially latent and might feature their own state

equations. In case they are observed, we obtain a model that is closely related to the varying

coefficient model originally proposed in Hastie and Tibshirani (1993). The main advantage

of using observed, as opposed to latent effect modifiers, is that we can investigate the driving

sources of parameter change. This feature is important if the researcher is interested in

investigating why relations between variables in a VAR change over time, and to what extent
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these changes are explained by the observed effect modifiers.

Careful selection of these effect modifiers is crucial. On the one hand, deciding on the

appropriate set of observed quantities is difficult, and a large set of candidates could arise.

One key objective of this paper is to provide techniques to select promising subsets. On the

other hand, appropriately selecting the latent effect modifiers allows us to capture situations

where parts of the coefficients evolve smoothly whereas others move more abruptly. The

latter behavior of the TVPs is often found for US macroeconomic data (see Sims and Zha,

2006), whereas the former is consistent with financial time series such as bond yields or stock

returns (see Dangl and Halling, 2012; Huber et al., 2019).

Since large VARs often include both macroeconomic as well as financial quantities, a

successful model should be able to accommodate both types of structural change or even

rely on linear combinations of them. This is precisely what we aim to achieve in this paper.

Our approach is capable of answering not only the question why coefficients change, but also

to infer an appropriate law of motion using a broad set of latent quantities, each equipped

with its own state evolution equation. These unobserved quantities range from latent factors

that follow a random walk to Markov switching indicators that allow a subset of parameters

to switch between a low number of regimes. Our model approach nests several alternatives

proposed in the literature such as the TVP-VAR of Primiceri (2005) and Cogley and Sargent

(2005) or the reduced-rank model of Chan et al. (2020).

This large degree of flexibility, however, comes with two concerns. The first is that

overfitting problems can easily arise. We overcome these by using Bayesian shrinkage priors.

Our prior is a variant of the well-known Horseshoe prior (see Carvalho et al., 2010) that allows

us to shrink coefficients associated with irrelevant effect modifiers towards zero. The second

concern relates to computation. Since inclusion of a large number of endogenous variables in

a VAR quickly leads to a huge dimensional parameter space, we propose a computationally

efficient Markov chain Monte Carlo (MCMC) algorithm. To circumvent mixing issues, we

rely on different parameterizations of the model during MCMC sampling. The corresponding
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algorithm thus provides a second important contribution of the paper.

In our empirical work, we use the model approach to forecast the US term structure of

interest rates. We investigate the empirical properties of our approach using two information

sets in the underlying VAR. First, we include several interest rates at different maturities

directly as endogenous variables. Second, we consider a three-factor Nelson-Siegel model for

the term structure of interest rates as in Diebold and Li (2006), and Diebold et al. (2008).

Adopting a long hold-out period that includes several recessionary episodes, our approach

improves upon a wide range of competing models. While improvements for point forecasts are

often muted, we find that our proposed model yields favorable density predictions. The pre-

dictive exercise is complemented by a comprehensive discussion of patterns in time-variation

and their sources. Moreover, how our approach can be used to analyze low frequency relations

between the observed quantities in the model over time.

The rest of the paper is structured as follows. Section 2 introduces the econometric

framework which includes the general form of the TVP-VAR, a flexible law of motion for

the latent states as well as the effect modifiers which crucially impact the state dynamics.

This section, moreover, introduces the Bayesian prior setup and techniques for posterior and

predictive inference. Section 3 applies the model approach to the term structure of US interest

rates. It also serves to illustrate key model features and to highlight the predictive capabilities

of the approach in an out-of-sample forecasting exercise. The last section summarizes and

concludes the paper. Additional technical details and further empirical results are provided

in the Appendix.

2 Flexible Bayesian Inference in TVP-VARs

2.1 The TVP-VAR

Let yt denote an M×1 vector of macroeconomic and financial quantities at time t = 1, . . . , T .

We assume that yt depends on its P lags which we store in a K = MP -dimensional vector
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xt = (y′t−1, . . . ,y
′
t−P )′. Then the basic TVP-VAR can be written as a linear multivariate

regression model:

yt = (IM ⊗ x′t)βt + εt,

where βt represents a set of k = MK dynamic regression coefficients and εt ∼ N (0M ,Σt) is

a vector Gaussian shock process with time-varying M ×M -dimensional variance-covariance

matrix Σt. We assume that Σt can be decomposed as follows:

Σt = QtHtQ
′
t.

Here, Qt denotes an M×M lower triangular matrix with unit diagonal with v(= M(M−1))

free elements denoted by qt. Ht = diag(eh1t , . . . , ehMt) is a diagonal matrix with hjt (j =

1, . . . ,M) representing time-varying log-volatilities. These are assumed to evolve according

to an AR(1) process:

hjt = µj + ψj(hjt−1 − µj) + νjt, νjt ∼ N (0, ς2
j ).

µj is the unconditional mean, ψj the persistence parameter and ς2
j the variance of the log-

volatility process for equation j.

In what follows, we rewrite the TVP-VAR using its non-centered parameterization (Frühwirth-

Schnatter and Wagner, 2010):

yt = (IM ⊗ x′t)(β + β̃t) + (Q+ Q̃t)εt, εt ∼ N (0M ,Ht).

β denotes a k-dimensional vector of constant coefficients, and β̃t = βt − β. This parame-

terization allows us to disentangle time-invariant (encoded by β) from time-varying effects

(encoded by β̃t) for the regressors. For the decomposed variance-covariance matrix, we have

Q, a lower triangular matrix with ones on the diagonal capturing the constant part of the
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covariances. Q̃t = Qt−Q is the corresponding lower triangular matrix with zero-diagonal el-

ements containing the time-varying part. Their free elements are collected in the v×1-vectors

q and q̃t, respectively.

In this paper, the focus is on modeling the N(= k + v)-dimensional vector γ̃t = (β̃′t, q̃
′
t)
′

and the constant part γ = (β′, q′)′. The literature typically assumes that the transition

distribution p(γ̃t|γ̃t−1) is given by:

γ̃t|γ̃t−1 ∼ N (γ̃t−1,V ) with γ̃0 = 0N .

This law of motion suggests that the expected value of γ̃t−1 equals γ̃t and the amount of

time-variation is determined by theN×N -dimensional process innovation variance-covariance

matrix V . This matrix is often assumed to be diagonal. Notice that if selected elements in

V are equal to zero, the corresponding regression coefficients are constant.

Estimation and inference is typically carried out via Bayesian methods. The recent lit-

erature proposes using shrinkage priors to allow for data-based selection of those coefficients

which should be time-varying or constant. This already leads to substantial improvements

in predictive accuracy but does not tackle the fundamental question whether the coefficients

are better characterized by a random walk, a change-point process, or by mixtures of these.

2.2 A General Specification for the TVPs

As discussed in the previous sub-section, the typical assumption is that γ̃t follows a random

walk process. In addition, the shocks to the random walk state equation are often assumed

to feature a positive error variance. We relax both assumptions to allow for more flexibility.

The random walk assumption is relaxed by assuming that the time-varying part stored

in γ̃t depends on a set of R additional factors zt. These zt are the effect modifiers mentioned

in the introduction that can be observed or latent. The relationship between the TVPs and
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zt is given by:

γ̃t = Λzt + ηt. (1)

Λ denotes an N ×R matrix of regression coefficients, and ηt ∼ N (0N ,Ω) is a Gaussian error

term with diagonal error variance-covariance matrix Ω = diag(ω2
1, . . . , ω

2
N). If R � N , the

coefficients feature a factor structure and co-move according to the effect modifiers in zt.

The relationship between γ̃t and zt is determined by the factor loadings in Λ. For instance,

if the jth column of Λ,λj, is equal to zero, the corresponding jth factor in zt does not enter

the model and thus has no influence on γ̃t.

The specific selection of zt is crucial for determining the dynamics of γ̃t. Appropriate

choice of zt yields a variety of important special cases that depend on the specific values of

Λ and Ω as well as on the composition of zt. In this sub-section, we briefly focus on special

cases that arise independently of the choice of zt. The next sub-section deals with cases that

arise if zt is suitably chosen.

These two cases are the following. If Λ = 0N×R, with 0N×R being a N×R matrix of zeros,

we obtain a random coefficients model that assumes that the regression coefficients follow a

white noise process (for some recent papers that follow this approach, see Korobilis, 2019;

Hauzenberger et al., 2019). The second special case arises if both Λ = 0N×R and Ω = 0N×N .

In this case, we obtain a standard constant parameter regression model.

Before we discuss the choice of zt, it is worth noting that if zt is (partially) latent, the

model in Eq. (1) is not identified. Since our object of interest is γt, this poses no greater

issues. If we wish to structurally interpret elements in zt, standard identification strategies

from the literature on dynamic factor models can be used (see, e.g., Geweke and Zhou, 1996;

Aguilar and West, 2000; Stock and Watson, 2011).
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2.3 Possible Choices for the Effect Modifiers

The specific choice of zt is crucial in determining how γ̃t behaves over time. Hence, by suitably

choosing the elements in zt, our model approach is related to the following specifications:

• Chan et al. (2020): We assume that zt consists exclusively of a sequence of R = Rτ latent

factors τt, which follow a multivariate random walk:

τt = τt−1 + νt, νt ∼ N (0,Vτ ).

Vτ = diag(v2
1, . . . , v

2
Rτ

) denotes a diagonal variance-covariance matrix with v2
j being process

innovation variances that determine the smoothness of the elements in τt. Note that setting

v2
j close to zero effectively implies that τjt, the jth element in τt, is constant. This model

implies a factor structure in γ̃t if Rτ � N .

• Primiceri (2005): If R = Rτ = N , the elements in zt are random walks, and Λ = IN ,

we obtain a standard time-varying parameter model. Assuming that the covariances are

constant we obtain the model put forth in Cogley and Sargent (2005).

• Sims and Zha (2006): A Markov switching model can be obtained by setting zt = St, with

St ∈ {0, 1} denoting a binary indicator with transition probabilities given by:

p(St = i|St−1 = j) = pij for i, j = 0, 1,

with pij denoting the (i, j)th element of a 2× 2-dimensional transition probability matrix

P . Inclusion of this random quantity allows to capture structural breaks in γ̃t that are

common to all coefficients.

• Caggiano et al. (2017): Assuming that zt is exclusively composed of observed quantities

we obtain a regression model with interaction terms.

These examples show that our model, conditional on choosing a suitable set of effect modifiers,
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is capable of mimicking several prominent specifications in the literature. Since the question

on the appropriate state evolution equation is essentially a model selection issue, we simply

specify zt to include most (with the exception of the R = N setup) of the modifiers discussed

above.

More precisely, we set zt as follows:

zt = (r′t,S
′
t, τ
′
t)
′.

Here we let rt denote a set ofRr observed factors and the dimension of zt is thusR = Rr+RS+

Rτ with RS = M . To allow for additional flexibility we assume that τt = (τ ′1t, . . . , τ
′
Mt)

′ with

τjt being equation-specific factors of dimension Rτj (and thus Rτ =
∑

j Rτj). Assuming that

Rτi = Rτj = δ for all i, j, we haveRτ = δM latent random walk factors. Likewise, we estimate

a separate Markov switching indicator Sjt per equation (and thus St = (S1t, . . . , SMt)
′, with

the corresponding transition probabilities matrix denoted by Pj).

The corresponding loadings matrix Λ is structured such that the loadings in equation

j associated with the factors τit and Sit for i 6= j equal zero. This assumption strikes a

balance between assuming a large number of latent factors to achieve maximum flexibility

(and thus risk overfitting) and using a rather parsimonious model (with the risk of being too

simplistic). Recent contributions use similar assumptions on the state evolutions, (see Koop

et al., 2009; Maheu and Song, 2018). As opposed to these papers, our approach offers more

flexibility since, if necessary, the presence of the idiosyncratic shocks to the TVPs allows for

deviations if the factor structure does not represent the data well.

Our specification implies that, depending on the factor loadings Λ, the evolution of γ̃t

might be a combination of a set of random walk factors, a Markov switching process and

some observed quantities. To single out irrelevant elements in zt, one could simply set the

corresponding columns in Λ equal to zero. In this paper, we achieve this through a Bayesian

shrinkage prior. The next sub-section discusses our priors in more detail.
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2.4 The Prior Setup

The discussion in Sub-section 2.1 shows that our model approach nests a variety of com-

peting models. To select the appropriate model variant and alleviate over-parameterization

concerns, we opt for a Bayesian approach to introduce shrinkage. Here, we summarize the

priors we impose on key parameters.

In light of the specific choice of zt, we introduce some additional notation to clarify details

on our prior implementation. Let us assume that Λ is composed of the following matrices:

Λ = [Λr ΛS Λτ ],

where Λr is an N ×Rr matrix of loadings related to the observed quantities, ΛS denotes an

N×RS matrix of loadings related to St, and Λτ represents an N×Rτ factor loadings matrix

associated with τt.

For imposing shrinkage we rely on variants of the horseshoe prior (Carvalho et al., 2010).1

While in principle any global-local shrinkage prior may be used, we choose the horseshoe prior

due to its excellent shrinkage properties and the lack of tuning parameters. In particular, we

specify a column-wise horseshoe prior on the loadings matrix. Let Λj denote a sub-matrix

of the free elements in Λ corresponding to the jth equation, and λji mark the ith column of

this matrix. λji,` refers to the `th element of this vector. The prior is given by:

λji,`|κji,`, δji ∼ N (0, κ2
ji,`δ

2
ji), κji,` ∼ C+(0, 1), δji ∼ C+(0, 1).

Here, C+(0, 1) denotes the half Cauchy distribution, and δji is an equation- and column-

specific global shrinkage factor, while κji,` is a local scaling parameter.

To further regularize our potentially huge-dimensional parameter space, we impose an

equation-wise horseshoe prior on the constant part of the regression coefficients and covari-

1In principle, it would be possible to design priors in the Minnesota tradition (see, e.g., Giannone et al.,
2015) which introduce more structure in terms of achieving shrinkage. However, since our model nests several
competing specifications, more flexible shrinkage priors appear to be better suited.
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ances in γj corresponding to the jth equation. Let γji denote the ith element of the vector.

The setup is similar to the one of the loadings matrix, and given by the hierarchical structure:

γji|ξji, ζj ∼ N (0, ξ2
jiζ

2
j ), ξji ∼ C+(0, 1), ζj ∼ C+(0, 1).

The hyperparameter ζj is an equation-specific global shrinkage factor, while the ξji’s are local

scalings.

We mentioned earlier that it is often assumed that shocks to the states feature positive

error variances. To introduce shrinkage of ωii towards zero, we impose a horseshoe prior also

on the square root of the innovation variances of the measurement errors in Eq. (1). This prior

is specified in an equation-specific manner. For equation j, let ωj denote a vj(= j − 1 + k)-

dimensional vector which stores the diagonal elements in Ω associated with the jth equation.

This includes the process innovation variances on the k regression coefficients and the j − 1

covariance parameters in Q̃t. The square root of the ith element of ωj,
√
ωji, features the

following prior hierarchy:

√
ωji|$ji, ϑj ∼ N (0, $2

jiϑ
2
j), $ji ∼ C+(0, 1), ϑj ∼ C+(0, 1).

Choosing a Gaussian prior on the square root of the variance in the first level of the hierarchy

implies a Gamma prior on ωji, with ωji|$ji, ϑj ∼ G
(
1/2, $−2

ji ϑ
−2
j /2

)
, see also Frühwirth-

Schnatter and Wagner (2010). The hyperparameters ϑj and $ji are again equation-specific

global and local shrinkage parameters. Furthermore, we set Vτ = IRτ and thus impose

shrinkage through the factor loadings in Λτ (see Chan et al., 2020).

On the parameters of the state equation of the log-volatility processes µj, ψj and ς2
j , we

use the setup proposed in Kastner and Frühwirth-Schnatter (2014). That is, we assume a

Gaussian prior on the unconditional mean, µj ∼ N (0, 102), a Beta prior on the transformed

autoregressive parameter, (ψj + 1)/2 ∼ B(5, 1.5), a Gamma prior on the state variance,

ς2
j ∼ G(1/2, 1/2), while the prior on the initial state is the unconditional distribution for all
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j = 1, . . . ,M .

For the equation-specific transition probabilities Pj of Markov switching indicators, we

assume that the (i, i)th element pj,ii arises from a Beta distribution given by:

pj,ii ∼ B(ei0, ei1), for i = 0, 1, j = 1, . . . ,M,

and hence pj,i` = 1 − pj,i` for i 6= `. In the empirical application, we define e00 = e11 = 10

and e01 = e10 = 1, in order to weakly push each Sjt towards a single-state a priori.

2.5 Full Conditional Posterior Simulation

To simulate from the full posterior distribution we develop an efficient MCMC algorithm.

Since full-system estimation of the VAR quickly becomes computationally cumbersome, we

rely on the equation-by-equation algorithm suggested in Carriero et al. (2019).

Conditional on Qt, one can state the VAR as a system of (conditionally) independent

equations. The first equation of this system is given by:

y1t = x′t(β1 + β̃1t) + ε1t,

and the jth equation (j > 1):

yjt = x′t(βj + β̃jt) + u′jt(qj + q̃jt) + εjt. (2)

βj and β̃jt denote the jth subvectors of the constant and time-varying parts in βt with

βt = (β′1t, . . . ,β
′
Mt)

′ and ujt = (ε1t, . . . , εj−1,t)
′. The (j − 1)-dimensional vectors qj and

q̃jt store the constant and time-invariant part of the free elements in the jth row of Qt.

This approach allows to estimate the different elements of γt that relate to the M equations

independently from each other conditional on the shocks to the preceding j − 1 equations.

This speeds up computation enormously.
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Equation (2) can be simplified to yield:

yjt = m′jt(γj + γ̃jt) + εjt, (3)

where mjt = (x′t,u
′
jt)
′, γ̃jt = γjt − γj, and γjt refers to the TVPs associated with the jth

equation in γt, and γj denotes the corresponding constant part. All the following steps will

be carried out on an equation-by-equation basis and making use of the regression form in Eq.

(3). For notational simplicity, we assume that all elements in zt are latent. In light of the

discussion in Sub-section 2.3, this implies that zjt = (τ ′jt, Sjt)
′ and the extension to include

observed factors is trivial.

Sampling zjt. Conditional on the remaining quantities of the model, we simulate the

latent (random walk and Markov switching) components in zjt after integrating out γ̃jt. This

is achieved by rewriting Eq. (3) as:

ỹjt = m′jtΛjzjt +m′jtηjt + εjt, (4)

with ỹjt = yjt −m′jtγj. Defining m̃′jt = m′jtΛj and ε̂jt = m′jtηjt + εjt allows us to cast Eq.

(4) as a simple linear regression model:

ỹjt = m̃′jtzjt + ε̂jt, ε̂jt ∼ N (0,m′jtdiag(ωj)mjt + ehjt). (5)

This parameterization has the advantage that it does not depend on γ̃jt, and zjt can thus

be sampled marginally of γ̃jt. This improves mixing substantially since γ̃jt and zjt will often

be highly correlated (for a detailed discussion of this issue, see Gerlach et al., 2000; Giordani

and Kohn, 2008).

Depending on the precise laws of motion for the elements in zjt, standard algorithms can

now be used. In this paper, we use two different law of motions. For the latent random walk

factors in τjt, we use the forward filtering backward sampling algorithm outlined in Carter
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and Kohn (1994), and Frühwirth-Schnatter (1994). In case of the latent Markov switching

factors in Sjt, we use the algorithm outlined in Kim and Nelson (1999). Both algorithms

are well known and relevant details may be found in the original papers. Here, it suffices to

note that in both cases, sampling the latent states is computationally easy since the state

space is low dimensional with R � N . In this setting, sampling the factors equation-wise

can be carried out in O(R3) steps, a substantial computational improvement relative to the

O(N3) steps necessary to estimating an unrestricted TVP regression (see also the discussion

in Chan et al., 2020).2

Sampling the state innovation variances. To obtain draws for the state innovation

variances, reconsider Eq. (1) and draw them conditional on the observed/latent states and

the factor loadings using a generalized inverse Gaussian distribution (see, among others, Bitto

and Frühwirth-Schnatter, 2019). For further details and the moments of this distribution,

see Appendix A.

Sampling Λj and γj jointly. Similarly to zjt, we sample the non-zero loadings in Λ

and the time-invariant coefficients marginally of γjt by using equation-by-equation estimation.

The observation equation for equation j (conditional on zjt) can be written as a standard

regression model:

yjt = m̂′jtγ̂j + ε̂jt, (6)

where m̂jt = (m′jt, (zjt ⊗ mjt)
′)′ is an Rv2

j -dimensional vector of covariates, and γ̂j =

(γ ′j, vec(Λj)
′)′ denoting an Rv2

j -dimensional coefficient vector. The posterior of γ̂j is Gaussian

with well known moments.

Sampling the stochastic volatilities. The latent log-volatility processes can again be

sampled on an equation-by-equation basis. This step is implemented using the R-package

stochvol.

2It is worth mentioning that the O(N3) statement is true for the precision sampler and differs for forward-
filtering backward-sampling algorithms.

14



Sampling the horseshoe prior hyperparameters. Our assumptions imply analogous

horseshoe priors for the factor loadings matrix, the constant part of the coefficients and the

square root of the state innovation variances. Sampling is carried out using the algorithm

described in Makalic and Schmidt (2015). Exact posteriors are provided in Appendix A.

3 Forecasting US Government Bond Yields

This section applies the model to predict the term structure of US interest rates. These time

series are characterized by substantial non-linearities (e.g. during the period of the zero lower

bound), feature substantial co-movement both in the level of the time series but also in the

parameters describing their evolution. Our proposed model framework might thus be well

suited to capture such features. We investigate this claim in a thorough forecasting exercise

using several established benchmarks. After showing that our approach yields favorable

forecasts, we discuss the driving forces behind parameter changes as well as discuss how key

quantities that shape yield curve dynamics co-move over time at low frequencies.

3.1 Data and Design of the Forecasting Exercise

Our aim is to predict monthly zero-coupon yields of US treasuries at different yearly matu-

rities. The data is described in detail in Gürkaynak et al. (2007).3 The target variables are

1, 3, 5, 7, 10 and 15 years maturities. For stability reasons, all variables enter our model in

first differences.

Estimation and forecasting is carried out recursively. Using data from 1973:01 to 1999:12,

we produce one-month-ahead and three-months-ahead forecasts for 2000:01. After obtaining

the predictive distributions we expand the sample and repeat this procedure until we reach

2019:12.4 Point forecast performance is measured using Root Mean Squared Errors (RMSEs),

3Available online at federalreserve.gov/data/nominal-yield-curve.htm.
4Note that for our set of financial indicators, data revisions and ragged edges arising from delays in

the publication of the series do not matter. This is due to financial market data being available almost
instantaneously, and the published quotes are not subject to revisions at later dates.
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while density forecasts are assessed in terms of Log Predictive Bayes Factors (LPBFs), aver-

aged over the out-of-sample observations (Geweke and Amisano, 2010).

For analyzing the role of observed factors governing joint dynamics of the TVPs, we rely

on three exogenous variables:

(a) a binary recession indicator (labeled REC) for the US, dated on a monthly basis by the

Business Cycle Dating Committee of the National Bureau of Economic Research,

(b) the National Financial Conditions Index (NFCI), maintained by the Federal Reserve

Bank of Chicago, downloaded from the FRED database of the Federal Reserve Bank

of St. Louis (available online at fred.stlouisfed.org), and

(c) the Risk-Free (RF) interest rate from the Fama-French Portfolios and Factors database,

provided on the web page of Kenneth R. French as another important early warning

indicator.5 Thus, rt = (rNGCI,t−1, rREC,t−1, rRF,t−1)′ and Rr = 3. Exogenous variables

enter the model as first order lags. Higher-order forecasts involving exogenous variables

are based on random walk predictions of these quantities.

We use these three effect modifiers for simple reasons. First, there is strong evidence that

yield curve dynamics differ across business cycle phases (see, e.g., Hevia et al., 2015). Second,

the RF interest rate serves as an early warning indicator which possesses predictive power

for changes in the shape of the yield curve. Finally, the inclusion of the NFCI is motivated

by the recent literature on forecasting tail risks in macroeconomic and financial time series

(see, e.g., Adrian et al., 2019; Carriero et al., 2020; Adams et al., 2021).

3.2 Competing Model Specifications

The forecast exercise distinguishes between two model classes, with 15 distinct model spec-

ifications in each class. The first model class involves TVP-VARs that incorporate the six

target variables as endogenous variables, that is M = 6. This model class is labeled as VAR.

5Available online at mba.tuck.dartmouth.edu/pages/faculty/ken.french.
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The second model class includes specifications based on the three-factor Nelson-Siegel

(NS) model as in Diebold and Li (2006) that imposes a factor structure on the yields:

it(θ) = Lt +

(
1− exp(−θα)

θα

)
Š t +

(
1− exp(−θα)

θα
− exp(−θα)

)
Çt,

where it(θ) denotes the yield at maturity θ at time t, Lt is a factor that controls the level, Š t

determines the slope, and Çt represents the curvature factor of the yields. The parameter α

governs the exponential decay rate. To maximize the loading on Çt we set α = 0.7308 (12×

0.0609).6 In what follows, we use the latent factors Lt, Š t and Çt as endogenous variables in

the VAR specifications by defining yt = (Lt, Š t, Çt)
′, resulting in M = 3. These factors are

obtained by running OLS on a t-by-t basis and then used as actual data within our model.

This model class is subsequently labeled NS-VAR.

Model specifications are differentiated over a grid of effect modifier combinations. In

particular, specifications within a model class differ in terms of three aspects (see Table 1):

First, in terms of whether the three exogenous variables (collected in rt) are included in

zt or not (”x” marks inclusion, ”–” indicates no observed factors); second, in terms of the

number of latent random walk factors Rτj included in zt (which we assume to be equal across

equations); and third, in terms of the presence of Markov switching indicators in St, again

with ”x” marking their inclusion and ”–” their absence. This setup implies that we have 15

time-varying parameter NS-VAR and 15 time-varying parameter VAR model specifications.

For comparative purposes we also consider the two class-specific constant parameter model

variants, labeled “Constant,” and a conventional independent random walk specification of

the TVPs (implying that we set the number of random walk factors equal to K and exclude

rt and St).
7 Notice that we also have a specification which includes only St and another one

which uses only observed factors. The latter one is closely related to a Markov switching

model whereas the second one closely resembles a VAR with interaction terms.

6See Diebold and Li (2006) for a discussion of this specific choice.
7It is worth stressing that the constant parameter VAR is equipped with a Horseshoe prior and thus allows

for flexible shrinkage towards simpler model specifications such as a random walk with stochastic volatility.

17



3.3 Results

Table 1 shows the one-month and one-quarter-ahead out-of-sample forecasting results for

US treasury yields at different maturities, using the 30 TVP model specifications and the

two constant parameter model variants as described in the previous sub-section. Recall that

M = 3 (and K = 9) in case of the NS-VAR and M = 6 (and K = 18) in case of the

VAR model variants. zt = (r′t,S
′
t, τ
′
t) where rt denotes Rr(= 3)-dimensional vector, St a

RS-dimensional vector, and τt a Rτ -dimensional vector. All specifications feature P = 3 lags

of the endogenous variables. Diebold and Li (2006) specify VAR(1) transition dynamics for

the yield curve factors. Here, we use three lags and rely on the shrinkage prior to select an

appropriate lag order by pushing coefficients associated with irrelevant lags towards zero.

The performance of point forecasts is measured in terms of RMSEs and that of density

forecasts in terms of LPBFs, relative to the constant parameter VAR model (shaded in

yellow) that serves as benchmark. RMSEs are presented in ratios, and LPBFs in differences

are given below the RMSEs in parentheses. RMSEs below one indicate superior performance,

relative to the benchmark, as LPBF figures greater than zero do. The best performing model

specification by column is given in bold, highlighting the specification with the smallest

RMSE ratio and the largest positive LPBF difference, respectively.

The vast range of competing specifications, loss functions used to evaluate forecasts and

maturities makes it hard to identify a single best performing model. We first provide a

general overview on model performance and then zoom into differences in predictive accuracy

for point and density forecasts.

At a very general level, Table 1 suggests a pronounced degree of heterogeneity in forecast

accuracy across models and for both the NS-VAR and VAR specifications. While differences

at some maturities are substantial, they are muted or non-existent for others. It is also

worth mentioning that the TVP variants of the NS-VAR and VAR models outperform the

constant parameter specifications in most cases (apart from one-quarter ahead point forecasts

of treasuries with a maturity of five years). This general observation holds true irrespective of
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Table 1: Out-of-sample forecasting results for US treasury yields at different maturities using TVP-NS-VAR and TVP-VAR
model specifications (Numbers refer to relative RMSEs while those in the parentheses relate to average Log Predictive Bayes
Factors between a given model and the unrestricted constant parameter VAR.)

Model Specification One-month-ahead One-quarter-ahead

rt δ St Joint 1 year 3 year 5 year 7 year 10 year 15 year Joint 1 year 3 year 5 year 7 year 10 year 15 year

TVP-NS-VAR x 6 x 0.78 0.91 0.95 0.94 0.89 0.79 0.61 0.95 0.99 1.04 1.01 0.98 0.94 0.85
(-0.79) (-0.28) (-0.11) (0.03) (0.14) (0.34) (0.72) (-1.42) (-0.35) (-0.20) (-0.06) (-0.01) (0.01) (0.10)

x 3 x 0.79 0.96 1.00 0.96 0.90 0.78 0.60 0.95 1.03 1.06 1.02 0.98 0.94 0.84
(-0.66) (-0.21) (-0.09) (0.04) (0.14) (0.35) (0.73) (-1.35) (-0.27) (-0.14) (-0.03) (0.00) (0.02) (0.11)

x 1 x 0.77 0.94 0.96 0.93 0.88 0.77 0.59 0.95 1.04 1.05 1.01 0.98 0.94 0.84
(-0.67) (-0.14) (-0.04) (0.06) (0.15) (0.34) (0.73) (-1.19) (-0.21) (-0.10) (-0.01) (0.01) (0.02) (0.11)

x 6 – 0.80 0.93 0.98 0.96 0.91 0.79 0.61 0.94 0.96 1.00 0.99 0.97 0.94 0.85
(-0.89) (-0.32) (-0.16) (0.00) (0.13) (0.34) (0.72) (-1.50) (-0.39) (-0.23) (-0.07) (-0.01) (0.02) (0.11)

x 3 – 0.79 0.92 0.98 0.96 0.91 0.79 0.60 0.92 0.95 0.99 0.97 0.95 0.92 0.83
(-0.66) (-0.22) (-0.10) (0.03) (0.14) (0.35) (0.72) (-1.26) (-0.27) (-0.16) (-0.03) (0.02) (0.04) (0.13)

x 1 – 0.78 0.92 0.98 0.95 0.89 0.77 0.59 0.93 0.96 0.99 0.97 0.96 0.93 0.83
(-0.63) (-0.18) (-0.08) (0.05) (0.15) (0.36) (0.74) (-1.26) (-0.24) (-0.13) (-0.02) (0.02) (0.04) (0.13)

– 6 x 0.79 0.96 0.97 0.95 0.90 0.79 0.60 0.94 1.04 1.03 1.00 0.97 0.93 0.84
(-0.86) (-0.30) (-0.11) (0.04) (0.15) (0.35) (0.72) (-1.49) (-0.37) (-0.19) (-0.05) (0.00) (0.01) (0.09)

– 3 x 0.78 0.95 0.95 0.93 0.89 0.78 0.60 0.94 1.02 1.03 0.99 0.96 0.93 0.83
(-0.70) (-0.21) (-0.06) (0.06) (0.15) (0.34) (0.72) (-1.25) (-0.28) (-0.13) (-0.02) (0.02) (0.03) (0.11)

– 1 x 0.78 0.98 0.97 0.94 0.89 0.78 0.60 0.92 0.99 0.99 0.97 0.95 0.92 0.83
(-0.70) (-0.18) (-0.04) (0.07) (0.17) (0.36) (0.73) (-1.16) (-0.22) (-0.09) (0.00) (0.02) (0.03) (0.12)

– 6 – 0.79 0.94 0.97 0.95 0.90 0.79 0.61 0.93 0.98 0.99 0.97 0.96 0.93 0.84
(-0.91) (-0.33) (-0.15) (0.00) (0.12) (0.33) (0.70) (-1.43) (-0.40) (-0.23) (-0.07) (-0.01) (0.02) (0.10)

– 3 – 0.79 0.94 0.96 0.95 0.90 0.79 0.60 0.92 0.98 0.98 0.96 0.95 0.92 0.83
(-0.86) (-0.23) (-0.10) (0.04) (0.15) (0.34) (0.72) (-1.37) (-0.29) (-0.15) (-0.02) (0.02) (0.03) (0.12)

– 1 – 0.78 0.95 0.97 0.94 0.89 0.78 0.60 0.91 0.97 0.97 0.96 0.95 0.91 0.82
(-0.72) (-0.20) (-0.06) (0.05) (0.15) (0.34) (0.72) (-1.30) (-0.22) (-0.11) (0.00) (0.03) (0.04) (0.11)

x – – 0.78 0.93 0.99 0.95 0.89 0.77 0.59 0.91 0.95 0.97 0.96 0.95 0.91 0.82
(-0.36) (0.05) (0.00) (0.07) (0.16) (0.35) (0.74) (-0.95) (0.02) (-0.02) (0.03) (0.05) (0.06) (0.15)

– – x 0.78 0.95 0.98 0.95 0.89 0.78 0.60 0.94 1.05 1.03 0.99 0.96 0.93 0.83
(-0.76) (-0.24) (-0.07) (0.04) (0.14) (0.33) (0.71) (-1.26) (-0.29) (-0.12) (-0.03) (0.00) (0.01) (0.11)

– K – 0.79 0.96 0.98 0.95 0.90 0.78 0.60 0.92 0.99 1.00 0.97 0.95 0.92 0.83
(-0.42) (0.11) (0.01) (0.07) (0.15) (0.34) (0.71) (-1.02) (0.07) (-0.01) (0.02) (0.03) (0.03) (0.11)

Constant 0.79 1.01 0.99 0.96 0.90 0.78 0.60 0.91 0.99 0.97 0.96 0.95 0.92 0.82
(-0.82) (-0.37) (-0.11) (0.03) (0.13) (0.33) (0.71) (-1.34) (-0.36) (-0.13) (-0.01) (0.02) (0.03) (0.12)
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Table 1 continued

Model Specification One-month-ahead One-quarter-ahead

rt δ St Joint 1 year 3 year 5 year 7 year 10 year 15 year Joint 1 year 3 year 5 year 7 year 10 year 15 year

TVP-VAR x 6 x 0.79 0.92 0.96 0.94 0.89 0.79 0.60 0.94 0.96 0.99 0.98 0.97 0.94 0.84
(1.13) (0.06) (0.03) (0.07) (0.14) (0.33) (0.68) (0.63) (-0.01) (-0.01) (0.00) (0.00) (0.01) (0.08)

x 3 x 0.78 0.92 0.96 0.94 0.89 0.78 0.60 0.94 0.98 1.00 0.99 0.98 0.94 0.84
(1.20) (0.09) (0.03) (0.06) (0.14) (0.33) (0.70) (0.55) (0.01) (-0.02) (-0.01) (0.00) (0.02) (0.10)

x 1 x 0.79 0.93 0.97 0.95 0.89 0.78 0.60 0.93 0.96 0.99 0.98 0.97 0.94 0.84
(1.52) (0.10) (0.03) (0.06) (0.14) (0.33) (0.70) (0.83) (0.02) (0.00) (0.01) (0.01) (0.02) (0.12)

x 6 – 0.79 0.93 0.98 0.95 0.90 0.79 0.60 0.94 0.99 1.00 1.00 0.98 0.95 0.84
(1.26) (0.06) (0.04) (0.07) (0.15) (0.34) (0.69) (0.69) (0.01) (0.01) (0.02) (0.02) (0.03) (0.10)

x 3 – 0.78 0.91 0.96 0.94 0.89 0.79 0.60 0.94 0.98 1.00 1.00 0.98 0.95 0.85
(1.20) (0.11) (0.06) (0.09) (0.16) (0.34) (0.71) (0.66) (0.03) (0.02) (0.02) (0.03) (0.04) (0.12)

x 1 – 0.78 0.91 0.96 0.94 0.89 0.78 0.60 0.92 0.96 0.97 0.97 0.96 0.93 0.83
(1.56) (0.13) (0.06) (0.08) (0.15) (0.34) (0.72) (0.61) (0.07) (0.05) (0.04) (0.04) (0.05) (0.14)

– 6 x 0.81 0.95 0.97 0.95 0.91 0.81 0.63 0.97 1.00 1.00 1.00 1.00 0.98 0.90
(0.95) (0.02) (0.03) (0.07) (0.13) (0.32) (0.67) (0.45) (-0.04) (-0.03) (-0.01) (-0.01) (0.00) (0.06)

– 3 x 0.79 0.95 0.98 0.95 0.90 0.79 0.60 0.93 0.99 0.99 0.97 0.96 0.93 0.83
(1.08) (0.06) (0.02) (0.06) (0.12) (0.31) (0.68) (0.28) (-0.01) (-0.02) (-0.01) (-0.01) (0.01) (0.08)

– 1 x 0.78 0.95 0.96 0.94 0.89 0.79 0.60 0.95 0.97 0.98 0.98 0.98 0.96 0.87
(1.29) (0.08) (0.04) (0.07) (0.14) (0.32) (0.69) (0.44) (0.04) (0.00) (-0.01) (-0.01) (0.00) (0.09)

– 6 – 0.79 0.95 0.96 0.95 0.90 0.79 0.60 0.92 0.99 0.98 0.97 0.96 0.93 0.83
(1.04) (0.04) (0.05) (0.08) (0.15) (0.34) (0.69) (0.32) (-0.03) (0.01) (0.02) (0.03) (0.04) (0.11)

– 3 – 0.79 0.94 0.97 0.94 0.89 0.79 0.61 0.93 0.98 0.98 0.97 0.96 0.93 0.83
(1.27) (0.08) (0.05) (0.08) (0.15) (0.34) (0.70) (0.61) (0.00) (0.03) (0.04) (0.05) (0.06) (0.13)

– 1 – 0.79 0.95 0.96 0.95 0.90 0.79 0.61 0.92 0.99 0.99 0.97 0.95 0.92 0.82
(1.58) (0.09) (0.06) (0.08) (0.15) (0.35) (0.72) (0.78) (0.04) (0.04) (0.05) (0.05) (0.06) (0.15)

x – – 0.79 0.93 0.97 0.95 0.90 0.79 0.60 0.93 0.98 0.99 0.98 0.97 0.93 0.83
(1.26) (0.12) (0.04) (0.07) (0.14) (0.35) (0.75) (0.75) (0.07) (0.03) (0.02) (0.01) (0.03) (0.15)

– – x 0.79 0.94 0.96 0.93 0.89 0.79 0.61 0.93 0.97 0.97 0.97 0.96 0.94 0.86
(0.83) (0.07) (0.02) (0.07) (0.14) (0.33) (0.70) (0.49) (0.02) (0.00) (0.01) (0.01) (0.02) (0.11)

– K – 0.79 0.94 0.96 0.95 0.90 0.80 0.61 0.93 0.98 0.98 0.97 0.96 0.93 0.83
(0.28) (0.17) (0.03) (0.04) (0.10) (0.27) (0.67) (-0.15) (0.12) (0.01) (-0.02) (-0.03) (-0.04) (0.07)

Constant 0.85 0.39 0.59 0.72 0.82 0.99 1.28 0.76 0.43 0.62 0.73 0.81 0.87 0.96
(2.04) (-0.21) (-0.81) (-1.08) (-1.25) (-1.49) (-1.87) (2.26) (-0.30) (-0.84) (-1.08) (-1.19) (-1.26) (-1.35)

Notes: We present the results of out-of-sample one-month-ahead and one-quarter-ahead forecasting from the 15 TVP-NS-VAR and 15 TVP-VAR model variants for maturities
1, 3, 5, 7, 10 and 15 years and the corresponding joint measure across all maturities. Specifications of the TVP model variants are differentiated over a grid of effect modifier
combinations, in terms of whether the exogenous variables in rt are included or not (“x” marks inclusion, “–” indicates absence), the number δ = Rτ/M of latent factors per
equation (with δ = K yielding conventional independent random walk specifications for the TVPs) and the presence of Markov switching factors in St, again with “x” marking
inclusion and “–” absence. “Constant” labels a conventional constant parameter VAR. M = 3 and K = 9 in the case of NS-VAR, and M = 6 and K = 18 in the case of VAR.
We estimate and forecast recursively, using data from 1973:01 to the time that the forecast is made, beginning in 2000:01 through 2019:12. Root Mean Squared Errors
(RMSEs) and Log Predictive Bayes Factors (LPBFs), averaged over the out-of-sample observations are given relative to the constant parameter VAR
model (shaded in yellow). The best performing model specification by column is given in bold, highlighting the specification with the smallest RMSE
ratio and the largest positive LPBF difference, respectively.
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whether only point forecasts or the full predictive distribution are considered. These accuracy

premia point towards the necessity of addressing structural breaks in the dynamic evolution

of the yield curve.

Comparing the NS-VAR and VAR specifications indicates that the latter usually perform

better for density forecasts, while the former are often superior in terms of point forecasts.

The better point forecasting performance of the NS-VAR suggests that the three factors

contain relevant information for the first moment of the predictive distribution. When we

also consider higher order moments, this story changes. The better density performance

of the VAR models is most likely driven by two sources. The first is that, as opposed to

the conditional mean, the strong implicit assumptions of the NS-VAR on the prediction

error variance-covariance matrix seems overly restrictive. Allowing for richer dynamics in

the covariances by explicitly modeling the shocks to a panel of yields thus yields better

density forecasts. The second fact is that the small-scale NS-VARs might feature a too

tight predictive variance since relevant information is ignored. And this could harm density

forecasting accuracy during turbulent times.

Next, we zoom into specific model classes. Within these, differences in performance along

sub-divisions (provided by the inclusion/exclusion of the exogenous variables or the Markov

switching processes and the number of latent random walk factors) are often negligible. This

finding indicates that our flexible approach to probabilistically selecting the most adequate

state evolution via Bayesian shrinkage is successful, and thus not susceptible to overfitting

concerns.

We now turn to considering model-specific forecasting accuracy with the aim to find the

best performing models for point and density forecasts and for the two different forecast

horizons. The overall winner for point forecasts at the one-month horizon, on average, is the

flexible NS-VAR model specification featuring the exogenous variables, one latent factor per

equation and the Markov switching processes. While this specification yields RMSEs that

are 23 percent lower than those of the benchmark specification, it must be acknowledged
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that most competing specifications exhibit values that are similar in magnitude. The same

is true for the best-performing model specification at the one-quarter-ahead horizon, the

one-factor NS-VAR without exogenous variables and Markov switching processes, albeit at

much smaller margins versus the benchmark. Here, improvements are about nine percent in

terms of relative RMSEs. Assessing predictive performance for individual maturities allows

to identify which segment of the yield curve drives the overall results. While gains for shorter

maturities in the case of one-month-ahead forecasts are muted, we observe large gains at the

long end of the yield curve. Relative to the best performing specification, improvements are

about 40 percent in RMSE terms for the best performing specification. The same is true for

one-quarter-ahead forecasts, however, at smaller margins of about 20 percent.

We proceed with our findings for density forecasts. As mentioned above, the VAR spec-

ifications overall exhibit more favorable relative LPBFs compared to the NS-VAR. This is

easily observable by noting that most bold values (in parentheses) are located in the lower

panel of Table 1. In terms of average performance at the one-month horizon, we find that

the TVP-VAR specification with one factor but no exogenous variables or Markov switching

performs best, closely followed by the most flexible specification with one unobserved factor

including Markov switching. This again serves as an example that even though it is ex-

tremely flexible, our approach to shrinking the parameter space avoids overfitting and does

not harm predictive performance. In fact, for one-quarter-ahead forecasts, the TVP-VAR

with exogeneous variables, one latent factor and Markov switching shows the largest gains in

terms of density forecasts. Again, it must be acknowledged that margins within this model

class are rather small. As it is the case for point forecasts, these gains are mostly obtained in

terms of the long end of the yield curve, while gains in forecast accuracy at shorter horizons

are negligible.

Summing up, while improvements relative to established models are often small, our

proposed framework is competitive for most maturities at both the one-month and one-

quarter ahead horizons. Main differences arise from the considered model class, with the NS-
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VAR exhibiting promising results in terms of point forecasts, and superior density forecasts

for the VAR. Moreover, we detect the largest improvements at the long end of the yield curve.

The additional flexibility of our proposed approach does not lead to severe overfitting since

we use shrinkage priors to regularize several parts of the parameter space. And it almost

never harms forecast accuracy while improving performance in some cases.

3.4 Determinants of Time-Variation in the Coefficients

The previous sub-section established that the proposed approach yields more favorable pre-

dictions than conventional TVP-VARs. Including observed and latent effect modifiers allows

for investigating the sources of time-variation in coefficients, and thus the driving factors of

improvements in predictive accuracy. We carry out a detailed analysis of these determinants

in this sub-section.

Because of its favorable forecasting properties, we choose the NS-VAR with one latent

factor per equation to investigate the driving forces of parameter variation over the full

estimation sample. Recall that the choice of zt for this specification translates into a single

equation-specific latent factor (τjt), an equation-specific Markov switching indicator Sjt and

the three observed early warning indicators.

To illustrate the observed and latent factors, we transform each column vector in zt ex-

post such that it is bounded between zero and one. This allows for comparisons even though

some blocks of the respective matrices are not econometrically identified.8 We therefore

exploit the fact that introducing any invertible R×R-dimensional matrix does not alter the

likelihood of the model, since ΛU−1Uzt = Λzt. Define U as diagonal matrix such that the

maximum of each zj (for j = 1, . . . , R) corresponds to one, the minimum is zero, Λ̃ = ΛU−1

and z̃t = Uzt. This simple linear transformation allows for assessing the relative movement

of the indicators in z̃t without affecting overall dynamics.

8In particular, this is the case for the product Λττt. Note that we do not face this issue for Λrrt and
ΛSSt because both are either observed or already bounded between zero and one, and their scale and sign
are identified.
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Figure 1: Evolution of the normalized effect modifiers z̃t = Uzt over time.

(a) Observed factors
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(b) Equation-specific latent Markov switching factors
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(c) Equation-specific latent random walk factors
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Notes: Results are based on a TVP-NS-VAR model specification zt = (r′t,S
′
t, τ
′
t)
′ and δ = Rτ/M = 1 and

P = 3. Panel (a) shows the normalized observed factors rNFCI,t, rREC,t and rRF,t (collected in rt), panel (b)
the posterior mean of the latent Markov switching factors, SL,t, SŠ ,t and SÇ,t (collected in St) and panel (c)
the posterior median of the latent random walk factors, τL, τŠ and τç (collected in τt). Note that Sjt and
τjt are equation-specific latent quantities with M(= 3) endogenous variables, j ∈ {L, Š , Ç}. SL,t and τL,t
correspond to the first equation, SŠ ,t and τŠ ,t to the second, while SÇ,t and τÇ,t to the third. Results are
based on the TVP-NS-VAR model variant with δ = Rτ/M = 1 and using 15,000 MCMC draws. The gray
shaded vertical bars represent recessions dated by the NBER Business Cycle Dating Committee. Sample
period: 1973:01 to 2019:12. Vertical axis: normalized values. Front axis: months.
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Figure 1 displays the evolution of the normalized indicators in z̃t over time. First, we

focus on the features of the observed effect modifiers depicted in the upper panel (a). The

normalized NFCI index peaks during the oil crisis in the mid 1970s, while exhibiting a stable

evolution at a quite low level during the Great Moderation (the period from 1990 until to the

onset of the global financial crisis in 2007). Spikes in rNFCI,t tend to coincide with recessionary

episodes, indicated by the binary recession indicator rREC,t. The risk-free interest rate rRF,t

can be related to the monetary policy stance. Early in the sample we observe substantial

increases, peaking during the Volcker disinflation in the early 1980s. Subsequently, large and

abrupt decreases are notable during recessions, while an overall decreasing trend is observable.

Before turning to the latent indicators in St and τt, note that the respective elements Sjt

and τjt are equation-specific with j ∈ {L, Š , Ç} referring to the level, slope and curvature of

the yield curve. The middle panel (b) indicates the posterior median of the three Markov

switching factors collected in St. The lower panel (c) shows the posterior medians of the

three (transformed) gradually changing latent random walk factors in τt.

Several features of the latent indicators are worth highlighting. Each of the latent quan-

tities exhibits distinct dynamics and thus carries information in addition to the observed

indicators. Examining the posterior means, which are essentially the unconditional posterior

probabilities that a given Markov indicator equals one, we observe that both SL,t and SŠ ,t

evolve comparatively gradually over time. Before the Volcker disinflation, both tend to in-

crease with posterior medians above 0.5, indicating that regime 1 is more likely. After 1985,

we observe a major shift towards regime 0. Interestingly, for SŠ ,t this transition appears

immediately after 1985, while we detect a notable delay in SL,t.

During the Great Moderation both indicators tend to remain associated with regime

0. The indicator associated with the middle segment of the yield curve, SÇ,t, by contrast,

transitions between regimes at a higher frequency. Particularly during the Volcker disinflation

we observe mixed patterns and no clear or steady tendency towards a single regime. This

changes between 1990 and 1997, where the posterior mean of SÇ,t is consistently above 0.5,
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albeit with several high-frequency movements. In the aftermath of the global financial crisis,

with short-term rates approaching the zero lower bond, SÇ,t switches abruptly into regime 0.

Conditional on the respective loadings in ΛS being non-zero, this feature would directly relate

to the observed narrowing spread of the yield curve and accompanying structural breaks in

coefficients of the equation related to the curvature of the yield curve.

We observe several interesting features of the unobserved factors in τt. While τL,t is noisy

and indicates substantial high-frequency movements, τŠ ,t and τÇ,t are much smoother. The

factor governing coefficients in the level-equation of the yield curve peaks early in the sample,

followed by a decline between 1980 and 1990. After a brief increase and stabilization between

1990 and 2000, we see gradual declines until the global financial crisis starting in 2007. Since

then, the factor shows upward trending movement, with several high-frequency troughs. By

contrast, the unobserved factor related to St exhibits approximately linear trending behavior

from the beginning of the sample until the early 2000s, where it plateaued. After 2010,

a gradual but moderate decrease is visible. τÇ,t is comparable to τL,t, albeit with several

differences. While several peaks coincide, we also find adverse movements, for instance in

the brief early 1980s recession and after 2000. Interestingly, high-frequency movements are

muted when compared to τL,t.

The preceding discussion of z̃t must be considered in light of the rescaled loadings in

Λ̃ = ΛU−1. Λ̃ translates the law of motion captured in z̃t to the coefficients in βt by

acting either as amplifier or attenuator. Figure 2 shows the posterior mean of the rescaled

loadings ΛU−1 and allows to assess which elements in z̃t determine the time variation in

the TVPs. We differentiate the loadings along two dimensions. Panel (a) shows the effect

modifiers related to the VAR coefficients, while panel (b) depicts the block of Λ̃ related to

the covariances (stored in qt).

Assessing the loadings in Λr for the Lt-equation reveals that a major part of the coeffi-

cients loads strongly positive on rNFCI,t. In the case of rRF,t and rREC,t the patterns are more

mixed. For rNFCI,t we find a maximum loading of around 0.25 for Š t−1, Lt−2, Çt−2 and Lt−3,
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Figure 2: Heat maps for rescaled loadings in Λ̃ = ΛU−1.
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Notes: Λ̃ translates the law of motion captured in z̃t to (a) the VAR coefficients in βt, and (b) the covariances
stored in qt, based on a TVP-NS-VAR model specification with zt = (r′t,S

′
t, τ
′
t)
′, δ = Rτ/M = 1 and P = 3.

ιt denotes the time-varying intercept, and Lt−p, Š t−p, Çt−p for p = 1, 2, 3 the lagged variables Lt, Š t and

Çt, respectively. λr relates to elements of Λ̃ associated with rNFCI,t, rREC,t and rRF,t and the respective
equations, λS denotes loadings related to a single Markov switching factor collected in St, and λτ loadings
corresponding to latent random walk factors in τt. Note that Sjt and τjt for j ∈ {L, Š , Ç} are equation-
specific quantities, while rt stays fixed across equations. w(Š t, Çt) denotes the contemporaneous relation
between the Š t- and Çt-equations, w(Lt, Çt) and w(Lt, Š t) are defined analogously. Sample period: 1973:01
to 2019:12.

while for rRF,t and rREC,t some coefficients load moderately positive (e.g., the first own lag

Lt−1) and others moderately negative (e.g., loadings related to lags of the curvature factor).

The loadings ΛS and Λτ related to estimated latent factors exhibit only modest relevance

for defining the law of motion in coefficients related to Lt. In particular, the amplifiers for τt

are shrunk heavily towards zero, implying that low frequency movements in the respective

coefficients are either already captured by other measures, or irrelevant for coefficients in the

Lt-equation. The same is true for the indicators in St and τt for the case of the Š t-equation.
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Turning to observed factors, the corresponding factor loadings are positive for lower-

order lags while strongly negative for higher-order lags. By contrast, we find mostly negative

loadings for observed factors for first-lags in the Çt-equation. Loadings related to higher-order

lags are mixed, and no clear patterns are observable. Interestingly, the curvature factor is the

only equation where we detect substantial loadings on the latent factors, with most loadings

showing a positive sign.

While unobserved factors appear to be less important for coefficients in the conditional

mean of the model, they play an important role for the covariances, as indicated in panel (b).

The covariance between Š t and Çt, w(Š t, Çt), shows pronounced loadings on all other effect

modifiers than NFCI, where we observe a modest negative loading. A mixed pattern emerges

for the Lt and Çt covariance, w(Lt, Çt), with some positive and negative measures. The

contemporaneous relationship w(Lt, Š t) between Lt and Š t, marks a particularly interesting

case, with modestly negative loadings on NFCI and RF, while REC and the unobserved

factor loadings are close to zero.

Summarizing, we find that observed factors often load strongly on the coefficients of all

equations. While the Markov switching indicator appears to be important particularly for

the Lt- and Çt-equations, loadings are muted for the coefficients of Š t. Another interesting

aspect is that conditional on observed effect modifiers, the gradually evolving coefficients

captured by τt are mostly irrelevant for the Lt- and Š t-equations, different to strong positive

loadings in the case of the Çt-equation and the covariances. Additional results showing the

actual regression coefficients are provided in Appendix B.

3.5 Low Frequency Relations between the Nelson-Siegel Factors

To assess what our framework implies on the relations between the factors that determine the

yield curve, we compute the low-frequency relationship between the Lt, Š t and Çt. We choose

this long-run correlation measure for two reasons. First, it allows to illustrate movements in

time-varying coefficients (i.e., in the transmission channels) and changes in the error variances
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in a single indicator over time. Second, this measure compresses information of all coefficients

in a structurally meaningful way since it isolates long-run trends and correlations from short-

run fluctuations (Sargent and Surico, 2011; Kliem et al., 2016). Additional results for the

reduced form coefficients are provided in Appendix B.

To construct the measure, we transform the TVP-VAR(P ) in Eq. (1) to its state-space

TVP-VAR(1) form. In what follows, the observation equation is given by yt = JYt, while

the state equation is defined as Yt = BtYt−1 + ωt with ωt ∼ N (0,Ωt). Here, J maps a K-

dimensional vector Yt = (y′t, . . . ,y
′
t−P+1)′ to yt, Bt collects the elements in βt in the upper

M × K block and defines identities otherwise. Similar, the K × K-dimensional variance-

covariance matrix Ωt collects elements in Σt in the upper-left M × M block and is zero

otherwise. We follow Sargent and Surico (2011) and first calculate the spectral density Φt(0)

of yt at a zero frequency which coincides with the unconditional variance-covariance matrix

of yt:

Φt(0) = J (I −Bt) Ωt(I −B′t)−1J ′, for t = 1, . . . , T.

Next, we transform the covariances of Φt into a correlation measure for each period t and

each variable combination i, j (i 6= j and i, j = 1, . . . ,M):

φij,t =
Φij,t(0)

Φjj,t(0)
.

The measure φij,t describes the long-run relations between variable i and j at each point

in time, and is displayed in Figure 3 for the model specification TVP-NS-VAR with zt =

(r′t,S
′
t, τ
′
t)
′, Rτj = 1 and P = 3. Note that the variables enter our model in differences. Hence,

Figure 3 depicts the low frequency relations of changes in the level, slope and curvature of

the yield curve.

We observe several interesting periods characterized by structural breaks. First, the

relationship between the level and slope of the yield curve was close to zero until the Volcker
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Figure 3: Posterior median and the 68 percent credible set for pairwise long-run correlations.
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Notes: Panel (a) φLŠ ,t, (b) φLÇ,t and (c) φŠÇ,t, based on a TVP-NS-VAR with zt = (r′t,S
′
t, τ
′
t)
′, δ =

Rτ/M = 1 and P = 3. The colored solid lines denote the posterior medians, the black dashed line the zero
line, and the colored shaded band the 68 percent posterior coverage interval, while the gray vertical bars
represent recessions dated by the NBER Business Cycle Dating Committee. φij,t is the long-run correlation
for the variables i and j at time t, for i, j ∈ {L, Š , Ç}. Results are based on 15,000 MCMC draws. Sample
period: 1973:01 to 2019:12. Vertical axis: correlation measurements. Front axis: months.
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disinflation of the 1980s. After this period, we can identify an abrupt decrease to significantly

negative values. The long-run correlation stays negative until the end of the sample, with

minor low-frequency movements.

Second, for most of the sample the long-run coefficient between level and curvature of

the yield curve is insignificant. Substantial structural breaks are detectable in the early

1980s. Again, this coincides with a shift in the US monetary policy regime. Between the

two recessions in the early 1980s and in the recovery period afterwards, we note a strong

positive relationship between the level and curvature of the yield curve. Afterwards, during

the Great Moderation, there are mostly insignificant values. This ends during the Great

Recession, where the relationship is estimated to be significantly negative. This finding may

be linked to short-term interest rates approaching the zero lower bound rapidly. The trend

reverses late in the sample, with the Federal Reserve conducting several subsequent rate hikes

starting at the end of 2015. Turning to the relationship between the slope and curvature of

the yield curve, we again find an insignificant relationship for most of the sample. Large

breaks are observable in the period between the two 1980s recessions, but different to the

relationship between the level and curvature of the yield curve, this is not visible in the

subsequent recovery period. Interestingly, we estimate a significantly positive relationship in

the period of the aforementioned rate hikes by the Federal Reserve starting in 2015.

4 Conclusions

This paper proposes methods for automatically selecting adequate state equations in TVP-

VAR models in a data-driven fashion. The TVPs are assumed to depend on a set of observed

and unobserved covariates, also known as effect modifiers. As unobserved covariates, we

consider a set of low dimensional latent factors that follow a random walk, alongside Markov

switching indicators that allow for abrupt structural breaks. Our model nests several alterna-

tives commonly used in the literature on modeling macroeconomic and financial time series.
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To choose between state equations, we use a hierarchical Bayesian global-local shrinkage prior

on the most flexible specification.

We apply our econometric framework to US yield curve data. Carrying out a thorough

predictive exercise, we show that our techniques produce favorable point and density forecasts

vis-à-vis a set of established benchmark models (which are nested variants of our proposed

modeling approach). The performance is specific to the information set used in the under-

lying TVP-VAR and appears to be more pronounced for density forecasts. This exercise

illustrates that our approach produces very competitive forecasts without increasing the risk

of overfitting, while providing a framework to trace the sources of time-variation – a key

advantage compared to conventional TVP-VARs. This predictive exercise is complemented

by a full-sample analysis of structural breaks in the relationship between the level, slope

and curvature of the US yield curve. We detect several interesting patterns in abrupt and

gradual time-variation patterns in long-run cross-variable relations. These changes appear

to be specific to the monetary regime and the state of the business cycle.
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Appendices

A Technical appendix

A.1 Sampling the state innovation variances

For sampling the state innovation variances based on Eq. (1), we let ηji,t denote the shock to

the ith coefficient in γ̃t with respect to the jth equation. The posterior of the state innovation

variances is a generalized inverse Gaussian (GIG) distribution:9

ωji|$ji, ϑj ∼ GIG

(
1− T

2
,
T∑
t=1

η2
ji,t, $jiϑj

)
.

A.2 Posterior for the horseshoe prior

Our specification of the horseshoe prior on Λj, γj and the square root of ωj in Section 2.4

for a generic parameter bi for i = 1, . . . , K is:

bi|ci, d ∼ N (0, c2
i d

2), ci ∼ C+(0, 1), d ∼ C+(0, 1).

We rely on this prior in its auxiliary representation as in Makalic and Schmidt (2015) for

efficient sampling of the local (ci) and global (d) shrinkage parameters:

c2
i |ei ∼ G−1(1/2, 1/ei), d2|f ∼ G−1(1/2, 1/f), ei ∼ G−1(1/2, 1), f ∼ G−1(1/2, 1).

9The generalized inverse Gaussian distribution is specified such that its density function is proportional
to f(x) = xλ−1 exp(−(χ/x+ ψx)/2) for a random variable x ∼ GIG(λ, χ, ψ).
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Here, G−1 denotes the inverse Gamma distribution. This setup yields the following condi-

tional posterior distributions:

c2
i |bi, d, ei ∼ G−1

(
1,

1

ei
+

b2
i

2d2

)
, d2|bi, ci, f ∼ G−1

(
K + 1

2
,

1

f
+

K∑
i=1

b2
i

2c2
i

)
,

ei|ci ∼ G−1
(
1, 1 + c−2

i

)
, f |d ∼ G−1

(
1, 1 + d−2

)
.

B Further empirical results

This Appendix contains additional results for the reduced form coefficients. While Sub-

section 3.4 provides posterior estimates of the lower dimensional effect modifiers, Figs.

B.1–B.3 display the coefficients obtained by multiplying the factor loadings with the ob-

served/latent factors based on the relationship established in Eq. (1).
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Figure B.1: Posterior median of the coefficients associated with the own lags of Lt, Š t and
Çt.
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Notes: Panels (a), (b) and (c) show the dynamic evolution of the coefficients related to the variables’ own
lags p ∈ {1, 2, 3} of the respective equation for Lt, Š t and Çt. Results are based on the TVP-NS-VAR
model variant with δ = Rτ/M = 1 and using 15,000 MCMC draws. The black dashed line denotes the
zero line, while the gray shaded vertical bars represent recessions dated by the NBER Business Cycle Dating
Committee. Sample period 1973:01 to 2019:12. Vertical axis: posterior median estimate. Front axis: months.
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Figure B.2: Posterior median of the coefficients associated with cross-variable lags of Lt,
Š t and Çt.
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Notes: Panels (a), (b) and (c) show the dynamic evolution of the coefficients related to cross-variable lags
p ∈ {1, 2, 3} of the respective equation for Lt, Š t and Çt. Results are based on the TVP-NS-VAR model
variant with δ = Rτ/M = 1 and using 15,000 MCMC draws. The black dashed line denotes the zero line, while
the gray shaded vertical bars represent recessions dated by the NBER Business Cycle Dating Committee.
Sample period 1973:01 to 2019:12. Vertical axis: posterior median estimate. Front axis: months.
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Figure B.3: Posterior median of the contemporaneous relationships between Lt, Š t and Çt.
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Notes: w(Š t, Çt) denotes the contemporaneous relation between the Š t- and Çt-equations, w(Lt, Çt) and
w(Lt, Š t) are defined analogously. Results are based on the TVP-NS-VAR model variant with δ = Rτ/M = 1
and using 15,000 MCMC draws. The black dashed line denotes the zero line, while the gray shaded vertical
bars represent recessions dated by the NBER Business Cycle Dating Committee. Sample period 1973:01 to
2019:12. Vertical axis: posterior median estimate. Front axis: months.
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