
Contests for Perception ∗

Patrik Reichert
University of Gothenburg

May 21, 2025

Abstract

We observe competitive behavior in different domains of society, even without
explicit monetary prizes. In this paper, I model a mechanism that may drive such
behavior: I study a contest model where prizes are given by an inactive observer’s
posterior belief about a player’s ability. In other words, prizes are determined endoge-
nously in the model. I define the equilibrium in this game and show how expected
effort changes with two exogenous parameters: the probability of an agent being high
ability and the difference in productive ability between types. I show that expected
effort is maximized when uncertainty about players’ abilities is the highest. I iden-
tify a novel encouragement effect of ability asymmetry. Total expected effort can
increase in ability asymmetry: when the prizes are determined in equilibrium, the
discouragement effect from ability heterogeneity can be reversed when heterogeneity
is sufficiently low. I also analyze win probabilities when allowing for the observer’s
prior to depend on players’ identities: I identify the “underdog effect” where initially
decreasing the prior belief about the ability of the player with lower expected ability
can nonetheless increase her win probability.
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Nature, when she formed man for society, [. . . ] taught him to feel pleasure in their
favourable, and pain in their unfavourable regard.

—Adam Smith, The Theory of Moral Sentiments (1759)

1 Introduction

Social image concerns exert a strong influence on human behavior in many contexts

(Goffman 1959; Bursztyn and Jensen 2017): voters turn out to vote in person to signal

their civic types (Gerber, Green, and Larimer 2008; Funk 2010; DellaVigna et al. 2016),

credit cards associated with high status are more likely to be used when this is visible

to observers (Bursztyn et al. 2018) and merely the visibility of workplace achievement

can motivate additional effort (Kosfeld and Neckermann 2011). Social image concerns

can also help explain the pervasive competitive behavior we observe in society, even in

the absence of explicit monetary incentives or other immediate instrumental benefits to

agents. The desire to outrank peers is a strong motivating force in and of itself (Anderson,

Hildreth, and Howland 2015), leading individuals to expend substantial effort and take

significant risks even in high-stakes environments (Ager et al. 2022).

This paper examines a key mechanism that motivates effort in competitions without

monetary rewards: information revelation about competing agents’ abilities. When

performance in a competitive task depends on talent, the outcome of the competition

conveys information about competitors’ abilities. Observers can use this information to

update their beliefs about agents. When these agents care about how others perceive their

ability,1 this concern translates observers’ posterior beliefs into implicit prizes. Having

these implicit prizes leads to agents exerting costly effort while competing to obtain the

high-ability signal of winning the contest. This paper studies how such perception-based

motivation shapes competitive behavior.

I develop a contest model where prizes are determined endogenously by an observer’s

posterior belief about players’ abilities conditional on the primitives of the model: Two

players whose abilities are drawn independently compete in a task, in which the identity

of the winner is determined by whose output is higher. The competing players know each

other’s realized ability type, but the observer only knows the distribution from which

these types are drawn. The observer is only informed about the identity of the winner

(and the loser) in the competition but not absolute individual output. She updates her

beliefs about the competing players’ abilities from this relative performance information.

1. The motive to be perceived as competent may be ingrained by culture (Markus 2016) or could be rooted
in the drive to increase fitness, as argued by the literature on evolutionary biology (Schauer 2022; Lane
and Briffa 2022). Self-determination theory in psychology (Deci and Ryan 2000) argues that the need for
competence is a basic psychological need.
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I assume that players derive utility from the observer’s posterior belief (similar to Bénabou

and Tirole (2006) and Bursztyn and Jensen (2017)), hence I can derive the prizes in the

contest associated with this psychological payoff in equilibrium, rather than fixing prizes

in the contest exogenously. I establish a direct connection between the literature on contest

theory and social image concerns and show how the mechanism described above can

motivate agents to exert costly effort even in the absence of explicit prizes. Deriving the

equilibrium in the game described above is the first, and most conceptual contribution

to the literature on how agents are motivated to exert costly effort when they have social

image concerns (Frey 2007; Ellingsen and Johannesson 2007; Moldovanu, Sela, and Shi

2007; Besley and Ghatak 2008; Auriol and Renault 2008).

While several contest theory papers incorporate social image in the form of status concerns

(Moldovanu, Sela, and Shi 2007; Ederer and Patacconi 2010), status utility is purely driven

by relative positional concerns in these models. In contrast, utility from perception (which

can be interpreted as status in this framework) depends on the likely ability of players and

ability asymmetry between types, not simply realized relative position or relative wage.

This model is also fundamentally different from signaling models often used in studying

the behavior of agents with social image concerns (Dufwenberg and Lundholm 2001;

Austen-Smith and Fryer 2005; Hupkau and Maniquet 2018; Bursztyn, Egorov, and Jensen

2019), where an agent’s ability to produce a given signal depends only on her type. In

contrast, the “good” signal in this model—i.e., winning the contest—is perfectly rivalrous:

the ability to signal also depends on other agents’ actions rather than exclusively on the

agent’s cost of doing so, as is the case in standard signaling models (Spence 1973).

Analyzing the model leads to several novel insights about how agents behave when

competing for the perception of being talented. First, competition is most intense when

a player is equally likely to have high or low ability. This is because winning is only

informative about ability asymmetry when the competing players indeed differ along this

dimension: the probability of this event occurring is highest when the two ability types

are drawn with equal probabilities—in other words, when the observer has flat priors

assuming she has correct beliefs. This result relates to predictions from social psychology:

more similar agents have greater comparison concerns, which in turn motivate more

intense competitive behavior (Festinger 1954; Kilduff, Elfenbein, and Staw 2010; Garcia,

Tor, and Schiff 2013).

While it remains true in this model as well that homogeneous contests2 yield the high-

est expected effort holding the probability of a player being high ability (µ) and ability

asymmetry (α) constant, I provide further testable predictions related to agent similarity.

Increasing ability asymmetry—thereby decreasing similarity— makes the difference be-

tween posterior beliefs conditional on winning and losing (i.e., the psychological prize

2. Homogeneity in this context refers to the case whereby competing players have the same ability in the
contest.
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spread) larger. This can increase effort provision in any homogeneous contest, regardless

of whether ability asymmetry is increased by decreasing the productive ability of the

low-ability player or by increasing that of the high-ability player. Furthermore, increas-

ing ability asymmetry α may also increase expected effort in heterogeneous contests3

if α is not too large. While growing ability asymmetry typically discourages effort in

contests through what the literature coins as the “discouragement effect” (Dechenaux,

Kovenock, and Sheremeta 2015; Fu and Wu 2019; Drugov and Ryvkin 2022), I derive

conditions under which larger ability gaps—even when achieved by decreasing the pro-

ductive ability of lower ability type—can increase motivation when psychological prizes

adjust endogenously: I identify an “encouragement effect” of ability heterogeneity. This

mechanism is present in the model because a larger ability asymmetry makes winning

more informative about being high ability, potentially offsetting the usual discouragement

effect from competing against a now stronger opponent.4 While it remains true that the

direct effect of increasing ability asymmetry on effort provision is weakly negative, I show

that when prizes are (at least partially) given by agents’ perceived ability, the increasing

psychological prize may induce players to work harder as ability asymmetry grows up

until some threshold value.

These results relate to the behavior of agents once abilities are realized. However, when

can we expect effort to be the highest when we do not know the abilities of the compet-

ing agents? We know that with fixed prizes, competition is most intense between two

high-ability agents, the probability of which occurring is highest when µ approaches

1.5 However, when prizes are endogenously determined by some increasing function of

the observer’s posterior belief, agents have very little motivation to exert effort as the

difference in posteriors conditional on observing a win or a loss goes to zero as the proba-

bility of a player being high ability approaches one. I then show that µ∗—the prior that

maximizes unconditional expected effort—must be strictly greater than 1/2 and less than

1. When I allow an exogenous monetary prize to be awarded to the winner, this pushes

the effort-maximizing prior µ∗ away from 1/2 towards 1: As the motivating power of a

fixed monetary prize does not depend on the observer’s prior, the relative importance of

psychological payoffs decreases, and we approach the classical framework of exogenously

given prizes.

I extend the basic model to allow for the observer to have different priors about players’

abilities. I provide sufficient conditions for an equilibrium to exist, and confirm the central

3. As opposed to homogeneous contests, competing players have different abilities in heterogeneous
contests.

4. This result adds to recent work providing conditions under which the discouragement effect does not
hold in contests where an interior pure strategy equilibrium exists (Drugov and Ryvkin 2022)—this does not
include the all-pay contest I study in this paper.

5. In the model below I assume that both ability types can occur with strictly positive probability, hence
µ , 1, and the probability of two high-ability player competing is maximized when µ ∈ (0,1) is infinitesimally
smaller than 1.
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intuition obtained in the analysis assuming homogeneous priors: the incentive to provide

effort disappears as uncertainty about the player’s ability vanishes from the observer’s

perspective. However, due to the power imbalance between the players introduced by

the observer having different prior beliefs about their ability, maximal uncertainty does

not maximize expected effort provision. I then analyze how win probabilities change

when the observer’s prior changes about a player’s ability. Importantly, I identify the

“underdog effect” discussed in the management science literature (Nurmohamed 2020;

Nurmohamed, Kundro, and Myers 2021): when an observer has a low prior belief about

a player’s ability, decreasing this belief further can initially increase the player’s win

probability (the “underdog effect”), but this advantage reverses as the prior approaches

zero and uncertainty about a player’s ability vanishes. Prior work cites the motivation from

proving others wrong as the mechanism driving this effect (see for example Nurmohamed

(2020)). I provide an alternative mechanism that can generate predictions consistent with

empirical findings in the literature: both the effort-inducing “underdog effect” when the

prior belief associated with a player’s ability further decreases until a threshold, and a

“complacency effect” that starts to dominate beyond the threshold and induces the player

to reduce effort leading to decreasing win probability as uncertainty about her ability

gradually declines.

The paper proceeds as follows: In Section 2, I introduce the model and discuss how the

assumptions relate to prior work, including sociology and social psychology. Section 3

defines and characterizes the equilibrium in the game. Section 4 analyzes expected effort

provision with fixed ability match-ups, while Section 5 studies expected effort provision

from the perspective of the observer who does not know the realized abilities of players. I

extend the baseline model to allow for heterogeneous prior beliefs about players’ abilities

in Section 6 and analyze expected effort provision and changes in win probabilities as a

response to changing prior beliefs. Section 7 concludes. The proofs are relegated to the

Appendix.

2 Model

There are two risk neutral agents (or “players”), indexed i ∈ {1,2}. Each agent can be

of either high- or low-ability type. Agents’ ability types are denoted ai ∈ {h, l} (high vs.

low, respectively) with h > l > 0. I define α := h/l as the degree of ability heterogeneity.

Ability is distributed independently and identically across agents, such that for agent

i, the probability that ai = h is µ ∈ (0,1). After abilities are realized, each agent can

observe her own as well as the other agent’s abilities. Additionally, there is an outside

observer who knows the distribution from which abilities are drawn, but cannot observe
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the realizations.6

The two agents compete over a monetary prize of value M ≥ 0 by simultaneously exerting

effort xi ≥ 0 at cost ci(xi) ≥ 0. I assume that ci(·) is a linear function such that ci(xi) = xi/ai .

Because, by assumption, h > l, the linear cost function implies that at any given positive

effort level, both the cost and the marginal cost of effort are strictly lower for a high-ability

player than for a low-ability one.

The win probability of Player i, wi(xi ,x−i), depends on the effort exerted by the players

wi(xi ,x−i) =


1 ifxi > x−i
1
2 ifxi = x−i

0 ifxi < x−i

. (1)

In other words, the agent exerting strictly higher effort wins the competition. In case of a

draw, a winner is chosen randomly. In this economic environment, luck plays no role as

long as xi , x−i , only merit (as defined in Cappelen et al. (2023)) matters in determining

the winner: the game is an all-pay contest. I assume that both players’ outside option is

zero if they do not compete, this assumption guarantees that both will participate with

probability one.

The observer observes the identity of the winner (but not the absolute level of effort sub-

missions) and uses this information to update her beliefs about both agents’ abilities using

Bayes’ rule. The agents derive utility from how the observer perceives them. Specifically,

both agents attach value κ > 0 to the observer’s posterior belief ã that they have high

ability.7 The model, therefore, describes a psychological game (Battigalli and Dufwenberg

2022).

Agent i receives non-monetary payoffs v := κ · Pr[ai = h | i wins] and v := κ · Pr[ai =

h | i loses] from winning and losing the contest, respectively. Given risk-neutrality, Player

i’s expected payoff from choosing effort level xi is given by

EUi = wi(xi ,x−i) (v +M) + (1−wi(xi ,x−i)) v − xi/ai , (2)

where mi ∈ {0,M} is her prize money.8

6. One can easily generalize the model to multiple observers, assuming that the players place the same
weight on each observer’s perception.

7. Restricting κ to be positive rules out the case where agents want to avoid looking as high ability, as is the
case in Bursztyn, Egorov, and Jensen (2019). With κ < 0 and no monetary prizes, the model is uninteresting,
with players exerting no effort and the observer’s posterior equaling her prior given the uninformativeness
of the contest outcome about ability. Setting κ = 0, i.e., assuming that players do not care about what the
observer thinks about their ability collapses the model back to the standard heterogeneous-player all-pay
contest (Hillman and Riley 1989; Kawamura and Moreno de Barreda 2014).

8. Modeling status in this way is not without controversy. While Postlewaite (1998) convincingly argues that
status concerns should not be directly included in agents’ utility function when status provides instrumental
benefit to the agent, I follow Deci and Ryan (2000) and Anderson, Hildreth, and Howland (2015) to argue
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Taken together, we have a two-player contest model whereby players compete under an

endogenous prize vector v = (v̄ +M,v), where the first and second entries of the vector

are the prize for the contest winner and loser, respectively—the prize vector is “partially

endogenous” with strictly positive monetary prize M > 0.

The timing of the game is as follows:

Stage 0: Abilities ai are realized and observed by the two players

Stage 1: Players simultaneously submit effort bid xi and the winner is identified.

Stage 2: Observer updates her belief about each player’s ability type upon ob-

serving the identity of the winner.

Discussion of the Model. I draw a close connection between perceived ability and status,

an equivalence that may not be directly intuitive to the reader. I build on the literature

in social psychology to connect these two concepts: status afforded by agents to another

depends on the agent’s “perceived instrumental social value” (Leary, Jongman-Sereno,

and Diebels 2014), that is whether the agent is believed to have the ability to contribute

to achieving the goals of the collective who bestows status on the individual. Productive

ability is clearly a relevant characteristic in achieving a wide range of collective goals,

hence the perception of having high productive ability can lead to attaining high status.

Given that the possession of productive ability must also be perceived as such by those

who give status to the individual, projecting high ability is as important as acquiring

ability itself (Brennan and Pettit 2000; Anderson, Hildreth, and Howland 2015): agents

can do so by outperforming their opponent in this model.

The key assumption I make is the inclusion of the observer’s posterior belief about

competing player’s abilities in their utility function. We can interpret this in two ways

that need not be mutually exclusive: first, the observer’s perception has no instrumental

benefit to the agent, yet they have preferences over how they are perceived nonetheless

due to some intrinsic drive to look good in the eyes of others. This concern is then

simply captured by agents’ utility increasing in the posterior belief of the observer. This

interpretation is supported by a large literature on the “status hypothesis” in social

psychology (Anderson, Hildreth, and Howland 2015), proposing that gaining status is

a fundamental motive: attaining status is an end goal in and of itself (Deci and Ryan

2000). Alternatively, we could also interpret the posterior belief in the utility function as

capturing some instrumental benefit to the player proportional to the posterior belief of

the observer. For example, being perceived as high ability may make it more likely that

the agent attain a promotion in the future, or that she gains other benefits from being

that gaining status is—partially, at the very least—a fundamental motive. In other words, gaining status
is a deep preference the same way as consumption is. When status is a deep preference, including status
(perceived ability in this model) directly in the utility function leads to analysis that is not subject to the
Postlewaite (1998) critique.
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considered high ability by society. It is also important to highlight that the existence of an

outside observer is not necessary in the model, what is required is that players believe

that there is an observer forming beliefs about their abilities.

Last, I comment on how this paper’s approach to modeling status as perceived ability

differs from that employed by related theoretical work. Status in the theoretical literature

is either directly or indirectly assigned by a principal. In Moldovanu, Sela, and Shi (2007),

the contest designer assigns ranks to status classes, therefore the number and size of these

status classes are fixed exogenously by a principal who wishes to motivate agents to exert

effort. In Auriol and Renault (2008) and Besley and Ghatak (2008), obtaining status is

linked to a specified performance threshold in the optimal contract the principal offers to

agents. The principal has a more indirect influence status in the contest model of Ederer

and Patacconi (2010): status is given by the earnings of a player relative to the average

earning of a reference group. The principal can manipulate status incentives by setting

appropriate prizes. In this current model, the “principal” (the observer) is inactive and

status arises without the need for a principal to designate what performance leads to

obtaining status, or to manually assign status to agents. This allows us to think about

implicit incentives agents may face. It is all the more important to better understand these

hidden motives given that an active principal may not be able to easily influence agents’

behavior through these implicit incentives even if she wishes to do so.

It is also important to highlight that agents have no intrinsic relative positional concerns

in this model in contrast to prior work in contest theory mentioned above: agents derive

utility from being perceived as high ability, not higher ability than others. Any concern for

relative position is driven by how agents can signal their ability: given that it is only the

identity of the winner (and the loser) that is observable, outranking the opponent is desired

in order to signal ability not to win the contest per se (at least in the case with no monetary

prizes, M = 0). Linking status to perceived ability provides a clear advantage compared to

modeling status by imposing explicit positional concerns on agents’ preferences: under

the assumptions of Moldovanu, Sela, and Shi (2007), achieving a some fixed ranked in the

contest would yield the same status utility to the agent when most competitors are high

ability compared to the status utility when most competitors are low ability. As I show

below, the value of status—i.e., the posterior belief of the observer—, changes with the

probabilistic ability of competitors, as well as the underlying ability asymmetry between

types: status payoffs are larger when winning is more informative about having high

ability. This is arguably a more realistic way to think about how agents value status when

it is linked to agents’ instrumental social value.
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3 Equilibrium in the Game

To introduce the equilibrium concept, it is helpful to proceed in three steps. First, consider

the case when players form conjectures about the psychological prizes they expect to

receive based on the observer’s posterior beliefs. I focus on symmetric equilibria whereby

both players form the same conjecture and play the same type-dependent strategy in

equilibrium. Denote the conjectured prizes by v̄c for winning and vc for losing, assuming

v̄c > vc and define the marginal value of winning as ∆c := M+v̄c−vc. Later these conjectures

will be endogenized, but for now assume them to be exogenously fixed.

Given these conjectured prizes, players simultaneously select their effort levels, x1 and x2.

As established by contest theory literature (e.g. Barut and Kovenock (1998)), a symmetric

equilibrium in pure strategies cannot exist in this game. To illustrate, suppose a pure

strategy equilibrium exists with fixed effort levels x1 and x2. If x1 = x2, either player

can increase their effort slightly to secure the win and the higher prize. Conversely, if

x1 , x2, the player with higher effort has an incentive to marginally decrease effort, thus

maintaining the win but lowering effort costs. In both scenarios, a profitable deviation

arises, contradicting the assumption of a pure strategy equilibrium.

I distinguish between two types of contests in the following: A contest is said to be “homo-

geneous” when the two competing players have identical ability types. In “heterogeneous

contests” a high-ability player competes against a low-ability opponent. The unique

mixed-strategy equilibrium for each case is characterized in Lemma 1.

Lemma 1 (Equilibrium Strategies with Exogenously Fixed Marginal Value of Winning).

1. When the marginal prize ∆c is zero, players exert no effort and each has a win probability
of 1/2.

2. When ∆c > 0, players in homogeneous contests randomize effort according to the equilib-
rium cumulative distribution function

F∗i (xi) =
xi

ai∆c for x ∈ [0, ai∆
c]. (3)

When ∆c > 0, players in heterogeneous contests randomize effort according to the equilib-
rium cumulative distribution functions

F∗−i(x−i) = 1 +
x−i
h∆c −

l
h

for x ∈ [0, l∆c], (4)

F∗i (xi) =
xi
l∆c for x ∈ [0, l∆c], (5)

assuming that ai = h and a−i = l.

Let w∗1(a1, a2) be Player 1’s win probability given the strategies described in (4) and (5)
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and abilities a1 and a2. Win probabilities w∗1(a1, a2) are given by

w∗1(h,h) = w1(l, l) =
1
2
, w∗1(h, l) = 1− 1

2α
, w∗1(l,h) =

1
2α

. (6)

Keeping in mind that the equilibrium cumulative distribution functions do not put mass

points on strictly positive effort levels, we can verify that the above equilibrium mixed

strategies are indeed mutual best responses. Take first the case when the players have the

same ability. Then Player i’s expected payoff by exerting any fixed effort level xi in the

equilibrium support is

F∗−i(xi)∆
c − xi

ai
=

xi
ai∆c∆

c − xi
ai

= 0. (7)

It is also easily confirmed that exerting more effort than the upper bound of the equi-

librium mixed strategy ai∆
c yields strictly negative payoff even though it guarantees

the prize for Player i. Since any pure strategy xi in the equilibrium support yields zero

expected payoff, any mixed strategy on the same support yields zero expected payoff as

well when the opponent plays the equilibrium strategy described in Lemma 1.

Similarly in a heterogeneous contest, Player i’s (the player with high ability) expected

payoff is

F∗−i(xi)∆
c − xi

h
=

(
1− l

h

)
∆c for x ∈ [0, l∆c]. (8)

This equals her expected payoff if she were to exert marginally higher effort than the

upper bound of the equilibrium mixed strategy, guaranteeing her win. Further increasing

effort leads to a strictly lower expected payoff as the prize value does not change but effort

costs increase.

We can also confirm that when the high-ability player randomizes according to the

equilibrium strategy, the low-ability player earns zero in expectation for any effort level in

the equilibrium support, with

F∗i (x−i)∆
c − x−i

l
=

x−i
l∆c∆

c − x−i
l

= 0 for x ∈ [0, l∆c]. (9)

Again, bidding above the upper bound of the equilibrium support yields negative expected

payoff.

Given the win probabilities in Lemma 1, one can calculate the posterior beliefs using
Bayes rule. These posterior beliefs are the same for both players given that they are ex
ante identical in the eyes of the observer. We can then, without loss of generality focus on
the posterior belief about Player 1’s ability: when ∆c > 0, the observer’s posterior belief
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about her ability when she wins is given by

Pr
[
a1 = h | i wins

]
=

µ

1

2
µ+w∗1(h, l) (1−µ)


µ

1

2
µ+w∗1(h, l) (1−µ)

+ (1−µ)

1

2
(1−µ) + (1−w∗1(h, l)) µ


. (10)

Similarly, the posterior belief conditional on Player 1 losing the contest is given by

Pr
[
a1 = h | i loses

]
=

µ

1

2
µ+ (1−w∗1(h, l)) (1−µ)


µ

1

2
µ+ (1−w∗1(h, l)) (1−µ)

+ (1−µ)

1

2
(1−µ) +w∗1(h, l) µ


. (11)

Note that the above posterior beliefs in (10) and (11) are functions of the conjectured

posterior beliefs through win probability w∗1(h, l). When ∆c > 0, this win probability turns

out to be independent of the conjectured posterior beliefs following from (6) in Lemma 1.

As a last component of the equilibrium, I require the conjectured posterior beliefs and the

posterior beliefs implied by these conjectures to be equal. In other words, conjectured

prizes must be correct in equilibrium. This consistency requirement is the non-standard

part that is required in this psychological game theory set-up.9

To summarize, players make symmetric conjectures about prizes and then choose effort

that are mutual best responses taking the conjectured prizes as given. Last, equilibrium

requires the conjectured prizes to be correct in the sense that applying Bayes’ rule with

the conjectured prizes must generate the same prizes. The equilibrium concept is formally

stated in Definition 1.

Definition 1 (Equilibrium in the Game). Assume that players’ conjectures are symmetric,
such that vci = vc−i and v̄ci = v̄c−i . Let σ ∗i be probability distribution over effort xi ≥ 0. An
equilibrium in the game is a tuple (σ ∗1,σ

∗
2,v
∗,v∗) such that

1. given (vc, v̄c), EU (σ ∗i ,σ
∗
−i) ≥ EU (σi ,σ ∗−i) ∀i

2. and (vc, v̄c) = (v∗, v̄∗) such that (v∗, v̄∗) are the posterior beliefs derived via Bayes’ rule
using conjectures (vc, v̄c).

Given the results in Lemma 1 and the equilibrium definition above, we are now ready to

characterize the equilibrium in the game.

9. The equilibrium concept in this paper is similar to that in Dufwenberg and Lundholm (2001), but we do
not need to make assumptions about off-equilibrium path beliefs given that the game described in this paper
is not a dynamic game of incomplete information from the players’ perspective.
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Theorem 1 (Equilibrium).

1. When M > 0, there is a unique equilibrium in the game. The equilibrium prize vector is
given by v∗ = (v̄ +M,v) with

v̄ = κ

µ

1

2
µ+

1−
1

2α

 (1−µ)


µ

1

2
µ+

1−
1

2α

 (1−µ)

+ (1−µ)

1

2
(1−µ) +

1

2α
µ


, (12)

v = κ

µ

1

2
µ+

1

2α
(1−µ)


µ

1

2
µ+

1

2α
(1−µ)

+ (1−µ)

1

2
(1−µ) +

1−
1

2α

 µ


. (13)

The marginal value of winning the contest is given by

∆ = M + v̄ − v = κ
2(α − 1)(1−µ)µ

α
+M. (14)

Equilibrium expected effort in homogeneous contests are given by

E[X∗i ] =
ai∆
2

. (15)

In a heterogeneous contests expected effort is given by

E[X∗i | ai = h] =
l∆
2

E[X∗−i | a−i = l] =
l2∆
2h

. (16)

2. When M = 0, there is a further equilibrium in addition to the one described above: the
posterior beliefs equal the prior belief irrespective of the contest outcome and ∆ = 0.

The additional equilibrium when there is no monetary prize (M = 0) warrants further

discussion. This equilibrium arises when players conjecture that the marginal prize is zero

given that the observer believes the contest signal is uninformative of players’ abilities.

This conjecture can be consistent with Bayes’ rule when assuming that both player will

remain inactive, and therefore, the winner is picked randomly irrespective of ability. On

the other hand, this conjecture cannot be consistent for an arbitrarily small monetary

prize since the pure strategy of exerting no effort is no longer a Nash equilibrium.

Nonetheless, even with M = 0, conjecturing that ∆ = κ 2(α−1)(1−µ)µ
α remains consistent, and

therefore it is an equilibrium of the game. Given that contest outcomes are informative
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of competitors’ abilities for any conjectured nonzero marginal prize, I focus on this

equilibrium in the following analysis.

4 Motivation in Contests for Perception

In this section I analyze how motivation defined as the expected effort exerted by a player

in a fixed ability pairing is affected by (1) the probability of a player having high ability µ,

and (2) the magnitude of ability asymmetry between the two types, α. To build intuition,

I first consider how changing these parameters affect the winner and loser (psychological)

prize in the competition, and the psychological prize spread v̄ − v.

The posterior belief conditional on a win in the contest—the psychological prize for

winning the contest—, is strictly increasing in both the probability of a player having

high ability and ability asymmetry. Both results are quite intuitive. When µ is high, it

is less likely that both players are low ability, in which case winning the contest is also

less informative about a player having high ability. A higher µ, therefore, decreases “false

positives”, in the sense that a winner is less likely to be a low-ability player. Increasing

ability asymmetry also decreases false positives, but in heterogeneous contests: a low-

ability player is less likely to win against a high-ability player when ability asymmetry is

more severe. Holding µ constant, this implies that winning the contest is a stronger signal

of a player having high ability.

Lemma 2 (Comparative Statics: v̄). The endogenous winner prize increases

(I.) in µ, the probability of a player having high ability, and

(II.) in α, the degree of ability asymmetry between the two types.

Let us look at the same comparative statics for the loser prize v. As for the win prize v̄,

increasing µ increases the value of the loser prize v since with higher µ it becomes more

likely that the player is high ability regardless of the contest outcome. The intuition is

again straightforward: the chance of a high-ability matchup increases with µ, and losing

it is guaranteed in such contests that high-ability player loses which in turn decreases the

informativeness of losing about the player’s ability. However, increasing ability asymmetry

has the opposite effect; higher ability asymmetry α decreases loser prize v. When ability

asymmetry increases, the probability that a high-ability player wins a heterogeneous

matchup increases: a loss becomes more indicative of a player being low ability.

Lemma 3 (Comparative Statics: v). The endogenous loser prize

(I.) increases in µ, the probability of a player having high ability, and

(II.) decreases in α, the degree of ability asymmetry between the two types.
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(b). Psychological Prize Spread.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

µ

v̄
−
v

α = 2
α = 8
α = 64

Figure 1: Posteriors beliefs and the psychological prize spread assuming κ = 1. The red function is
the posterior conditional on observing a win (v̄), while the blue function is the posterior conditional
on the observing a loss from the respective player (v). I plot these and their difference for three
levels of ability heterogeneity: α = 2 (solid line), α = 8 (dashed line) and α = 64 (dotted line).

What affects players’ motivation to exert costly effort directly is the extent to which

winning increases the observer’s posterior compared to losing: v̄ − v (see panel (b) of

Figure 1 for how this psychological prize spread changes with µ). When µ is high, it is

more likely that the player is high-ability regardless of the contest outcome: the chance of

two high-ability players competing increases. In the limit, all players are high ability, hence

if their motivation to exert costly effort in the contest comes from only the psychological

payoff of being perceived as high ability, they will not do so as they will be thought of

as high ability regardless of them winning or losing in the contest. Players need the

observer to be sufficiently unsure about their abilities in order for the posterior beliefs

conditional on the contest outcome to differ. The first order condition of v̄−v with respect

to µ characterizes the observer’s prior that maximizes the psychological prize spread in

the contest, which equals µ = 1/2. This result implies that the psychological prize spread

is the largest when the observer is most uncertain—or equivalently, when the chance of a

heterogeneous contest is the highest. Given that high ability share µ only enters expected

effort through the marginal prize ∆, we have directly that expected effort is maximized

when µ = 1/2.

Proposition 1 (Motivation by Potential Heterogeneity).

(I.) The psychological prize spread v̄ − v is maximized at µ = 1/2.

(II.) With the two players’ realized ability types given, individual expected effort is maximized
when µ = 1/2.

Proposition 1 shows that when players exert highest effort when they believe that the

observer has flat priors about their ability types. This result adds to the line of research
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on social comparison in psychology arguing that opponents who are more similar display

increased concern about social comparison, which in turn increases competitive behavior

(Garcia, Tor, and Schiff 2013). The related literature focuses on the motivation arising

from competing players comparing themselves to opponents. Motivation, defined as

expected effort provision, is higher in homogeneous contests in my model as well, but

this result is driven by a strategic effect rather than increased psychological payoffs from

potentially winning against someone who is more similar in ability.

In my model, it is the observer who implicitly compares the two players, hence motivation

arises from how the observer forms beliefs given the limited information she has of the

players and their performance. It is then not only the realized abilities of the competing

players that effect their motivation in the contest, but also the potential heterogeneity

induced by the distribution players’ abilities are drawn from as described in Proposition 1.

This way of thinking about social competition introduces a novel source of motivation

through the possibility to signal high ability through contest outcomes to an observer.

In this model, I assume that the observer holds correct beliefs about the distribution of

ability. In other words, I assume that the probability that a given player is high ability

µ equals what the observer believes this probability to be: µo = µ where µo denotes the

observer’s belief. The model can, however, easily accommodate incorrect beliefs from the

observer, assuming this is known to players: given that µ affects behavior only through the

observer’s posterior belief and it does not affect win probabilities, we can simply replace µ

with µo , µ in the Bayes’ formula to get the prize vector players will compete under. If

the observer believes (incorrectly) that players are more talented on average relative to

µ, this can motivate players to increase effort ifµo is closer to 1/2 than µ, and demotivate

them if µo is further away from 1/2 than µ. Similarly, the observer expecting players to be

less talented on average can both motivate and demotivate effort provision depending on

whether µo is closer to, or further away from 1/2 than µ. The intuition is the same as for

Proposition 1, with the difference that µo need not correspond with the true µ. Similarly,

we could allow for players to think that the observer’s belief about type-h probability is

different from her true belief. Let this second-order belief be denoted by µp such that

µp , µo. Again, we can replace µ with µp to get the equilibrium prize vector: as long as

players have the same second-order belief, the model can still provide predictions about

their effort provision.

The above modification of the model also helps us in thinking about the policy implications

of the result in Proposition 1: manipulating this second-order belief µp can then be an

effective way to motivate players to exert effort. To do this, second-order beliefs must be

changed such that players believe that the observer thinks that the probability of them

being a high-ability type is closer to 1/2 than the initial second-order belief.

Looking at the expected effort of players in each contest is more nuanced when it comes
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to ability asymmetry. ability asymmetry α monotone increases the psychological prize

spread, v̄ − v. This is due to a loss being more informative of the player being low ability

and a win being more informative of the player being high ability. Increasing α then opens

up a wedge between the posteriors, leading to a larger psychological prize spread. In the

following, I consider two ways in which an increase in α = h/l is implemented: first, I hold

l fixed and increase h. The other case is the reverse, whereby I hold h fixed and decrease l.

Consider first the case of a homogeneous contest of high-ability players: when decreasing

ability parameter l, expected effort as given in Theorem 1 would stay the same if ∆ were

fixed. However, ∆ is an increasing function of ability asymmetry α = h/l. Decreasing l,

thereby increasing ability asymmetry then increases expected effort provision. Similarly,

increasing h holding l fixed increases expected effort in a homogeneous contest between

two low-ability players.

It is easy to see from Theorem 1 that expected effort also increases when we increase h in

a homogeneous contest of two high-ability players as well: this is intuitive as the marginal

prize increases again, and the players also become more productive. A more interesting

case is when one increases ability asymmetry by decreasing l in a contest between two

low-ability players. Were ∆ fixed, this would decrease expected effort provision as the

competing players become less productive: exerting any fixed effort level xi > 0 becomes

more expensive in terms of effort cost. However, when l is sufficiently high such that

h < 2l, the motivating effect from increasing the psychological prize spread dominates the

negative effect of decreasing productive ability on effort provision.

In heterogeneous contests, increasing ability asymmetry has a direct negative effect

on expected effort provision through the well-known “discouragement effect” (Baye,

Kovenock, and Vries 1993; Baik 1994; Brown 2011; Dechenaux, Kovenock, and Sheremeta

2015).1011 The basic mechanism is as follows: when ability asymmetry grows larger, the

player with the lower ability face a reduced probability of winning. This leads to him

exerting less effort in equilibrium. The high-ability player responds to this by also exerting

less effort: total expected effort is decreasing in ability asymmetry (Drugov and Ryvkin

2022).

We can identify this same mechanism in this model as well by differentiating the ex-

pressions for expected individual effort implied by the equilibrium effort distribution

functions in Theorem 1 with respect to h and l—this is equivalent to increasing ability

asymmetry α. Total expected effort in heterogeneous contests equal

1
2
∆

(
l +

l2

h

)
(17)

10. See also related work in psychology by Rogers and Feller (2016) for example.
11. Fang, Noe, and Strack (2020) identifies a discouragement effect from prize inequality and contest scale

with homogeneous players. While the terminology is the same, here I refer to mechanism that requires player
heterogeneity to induce players to exert less effort in equilibrium.
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with

∆ = κ
2(h− l)(1−µ)µ

h
(18)

when M = 0 and replacing α with h/l.

When we assume ∆ to be fixed, differentiating (17) with respect to h and l yields

∂E[X∗i +X∗−i | ai = h,a−i = l]
∂h

= −1
2
∆
l2

h2 < 0, (19)

∂E[X∗i +X∗−i | ai = h,a−i = l]
∂l

=
1
2
∆

(
1 +

2l
h

)
> 0. (20)

This is the direct effect of increasing ability asymmetry, which corresponds to the “discour-

agement effect” discussed above: increasing h holding l constant decreases total expected

effort, similarly to when asymmetry grows by decreasing l holding h constant.

There is, however, an indirect effect of increasing ability asymmetry, which operates

through the marginal prize ∆, which is a function of h and l. These indirect effects are

given by

∂E[X∗i +X∗−i | ai = h,a−i = l]
∂∆

d∆
dh

= κ(1−µ)µ
l2

h2

(
1 +

l
h

)
> 0 (21)

∂E[X∗i +X∗−i | ai = h,a−i = l]
∂∆

d∆
dl

= −κ(1−µ)µ
(
l
h

+
l2

h2

)
< 0, (22)

In other words, when increasing h holding l constant (or when decreasing l holding h

constant), the increase in the psychological prize spread motivates competing players to

exert more effort. This is the “encouraging effect” of increasing ability asymmetry.

Given that the direct and indirect effects push expected effort provision in opposite

directions, we already see that having contestants who care about their perceived ability

at the very least dampens the magnitude of the discouraging effect. In fact, when we

increase ability asymmetry from an initial level that is small enough, this indirect positive

effect—the “encouragement effect”—, will dominate the discouragement effect. This is

the second main result in this section, which is summarized in Proposition 2.
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Proposition 2 (Encouragement). Assume there are no monetary prizes (M = 0).

1. Fixing h, increasing ability asymmetry by reducing l,

• Always increases total expected effort in homogeneous contests of high-ability players.
It also increases total expected effort in homogeneous contests of low-ability players
if h < 2l.

• Increases total expected effort in heterogeneous contests if h <
√

3l.

2. Fixing l, increasing ability asymmetry by increasing h, increases total expected effort in
both homogeneous and heterogeneous contests.

It is intuitive why the encouragement effect can only dominate the discouraging effect

for sufficiently low ability asymmetry: the marginal prize ∆ is increasing and concave

in ability asymmetry α and expected effort is also increasing and concave in ∆. Taken

together, this implies that the motivating effect of larger relative gains from winning

become smaller as we drive a larger wedge between player’s effort costs. On the other

hand, fixing ∆ the direct negative effect becomes stronger in magnitude as α increases,

and eventually starts to dominate the encouragement effect. While I assume that the

contest has no monetary prizes in Proposition 2, the results are qualitatively the same:

growing ability asymmetry can motivate players to exert more effort (see Appendix A.7).

The encouragement effect dominates when the monetary prize is small enough.

This result on the reversal of the discouragement effect relates to recent work by Drugov

and Ryvkin (2022) on how ability asymmetry impacts effort provision in noisy contests

with an interior pure strategy equilibrium (for example the Tullock contest (Tullock

1980) or the Lazear-Rosen tournament (Lazear and Rosen 1981)). In these contests, both

encouragement and discouragement effect can occur depending on how heterogeneity in

ability is introduced to the model. I show that an encouragement effect of different kind

exists in a complete information two-player all-pay contest. The mechanism behind the

encouragement effect is different from that in Drugov and Ryvkin (2022), as it is driven by

the prizes being endogenously determined in the model, and crucially, the prize spread

increasing in ability asymmetry.

The analysis in this section connects to the literature on how non-monetary incentives in

organizations affect the behavior of agents who have social image concerns (see for example

Frey (2007)). I show that when observers form beliefs about ability based on relative

performance, this creates implicit incentives that are perfect substitutes of monetary

rewards or other form of more explicit incentives. An important distinction between these

implicit incentives and monetary rewards are the impossibility for the observer to directly

manipulate these perception-based incentives, if we maintain the assumption that she is

Bayesian and has correct prior about the distribution of ability types. While I do not model
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the observer as an active player, it is nonetheless interesting to entertain such possibility:

an observer (or now a principal) may find it beneficial to persuade players that she has

flat priors for example. If the principal could achieve this, she could maximize effort

provision. Similarly, she may persuade players that she believes that ability asymmetry is

large, motivating them to exert more effort in trying to obtain the positive ability signal.

Whether such persuasion is possible, however, is beyond the scope of this paper.

5 Expected Effort from the Observer’s Perspective

While the focus was on expected effort in each possible contest separately in the previous

section, I now turn to analyze expected effort that does not condition on a given ability

match. I will focus on what probability µ of a player being high ability maximizes this

unconditional expected effort provision. In this section I take the position of the observer,

who does not know the ability of the competing players. The question I answer here is

when can the observer expect the competing players to exert the most effort? In particular,

what is the type-h probability µ∗ that maximizes expected effort? As I show below, this

does not correspond to 1/2 that maximizes expected effort in a given fixed ability matchup.

To proceed with the analysis, I define the unconditional expected total effort provision as

E[X∗1 +X∗2] = µ2
(
E[X∗1 +X∗2 | a1 = a2 = h]

)
+ (1−µ)2

(
E[X∗1 +X∗2 | a1 = a2 = l]

)
(23)

+ 2µ(1−µ)
(
E[X∗1 +X∗2 | a1 , a2]

)
.

From Proposition 1 we may think that setting µ = 1/2 maximizes the unconditional ex-

pected total effort. While it is true that µ = 1/2 maximizes effort in contests between each

ability pairs, it also impacts the probabilities with which these ability pairs occur (see

Figure 2). This mechanism becomes important when we note that expected effort varies

across contests depending on players’ abilities. In fact, we can show by inspecting equi-

librium expected effort provision for the three ability pairings that the highest expected

effort is generated by the contest where both players are high ability, followed by the

contest with two low-ability players. The contest where players’ abilities differ leads to

the least effort in expectation:

E[X∗1 +X∗2 | ai = h,a−i = l] < E[X∗1 +X∗2 | ai = l] < E[X∗1 +X∗2 | ai = h]. (24)

It is then clear that if a given µ leads to a heterogeneous ability contest too often, it may

not maximize expected effort in the contest from the observer’s perspective. Figure 2

shows how the probability of a given ability matchup changes with the probability of
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Figure 2: Ability match probabilities as a function of type-h probability µ.

a player being high ability. It is easy to confirm analytically that the probability of a

heterogeneous contest 2µ(1− µ) is maximized at µ = 1/2. This coincides with the prior

that maximizes expected effort in each contest. The question then becomes whether one

can find an alternative high ability share µ , 1/2 that will lead to a higher expected effort

without knowing the competing players’ abilities.

The probability of a heterogeneous contest occurring is symmetric around its maximum,

µ = 1/2.12 We can also show that the psychological prize spread, v̄ − v, is also symmetric

around 1/2.13 It follows then that expected effort is never maximized for µ < 1/2. To see

this consider setting µ = 1/4. Since 1/4 < 1/2, we will see a decrease in the psychological

prize spread and therefore in expected effort (Proposition 1). On the other hand, moving

away from µ = 1/2 reduces the probability of a heterogeneous contest occurring. Since the

lowest total expected effort is lowest in such contests—even comparing to the homoge-

neous contest with two low-ability players—, we may see an increase in expected effort

provision even with the higher probability of players having low-ability types. However,

we could achieve the same reduction in the chance of the heterogeneous contest occurring

by increasing µ to 3/4. This would yield the same decrease in the psychological prize

spread v̄ − v as setting µ to 1/4, but now the probability of two high-ability players com-

peting will be higher compared to µ = 1/4. Since we know that holding all else constant,

the homogeneous contest of two high-ability players leads to the highest expected effort

provision, we then have that µ < 1/2 can never be the expected effort maximizing type-h

probability.

12. Let µ1 = 1/2− b and µ2 = 1/2 + b with b ∈ (0,1/2). The probability of a heterogeneous contest occurring,
2µ(1−µ), is symmetric around 1/2 if 2µ1 − 2µ2

1 = 2µ2 − 2µ2
2 ⇐⇒ b2 = b2. which holds for all b ∈ (0,1/2).

13. Again, let µ1 = 1/2 − b and µ2 = 1/2 + b with b ∈ (0,1/2). The psychological prize spread, v̄ − v, is

symmetric around 1/2 if 2(1−α)κ
α (µ1 − 1)µ1 = 2(1−α)κ

α (µ2 − 1)µ2 ⇐⇒ −1/2 = −1/2. This equality of course
holds independent of b.
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We can also show that µ∗ must be strictly above 1/2. While the psychological prize spread

v̄ − v is maximized at µ = 1/2, this is not sufficient for maximizing unconditional expected

effort from the observer’s perspective. This is because µ influences not only the size of

psychological incentives, but also the probability with which different ability pairings

occur.

To show this formally, let Ehh, Ell , and Ehl denote the expected effort in the three respective

matchups (these correspond to the expectation in (23)). Differentiating total expected

effort in (23) with respect to µ yields:

d
dµ

E[X∗1 +X∗2] = 2µEhh − 2(1−µ)Ell + 2(1− 2µ)Ehl

+µ2dEhh

dµ
+ (1−µ)2dEll

dµ
+ 2µ(1−µ)

dEhl

dµ
. (25)

From Proposition 1, we know that each conditional effort term is maximized at µ = 1/2,

which implies that the derivatives of Ehh, Ell , and Ehl with respect to µ are zero at this

point. Thus, at µ = 1/2,
d
dµ

E[X∗1 +X∗2]
∣∣∣∣∣
µ=1/2

= Ehh −Ell . (26)

Since Ehh > Ell by Theorem 1, this derivative is strictly positive, and hence the effort-

maximizing prior must satisfy µ∗ > 1/2: the observer should expect to see the most intense

competition when the type-h probability is greater than 1/2.
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Figure 3: Expected effort for different values of high ability share µ and monetary prize M. The
maximum is marked with a solid black circle. The parameter assumptions are: α = 3, l = 1,κ = 1.

Increasing the monetary prize M does not affect the psychological prize spread. However,

as M grows, monetary incentives become more important in motivating effort, compared to

psychological payoffs. This shift makes it less consequential—from an effort-maximization
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perspective—if psychological incentives weaken, as they do when µ increases. As a result,

maximizing the probability of a high-ability matchup becomes more important relative to

sustaining motivation from psychological payoffs. Hence, µ∗ increases with M.

I show above that it is not enough to maximize the psychological prize spread to maximize

expected effort provision from the observer’s perspective, as the probability of a player

being a high-ability type µ affects both the probability of different ability pairings, and

the psychological prize spread. I summarize this result in Proposition 3.

Proposition 3 (Maximizing Unconditional Expected Effort). The unconditional expected
effort maximizing type-h probability is in the open interval µ∗ ∈ (1/2,1), and therefore it is
strictly greater than 1/2, the type-h probability that maximizes motivation in any given ability
matchup. µ∗ is increasing with monetary prize M.

6 Heterogeneous Priors

Until now, I assumed that the observer has the same prior belief about both players’

abilities. While this assumption allowed us to analyze interesting comparative statics

within a tractable framework with sufficient generality, in many real-world contexts,

observers have different priors for agents depending on their observable characteristics

(Campos-Mercade and Mengel 2024; Charles and Guryan 2011; Hilton and Hippel 1996).

For example, women are often stereotyped to be less capable in many tasks than men

(Reuben, Sapienza, and Zingales 2014; Ellemers 2018), while black students are stereo-

typed to perform worse academically (Steele and Aronson 1995). These stereotypes may

also explain part of the wage and employment gap between black and white Americans

(Lang and Spitzer 2020; Lang and Lehmann 2012) and between women and men (Olivetti

and Petrongolo 2016). It is, therefore, important that we consider how competing players

expecting an observer to think of their abilities to differ ex-ante may affect their behavior

in the contest. To do so, I first generalize the framework with homogeneous priors and

allow the observer to have different priors about players’ abilities.14 I then analyze how

expected effort provision and win probabilities are affected by prior beliefs.

The basic structure of the game remains the same: there are two players, who can be of

high- or low-ability type. However, the probability that ability parameter ai ∈ {l,h} takes

the value h now depends on the player’s identity. For Player i, the probability that ai = h is

now µi ∈ (0,1). As before, the observer knows µi but can only observe the outcome of the

subsequent contest. While I generalize along the dimension of observer’s beliefs, I assume

that there are no monetary prizes in the contest (M = 0) to keep the analysis tractable.

14. Allowing players to believe that observer have different priors about their ability is an alternative
interpretation of the model that will follow.
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Player i’s expected utility is then

EUi = wi(xi ,x−i) vi + (1−wi(xi ,x−i)) vi − xi/ai . (27)

Finding the equilibrium requires similar steps to those under homogeneous priors: first

I impose that players make conjectures about psychological prizes,15 choose strategies

that are mutual best responses given these conjectures and, finally, impose that that the

conjectured prizes must be consistent. To proceed with the first step, define ∆c
i := v̄ci − v

c
i

as the difference in conjectured prizes for Player i, and denote a consistent conjecture

with ∆i . Importantly, ∆1 may not equal ∆2 under heterogeneous priors.

I proceed with deriving the equilibrium effort choice and implied win probabilities, taking

the conjectured prizes as given. Player i has no incentive to exert effort above ai∆
c
i . To see

this, consider the two extremes, whereby Player i is guaranteed to win the contest versus

when she is guaranteed to lose. When she wins with probability one and chooses effort xi
above ai∆

c
i , her expected utility is given by

v̄ci − xi/ai . (28)

This may be positive even if xi > ai∆
c
i (= ai(v̄

c
i − v

c
i )), as vci could be strictly positive.

Importantly, an expected utility of vci can be trivially guaranteed by exerting no effort.

It follows then that if choosing effort xi yields positive, but nonetheless lower expected

payoff than vci , then this effort level xi will never be chosen by Player i. We can find the

effort level x̄i for which a guaranteed win in the contest provides the same expected utility

as vci by rearranging v̄ci − x̄i/ai = vci for x̄, which yields ai∆
c
i .

Under heterogeneous priors, a1∆
c
1 may not equal a2∆

c
2. Let k ∈ {1,2} be the index of the

player with lower maximum effort, formally

k = arg min
i∈{1,2}

(ai∆
c
i ). (29)

Her opponent, Player −k can threaten to exert effort just above ak∆
c
k , thereby guaranteeing

a win for Player −k with strictly positive expected payoff. Exerting more effort than just

above ak∆
c
k decreases Player −k’s expected payoff, hence we know that neither player has an

incentive to choose effort level above ak∆
c
k . It is important to note that under homogeneous

priors, who can guarantee a win for herself while capturing positive expected payoff
depends on which player has higher ability. In contrast, under heterogeneous priors, also

the individual psychological prizes captured by ∆c
i matters.

The equilibrium properties of the game with heterogeneous priors are otherwise similar

15. Under heterogeneous priors, players make conjectures about both their own, and their opponent’s
psychological prizes. I assume that players make the same conjecture about every psychological prize.
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to the case with homogeneous priors: equilibrium is in mixed strategies, with players

randomizing on common support between zero and ak∆
c
k as described in Proposition 4.

Proposition 4 (Equilibrium characterization for given conjectured prizes). There is a
unique equilibrium in mixed strategies. Let k denote the index of the player with lower effort
incentive ai∆i , as defined in (29). Players randomize over the same support x ∈ [0, ak∆

c
k]

according to cumulative distribution functions

F∗−k(x−k) =
x−k

a−k∆c
−k

(30)

F∗k(xk) = 1 +
xk − ak∆c

k

a−k∆
c
−k

. (31)

The next steps in finding the consistent prizes under heterogeneous priors are (1) use the

equilibrium strategies given the conjectured prizes in Proposition 4 above to calculate

player’s probabilities of winning the contest, (2) use these win probabilities to derive the

posteriors using Bayes’ rule and finally (3) confirm whether these posteriors correspond

to the conjectured prizes. The last step introduces further complications in the analysis,

as it involves finding a fixed point. This fixed point problem is, however not tractable

when the identity of Player k—the player with the smallest ai∆
c
i—varies with the realized

abilities of the two players. To keep the analysis tractable, I assume that the identity of

Player k remains the same, irrespective of her or her opponent’s realized ability. In other

words, ak∆
c
k < a−k∆

c
−k irrespective of the values ak and a−k . Without loss of generality, let

k = 2 such that

h∆c
2 < l∆c

1, (32)

which implies that Player 1 has higher effort incentive a1∆1 than Player 2 irrespective of

the realized ability pair. With this assumption, I can go through the above steps to find

the consistent prizes. Using the equilibrium strategies and noting that Player 1 captures

positive expected payoff in equilibrium irrespective of ability realizations, we have that

Player 1’s probability to win the contest is

Pr[X2 < X1] = 1− 1
2
a2∆

c
2

a1∆
c
1
. (33)

Let λ := ∆c
1/∆

c
2. Using Bayes’ rule, Player 1’s win valuation is given by

v̄1 = κ ×Pr
[
a1 = h | Player 1 wins

]

= κ

µ1


1−

1

2λ

 µ2 +

1−
l

2hλ

 (1−µ2)


µ1


1−

1

2λ

 µ2 +

1−
l

2hλ

 (1−µ2)

+ (1−µ1)


1−

1

2λ

 (1−µ2) +

1−
h

2lλ

 µ2


(34)
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As before, κ > 0 captures how much the player values being perceived as high ability by

the observer. The numerator gives the probability that Player 1 wins the contest, condi-

tional on her being high ability, with the relevant win probabilities (in round brackets)

defined in (33) and rewritten using the simplification λ := ∆c
1/∆

c
2. The denominator is the

unconditional probability that Player 1 wins the contest, accounting for all possible ability

combinations. The loss valuation for Player 1, as well as the win and loss valuations for

Player 2, are calculated analogously using Bayes’ rule.

The win and loss valuations are written as a function of the ratio conjectured marginal

valuations, λ. This allows us to simplify the system of equations to a single equation with

λ :=
v̄c1 − v

c
1

v̄c2 − v
c
2

=
Pr

[
a1 = h | Player 1 wins

]
−Pr

[
a1 = h | Player 1 loses

]
Pr

[
a2 = h | Player 1 wins

]
−Pr

[
a2 = h | Player 1 loses

] = f (λ). (35)

The consistent prize vectorλ∗ is such that λ∗ = f (λ∗) in (35). Simplifying the RHS of (35)

results in all the λ terms dropping out, which then gives us λ∗ immediately as a function

of parameters µi and ai . Plugging back λ∗ in the win and loss valuations allows us to

write the win and loss valuations as a function of exogenous parameters ai ,µi and κ (see

Appendix A.10 for the explicit expressions). Finding λ∗ leads us to Theorem 2, which is

the main result of this section.

Theorem 2 (Equilibrium). Define

∆1 =
−2κ(h− l)hl(1−µ1)2µ2

1

−2hl(1−µ1)µ1(h(1−µ1)− lµ1) + (h− hµ1 + lµ1)3µ2 − (h− hµ1 + lµ1)3µ2
2

, (36)

∆2 =
−2κ(h− l)hl(1−µ1)µ1(1−µ2)µ2

(l(1−µ2)− hµ2)
[
h2(1−µ1)2(1−µ2)µ2 + l2µ2

1(1−µ2)µ2 − 2hl(1−µ1)µ1(1 + (1−µ2)µ2)
] . (37)

Suppose
h∆2 < l∆1 (38)

holds. This condition is equivalent to

h < h̄ :=
lµ1(µ2 −µ1)

2(µ1 − 1)(µ2 − 1)
+

1
2

√
A(µ1,µ2)

(µ1 − 1)2(µ2 − 1)2µ2
, (39)

where A(µ1,µ2) =

= l2
[
µ2µ

4
1 + 4µ3

1 + 2µ2
2µ

3
1 − 8µ2µ

3
1 +µ3

2µ
2
1 − 8µ2

1 − 8µ2
2µ

2
1 + 16µ2µ

2
1 + 4µ1 + 4µ2

2µ1 − 8µ2µ1

]
.

There exists an equilibrium in which Player i’s marginal valuation of winning equals ∆i and
players randomize over the same support x ∈ [0, a2∆2] according to cumulative distribution
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functions

F∗1(x1) =
x1

a1∆1
, (40)

F∗2(x2) = 1 +
x2 − a2∆2

a1∆1
. (41)

The ratio of marginal prizes in this equilibrium is given by

λ∗ =
∆1

∆2
=

(1−µ1)µ1

(1−µ2)µ2

µ2h+ (1−µ2)l
µ1h+ (1−µ1)l

[
1−

(1− 2µ1)(h− l)
h−µ1(h− l)

]
. (42)

To see why h needs to be bounded from above for h∆2 < l∆1 ⇐⇒ h/l < ∆1/∆2 to hold,

take the limit of ∆1/∆2 as h→∞ to get µ1/(1−µ2). The limit of the LHS of the inequality

is clearly limh→∞h/l = ∞. We can then immediately see that for some priors µi , the

inequality will not hold if h is too large.

It is also instructive to discuss the expression for λ∗, restated below in (43). The first

multiplicative term is the ratio of variances in player’s abilities16 and the remaining two

terms are the ratio of expected abilities and an adjustment term that increases in µ1:

λ∗ =
(1−µ1)µ1

(1−µ2)µ2︸      ︷︷      ︸
V[a1]/V[a2]

µ2h+ (1−µ2)l
µ1h+ (1−µ1)l︸            ︷︷            ︸

E[a2]/E[a1]

[
1−

(1− 2µ1)(h− l)
h−µ1(h− l)

]
. (43)

As under homogeneous priors, uncertainty about players’ abilities influences (the ratio

of) marginal valuations. To see how, first consider that the variance of a player’s realized

ability ai is largest at µi = 1/2. Consequently, the closer µ1 is to 1/2, the higher λ∗ will be

driven by the uncertainty effect we identified in the homogeneous prior case. On the other

hand, the closer µ2 is to 1/2, the stronger is the downward pressure from the uncertainty

effect on the equilibrium ratio of marginal valuations, λ∗ = ∆∗1/∆
∗
2. While uncertainty was

one dimensional in the homogeneous prior case, with the observer having different priors

associated with the players it is the relative variance of ability that matters for how λ∗ is

affected through the relative uncertainty effect.

Last, the condition on h in Theorem 2 implies a necessary condition on the relative size of

priors stated in Remark 1 below—see Figure 4 for an illustration of the admissible pairs of

priors. A brief examination of this condition can provide useful intuition for the analysis

that follows.

Remark 1. For h∆2 < l∆1 to hold, the observer’s prior about Player 2 must be sufficiently
extreme relative to that of Player 1 such that

16. Ability ai has a Bernoulli distribution with the two events being ai = h and ai = l.
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1. if µ1 ≤ 1/2, µ2 < µ1 and 1−µ1 < µ2 must hold,

2. and if µ1 > 1/2 then µ2 < 1−µ1 and µ1 < µ2 must hold.

These restrictions are intuitive given the results we have from the model with homoge-

neous priors: players’ effort incentives ai∆i increase in ∆i . When the observer’s uncertainty

about a player’s ability type vanishes—in other words, her prior µi ∈ (0,1) is approaches

the extremes—the prize spread ∆i goes to zero. This implies then that for fixed µ1 and

ai , we need the prior for Player 2 to be sufficiently extreme in order for the inequality

a2∆2 < a1∆1 to be satisfied.

1−µ1 < µ2

µ1

µ2

0 1

1

Figure 4: Restrictions on µ2 for fixed µ1 under the assumption that a2∆2 < a1∆1 for all ability pairs
(a1, a2). The green line segments show the values µ2 can take for a given µ1.

Expected effort in the limit. Allowing for heterogeneous priors introduces significant

complexity in the model, however, I can extend a key result obtained under homogeneous

priors to the case when the observer is allowed to have different priors about players’

abilities: the observer being too certain about a player’s ability reduces her motivation

to exert effort. We can confirm this by taking the limit of players’ expected effort with

respect to µi approaching its extremes at zero and one. Using the equilibrium strategies

in Proposition 4 and the consistent psychological prizes, we can calculate expected effort

for the two players as

E[X∗1] =
1

2
a2∆2, (44)

E[X∗2] =
1

2

(a2∆2)2

a1∆1
. (45)

Players randomize their bids independently and, therefore, expected total effort is simply

the sum of expected individual efforts E[X∗1] +E[X∗2]. Since µi only enters expected effort

through ∆i , knowing that limµi→0∆i = limµi→1∆i = 0 provides us with the limit result

stated in Proposition 5 (note that we can rewrite the expected effort of Player 2 as a
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function of ∆2 and λ∗ > 1). A further implication of this result is that as ∆i approaches

zero, so does the opponent’s, Player −i’s expected effort. This is intuitive: when one player

has no incentive to exert effort, her opponent can win by exerting an infinitesimal amount

of effort.

Proposition 5. Total expected effort approaches zero as uncertainty about players’ abilities
vanishes (µi → 0 or µi → 1).

Win probability. It is also important to consider how win probabilities are affected by

changing priors, especially in light of the management science literature on how observers’

expectations of success probability affects performance (Lount Jr, Pettit, and Doyle 2017;

Chen and Klimoski 2003) and how facing low expectations—being an “underdog”—can

increase performance in particular (Nurmohamed 2020; Nurmohamed, Kundro, and

Myers 2021). In this model, we can interpret the observer having a low prior about a

player’s ability relative to her opponent as that player facing low expectations. To look

at the effects of facing low expectations on performance—measured here by a player’s

probability to win the contest in which abilities are already realized—, I first rewrite (33)

to get Player 1’s probability to win the contest as a function of λ and ability parameters ai :

Pr[X2 < X1] = 1− 1
2
a2

a1

∆2

∆1
= 1− 1

2
a2

a1

1
λ
>

1
2
. (46)

The inequality follows from 1/λ < l/h < 1 under the assumption that a2∆2 < a1∆1.

Taking the derivatives of (46) with respect to µ1 and µ2 and analyzing the sign of these

derivatives yields the results in Proposition 6: an observer having a more extreme prior

belief about one’s ability relative some threshold value decreases the player’s probability

to win the contest.17 Conversely, an observer having a more extreme prior belief about

the opponent’s ability relative some threshold increases the player’s probability to win.

Proposition 6. Assume h < h̄. Player 1’s probability of winning the contest monotone increases
in the observer’s prior about her ability µ1 until the threshold µ̄1, and monotone decreases when
µ̄1 < µ1. The threshold is given by

1/2 < µ̄1 =
h−
√
lh

h− l
< 1. (47)

Player 1’s win probability monotone decreases in the observer’s prior about her opponent’s
ability µ2 up until the threshold µ̄2, and monotone increases thereafter. The threshold is given
by

0 < µ̄2 =
l −
√
lh

l − h
< 1/2. (48)

17. With the caveat that for this result to hold for µ1 we must impose that there exists a feasible µ1 > µ̄1.
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Note that h < h̄ implies that the restrictions on the relative size of priors µ1 and µ2 in

Remark 1 must also hold. It is, therefore, possible that when µ2 is close enough to 1/2, such

that 1− µ̄1 < µ2 ≤ µ̄1, then Player 1’s win probability never decreases in µ1 for the feasible

parameter values µ1 can take. Nonetheless, there always exists a feasible µ2 < 1− µ̄1 or

µ̄1 < µ2 for which µ̄1 is an interior point of the interval of parameter values µ1 can take.

On the other hand, there exists for any µ1 an interval of feasible µ2 values close to zero

on which Player 1’s win probability decreases in µ2 and another interval close to one on

which her win probability increases in µ2.

It may appear puzzling at first that µ2 can get closer to 1/2 but this may still result in an

increase of Player 1’s win probability. We may expect that increasing uncertainty about a

player’s ability type increases her marginal win valuation and, therefore, her probability

to win the contest. However, as we have already seen with expected effort, changing priors

affect marginal valuations asymmetrically given the power imbalance between players:

for some initial parameter values, an increase in the uncertainty about a player’s ability

can tilt the ratio of marginal valuation in the opponent’s favor.

Corollary 1 (The “Underdog Effect”). For priors µi < µ−i , there exists some interval of µi on
which Player i’s win probability increases as µi decreases. There also exists an interval on which
decreasing µi decreases Player i’s win probability.

The result in Corollary 1 shows that there indeed is an underdog effect as in Nurmohamed

(2020): there exists some prior belief by the observer whereby a player is an underdog—

meaning that the observer’s belief about her ability is lower than that of her opponent—,

and further reducing the observer’s prior about her ability increases her probability to

win the contest. This result, however, comes with a significant caveat: the underdog effect

reverses when the prior µi gets closer to zero. We can interpret this as a complacency

effect, briefly mentioned by Grant and Shandell (2022). As priors are becoming more

extreme, the observer’s posterior will respond less to the ability signal of winning in the

contest. This makes the marginal value of winning the contest smaller for the player,

which induces low effort and leads to a decreased probability of winning. The same

argument holds when the observer’s prior approaches one: the complacency effect also

operates for players believed to be high ability with high confidence.

While it is clear that social image concerns are not the only mechanism at play when

analyzing how agents respond to facing high or low expectations, the model presented

in this section allows one to identify a novel mechanism that could (partially) drive the

underdog effect, and at the same time could also generate a complacency effect when the

observer is too confident in an agent’s ability before observing the contest outcome.
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7 Concluding Remarks

This paper develops a theoretical model that helps explain competitive behavior even

in contexts without explicit monetary rewards by studying how social image concerns

shapes effort provision in contests. The model shows how introducing an observer who

updates her beliefs about competitors’ abilities creates implicit prizes that motivate costly

effort, even in the absence of explicit, instrumental rewards.

The model provides novel insights into how social image concerns drive competitive be-

havior by deriving prizes in equilibrium, rather than fixing exogenously. First, competition

is most intense when observers have the greatest uncertainty about competitors’ abilities.

Second, the model identifies a novel “encouragement effect” of increasing heterogeneity

in productive ability between player types, contrasting with the standard discouragement

effect in contest theory. This occurs because larger ability gaps make winning more infor-

mative about being high ability, potentially offsetting the demotivating effect of facing

a stronger opponent. Third, I show that the type-h probability that maximizes uncondi-

tional expected effort from the observer’s perspective differs from the one that maximizes

effort in any given ability matchup. Last, I extend the model to allow the observer to

have different priors about players’ abilities. This framework allows me to study the

“underdog effect” discussed in the management science literature (Nurmohamed 2020). I

show that social image concerns can also generate this effect, whereby decreasing the prior

belief about the ability of the player with the already lower prior of the two competing

players can in fact increase the probability that she wins the contest. On the other hand,

this increase in win probability reverses once a threshold prior belief is reached and a

“complacency effect” starts to dominate whereby the observer’s increasingly sticky prior

decreases the player’s motivation to exert effort.

The paper provides several testable hypotheses on how agents are motivated by social

image concerns, which may motivate future experimental work studying behavior in

contests for social image.

30



References

Ager, P., L. Bursztyn, L. Leucht, and H.-J. Voth. 2022. “Killer incentives: Rivalry, perfor-

mance and risk-taking among German fighter pilots, 1939–45.” Review of Economic

Studies 89 (5): 2257–2292.

Anderson, C., J. A. D. Hildreth, and L. Howland. 2015. “Is the desire for status a funda-

mental human motive? A review of the empirical literature.” Psychological Bulletin

141 (3): 574.

Auriol, E., and R. Renault. 2008. “Status and Incentives.” The RAND Journal of Economics

39 (1): 305–326.

Austen-Smith, D., and R. G. Fryer. 2005. “An economic analysis of “acting white”.”

Quarterly Journal of Economics 120 (2): 551–583.

Baik, K. H. 1994. “Effort levels in contests with two asymmetric players.” Southern

Economic Journal, 367–378.

Barut, Y., and D. Kovenock. 1998. “The symmetric multiple prize all-pay auction with

complete information.” European Journal of Political Economy 14 (4): 627–644.

Battigalli, P., and M. Dufwenberg. 2022. “Belief-Dependent Motivations and Psychological

Game Theory.” Journal of Economic Literature 60 (3): 833–882.

Baye, M. R., D. Kovenock, and C. G. De Vries. 1996. “The all-pay auction with complete

information.” Economic Theory 8 (2): 291–305.

Baye, M. R., D. Kovenock, and C. G. de Vries. 1993. “Rigging the Lobbying Process: An

Application of the All-Pay Auction.” American Economic Review 83 (1): 289–294.

Bénabou, R., and J. Tirole. 2006. “Incentives and Prosocial Behavior.” American Economic

Review 96 (5): 1652–1678.

Besley, T., and M. Ghatak. 2008. “Status Incentives.” American Economic Review 98 (2):

206–211.

Brennan, G., and P. Pettit. 2000. “The hidden economy of esteem.” Economics and Philos-

ophy 16 (1): 77–98.

Brown, J. 2011. “Quitters Never Win: The (Adverse) Incentive Effects of Competing with

Superstars.” Journal of Political Economy 119 (5): 982–1013.

Bursztyn, L., G. Egorov, and R. Jensen. 2019. “Cool to be Smart or Smart to be Cool?

Understanding Peer Pressure in Education.” The Review of Economic Studies 86 (4):

1487–1526.

31



Bursztyn, L., B. Ferman, S. Fiorin, M. Kanz, and G. Rao. 2018. “Status goods: experimental

evidence from platinum credit cards.” Quarterly Journal of Economics 133 (3): 1561–

1595.

Bursztyn, L., and R. Jensen. 2017. “Social Image and Economic Behavior in the Field: Iden-

tifying, Understanding, and Shaping Social Pressure.” Annual Review of Economics

9 (1): 131–153.

Campos-Mercade, P., and F. Mengel. 2024. “Non-Bayesian Statistical Discrimination.”

Management Science 70 (4): 2549–2567.

Cappelen, A. W., K. O. Moene, S.-E. Skjelbred, and B. Tungodden. 2023. “The merit

primacy effect.” The Economic Journal 133 (651): 951–970.

Charles, K. K., and J. Guryan. 2011. “Studying Discrimination: Fundamental Challenges

and Recent Progress.” Annual Review of Economics 3:479–511.

Chen, G., and R. J. Klimoski. 2003. “The impact of expectations on newcomer performance

in teams as mediated by work characteristics, social exchanges, and empowerment.”

Academy of Management Journal 46 (5): 591–607.

Dechenaux, E., D. Kovenock, and R. M. Sheremeta. 2015. “A survey of experimental

research on contests, all-pay auctions and tournaments.” Experimental Economics 18

(4): 609–669.

Deci, E. L., and R. M. Ryan. 2000. “The "What" and "Why" of Goal Pursuits: Human Needs

and the Self-Determination of Behavior.” Psychological Inquiry 11 (4): 227–268.

DellaVigna, S., J. A. List, U. Malmendier, and G. Rao. 2016. “Voting to tell others.” Review

of Economic Studies 84 (1): 143–181.

Drugov, M., and D. Ryvkin. 2022. “Hunting for the discouragement effect in contests.”

Review of Economic Design.

Dufwenberg, M., and M. Lundholm. 2001. “Social Norms and Moral Hazard.” The Eco-

nomic Journal 111 (473): 506–525.

Ederer, F., and A. Patacconi. 2010. “Interpersonal comparison, status and ambition in

organizations.” Journal of Economic Behavior & Organization 75 (2): 348–363.

Ellemers, N. 2018. “Gender Stereotypes.” Annual Review of Psychology 69 (1): 275–298.

Ellingsen, T., and M. Johannesson. 2007. “Paying respect.” Journal of Economic Perspec-

tives 21 (4): 135–149.

Fang, D., T. Noe, and P. Strack. 2020. “Turning Up the Heat: The Discouraging Effect of

Competition in Contests.” Journal of Political Economy 128 (5): 1940–1975.

32



Festinger, L. 1954. “A Theory of Social Comparison Processes.” Human Relations 7 (2):

117–140.

Frey, B. S. 2007. “Awards as compensation.” European Management Review 4 (1): 6–14.

Fu, Q., and Z. Wu. 2019. “Contests: Theory and topics.” In Oxford Research Encyclopedia

of Economics and Finance, 1–71. Oxford University Press Oxford, UK.

Funk, P. 2010. “Social incentives and voter turnout: evidence from the Swiss mail ballot

system.” Journal of the European Economic Association 8 (5): 1077–1103.

Garcia, S. M., A. Tor, and T. M. Schiff. 2013. “The Psychology of Competition: A Social

Comparison Perspective.” Perspectives on Psychological Science 8 (6): 634–650.

Gerber, A. S., D. P. Green, and C. W. Larimer. 2008. “Social pressure and voter turnout:

Evidence from a large-scale field experiment.” American Political Science Review

102 (1): 33–48.

Goffman, E. 1959. “The presentation of self in everyday life.”

Grant, A. M., and M. S. Shandell. 2022. “Social Motivation at Work: The Organizational

Psychology of Effort for, Against, and with Others.” Annual Review of Psychology 73

(1): 301–326.

Hillman, A. L., and J. G. Riley. 1989. “Politically Contestable Rents and Transfers.”

Economics & Politics 1 (1): 17–39.

Hilton, J. L., and W. v. Hippel. 1996. “Stereotypes.” Annual Review of Psychology 47:237–

271.

Hupkau, C., and F. Maniquet. 2018. “Identity, non-take-up and welfare conditionality.”

Journal of Economic Behavior & Organization 147:13–27.

Kawamura, K., and I. Moreno de Barreda. 2014. “Biasing selection contests with ex-ante

identical agents.” Economics Letters 123 (2): 240–243.

Kilduff, G. J., H. A. Elfenbein, and B. M. Staw. 2010. “The Psychology of Rivalry: A

Relationally Dependent Analysis of Competition.” Academy of Management Journal

53 (5): 943–969.

Kosfeld, M., and S. Neckermann. 2011. “Getting More Work for Nothing? Symbolic Awards

and Worker Performance.” American Economic Journal: Microeconomics 3 (3): 86–99.

Lane, S. M., and M. Briffa. 2022. “Skilful mating? Insights from animal contest research.”

Animal Behaviour 184:197–207.

Lang, K., and J.-Y. K. Lehmann. 2012. “Racial discrimination in the labor market: Theory

and empirics.” Journal of Economic Literature 50 (4): 959–1006.

33



Lang, K., and A. K.-L. Spitzer. 2020. “Race discrimination: An economic perspective.”

Journal of Economic Perspectives 34 (2): 68–89.

Lazear, E. P., and S. Rosen. 1981. “Rank-Order Tournaments as Optimum Labor Contracts.”

Journal of Political Economy 89 (5): 841–864.

Leary, M. R., K. P. Jongman-Sereno, and K. J. Diebels. 2014. “The Pursuit of Status: A

Self-presentational Perspective on the Quest for Social Value.” In The Psychology of

Social Status, edited by J. T. Cheng, J. L. Tracy, and C. Anderson, 159–178. New York,

NY: Springer New York.

Lount Jr, R. B., N. C. Pettit, and S. P. Doyle. 2017. “Motivating underdogs and favorites.”

Organizational Behavior and Human Decision Processes 141:82–93.

Markus, H. R. 2016. “What moves people to action? Culture and motivation.” Current

Opinion in Psychology 8:161–166.

Moldovanu, B., A. Sela, and X. Shi. 2007. “Contests for Status.” Journal of Political Econ-

omy 115 (2): 338–363.

Nurmohamed, S. 2020. “The Underdog Effect: When Low Expectations Increase Perfor-

mance.” Academy of Management Journal 63 (4): 1106–1133.

Nurmohamed, S., T. G. Kundro, and C. G. Myers. 2021. “Against the odds: Developing

underdog versus favorite narratives to offset prior experiences of discrimination.”

Organizational Behavior and Human Decision Processes 167:206–221.

Olivetti, C., and B. Petrongolo. 2016. “The Evolution of Gender Gaps in Industrialized

Countries.” Annual Review of Economics 8:405–434.

Postlewaite, A. 1998. “The social basis of interdependent preferences.” European Economic

Review 42 (3): 779–800.

Reuben, E., P. Sapienza, and L. Zingales. 2014. “How stereotypes impair women’s careers

in science.” Proceedings of the National Academy of Sciences 111 (12): 4403–4408.

Rogers, T., and A. Feller. 2016. “Discouraged by Peer Excellence: Exposure to Exemplary

Peer Performance Causes Quitting.” Psychological Science 27 (3): 365–374.

Schauer, D. 2022. “Reputation for Competence: Social Learning Mechanisms Create an

Incentive to Help Others.” Biological Theory 17 (2): 153–162.

Smith, A. 1759. “The Theory of Moral Sentiments.”

Spence, M. 1973. “Job Market Signaling.” Quarterly Journal of Economics 87 (3): 355–374.

Steele, C. M., and J. Aronson. 1995. “Stereotype threat and the intellectual test perfor-

mance of African Americans.” Journal of Personality and Social Psychology 69 (5):

797.

34



Tullock, G. 1980. “Efficient Rent-Seeking.” In Toward a Theory of the Rent-seeking Society.

Texas A & M University.

35



A Appendix

A.1 Proof of Lemma 1.

Proof. The equilibrium strategies are derived in Kawamura and Moreno de Barreda (2014).

For the heterogeneous contest win probabilities, take the general expression in Kawamura

and Moreno de Barreda (2014) given for the probability of a high-ability player to win

against a low-ability player

1− 1
∆c ch

(
c−1
l (∆c)

)
+

1
(∆c)2

∫ c−1
l (∆c)

0
c′l (x)ch (x) dx, (49)

where the cost function cai of a player with ability ai satisfies cai (0) = 0, c′ai (·) > 0, c′′ai (·) ≥ 0,

caj (x) ≥ cai (x) ∀x ≥ 0 if ai ≥ aj and the prize valuation is ∆c > 0 with loss valuation

normalized to zero.

Using the functional form assumption for the cost function (which satisfied the above

restrictions in Kawamura and Moreno de Barreda (2014)), we can simplify (49) to get

1− l
h

+
1

(∆c)2

∫ ∆cl

0

x
lh

dx =

= 1− l
2h

= w1(h, l,v).

We then have w∗1(l,h) = l
2h = 1

2α = 1 −w∗1(h, l). When players are homogeneous then the

above expression becomes 1− h
2h = 1− l

2l = 1/2.

A.2 Proof of Theorem 1.

Proof. For M > 0 players will not remain inactive and therefore the contest outcome is

informative of players’ abilities: the posterior beliefs conditional on contest outcome are

not equal.

Assuming that the prize conjectures are symmetric, we can use the win probabilities in

Lemma 1 to calculate the win and loss valuations in Equation 10 and Equation 11. The

resulting posteriors are (1) derived via Bayes’ rule and (2) are consistent in the sense of

Definition 1 since win probabilities are invariant to the marginal prize. The invariance

of win probabilities to the marginal prize also ensures that the psychological prizes are

indeed unique for fixed µ,α and κ. Given that prizes are unique the two-player all-pay

contest has a unique equilibrium in mixed strategies. To get the marginal prize ∆, simply

plug in the expressions for the posteriors calculated above into ∆ = M + v̄ − v.
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Equilibrium expected effort is derived by integrating the respective equilibrium cumula-

tive distribution function in Lemma 1, replacing the conjectured marginal prize ∆c with

∆.

When M = 0, players may make a symmetric conjecture that correspond to the case of

M > 0, hence the same equilibrium survives.

To confirm that staying inactive is also an equilibrium, suppose that the conjecture is

that the posteriors equal the prior belief. We then have that the marginal prize ∆ is zero.

From Lemma 1 we know that the equilibrium is then in pure strategies such that both

players remain inactive. When both players are inactive the contest carries no information

about their abilities, hence the posteriors can be derived with Bayes’ rule. It follows that

the initial conjecture is indeed consistent. Remaining inactive while expecting that the

observer does not update from the contest outcome is then indeed an equilibrium.

A.3 Proof of Lemma 2.

Proof. Differentiate the win valuation with respect to α and µ:

dv̄
dα

= κ
(1−µ)µ

α2 > 0,

dv̄
dµ

= κ
2α − 2(α − 1)µ− 1

α
= κ

(2µ− 1
α

+ 2− 2µ
)
> 0.

dv̄
dα > 0 clearly holds given that 0 < µ < 1 and κ > 0.

To see that dv̄
dµ > 0 is indeed correct, first we need to realize that no minimum exists,

however, we can differentiate with respect to α and µ to identify the appropriate limits to

take:

d
(
dv̄
dµ

)
dµ

= κ
( 2
α
− 2

)
< 0,

d
(
dv̄
dµ

)
dα

= κ
(1− 2µ

α2

)
.

The derivative with respect to µ is always negative given that α > 1 and κ > 0, while the

sign of the derivative with respect to α changes depending on µ (positive if 1/2 > µ). We

should then take the limits as (µ,α)→ (1,1) and (µ,α)→ (1,∞):

lim
(µ,α)→(1,1)

dv̄
dµ

= κ > 0, lim
(µ,α)→(1,∞)

dv̄
dµ

= 0.

Therefore, dv̄
dµ is indeed bounded by zero from below.
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A.4 Proof of Lemma 3

Proof. First, differentiate v with respect to µ and α:

dv

dµ
= κ

(
2(α − 1)µ+ 1

α

)
> 0,

dv

dα
= κ

(
(µ− 1)µ

α2

)
< 0.

dv
dµ is clearly always positive as α − 1 > 0 and κ > 0. dv

dα < 0 holds since κ > 0 and 0 < µ < 1

and therefore the numerator of the fraction is strictly negative.

A.5 Proof of Proposition 1

Proof. Recall that the marginal value of winning the contest, ∆ , is given by

κ
2(α − 1)(1−µ)µ

α
+M.

It is easy to confirm that v̄ − v is concave in µ. The first order condition with respect to µ

then pins down the effort maximizing share of high-ability players

2κ
α − 1
α

(1− 2µ) = 0

µ =
1
2
.

Differentiating ∆ with respect to α yields

κ
2(1−µ)µ

α2 > 0.

The derivative is always positive as 0 < µ < 1 and κ > 0.

For the second part of the proposition, calculate the expected effort for the given ability

pairings. First, for fixed l whereby changing α is equivalent to changing h we have that

the expected effort in a heterogeneous contest is given by

E[X∗h] =
1
2
l∆ E[X∗l ] =

1
2α

l∆,

and in a homogeneous contest by

E[X∗i ] =
1
2
ai∆.

All of these expressions are clearly increasing in ∆.

Given that µ affects expected effort provision through only ∆, maximizing with respect to

µ is equivalent to maximizing ∆ with respect to µ. From the first part of the proposition
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we have that µ = 1/2 maximizes ∆, hence we have that µ = 1/2 maximizes expected total

effort as well in both homogeneous and heterogeneous contests.

A.6 Proof of Proposition 2

Proof. It is easy to confirm that the marginal prize for winning the contest is increasing in

ability asymmetry α as
d∆
dα

=
2(1−µ)µ

α2 > 0.

To show the result in Part 1) of the proposition, consider the case when α is increased by

reducing l.

From the above comparative static we have immediately that the expected effort in

homogeneous contests of two high-ability players are increasing in when l is decreased.

Next, set the derivative of expected effort in a contest of two low-ability player with

respect to l to be greater than zero and rearrange for h to get the inequality provided in

part (1) of Proposition 2.

Then differentiate total expected effort in a heterogeneous contest with respect to l to get

d
dl

[
1
2
∆

(
l +

l2

h

)]
=

1
2
κ

(1−µ)µ
h

(
2h− 4l +

4lh− 6l2

h

)
The derivative is positive if

2h− 4l +
4lh− 6l2

h
=

2h2 − 6l2

h
> 0.

This holds if

h >
√

3l.

Given that we can increase α by decreasing l, we can interpret the above as decreasing l

increases expected effort if h is sufficiently low relative to l

h <
√

3l.

This is the condition provided in the proposition.

When α is increased by increasing h, as in Part 2) of the proposition, we can see that

the partial derivative of the expected effort in a contest between two high-ability players

is strictly increasing in h. This observation together with d∆/dα > 0 yields the result

that expected effort is increasing in ability asymmetry also when increasing h holding l

constant. Next, from d∆/dα > 0, we directly have the result that the expected effort in

homogeneous contests of two low-ability players are increasing in α.
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Finally, differentiate total expected effort in a heterogeneous contest with respect to h to

get
d
dh

[
1
2
∆

(
l +

l2

h

)]
=

1
2
κ(1−µ)µ

[
2l
h2

(
l +

l2

h

)
− 2(h− l)l2

h3 ,

]
which simplifies to

2κ(1−µ)µ
l3

h3 > 0.

A.7 Encouragement Effect with Positive Monetary Prizes M > 0.

In this section, I consider how total expected effort changes with ability asymmetry α

when allowing the monetary prize to be strictly positive.

First I assume that α is increased by reducing l. M only affects effort provision through

∆, and hence, when differentiating E[X∗1 +X∗2 | ai = h] with respect to l we get the same

conclusion as when M = 0.

Differentiation of E[X∗1 +X∗2 | ai = l] with respect to l yields

κ
2(h− 2l)(1−µ)µ

h
+M,

This is negative if

h < 2l − Mh
2κ(1−µ)µ

holds. This inequality is clearly harder to satisfy when M is large, but holds for small

enough M.

The derivative of total expected effort in a heterogeneous contest with respect to l is

d
dl

[
1
2

(∆+M)
(
l +

l2

h

)]
=

1
2

(1−µ)µ
h

[
−2κ

(
l +

l2

h

)
+ 2κ(h− l)

(
1 +

2l
h

)]
+

1
2
M

(
1 +

2l
h

)
This is negative if

(1−µ)µκ(2h2 − 6l2) < −Mh(h+ 2l)

holds. Note that when M = 0, this reduces to the inequality we have in Proposition 2.

When M is positive, this inequality can still hold but will be harder to satisfy.

Let us now assume that α increased by increasing h. Differentiating E[X∗1 +X∗2 | ai = h]

gives

∆+κ

(
2l(1−µ)µ

h

)
> 0.

Hence the result is the same as with M = 0: expected effort increases with ability asym-
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metry. Adding positive monetary prizes in a homogeneous contest with two low-ability

players does not effect the sign of the derivative.

Differentiating the expected effort in a heterogeneous contest yields

=
1
2

[
κ

2l(1−µ)µ
h2

(
l +

l2

h

)
−
(
κ

2(h− l)(1−µ)µ
h

+M

)
l2

h2

]
This is positive if

M <
l
h

4κ(1−µ)µ

holds. Note that this inequality becomes harder to satisfy when M is larger.

A.8 Proof of Proposition 3

Proof. I first rank ability matchups with respect to their total expected effort for fixed µ

and α. Expected effort in a homogeneous contest is

E[X∗i ] =
1
2
ai∆.

We know that h > l (ai ∈ {h, l}), hence expected effort is clearly larger in a homogeneous

contest between high-ability players. Expected effort in a heterogeneous contest is given

by

E[X∗h] =
1
2
l∆ E[X∗l ] =

1
2α

l∆,

for the high ability and the low-ability player, respectively. Here I abuse notation and use

ai in the player index to indicate the ability of the respective player. We know that 1/α < 1,

hence the low-ability player exerts less effort in expectation in a heterogeneous contest

than in a homogeneous contest of two low-ability players, while the high-ability player’s

expected effort is lower in a heterogeneous contest (equals that of a low-ability player’s in

a homogeneous contest). We then have that

E[X∗1 +X∗2 | ai = h,a−i = l] < E[X∗1 +X∗2 | ai = l] < E[X∗1 +X∗2 | ai = h].

I have already shown in the text that both the probability of a heterogeneous contest

occurring, 2µ(1−µ), and the psychological prize spread v̄ − v is symmetric around µ = 1/2.

Given that the high-ability matchup generates the highest expected effort, we want to

maximize the probability of this happening. Given the symmetry of 2µ(1−µ), this does

not come at a cost of increasing the probability of a heterogeneous contest occurring:

for any symmetric move −b and b (with b ∈ (0,1/2)) away from µ = 1/2, the decrease

in the probability of a heterogeneous match will be identical. However, moving to a

lower µ = 1/2− b < 1/2 will decrease the probability of a contest between two high-ability
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players, which generates the highest expected effort provision (see Figure 2). We could

have the same psychological prize spread if we increase µ by b since
(
v̄ − v | µ = 1/2− b

)
=(

v̄ − v | µ = 1/2 + b
)
, whereby we will also increase the chance of a high-ability matchup. It

follows then that the effort maximizing share of high-ability players µ∗ must be such that

µ∗ ∈ [1/2,1).

The proof that 1/2 < µ∗ holds is provided in the text.

To show that µ∗ is increasing in M, note that we already know that 1/2 < µ∗. When

we increase µ from 1/2, this leads to two opposing effects: (1) the reduction in the

psychological prize spread has a negative effect on expected total effort while (2) increasing

the probability of having two high-type players competing has a positive effect on expected

total effort. The psychological prize spread

κ
2(α − 1)(1−µ)µ

α

is independent from M. Therefore, the magnitude of the negative effect is invariant to an

increase in the monetary prize M. On the other hand, the magnitude of the positive effect

increases with M. Thus, and increase in M favors a higher µ to maximize expected total

effort.

A.9 Proof of Proposition 4.

Proof. The equilibrium is in mixed strategies as the all-pay nature of the contest still

cannot support any two fixed effort level in equilibrium even when allowing for different

loss valuations: one player would always have an incentive to deviate to an effort level

just above that of her opponent, or deviate to exerting no effort with probability one.

Assume ak∆
c
k < a−k∆

c
−k for all ability pairs (ak , a−k). Player k earns an expected payoff equal

to her conjectured loss valuation vck = Πk as Player −k can credibly threaten to exert effort

that is higher than any incentive compatible effort level from Player k. Player −k earns

what she would if she exerted effort just above Player k’s maximum incentive compatible

effort level ak∆
c
k , guaranteeing a win for herself

Π−k = v̄c−k −
ak∆

c
k

a−k
.

Players randomize over the same support, with equilibrium effort in the closed interval

[0, ak∆
c
k]. Player −k mixes over effort levels using the cumulative distribution function

F−k , such that

Πk = F−k(xk)∆c
k + vck − xk/ak = vk ∀ x ∈ [0, ak∆

c
k].
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Rearranging yields the equilibrium CDF F∗−k :

F∗−k(x−k) =
x−k
ak∆

c
k

∀ x ∈ [0, ak∆
c
k].

Similarly, Player k randomizes over effort levels using CDF Fk, such that Player −k’s

expected payoff equals:

Π−k = Fk(x−k)∆c
−k + vc−k − x−k/a−k = v̄c−k − ak∆

c
k/a−k ∀ x ∈ [0, ak∆

c
k].

Rearranging yields

F∗−k(x−k) = 1 +
xk − ak∆c

k

a−k∆
c
−k

∀ x ∈ [0, ak∆
c
k].

Uniqueness for fixed conjectures ∆c
i follows from Hillman and Riley (1989) and Baye,

Kovenock, and De Vries (1996).

A.10 Equilibrium when a2∆2 < a1∆1 holds for all (a1, a2).

Endogenous win and loss valuations. When a2∆2 < a1∆1 holds for all (a1, a2), the
equilibrium prize vector v∗ = (v̄∗1, v̄

∗
2,v
∗
1,v
∗
2) is given by

v̄∗1 = κ
lµ1

(
µ1

(
µ2

2(l − h) +µ2(h− l) + 2h
)
− 2hµ2

1 + h (µ2 − 1)µ2
)

h2 (µ2 − 1)µ2 + 2hµ1
(
µ2

2(l − h) +µ2(h− l) + l
)

+µ2
1

(
µ2

2(h− l)2 −µ2(h− l)2 − 2hl
)

v∗1 = κ
lµ1

µ1(l − h) + h

v̄∗2 = κ
hµ2

µ2(h− l) + l

v∗2 =

κ
hµ2

(
µ2

1

(
µ2

(
l2 − h2

)
+µ2

2(h− l)2 − 2l2
)

+ 2µ1
(
µ2

(
h2 − l2

)
+ hµ2

2(l − h) + l2
)

+ h2 (µ2 − 1)µ2
)

(l −µ2(l − h))
(
h2 (µ2 − 1)µ2 + 2hµ1

(
µ2

2(l − h) +µ2(h− l) + l
)

+µ2
1

(
µ2

2(h− l)2 −µ2(h− l)2 − 2hl
)) .

One can check that these valuations are indeed always positive by making use of the

restriction in this case on λ : 1/λ < l/h, in addition to the assumption imposed on ability

parameters l,h.

The threshold h̄ is given by

lµ1µ2 − lµ2
1

2(µ1 − 1)(µ2 − 1)
+

1
2

√
l2µ2µ

4
1 + 4l2µ3

1 + 2l2µ2
2µ

3
1 − 8l2µ2µ

3
1 + l2µ3

2µ
2
1 − 8l2µ2

1 − 8l2µ2
2µ

2
1 + 16l2µ2µ

2
1 + 4l2µ1 + 4l2µ2

2µ1 − 8l2µ2µ1

(µ1 − 1)2 (µ2 − 1)2µ2
.
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A.11 Proof of Theorem 2

Proof. Replace prizes in Bayes’ rule with the equilibrium prizes given in Theorem 2, that

are for now remain conjectures. Divide the resulting conjectured marginal valuations

∆c
i to get λ. Simplification yields an expression that is a function of exogenous variables

ai and µi only. We have then found λ∗, which we can plug back into the equations for

win and loss valuations that we wrote as a function of λ and exogenous variables. The

resulting valuations are derived using Bayes’ rule, and arise from equilibrium strategies

that are mutual best responses given any fixed conjectured ∆c
i satisfying h∆2 < l∆1.

The restriction on ability parameter h is obtained by rearranging the inequality h∆2 < l∆1

for h, noting that ∆i is a function of exogenous parameters κ, l, h, µ1 and µ2.

The equilibrium strategies are given by simply replacing ∆c
i with ∆i in Proposition 4.

A.12 Proof of Proposition 5.

Proof. For the first part of the statement in Proposition 5 differentiate expected effort with

respect to µ1 and evaluate at µ1 = 1/2. Prior µ1 = 1/2 can only maximize total expected

effort provision if the total expected effort derivative is a critical point (equals zero) when

µ1 = 1/2.

dE[X∗1 +X∗2]
dµ1

∣∣∣∣∣∣
µ1=1/2

= 0 ⇐⇒

l[a1(h+ l) + 2a2h]︸                ︷︷                ︸
>0

+µ2(h+ l)[a1(h− l) + a2(h+ l)]− a2µ
2
2(h+ l)2︸                                                  ︷︷                                                  ︸

:=A

= 0

(50)

The first term of the sum is positive, and therefore it is sufficient for the rest of the sum to

be positive as well to show that the derivative cannot equal zero at µ1 = 1/2.

Expanding the brackets in A and re-arrranging yields

a1(h+ l)(h− l)µ2 + a2(h+ l)2(µ2 −µ2
2) = 0. (51)

The first term of the sum is clearly positive since h > l, and the second term is also positive

since 0 < µ2 < 1⇒ µ2 −µ2
2 > 0. This leads to a contradiction as dE[X∗1 +X∗2]/dµ1 , 0 when

µ1 = 1/2. This implies that µ1 = 1/2 does not maximize total expected effort.

To prove the second part of the proposition, write total expected effort as

E[X∗1 +X∗2] =
1
2

[
a2∆2 +

(a2∆2)2

a1∆1

]
=

1
2

[
a2∆2 +

a2
2
a1

1
λ
∆2

]
(52)
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with λ = ∆1/∆2 > 1 since a2∆2 < a1∆1 must hold for all ability combinations, including

when the two players have the same ability parameter ai . Taking the limit of marginal

valuations yields

lim
µi→0

∆i = lim
µi→1

∆i = 0 (53)

It is then clear that as ∆2→ 0, E[X∗1 +X∗2]→ 0. While we are dividing with ∆1 in E[X∗1 +X∗2],

as ∆1→ 0 so does ∆2→ 0 and ∆2 approaches zero faster since λ = ∆1/∆2 > 1 must always

be satisfied. We then have that

lim
µi→1

E[X∗1 +X∗2] = lim
µi→0

E[X∗1 +X∗2] = 0. (54)

A.13 Proof of Proposition 6.

Proof. The sign of the derivative of Player 1’s win probability (in a contest with realized

abilities) with respect to µi only depends on −1/λ. It is therefore sufficient to analyze one

of three ability pairs of (a1 = a2), (a1 = h,a2 = l) and (a1 = l,a2 = h) to investigate how win

probability is affected by changing the observer’s prior about players’ abilities.

Looking at the case with homogeneous abilities (a1 = a2), differentiating Player 1’s win

probability with respect µ1 and some algebra yields the following condition for the

derivative to be positive

(h− l)µ2
1 − 2hµ1 + h > 0. (55)

The LHS of (55) is a quadratic equation with one positive root µ̄1 in the (0,1) interval and

the other root above 1. Given that (h− l) > 0, we know that Player 1’s win probability is

increasing in the observer’s prior about his ability if µ1 < µ̄1 = (h−
√
lh)/(h−l). The threshold

is greater than 1/2 since µ̄1 > 1/2 ⇐⇒ (h+ l)/2 >
√
lh, which holds since the arithmetic

mean is strictly larger than the geometric mean for any two positive numbers that do not

equal each other. Similar steps lead to the condition d(1 − 1/2λ)/dµ2 > 0 ⇐⇒ µ̄2 < µ2

with µ̄2 = (−l +
√
lh)/(h− l) < 1/2.
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