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Abstract

We expanded the use of structured machine learning in regression for now-
casting using multidimensional panel data that has mixed-frequency series.
Our main motivation was the challenge of predicting home ownership vacancy
rates across various states and MSAs, especially when the key economic data
is sampled at mixed frequencies. We extended the two dimensional panel data
[1] sparse group LASSO regularization into multidimensional panel data re-
gression model and it can take advantage of mixed frequency time series mul-
tidimensional panel data structure. We successfully employed our proposed
extended multidimensional machine learning panel data model to forecast
the three dimensional home ownership vacancy rates of USA. The results
suggests that our extended multidimensional time series regression model is
very useful to nowcast/forecast the home ownership vacancy rates and per-
form better compare to the traditional time series regression model. Our
results are general and our extended multidimensional time series regression
model could be applied on any multidimensional macroeconomic problem.
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1. Introduction

Nowcasting is typically a problem of mixed frequency data, for instance,
the variable of interest is a low frequency observed series say quarterly,
whereas real time information daily, weekly and monthly, during the given
quarter can be utilised to assess and nowcast the low frequency series. Con-
ventionally we use the dynamic model to nowcast the object of interest
with high frequency data. These dynamic model belongs to state space
models and inference can be performed by using the conventional meth-
ods (for instance Kalman filter, see, [2]).Things can get more complicated
when we are operating the data rich environments sometime within panel
data, since modern research is increasingly relying and adopting the habit of
large data set, and this has given the rise to use the multi-dimensional panel
data methods in real life empirical studies. Panel data is common in various
fields such as social sciences, economics and econometrics. This data consists
of multiple individual for instance homeowner ship rate in different states of
US over time (three− dimensional panel), sector level trade between dif-
ferent countries or region (three− dimensional panel) and so on.This paper
extends the two-dimensional panel data model technique from [1] to accom-
modate multidimensional panel data with mixed-frequency observations.
In context of home ownership rate, US census bureau measure the home
ownership rate which is a quarterly data within the states and metropolitan
statistical areas (MSA) over different time periods which there are many
predictors. From, practically point of view, dealing with the large number of
data set it would be hard to handle this with state space models. In the cur-
rent study, we extend the study of [1] into multidimensional panel data mod-
elling. In such models, time-invariant MSA home ownership specific effects
are conventionally used to obtain cross-sectional heterogeneity in data.We
would combined this with the regularised regression methods, which is very
popular and useful in Economics, and Finance as a useful method to model
the predictive relationship via variable selection method. We emphasize on
the three dimensional panel data regression models in high dimensional set-
ting where in some situation number of predictors could be larger than the
sample size.
To the extent of our knowledge, there are no studies that how to nowcast the
three dimensional panel data modeling in case of high-dimensional mixed fre-
quency panels. However, [3], consider the mixed frequency panel data model
and did not consider the high dimensional setting while nowcasting and fore-
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casting the low frequency series. In a similar manner, [4], implemented mixed
frequency VAR panel data model to nowcast the low frequency series but not
in high dimensional data setting. Furthermore, [5] develop the spare-group
LASSO (sg − LASSO) regularize machine learning methods for heavy tailed
panel data regression models in context of mixed frequency data and derive
the oracle inequalities for the pooled and fixed effects models. However, [1]
explores the [5] sg-LASSO model in terms of rich data environment of high
dimensional panel setting on panel data, potentially sampled at different fre-
quencies. In this paper, we explore and extend the two dimensional panel
data in case of high dimensional into multidimensional panel data in context
of high dimensional setting.
We just included the small part of empirical study in this article, and we
focus on the quarterly home ownership rate of 75 largest MSAs of different
states of United states. This means we are evaluating the model based ap-
proach within quarter prediction for possible shortest horizon. The literature
largely emphasize the home ownership rate is a good economic indicator and
closely tied to several key aspect of economy, which includes consumer spend-
ing, household wealth and health of housing market. Therefore, nowcasting
or forecasting the home ownership rate can give the better planning time
and help to policy makers, businessman and investor to invest in a efficient
way. Stating differently, nowcasting of home ownership rate before the data
released can provide the valuable insight to housing market, and broader
economy, which can lead to better planning, market efficiency and economic
stability.

The paper is organized as follows, Section 2 introduces the multidimen-
sional mixed frequency panel data models and estimators. Section 3 illus-
trates the simulation design and section 4 reports the out of sample predic-
tion of our extended multidimensional panel data model. Whereas, section
5 represents the results of our empirical application nowcasting of the home
ownership rate of different MSA’s within states of US. Concluding remarks
are given in section 6 Furthermore, all technical and data details is presented
in appendix.

2. Multi-dimensional mixed frequency Panel data models

The Panel data regression model can be extended to the choice of di-
mension depending on the nature of the problem to explore. This paper
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motivates the situation when the number of cross-sectional dimensions is
large in the panel data setting, and we allow the model set of independent
variables to be sampled at m times higher frequency than the dependent
variable. Let dependent the variable is observed along three indices, such as
yigt, where i = 1, . . . .., N1, g = 1, . . . , N2, and t = 1, . . . , 2, T and the obser-
vation have the same ordering, for example, t is the fastest, then g is the
second fastest whereas, the i is the slowest one. For instance, the vector of
the dependent variable of three-dimensional panel data can be written as,
(y111,y112,....,y11T,.....,y1N21,.....,y1N2T , . . . ., yN111,...,yN11T,...,yN1N21,....yN1N2T )

′
.

Let K be the time-varying independent variables xi,g,(t−(j−1))/(m,k) such that
i ∈ [N1] , g ∈ [N2] , t ∈ [T ] , j ∈ [m] , k ∈ [K] , and we allow the independent
variables to be measured at m time higher frequency compared to the de-
pendent variable frequency period t ∈ [T ], every entity i ∈ [N1] and g ∈ [N2].
We consider the following three-dimensional mixed frequency panel data re-
gression model.

yi,g,t+h = υi + αi + γg + ηt +
K∑
k=1

ψ
(
L

1
m ; βk

)
xi,g,t,k + ϵi,g,t (1)

where h ≥ 0 is the prediction horizon, υi is the entity specific interest, αi,
and γg is the parameter to quantify the individual effect, and ηt is the the
time-specific fixed effect, and

ψ
(
L

1
m ; βk

)
xi,g,t,k =

1

m

m∑
j=1

βj,kxi,g, t−(j−1)
m,k

(2)

where βk = (β1,k, . . . , βm,k)
′ ∈ Rm is a high frequency lag polynomial. If the

frequency is specific for each predictor lag k ∈ [K], then we use mk instead
of m. If m = 1, then Equation (1) becomes a standard three-dimensional
panel data regression model, which can be written as,

yigt+h = υi + αi + γg + ηt +
K∑
k=1

βkxi,g,t,k + ϵi,g,t (3)

while m > 1 implies that we have m times more observation in the high
frequency and then the high-frequency lags of independent variables xi,g,t,k
are also included. Realistically, a large number of predictors K with a large
number of m (high-frequency measurement) can be an important and rich
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source of out-of-sample predictive information. This will lead to laborious
and costly jobs to estimate the N1 +N2 + (m×K) parameters and can re-
sult in condensed predictive performance in the small sample. Estimation
of large number of parameters N1 + N2 +m × K could lead parameter lag
proliferation(overfitting). To overcome the parameters proliferation, we use
the MIDAS literature (see, extensive literature,[6];[7];[8];[1];[5]). The litera-
ture says that instead of m separate slopes of high-frequency covariate kϵ[K]
in equation (1) with some constraint on notations, we estimate a weight
function ω parameterized by βk ϵ R

L, where L should be less than m, and
equation (2) can be estimated as

ψ(L1/m; βk)xi,g,t,k =
1

m

m∑
j=1

ω(
j − 1

m
; βk)xi,g, t−(j−1)

m,k

where weight function ω can be defined as

ω(s; βk) =
L−1∑
l=0

βl,kwl(s) ∀s[0, 1]

and (wl)l≥0 is a compilation of L approximating functions, usually, it
is called a dictionary in the literature of machine learning. For instance,
we can call exponential Almon lag ([9]), Beta polynomial lag specification,
infinite polynomial, and many more (see,[8] ) for more details. For instance,
it could be a fixed set of Legendre polynomials between [0, 1], and it could

be calculated by using the Rodrigues formula (wl(s) = 1
l!
dl

dls
(s2 − s)l). The

first five elements of the Legendre polynomial are w1(s) = 1;
w2(s) = 2s− 1;
w3(s) = 6s2 − 6s+ 1;
w4(s) = 20s3 − 30s2 + 12s− 1;
w5(s) = 70s4 − 140s3 − 90s2 − 20s+ 1
Every weight function has its own properties, the orthogonal polynomial does
have superior numerical properties than the normal non-orthogonal weight
function which we discussed earlier. We can use wavelets, trigonometric
polynomials, or Gegenbauer polynomials. One of the attractive features of
these polynomials is linear in the parameters which could be solved via a
convex optimization. We define, xi = (Xig,1W, . . . .., Xig,KW ),where for each
k ϵ [K], Xig,k = (x

i,g,
t(j−1)
m,k

) j ϵ[m], t ϵ [T ], is a T ×m matrix of predictors and

W = (wl((j− 1)/m)/m) j ϵ [m], 0 ≤ l ≤ L− 1 is an m×L matrix related to
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the dictionary (wl)l ≥ 0. Then we define our regression equations with the
following step:

1. Variables: Rather than xi and yi, we now have xig and yig respectively,
signifying the observations for state i within group g.

2. Time Series Stacking: For every state i in group g in our example:

yigt = l vig + xigtβ + ϵigt

where l is an all-ones vector in RT and β ∈ RLK is a slope coefficients
vector.

3. Covariates: We redefine xig to account for the new dimension:

xig = (Xig,1W, . . . , Xig,KW )

For every k ∈ [K], Xig,k is the matrix of covariates specific to state i
in group g. The dictionary W remains constant across all and groups.

4. Regression Equation: After stacking the time series observations for
each i in group g:

yig = lαig + xigβ + uig

5. Stacking Cross-sectional Observations: For the three dimensions,
the stacking becomes:

y = (yT11, . . . , y
T
1N2

, . . . , yTN11
, . . . , yTN1N2

)T

X = (xT11, . . . , x
T
1N2

, . . . , xTN11
, . . . , xTN1N2

)T

ϵ = (ϵT11, . . . , ϵ
T
1N2

, . . . , ϵTN11
, . . . , ϵTN1N2

)T

The final regression equation is:

y = DB +Xβ + ϵ

Where B is the Kronecker product of the identity matrix for firms and groups
with the all-ones vector for time, that is, B = (IN1 ⊗ IN2)⊗ l.

The vector y can be defined as:

y =



yT11
...

yT1N2
...

yTN11
...

yTN1N2
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where B is called the composite fixed effect of the parameter and de-
fined as B = (α

′
γ

′
η

′
) with α

′
= (α1, . . . .., αN1), γ

′
= (γ1, . . . .., γN2), η

′
=

(η1, . . . .., ηT ), D = ((IN1 ⊗ lN2T ), (lN1 ⊗ IN2 ⊗ lT ),( lN1lN2 ⊗ IT ) ) and the last
term ϵ is the disturbance term. The MIDAS approach not only benefits to
accommodate the mixed frequency covariates but also successfully help us
to reduce the dimensionality concern to the high frequency lags. In case of
a small mismatch in the frequencies of the dependent and independent vari-
ables, the Unrestricted MIDAS (UMIDAS) scheme developed by[10] could be
efficient and able to estimate the coefficient parameters connected with each
high-frequency covariates separately. The detailed derivation of the UMI-
DAS scheme can be seen in [10], and for the three-dimensional panel data
regression model, this approach may not be very attractive in high dimen-
sional setting and more than one high-frequency regressors due to overfitting
problems in case of a large number of estimations of the coefficients (see., for
details, [1],[10]).
When there are a large number of potential predictors K, utilizing extra
regularization techniques can enhance the predictive accuracy in situations
where the sample size is small. We would take the advantage of sg-LASSO
regularization of [5] and extend it to sg-LASSO regularization to three di-
mensional panel data regression model. The fixed effect sg-LASSO estimator

ρ̂ =
(
α̂T, β̂T

)T

gives

min
a,b∈RN+p

|y −DB −Xb|2N1×N2×T + 2λΩ(b) (4)

where Ω is the sg-LASSO regularizing function. We do not include the in-
tercept in the design matrix X, and it means we don’t penalize the fixed
effects which we assume not sparse. The empirical norm is defined as,
| · |2N1×N2×T = | · |2/(N1 × N2 × T ) and Ω(b) = γ|b|1 + (1 − γ)|b|2, 1 is
regularization function (see details, [1]).

Similarly, the pooled sg-LASSO estimator ρ̂ =
(
α̂T, β̂T

)T

for three dimen-

sional panel data given as

min
r=(a,b)∈R1+p

|y − lυi + xib|2N1×N2×T + 2λΩ(r) (5)

In case of large N1 ×N2 × T Pooled regression considers appealing, but can
result in lost of heterogeneity of individual time series. The next section is
devoted to the simulation design and later the results of simulation design,
which is the extension of [5] into multidimensional panel data setting.
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3. Simulation design for three dimensional MIDAS panel data model

To evaluate the predictive performance of three-dimensional panel data
models, we simulate the data from the following two data-generating pro-
cesses (DGP). In the first DGP, we will generate the data for K = 6 regres-
sors whereas, the second DGP would be more about in a high dimensional
setting like [1], we include the K = 24 monthly regressors and ten noisy
covariates.

yig,t = ν + ρ1yig,t−1 +
1

m

m∑
j=1

ω(
j − 1

m
; βk)xi,g, t−(j−1)

m,k

+ ϵigt (DGP1)

yig,t = ν + ρ1yig,t−1 + ρ1yig,t−2 + αi + γg + ηt

+
K∑
k=1

1

m

m∑
j=1

ω(
j − 1

m
; βk)xi,g, t−(j−1)

m,k

+ ϵigt (DGP2)

where i ϵ [N1], g ϵ [N2], t ϵ [T ], ν is the common intercept, 1
m

∑m
j=1 ω(

j−1
m

; βk)
x
i,g,

t−(j−1)
m,k

the weight function for the kth high frequency covariate, and the

error terms ϵigt ∼i.i.d N(0, 1). The target variable of interest yig,t is driven by
one auto regressive lag and two auto regressive lags augmented with high-
frequency variables for DGP1 and DGP2, respectively, and thus it is a pooled
MIDAS three-dimensional panel data model. Furthermore, ρ1 = 0.5 and
ρ2 = 0.05, and the high frequency regressor K = 1 and K = 6,for (DGP1)
and (DGP2), respectively. Our primary interest is quarterly/monthly (de-
pendent/regressor) mixed data, which will give us four lags for each high-
frequency regressors for each time period.

3.1. Monte carlo experiments

We investigate the finite sample out of sample prediction of the methods
so far. We consider the unstructured UMIDAS [10] elastic net and sg-LASSO
with MIDAS. We have utilized the two tuning parameters λ and γ. The
γ parameter defined as the relative weight of of LASSO, ridge and group
LASSO. Whereas, the γ will interpolate the between LASSO and ridge in
elastic net UMIDAS. In both cases we report the results in three different
grid values γ ∈{0, 0.5, 1}. Furthermore, we select the tuning parameter λ
after the selection of three values of γ. We consider the K − fold cross-
validation criteria for the three dimensional panel data setting and creates
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fold based on cross sectional units instead of pooled sample. We consider the
5-fold cross validation for our simulation experiment. We further consider
two information criteria to evaluate our extended approach. We consider the
following two performance criteria: AIC [11],[12] and BIC [13]. We assume
that yi,g ,t given that xi,g ,t are drawn independently and identically from
normal distribution and the likelihood can be written as;

L(v, β, σ2) ∝ − 1

2σ2
N1 ×N2

N1∑
i=1

N2∑
g=1

T∑
t=1

(yi,g,t − vi − x⊤
i β)

2

The AIC criteria can be written as

AIC =
∥y − ϵ̂−Xβ̂∥2N1×N2×T

N1 ×N2 × T × σ̂2
+

2

N1 ×N2 × T
× d̂f

and the BIC criterion can be written as

BIC =
∥y − ϵ̂−Xβ̂∥2N1×N2×T

N1 ×N2 × T × σ̂2
+

log(N1 ×N2 × T )

N1 ×N2 × T
× df,

where df stands for degree of freedom, ϵ̂ = v̂l and ϵ̂ = v̂D, for pooled regres-
sion and fixed effect regression. For more details, ([5]; [1]; [14]). We certainly
believe that AIC suppose to perform well in case we have large K is large
compare to the sample size.

4. Monte Carlo simulation results

Table 1 reports the average mean squared error of out-of-sample predic-
tion. We report the results of pooled panel data and fixed-effect estimators
in the left block and right block in Table 1, respectively. Overall reported
results appear to be in line with [5] two-dimensional panel data, however, we
consider the multidimensional panel data settings. The sg-LASSO-MIDAS
performs better compared to Unstructured elnet UMIDAS and average sg-
MIDAS in all DGP’s settings. In the case of sg-LASSO-MIDAS, the best
performance is achieved for γ ϵ {0, 1} for both pooled panel data and fixed
effect case, whereas, when γ = 0 LASSO solution seems to dominate in
the case of elastic net UMIDAS for both the pooled and fixed effect cases.
However, when γ = 1 ,in a group LASSO, a substantial improvement in pre-
diction quality is observed when the MIDAS polynomial is compared with
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the UMIDAS and average MIDAS.

N1 ×N2 × T Pooled panel data Fixed effects
γ = 0 0.5 1 γ = 0 0.5 1
AIC

sg-LASSO 5× 20× 48 4.439 4.410 4.444 4.451 4.453 4.446
10× 20× 48 4.151 4.161 4.171 4.117 4.162 4.641
10× 20× 60 4.171 4.141 4.161 4.123 4.132 4.117

Unrestricted elnet MIDAS 5× 20× 48 16.652 16.632 16.622 16.672 16.682 16.952
10× 20× 48 4.368 4.358 4.378 4.368 4.368 4.368
10× 20× 60 4.368 4.368 4.151 4.181 4.191 4.201

Average sg-MIDAS 5× 20× 48 15.372 15.321 15.381 15.371 15.391 15.395
10× 20× 48 4.298 4.291 4.288 4.258 4.268 4.308
10× 20× 60 4.310 4.321 4.341 4.331 4.231 4.251

BIC
sg-LASSO 5× 20× 48 4.205 4.211 4.251 4.261 4.31 4.34

10× 20× 48 4.251 4.251 4.251 4.251 4.251 4.251
10× 20× 60 4.351 4.355 4.361 4.371 4.359 4.362

Unrestricted elnet MIDAS 5× 20× 48 15.951 15.982 15.971 15.981 15.991 15.998
10× 20× 48 4.447 4.456 4.466 4.731 4.746 4.846
10× 20× 60 4.368 4.547 4.568 4.668 4.478 4.488

Average sg-MIDAS 5× 20× 48 16.736 16.736 16.736 16.736 16.736 16.736
10× 20× 48 3.876 3.876 3.876 3.876 3.876 3.876
10× 20× 60 4.298 4.298 4.298 4.298 4.298 4.298

Cross validation
sg-LASSO 5× 20× 48 4.131 4.111 4.141 4.161 4.128 4.191

10× 20× 48 4.151 4.161 4.171 4.181 4.181 4.21
10× 20× 60 4.16 4.191 4.201 4.231 4.251 4.261

Unrestricted elnet MIDAS 5× 20× 48 4.41 4.478 4.481 4.486 4.478 4.491
10× 20× 48 4.568 4.568 4.561 4.668 4.671 4.888
10× 20× 60 4.668 4.723 4.91 4.912 4.991 4.993

Average sg-MIDAS 5× 20× 48 4.937 4.972 4.972 4.981 4.982 4.997
10× 20× 48 4.698 4.719 4.981 4.988 4.991 5.121
10× 20× 60 4.998 4.898 4.798 4.898 4.998 4.981

Table 1: The table reports simulation results for out-of-sample prediction accuracy for
fixed effect estimators and for the DGP1 for the sg-LASSO-MIDAS and elastic net un-
restricted MIDAS. We vary the cross-sectional dimensions N1ϵ {5, 10} and N2ϵ {20} and
time series dimensions Tϵ {48, 60}. We report results for 5-fold cross-validation, AIC and
BIC information criteria λ tuning parameter calculation methods and for three different
values 0, 0.5 and 1 of γ.

In the case of pooled panel data, increasing N1 from 5 to 10 seems to have
a larger impact on the performance compared to an increase in the time series
dimension 48 to 60. This is because increasing the time series dimensions
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give us more parameters to estimate. However, in the case of fixed effect
results, the difference remains somehow sharper than the pooled panel data.
We have presented the DGP2 results in the appendix Table 5. In the higher
dimensions setting, the sg-LASSO dominates good compared to the other
methods. However, the performance of the UMIDAS become worst in high
dimensional setting. In the end, when comparing the results among differ-
ent selection methods, that are two different information criteria and cross-
validation. From Table 1, we observe that in all situations cross-validation
leads to a smaller prediction error in both pooled panel data and fixed effect
panel data cases. However, changing the value of γ does not play a significant
role, and this shows that our results are very much consistent with the result
of [1]. By comparing the AIC with BIC, BIC remains the worst compared
to AIC especially when we combined it with the Unrestricted MIDAS and
small N1,N2, and time dimensions values.

5. Nowcasting of home ownership vacancy rate

We extended the two dimensional panel data nowcasting approach of [5]
and [1] to multidimensional panel. However, [15] and [1] documented that
analyst could make a systematic and predictable error while ignoring the
mixed frequencies data set. In this section, we therefore consider to nowcast
home ownership vacancy rate of 75 largest MSA’s of USA within State using
a set of predictor which are typically sampled at different frequencies. We use
5 predictors including traditional economic indicator. We applied the pooled
and fixed effects sg-LASSO MIDAS model, and compare our extended ap-
proach with several benchmark models, which includes, random walk(RW),
and elastic net UMIDAS model.
We also compute the prediction of two dimensional panel, using state i and
time T , and similarly, MSA g and time T . We will present the prediction
results for multidimensional panel sg-LASSO MIDAS model and compare it
with two dimensional panel sg-LASSO MIDAS model. This comparison aims
to highlight the advantages and enhanced the functionality of multidimen-
sional panel when applied in a high dimensional context, assuming that the
adequate data is available. The remaining of the section is as follows, we
present the description of our data and more detailed of results, followed by
a summary of method and empirical methods.
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5.1. Data description
The home ownership vacancy rate in USA considered to be very crucial

key factor of economic stability and social mobility. Despite being lead-
ing economic indicator, home ownership vacancy rate could not get enough
attention in the literature. Home ownership vacancy rate, as per its defini-
tion, refers to the proportion of the privately owned home in specific region
or country that are currently occupied and available for sale. Historically,
United States is the combination of states and states are further divided with
different metropolitan statistical areas (MSA′s) and micropolitan statistical
areas. Home ownership vacancy rate is the quarterly index, and measure
by US census bureau by (https : //www.census.gov/). Home ownership va-
cancy rate varies state to state and also within MSA of these states [16].
Home ownership vacancy rate could be lower in the larger MSA’s due to va-
riety of factors. One could be the high cost of housing in these areas, which
make it harder for the people to save money to pay the mortgage and down
payment. We collect the home ownership vacancy rate quarterly data of 75
largest MSA’s of the US within the 39 states of US, from the US census
bureau. The full sample consists of observations between the 1st of March,
2005 and the 30th of December, 2022. Due to lagged dependent variables
in the models, our effective sample starts from third fiscal quarter of 2005.
We use the 32 observations for the initial sample and remaining 42 observa-
tions for evaluating out-of- sample forecast for each MSA, which we obtain
by using the expanding window forecasting scheme. Our target variable is
home ownership vacancy rate of each 75 largest MSA’s of 39 different states
of US. Home ownership vacancy rate data are subject to delay between 1
to 2 months, for instance, the first quarter data of home ownership vacancy
rate is released on 3rd May, 2023. We used the same data which we got from
the website. We will provide the list of the states and MSA at the end of the
this paper. Our analysis commences with the evaluation of the stationarity
of our variables. There appears to be a dearth of literature addressing sta-
tionarity checks for multidimensional panel data. Therefore, we undertake
the task by analyzing the data in a couple of distinct way. Initially, we treat
the two dimensions namely, g and t, as the top 75 largest MSA’s of USA
and the their corresponding time periods for each variables. Subsequently,
we average out the State i over MSA and t as second dimension. Since we
don’t have homogeneous panel, we run the cross sectional panel dependent
unit root test for heterogeneous panel [17] and [18]. Upon completion of the
analysis, we employed the CIP test to assess the stationarity, and we observe

12



the absence the of the unit root in our data.

5.2. Models and main results

We estimate the several regression model to compute the forecast. We
begin to estimate with the individual sg-LASSO MIDAS regression for the
each MSA i = 1, · · · , N , and we refer the model as individual,

yi = lvi + xiβi + ϵi

where MSA predictions are computed at ŷi,t+1 = v̂i + x⊤
i,t+1β̂i. We noted in

the 2, xi contains the lags of target variable which is low frequency variable
and high frequency variable, so we apply the Legendre polynomials of degree
3, as applied by [1]. The next step we estimate the two dimensional panel
data pooled and fixed effect sg-LASSO MIDAS regression data models

y = lvi +Xβ + ϵ (Pooled)

y = Dα +Xβ + ϵ (Fixed Effects)

and similarly we can compute the predictions of above given models as,

ŷi,t+1 = lv̂i + x⊤
i,t+1β̂ (Pooled)

ŷi,t+1 = v̂i + x⊤
i,t+1β̂ (Fixed Effects)

at the next we estimate our extend multidimensional pooled and fixed effects
sg-LASSO MIDAS regression panel data models,

ŷi,t+1 = lv̂i + x⊤
i,t+1β̂ (Pooled)

ŷi,t+1 = v̂i + x⊤
i,t+1β̂ (Fixed Effects)

We benchmark the home ownership vacancy rate and panel data regression
against two simple alternatives. First, we compute forecasts for the RW
model as

ŷi,t+1 = yi,t
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Second we consider predictions of home ownership vacancy rate implied by
home ownership vacancy rate nowcasts using the information up to time t+1,
and it can be written as,

ŷi,t+1 = ȳi,t+1 (6)

where ŷ is considered the forecasted home ownership vacancy rate, which
is made at the end of t + 1 quarter. We already mentioned that the real
home ownership vacancy rates are available and delayed by two months at
the end of quarter. We measure the performance of our extended method by
considering the mean squared forecast error (MSFE) for all methods. And
the general expressions of the MSFE are,

MSFE =
1

N

N∑
i=1

1

T − Tis + 1
(ȳi − ŷi)

⊤(ȳi − ŷi)

where, ŷi = (yi,TLs+1, . . . , yi,TFs
)⊤ out of sample home ownership vacancy

rate values, where TLs and TFs represents the last in-sample observation
for the first prediction and the last out-of-sample observations, respectively.
Whereas, ŷi = (ŷi,tLs+1, . . . , ŷi,tOs

) denote the out-of-sample forecast.
At first step, by utilizing aggregated data, we calculate the present quar-
ter’s nowcast for the home ownership vacancy rate. This is done for both
two-dimensional panel data, represented by state (i) and time (T ), and three-
dimensional panel data, depicted as state (i), MSA (g), and time (T ) respec-
tively. Out of sample RMSE of the both models are presented in the Table 2.
Both models performs good in either way, but in terms of prediction accuracy
three dimensional panel regression perform much better and gained much
more prediction accuracy because of the additional MSA information.We
are considering two different models to determine whether multidimensional
panel data regression enhances the prediction accuracy. However, we have
limited literature on the forecasting of home ownership vacancy rates, for
instance, [19]; forecasted the home ownership vacancy rates based on urban
areas, and [20] consider the three different states and time as panel data to
see the home ownership rate external benefits which is closely related to home
ownership vacancy rate. However, performing a three dimensional panel data
regression model is very complex task, but literature also says that it would
reward in terms of prediction accuracy [21].
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Panel data regression models based on aggregation data
Fixed effect Pooled Individual

2D, State i, Time T 2.081 1.07 1.637
3D, State i, MSA g, and Time T 1.295 1.280 1.394

Table 2: The table presents the root mean square error (RMSE) of out-of-sample predic-
tions for the current quarter’s home ownership vacancy rates in the United States, derived
from aggregated data.

At second step, we comeback to our original claim that MIDAS regres-
sion works better when the mixed frequency data is present. We considered
the overall mixed frequency time series data of home ownership vacancy rate
and run the sg-LASSO, Unrestricted elnet LASSO and average LASSO on
mixed frequency data to compute the predictive accuracy of the individual
MSA home ownership vacancy rate. We nowcast current quarter ahead home
ownership vacancy rate, and report the out of sample absolute RMSE in Ta-
ble 3. The reported results in suggests that the overall performance of the
regularized regression method models improves the prediction accuracy. The
sg-LASSO performs better and gain the prediction accuracy in our empirical
application, regardless of changing the tuning parameter γ, as it does not
make any significant impact as already observed in [1]. Panel data regression
regression models performs better due to additional cross sectional informa-
tion, but aggregation of the mixed frequency data could potentially lose the
important information and it can reduce the prediction accuracy [6],[7].
In our study, we implemented two-dimensional and three-dimensional panel
data regression models on aggregated data to compare their performance.
However, we found that the regularized MIDAS regression, which leverages
mixed frequency data without necessitating aggregation, displayed superior
performance when run on the same overall time series regression data. The
main point is that aggregating data can result in losing important infor-
mation. The regularized MIDAS regression model effectively addresses this
issue. As a result, we observed a notable improvement in prediction.
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Regularized time series MIDAS regression

γ=0 γ=0.5 γ=1

sg-LASSO 1.31 1.30 1.30
Average sg-MIDAS 1.33 1.33 1.33

Unrestricted elnet MIDAS 1.31 1.32 1.31

Table 3: Table reports the out-of-sample home ownership vacancy rates for overall time
series regression data based on mixed frequency data by using the different regularized
regression method by using three different tuning parameter values 0, 0.5 and 1 of γ.

Consequently, we took our research a step further, applying the regu-
larized regression approach to two-dimensional panel data. And the results
are reported in Table 4.Turning to the comparison of model based predic-
tions, we see from the results in Table 4 , sg-LASSO MIDAS panel data
improves the quality of predictions in comparison to the average sg-LASSO
and unrestricted elnet MIDAS regardless of tuning parameter. This suggest
that panel data structure is relevant to nowcast the home ownership vacancy
rate. Among the panel data, we see that pooled regression in most cases
improves the prediction results compare to the fixed effect regression.
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Panel: States and Time
Pooled Fixed effect
γ=0 γ=0.5 γ=1 γ=0 γ=0.5 γ=1

Cross validation
sg-LASSO 1.34 1.33 1.32 1.59 1.59 1.58

Average sg-MIDAS 1.26 1.27 1.26 1.57 1.55 1.55
Unrestricted elnet MIDAS 1.32 1.36 1.36 1.61 1.62 1.63

AIC
sg-LASSO 1.31 1.33 1.32 1.59 1.58 1.59

Average sg-MIDAS 1.29 1.30 1.29 1.57 1.57 1.56
Unrestricted elnet MIDAS 1.32 1.34 1.36 1.58 1.59 1.60

BIC
sg-LASSO 1.36 1.36 1.31 1.56 1.56 1.58

Average sg-MIDAS 1.26 1.26 1.26 1.53 1.55 1.55
Unrestricted elnet MIDAS 1.29 1.29 1.31 1.23 1.58 1.59

Panel A: States, MSA and Time

Pooled Fixed effect
γ=0 γ=0.5 γ=1 γ=0 γ=0.5 γ=1

Cross validation
sg-LASSO 1.15 1.14 1.16 1.21 1.20 1.19

Average sg-MIDAS 1.23 1.22 1.20 1.25 1.26 1.29
Unrestricted elnet MIDAS 1.29 1.30 1.30 1.32 1.36 1.39

AIC
sg-LASSO 1.21 1.13 1.30 1.29 1.24 1.21

Average sg-MIDAS 1.27 1.27 1.26 1.32 1.32 1.31
Unrestricted elnet MIDAS 1.35 1.36 1.34 1.35 1.40 1.39

BIC
sg-LASSO 1.13 1.20 1.18 1.15 1.16 1.17

Average sg-MIDAS 1.34 1.34 1.34 1.46 1.46 1.45
Unrestricted elnet MIDAS 1.38 1.36 1.39 1.41 1.41 1.42

Random walk RMSE 1.44

Table 4: The table reports home ownership vacancy rate out-of-sample prediction accuracy
for fixed effect, and pooled effect estimators and for two different panels by using the sg-
LASSO-MIDAS average MIDAS, and elastic net unrestricted MIDAS. We report results for
5-fold cross-validation, AIC and BIC information criteria λ tuning parameter calculation
methods and for three different values 0, 0.5 and 1 of γ.
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Eventually, this led us to our extension - a three-dimensional regularized
panel data regression model, which showed even greater potential in handling
complex datasets as evident by our findings presented in Table 2, the incorpo-
ration of MSA as a third dimension resulted in an additional enhancement of
prediction accuracy, even when based on aggregated data. This progression
in our research signifies the crucial role of comprehensive, multi-dimensional
data analysis in yielding more accurate predictions and stronger model per-
formance. We reported the absolute RMSE of the one step ahead nowcast of
home ownership vacancy rate 4. We observed the our extended three dimen-
sional panel data model from different angle. First of all, it performs better
than the traditional multidimensional panel data regression model, which is
considered to be the high dimensional panel data regression.Second within
the regularized machine learning approaches sg-LASSO estimator performs
better in terms of prediction accuracy with cross validation and BIC, and re-
sults are inline with the finding of [1] . Overall, the unrestricted elnet MIDAS
remains shaky in the process in the process and performed worst compare
to the average MIDAS and sg-LASSO estimator,however, in some cases it
performs better as compare to the aggregative multidimensional panel data
regression, even from the random walk forecast as well. Unrestricted MI-
DAS could be shaky and parameters over-fitting could appear, especially
when we do have more than one predictor [10], so purpose was to test the
unrestricted MIDAS combine with machine learning methods. In our study,
sg-LASSO estimator which we extended for the three dimensional panel data
regression model well suited for incorporating the grouped fixed effect. This
approach involves grouping state specific effect intercept based on either sta-
tistical procedures or economics reasoning, as similar the literature outlined
by [22]. Our presented results in Table 4, suggests that the use of group
fixed effect improves the accuracy of our nowcast. Considerably, when we
check with the best choice of tuning parameter choice, group fixed effects
outer performs other panle data models, especially with BIC criteria. There-
fore, our findings suggest that grouped fixed effect performs better between
capturing heterogeneity and pooled parameters resulting in more accurate
nowcast predictions. We performs the Diebold and Mariano (DM) test[23]
to compare the predictive accuracy between models. Since, we have so many
models to compare we just report some of the models in the appendix in Ta-
ble 6. Overall, all the models performs better when γ = 1 which is a group
LASSO solution. Overall summary of the results, give an early nowcast of
the home ownership vacancy yields a better prediction accuracy compare to
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the analyst prediction in terms of prediction accuracy. In addition, these
findings highlights the potential benefit of leveraging the machine learning
techniques, especially when we do have high dimensional setting, complex-
ity of estimation of large number of parameters that could lead to the less
accurate prediction.

6. Conclusion

Home ownership vacancy rates plays a vital role in as an economics in-
dicator especially in the real estate, especially in US context where data is
generally collected at the national, state and MSA level. However, home
ownership vacancy rates is measured quarterly and very much dependent
on differnt high frequency covariates, like unemployment rates. Tradition-
ally, research employ the two dimensional panel data regression based on
states and time as primary dimension. In this article, we build upon on
the methodology introduced by [1] and [5] namely, sg-LASSO, elnet unre-
stricted MIDAS, and average MIDAS, and extended the model into multidi-
mensional one. Simulations using two distinct DGPs, followed by nowcasting
the home ownership vacnacy rates allowed us to incorporate the state, MSA
and time as dimensional an analytical work. We have presented our results
from broader perspective. First, by looking at home ownership vacancy rates
on three dimensions states, MSA and time gives more gain in the accuracy
of nowcast. At the end, We illustrates that incorporating the regularized
multidimensional MIDAS panel data regression performs better compared to
the regular multidimensional panel data regression based on aggregated data.
Our approach is general and can be employed on any multidimensional panel
data , which can eventually give us the timely updates on the important
economic indicators, like home ownership vacancy rates.
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7. Sample Appendix Section

N1N2 × T Pooled panel data Fixed effects
γ = 0 0.5 1 γ = 0 0.5 1
AIC

sg-LASSO 5× 20× 48 4.208 4.221 4.231 4.241 4.258 4.256
10× 20× 48 4.598 4.560 4.567 4.576 4.569 4.701
10× 20× 60 4.642 4.612 4.599 4.601 4.621 4.612

Unrestricted elnet MIDAS 5× 20× 48 20.663 20.671 20.672 20.683 20.691 20.701
10× 20× 48 4.105 4.121 4.141 4.151 4.161 4.171
10× 20× 60 4.161 4.171 4.181 4.195 4.201 4.213

Average sg-MIDAS 5× 20× 48 13.763 13.775 13.791 13.791 13.797 13.811
10× 20× 48 4.014 4.012 4.201 4.341 4.621 4.721
10× 20× 60 4.780 4.791 4.810 4.723 4.741 4.731

BIC
sg-LASSO 5× 20× 48 3.795 3.801 3.811 3.821 3.831 3.841

10× 20× 48 4.212 4.271 4.261 4.281 4.291 4.293
10× 20× 60 4.598 4.601 4.560 4.561 4.621 4.631

Unrestricted elnet MIDAS 5× 20× 48 20.775 20.781 20.791 20.795 20.799 20.231
10× 20× 48 4.377 4.382 4.384 4.386 4.394 4.395
10× 20× 60 4.101 4.241 4.231 4.211 4.201 4.191

Average sg-MIDAS 5× 20× 48 15.353 15.363 15.373 15.383 15.393 15.396
10× 20× 48 4.151 4.142 4.158 4.149 4.151 4.176
10× 20× 60 4.012 4.131 4.231 4.245 4.261 4.246

Cross validation
sg-LASSO 5× 20× 48 4.208 4.208 4.208 4.208 4.208 4.208

10× 20× 48 4.151 4.161 4.171 4.181 4.181 4.21
10× 20× 60 4.16 4.191 4.201 4.231 4.251 4.261

Unrestricted elnet MIDAS 5× 20× 48 4.264 4.257 4.257 4.264 4.257 4.257
10× 20× 48 4.568 4.568 4.561 4.668 4.671 4.888
10× 20× 60 4.668 4.723 4.91 4.912 4.991 4.993

Average sg-MIDAS 5× 20× 48 3.685 3.685 3.685 3.685 3.685 3.685
10× 20× 48 4.698 4.719 4.981 4.988 4.991 5.121
10× 20× 60 4.998 4.898 4.798 4.898 4.998 4.981

Table 5: The table reports simulation results for out-of-sample prediction accuracy for
fixed effect estimators and for the DGP2 for the sg-LASSO-MIDAS and elastic net un-
restricted MIDAS. We vary the cross-sectional dimensions N1ϵ {5, 10} and N2ϵ {20} and
time series dimensions Tϵ {48, 60}. We report results for 5-fold cross-validation, AIC and
BIC information criteria λ tuning parameter calculation methods and for three different
values 0, 0.5 and 1 of γ.
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Comparison DM Statistic p-value

AIC, γ = 1, fe, vs Average, AIC, γ = 1 -2.582 0.004997
BIC, γ = 1, pool, vs Average, AIC, γ = 1 -6.0443 1.136e-09
BIC, γ = 1, fe, cv vs Average, γ = 1, pool -5.8168 4.291e-09

AIC, γ = 1, fe vs Average, γ = 1, fe -1.9678 0.02472
BIC, γ = 1, pool vs Average, γ = 1, fix -4.7027 1.504e-06
BIC, γ = 1, fe vs Average AIC, γ = 1, fe -4.9373 4.795e-07
BIC, γ = 1, pool vs Average, pool, γ = 1 -3.9062 5.073e-05
BIC, γ = 1, pool vs Average, pool, γ = 1 -3.8068 7.56e-05

Table 6: Summary of Standout Diebold-Mariano Test Results
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