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Abstract

The multivariate Markov switching model identifies bull and bear markets from disaggregated indices

and allows for asset allocation decisions. However, the Monte Carlo Markov chain algorithm’s computational

cost increases significantly with its dimension and quickly reaches a prohibited computational time. I

propose a new variational inference (VI) algorithm to estimate a large-dimensional Markov switching model

fast and accurately in the bull and bear markets. While taking substantially less time to compute, this

method achieves comparable in-sample and out-of-sample results to its MCMC counterpart. In addition,

this inference allows for the inclusion of important restrictions to identify hidden market states. The forward

filtering backward smoothing algorithm of my novel VI is also common in economic literature. My simulation

studies emphasize the accuracy and timely benefit of the new technique in, for example, identifying the bull

and bear states, detecting regime switching, and providing forecasts for investment strategies. I investigate

the empirical applications of three sets of stock returns that are listed in the S&P 500 and one set of industry

portfolios and find similar insights.
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1 Introduction

The Markov Switching (MS) model plays a crucial role in identifying bull and bear states, which

typically represent markets with positive and negative mean returns, respectively. The advantages of

this model include endogenously allocating data into regimes, capturing nonlinear temporal structures,

and considering the variance of mean returns. Moreover, identification and forecasting are feasible in a

single process. These advantages are extensively discussed in Kole and Van Dijk (2017) and Maheu and

McCurdy (2000). In this paper, our focus is on providing a feasible and more computationally efficient

inference for the multivariate Markov switching model, especially in the context of a large dimension.

The univariate MS model was first introduced by Hamilton (1989) and Turner et al. (1989) and has

since found widespread application in economics. This model utilizes a Markov chain of a latent discrete

variable to capture the behavior of a time series. Most bull and bear applications are under the univariate

setting, as seen in works such as Rydén et al. (1998), Maheu and McCurdy (2000), Haase and Neuenkirch

(2023), and Chen (2009).

Large-dimensional models have gained importance in economic literature, even though their dimension

remains limited. These models can exploit a larger amount of information essential in economic analysis

and forecasting. For instance, in asset allocation, understanding the structure of financial time series

correlation is crucial, and the variation of correlation is beneficial for forecasting future correlation.

The multivariate setting also enables the use of disaggregated asset returns. Additionally, the recent

availability of more data supports applications of these models. Typical examples include Chan et al.

(2011), Chevallier (2012), Guidolin and Timmermann (2007), Guidolin and Timmermann (2008), and

Liu and Maheu (2018). Unfortunately, all of these applications involve less than ten time series in their

specification. Moreover, the purpose of these papers is not focused on identifying the bull and bear state.

The challenge of a large-dimensional MS model lies in its computational cost. The frequentist ap-

proach, maximum likelihood estimation, is feasible if regularity conditions are satisfied. However, as

the number of series and states increases, the model parameters explode, rendering its log-likelihood

function unbounded. Consequently, maximum likelihood becomes infeasible. The Bayesian approach

resolves these dimensional problems, providing exact inference and good predictive performance. Hence,

the Monte Carlo Markov chain (MCMC) algorithm is a popular solution for MS models (Frühwirth-

Schnatter, 2006). However, this method has a disadvantage that is a significant increase in estimation

cost when the model’s dimension increases.

Variational inference (VI) is popular in Bayesian econometrics because it can approximate a high-

dimensional model with a large dataset using less computational time (Blei et al., 2017, Ormerod and

Wand, 2010). This serves as a substitute for MCMC and is useful in dealing with large-scale problems

or models with high complexity.
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However, variational inference has shortcomings in its application to the large MS model. Firstly,

studies on variational inference for the MS model do not impose economic restrictions. For example,

typical works on the univariate version (Beal, 2003, McGrory and Titterington, 2009) and several on

the multivariate version (Foti et al., 2014, Gruhl and Sick, 2016, Ji et al., 2006) do not possess any

restrictions. While these restrictions are crucial in identifying bull and bear states, including them

would violate the conjugacy assumption of VI. Specifically, an economic restriction will form a truncated

multivariate distribution of the mean. Consequently, this truncation invalidates the assumption of the

exponential family, which is essential in VI.

Secondly, these previous studies employ an unfamiliar approach to economists. They address the use

of the Baum–Welch forward-backward algorithm, originating from (Baum and Petrie, 1966, Baum et al.,

1970), which is not common in economic literature Frühwirth-Schnatter (2006). Both algorithms share

the idea of expectation-maximization.

This paper proposes a variational inference approach to address the aforementioned problems. The

proposed inference method estimates a large-dimensional Markov switching (MS) model much faster

than the commonly used Monte Carlo Markov chain algorithm while maintaining the same level of result

accuracy in-sample and out-of-sample. This method incorporates economic identification restrictions

to detect hidden states without invalidating the variational inference assumptions. Additionally, it

introduces a new variational forward filtering-backward smoothing algorithm, originally proposed by

Chib (1996), which is well-established in economic literature and familiar to economists. I present two

versions in which the data can follow either a multivariate Normal or a multivariate Student t distribution.

I conducted a simulation study to measure the in-sample and out-of-sample performance and the

computational cost of this VI algorithm. The benchmark is the result of models with and without

restrictions estimated by the MCMC approach. These include models under Normal and Student t

distributed innovations and models with a large number of assets in time series. This paper provides an

alternative approach to estimating the model under the Student t distribution, as well as the method in

literature such as in Christmas and Everson (2010). I used the computing system SPARTAN with an

Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz running MATLAB 2021b.

Regarding in-sample performance, I find the estimated variational parameters are almost the same as

the posterior parameters. The estimated variational probability is highly correlated with the conditional

posterior probability of each state, with a correlation coefficient of almost 1. I obtain the average values

of Kullback-Leibler divergence to the true distribution of the mean, log score, and mean squared errors

(Chan and Yu, 2022) from 100 different samples under the same data generation process. There is no

discrepancy in results between the two algorithms with a small dimension. This gap is slightly larger once

I use 30 series. However, its magnitude is relatively small compared to the value of the corresponding

measure.
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Regarding out-of-sample performance, I find the results from the VI approach comparable to the ones

from the MCMC method. This result is consistent with observations from Frazier et al. (2022), Quiroz

et al. (2022). I use the average predictive log score and mean squared forecasting errors (Gefang et al.,

2022) to evaluate. The difference between results is negligible with a forecasting window of 100 periods.

Although the discrepancy is larger when there are more series, its relative magnitude is not large.

I find the economic value of this algorithm by applying it to investment strategies. I conduct one-

period-ahead forecasts for use in market timing portfolios and mean-variance portfolios. For market

timing, I compare three strategies: buying an equally weighted portfolio and holding; using the proba-

bility of the bull state to signal the time to invest in a risk-free asset; and using the predicted probability

to allocate the invested weight. For mean variance, I focus on minimizing the global variance portfolio

using the predicted variance-covariance matrix and maximizing the Sharpe ratio. My results show minor

gaps between the two algorithms, with a slight favor for the VI approach.

The significant gain from this new algorithm is its computational time. The time complexity in

each iteration is similar between the VI and MCMC methods. However, by quickly converging, the VI

approach significantly improves computational time. In my simulation with 30 series, my VI approach

yields results after a few seconds, while the comparable MCMC needs more than 1,000 seconds.

I have applied the VI algorithm to the monthly stock returns from the S&P 500 and industry portfolios

from the Kenneth French data library. Both sets of data contain multiple time series, from 34 to 103.

It also spans a long horizon, from January 1926 to late 2022. My application results are consistent

with my simulation results. I gain a significant advantage on the computational side. With the modest

application of the 34 series, VI runs for 20 seconds, while MCMC needs more than 2 hours. In the most

extreme case in my application, 103 series, my VI method costs only approximately 3 minutes, compared

to almost 11 hours required by the MCMC algorithm. So VI can reduce computing time by 99

My algorithm has its weaknesses. Although the solution for my restricted VI algorithm is tractable,

values in the solution can only be obtained through sampling. I use Botev (2017)’s sampling method to

sample the truncated distribution because of its reliability.

The out-of-sample performance of the two approaches is similar in most cases. The log predictive score

and mean squared forecasting errors are closed. The average global minimum variance and maximum

Sharpe ratio are closed. The market-timing portfolio shows almost no gap between the two methods.

The paper is organised as follows: Section 2 presents the multivariate Markov switching model. Section

3 shows inference methods for the multivariate MS model. Section 4 presents methods to compare results

from algorithms. Section 5 provides the empirical application using the S&P500 and Kenneth library’s

statistics, and Section 6 concludes.
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2 Markov switching model

In this section, I focus on introducing the specification of the multivariate Markov switching (MS)

model. I first introduce the model, and then I present identification restrictions.

I have a data set of returns on N assets at each time t with t = 1, 2, · · · , T . The vector yt =

{y1,t, y2,t, . . . , yN,t}′ includes the returns of each index at time t. Suppose the MS model has K states.

Then, I have the model as

yt | st = k ∼ N(Mk,Σk) (1)

P (st+1 = j | st = i) = pij (2)

S = {st}Tt=1 is the latent variable denoting the latent state. M = {Mk}Kk=1 and V = {Vk}Kk=1 = Σ =

{Σk}Kk=1 are the mean and the variance of the regime k, respectively. Mk = (µ1k, µ2k, . . . , µNk)′ is a

N × 1 vector while Vk = Σk is a N × N variance covariance matrix. N denotes a multivariate normal

distribution1. And P is a K ×K transition probability matrix.

Note that, at time 1, there is no transition from the previous period. Hence, the latent state s1 does

not depend on the transition matrix P . Instead, I suppose that s1 follows a discrete distribution where

each state shares the same probability.

I assume two regimes (K = 2): regime 1 as the bear market and regime 2 as the bull market.

Additionally, I adopt an equally-weighted portfolio as my target market portfolio. In the bear market,

the equally-weighted portfolio from yt has a negative mean, while it has a positive mean in the bull

market. Let ιN as a N × 1 vector of ones. The restriction regarding the means is equivalent to

ι
′

NM1 < 0 ι
′

NM2 > 0

I extend the model with a multivariate Student t distribution. Financial time series often include

information about financial and economic shocks. Hence, it is common to observe distributions of these

series with thick tails. Student t distribution is more appropriate than the Normal distribution in the

sense that the former may possess thick tails. Therefore, I also propose using a multivariate Student t

distribution2 in Equation 1 as follows

yt | st = k ∼ T(Mk,Σk, νk) (3)

1Suppose y = {yi}Ni=1 follow a multivariate Normal distribution with the mean M and variance Σ. The multivariate

Normal distribution has a probability density function

p(y |M,V ) = (2π)−N/2|Σ|−1/2 exp

(
−

1

2
(y −M)′Σ−1(y −M)

)

2Suppose y = {yi}Ni=1 follow a multivariate Student t distribution with the mean parameter M , the scale parameter Σ
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where Mk is the mean, Σk is the scale parameter, νk is the degrees of freedom for component k. The

variance covariance matrix of component k is Vk =
νk

νk − 2
Σk provided that νk > 2.

Because a Student t distribution does not have an exponential conjugate prior, its inference is not

straightforward. One notices that this distribution is an infinite mixture of a scaled Normal distribution

(see Appendix A). I then rewrite the returns equation as

yt | st = k, τt ∼ N(Mk, τ
−1
t Σk)

τt | νst ∼ G
(νst

2
,
νst
2

)
where G denote the Gamma distribution3. Parameters of the gamma distribution are chosen in relation

to degrees of freedom νst . Mean of the auxiliary variables τt is
νst
νst

= 1 and its variance is
2νst
ν2
st

=
2

νst
.

This implies that the higher the value of νst , the mean of τt conditional on νst approaches 1. This

reflects a property of a multivariate Student t distribution: when its degree of freedom gets larger, this

distribution approaches a multivariate normal distribution.

2.1 Prior

The priors for the Normal MS model are

Σ ∼ IW(Ψ, n)

M | Σ ∼ N(µ, h−1Σ)

p(P ) ∼
K∏
k=1

Dir(αk)

and the degrees of freedom ν. The multivariate Student t distribution has the probability density function as

p(y |M,Σ, ν) =
Γ((ν +N)/2)

Γ(ν/2)νN/2πN/2|Σ|1/2

[
1 +

1

ν
(y −M)′Σ−1(y −M)

]−(ν+N)/2

3Suppose τi follow a Gamma distribution with the degrees of freedom v and the scale parameter s. The Gamma

distribution has the probability density function as

p(τi | v, s) =
sv

Γ(v)
τv−1
i e−sτi
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where IW means Inverse Wishart distribution4, and Dir means Dirichlet distribution5. Regarding the

mean M , µ and h are its prior mean and scale parameters. Regarding the variance covariance Σ, the

scale matrix is Ψ = cov(y1:T )(n−N − 1) and the degrees of freedom is n = N + 2, so the prior mean of

Σ is the sample covariance of yt. Assume that there is no correlation between them, so I have Σ is an

N ×N identity matrix. The Dirichlet prior of the transition matrix favours the persistence of the states.

Similarly, priors for the multivariate Student t distribution are

M | Σ ∼ N(µ, h−1Σ) Σ ∼ IW (Ψ, n)

τ | ν ∼ G
(ν

2
,
ν

2

)
ν ∼ G(vν , sν)

At time 1, I assume a uniform probability for each latent state as

p(s1 = k) = 1/K

for any k. Let Φ denote the set of time invariant parameters, M,Σ, P under normal assumption and

M,Σ, P, ν with τ under Student t assumption.

2.2 Conditional posterior

The conditional posterior distribution of the Normal MS model is

p(Φ, S | Y ) ∝ p(M,Σ)p(P )p(S | P, π)p(Y | S,M,Σ)

∝

[
K∏
k=1

p(Mk,Σk)

][
K∏
k=1

p(pk·)

]
p(s1)p(y1 |Ms1 ,Σs1)

T∏
t=2

p(st | st−1, P )p(yt |Mst ,Σst)

The conditional posterior distribution of the Student t MS model is

p(Φ, S | Y ) ∝ p(M,Σ)p(P )p(S | P, π)p(Y | S,M,Σ, τ)p(τ | ν)p(ν)

4Suppose Σ follow an Inverse Wishart distribution with the degrees of freedom n and the scale matrix Ψ. The Inverse

Wishart distribution has the probability density function as

p(Σ | n,Ψ) =
|Ψ|n/2

2nN/2ΓN

(n
2

) |Σ|−(n+N+1)/2e
−

1

2
tr(ΨΣ−1)

5The Dirichlet distribution of order K ≥ 2 with parameters α1, α2, . . . , αK > 0 has a probability density function

p(y1, . . . , yK | α1, . . . , αK) =

Γ

(
K∑
k=1

αk

)
K∏
k=1

Γ(αk)

K∏
k=1

y
αk−1
k
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∝

[
K∏
k=1

p(Mk,Σk)

][
K∏
k=1

p(pk·)

]
p(s1)p(y1 |Ms1 ,Σs1 , τs1)

×
T∏
t=2

p(st | st−1, P )p(yt |Mst ,Σst , τst)

[
T∏
t=1

p(τt | νst)

][
K∏
k=1

p(νk)

]

3 Estimation, inference and forecasting

3.1 MCMC

The most common approach to estimating this model is to use the MCMC algorithm. Because all

time-invariant parameters have exponential conjugate priors, their estimation is straightforward. The

difficulty is in the estimation of the conditional posterior p(S | R,Φ). The problem arises from the

intertemporal dependence among the latent states.

Several algorithms to solve this problem are discussed in Frühwirth-Schnatter (2006). In general,

these approaches use the forward filtering and backward smoothing algorithm to find the conditional

posterior of st, p(st | y1:T ,Φ). The filtered pass is similar among those approaches in order to find

p(st | y1:t,Φ). There are several backward smoothing methods and they end up with a marginal density

of p(st | y1:T ,Φ). In this paper, I choose the most common MCMC algorithm in economic literature,

Chib (1996)’s algorithm.

The posterior parameters are calculated through G iterations after several burn-ins are removed in

order to remove the impact of the initial choice. In particular, I want to compute the parameter, M1,

which is the mean of latent state 1 in the multivariate Markov switching model. It is given by

M̂1 =
1

G

G∑
g=1

M
(g)
1

where the superscript (g) is the g-th iteration after the burn-ins. The precision of the conditional posterior

estimation is better when the sample G is larger.

3.1.1 Φ | S, Y with multivariate Normal distribution

1. P | S

For each row in P , pk· has a Dirichlet prior. The likelihood is a discrete distribution. Hence, the

conditional posterior density is

p(pk· | S) ∝
K∏
j=1

p
αkj+

T∑
t=2

1(st=k,st−1=j)−1

kj

that is a kernel of a Dirichlet distribution, Dir
(
αkj +

T∑
t=2

1(st = k, st−1 = j)

)
.
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2. M,Σ | S, Y

For M,Σ in regime k, it has a multivariate Normal - Inverse Wishart prior with the density function

as

p(Mk,Σk | h, µ, n,Ψ) =

(
h

2π

)N/2
|Σk|−1/2 exp

{
−1

2
(Mk − µ)′hΣ−1(Mk − µ)

}

× |Ψ|n/2

2nN/2πN(N−1)/4
∏
i=1

Γ

(
n+ 1− i

2

) |Σk|−n+N + 1

2

× exp

{
−1

2
tr(ΨΣ−1

k )

}
The likelihood is a multivariate normal distribution

p(yt |Mk,Σk, st = k) =

(
1

2π

)N/2
|Σk|−1/2 exp

{
−1

2
(yt −Mk)′Σ−1

k (yt −Mk)

}
Hence, the conditional posterior density is

p(Mk,Σk | Y, S) ∼ N− IW(µ
(p)
k , h

(p)
k , n

(p)
k ,Ψ

(p)
k )

where

h
(p)
k = h+

T∑
t=1

1(st = k)

µ
(p)
k =

1

h
(p)
k

(
hµ+

T∑
t=1

1(st = k)yt

)

n
(p)
k = n+

T∑
t=1

1(st = k)

Ψ
(p)
k = Ψ +

T∑
t=1

1(st = k)yty
′
t − h

(p)
k µ

(p)
k (µ

(p)
k )′ + hµµ′

with the superscript (p) denoting the posterior.

3.1.2 Φ | Y, S with multivariate Student t distribution

There is no change to the posterior of P | S because the distribution of Y is not involved.

1. M,Σ | S, Y, τ

The prior of M and Σ is Normal - Inverse Wishart. I rewrite the likelihood functional form of the

multivariate Student t distribution as the multivariate Normal distribution

p(yt |Mst ,Σst , τt, st) =
( τt

2π

)N/2
|Σst |−1/2 exp

{
−τt

2
(yt −Mst)

′Σ−1
st (yt −Mst)

}
(4)
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Hence, the conditional posterior density is

Mk,Σk | Y, S, τ ∼ N− IW(µ
(p)
k , h

(p)
k , n

(p)
k ,Ψ

(p)
k )

where

h
(p)
k = h+

T∑
t=1

1(st = k)τst

µ
(p)
k =

1

h
(p)
k

(
hµ+

T∑
t=1

1(st = k)τtyt

)

n
(p)
k = n+

T∑
t=1

1(st = k)

Ψ
(p)
k = Ψ +

T∑
t=1

1(st = k)τtyty
′
t − h

(p)
k µ

(p)
k (µ

(p)
k )′ + hµµ′

2. τ

The prior of τt is a Gamma distribution as

p
(
τt |

νst
2
,
νst
2

)
= Γ

(νst
2

)−1 (νst
2

) νst
2

τ
νst
2 −1

t exp
{
−νst

2
τt

}
The likelihood is a multivariate Normal distribution as in Equation 4. Therefore, the conditional

posterior distribution is

p(τt |M,Σ, ν, yt, st) ∝ τ
νst
2 −1

t exp
{
−νst

2
τt

}
τ
N/2
t exp

{
−τt

2
(yt −Mst)

′
Σst
−1(yt −Mst)

}
= fG

(
τt |

νst
2

+
N

2
,
νst
2

+ (yt −Mst)
′
Σst
−1(yt −Mst)

)
3. ν

There are several approaches to estimating this parameter.

First, I use the variance formula of the Student t distribution to estimate the degrees of freedom

that is

Vk =
νk

νk − 2
Σk

In particular, I find the sample variance covariance matrix, V̂k, the scale matrix, Σk, and then

recover the degrees of freedom. We find νk to minimise the distance between two sides. Details are

in Appendix B.2.

For each draw of S, I re-calculate the degrees of freedom of each component. Only a value that is

greater than 2 is accepted since it permits the existence of variance. Because the degrees of freedom

are calibrated conditionally on the other parameters, we denote the MCMC algorithm using this

method as MCMC − CC.
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Second, I put a hierarchical prior on ν. The choice of the prior on ν varies from an exponential

distribution(Geweke, 1993), an uniform distribution (Chib et al., 2002) to a gamma distribution

(Nakajima and Omori, 2012). Unfortunately, all are not conjugate prior. In this study, I choose a

Gamma prior as follows

ν ∼ G(vν , sν)

Hence, I use Metropolis-Hasting as rejection method. In particular, I propose a new ν from this

distribution

ν | ν′ ∼ G
(
ξ,
ξ

ν′

)
with ν′ is the value of ν from the last iteration, ξ is the degree of freedom, and ξ/ν′ is the scale

parameter. The acceptance probability is{
1,
p(ν | τ)p(ν′ | ξ, ξ/ν)

p(ν′ | τ)p(ν | ξ, ξ/ν′)

}
This method is denoted as MCMC.

Third, I make an attempt to use exponential conjugacy. Inspired by Christmas and Everson (2010),

I use Stirling’s approximation to re-write the complete likelihood in order to generate conjugacy

that gives a Gamma posterior distribution (see Appendix B.3). In particular, the approximated

conditional posterior follows a Gamma distribution

G

vν +

T∑
t=1

1(st = k)

2
, sν +

T∑
t=1

1(st = k)(τst − log τst)

2
−

T∑
t=1

1(st = k)

2


Because we have the approximation of the complete likelihood, we denote this method as MCMC−

A. This approximation is purely for a comparison to Christmas and Everson (2010)’s VI in the

literature. However, in Appendix B.3, I show that this approximation cannot work well in the case

of small degrees of freedom, which is the case of interest.

3.1.3 S | Y,Φ

Since S follows a Dirichlet distribution and the likelihood follows a multivariate Normal distribution,

there exists an exponential conjugacy. The conditional posterior then belongs to the exponential family.

The complete likelihood of S and Y is

p(S1:T , y1:T | Φ) = p(s1)p(y1 | s1,Φ)

T∏
t=2

p(st | st−1, P )p(yt | st,Φ) (5)

where

p(s1) ∝ const; p(st | st−1, P ) ∝
K∏
j=1

K∏
k=1

p
1(st=k,st−1=j)
jk ;
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p(yt | st,Φ) ∝
K∏
k=1

p(yt |Mk,Σk)1(st=k)

The forward filtering of states at time t from 1 to T is calculated as

F (st) = p(st | y1:t,Φ) =
p(yt | st,M,Σ)p(st | y1:t−1,Φ)∑
st
p(yt | st,M,Σ)p(st | y1:t−1,Φ)

with p(st | y1:t−1,Φ) =
∑
st−1

F (st−1)p(st | st−1, P ). The derivation for this filtered pass can be found in

Appendix B.4.1.

Then I apply the backward smoother proposed by Chib (1996) to find

p(st | y1:T ,Φ) =
∑
st+1

p(st, st+1 | y1:T ,Φ) (6)

from time T − 1 to time 1. I start with the joint marginal density of st and st+1.

p(st, st+1 | y1:T ,Φ) = p(st+1 | y1:T ,Φ)
p(st+1 | st,Φ)F (st)∑
st
p(st+1 | st,Φ)F (st)

Hence, I deduce that

p(st | y1:T ,Φ) =
∑
st+1

p(st+1 | y1:T ,Φ)
p(st+1 | st,Φ)F (st)∑
st
p(st+1 | st,Φ)F (st)

(7)

Details are discussed in Appendix B.4.2.

3.1.4 Identification restrictions

Identification restrictions are important to label the states. In my paper, these restrictions are on the

mean of the states. I can impose either multiple restrictions or one restriction. In this subsection, I

employ Botev (2017)’s algorithm to find the conditional expectation with respect to q of the restricted

parameter. This algorithm helps simulate the truncated Normal distribution in high dimensions. Hence,

I find a tractable solution for VI when applying identification restrictions.

The identification of two states, bull and bear, requires restrictions. In a simple case, the prior

distribution for Mk should be

p(M1 | Σ1) = fN (M1 | µ, h,Σ1)I(ι′M1 < 0) (8)

p(M2 | Σ2) = fN (M2 | µ, h,Σ2)I(ι′M2 > 0) (9)

The change in their functional form is in the normalising constant and the support. Therefore, these

restrictions enter the conditional posterior distributions as follows:

p(M
(p)
1 | Σ(p)

1 , ·) = fN (M
(p)
1 | µ(p)

1 , h
(p)
1 ,Σ

(p)
1 )I(ι′M

(p)
1 < 0)

p(M
(p)
2 | Σ(p)

2 , ·) = fN (M
(p)
2 | µ(p)

2 , h
(p)
2 ,Σ

(p)
2 )I(ι′M

(p)
2 > 0)
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where fN is the probability density function of a Normal distribution.

Similarly, the conditional posterior distributions in the Student t distribution are

p(M
(p)
1 | Σ(p)

1 , τ
(p)
1 , ·) = fN (M

(p)
1 | µ(p)

1 , h
(p)
1 ,Σ

(p)
1 , τ

(p)
1 )I(ι′M

(p)
1 < 0)

p(M
(p)
2 | Σ(p)

2 , τ
(p)
2 , ·) = fN (M

(p)
2 | µ(p)

2 , h
(p)
2 ,Σ

(p)
2 , τ

(p)
2 )I(ι′M

(p)
2 > 0)

with the priors of

p(M1 | Σ1, τ1, ·) = fN (M1 | µ1, h1,Σ1, τ1)I(ι′M1 < 0) (10)

p(M2 | Σ2, τ2, ·) = fN (M2 | µ2, h2,Σ2, τ2, )I(ι′M2 > 0) (11)

In the MCMC algorithm, I sample M for each iteration under these restrictions. Sampling from these

conditional posterior distributions is straightforward. One naive method is to keep drawing samples

until restrictions are satisfied. However, as the dimension of the data increases, this restricted problem

becomes more complex and may cause difficulties in finding a correct sample. In this paper, I choose the

solution from Botev (2017)’s algorithm to achieve a valid draw faster.

Sampling is necessary when the closed form solution is not available. In this paper, I need to have the

expected mean and variance of the truncated multivariate distribution. I use Botev (2017)’s algorithm

to sampling these values. This technique is an extension of the separation of variables (SOV) method.

The separation-of-variables (SOV) reparameterizes each element xi conditionally on the values of the

preceding terms x1, . . . , xi−1 using the LQ transformation. After the transformation, the cumulative

density probability of the multivariate normal distribution is under the transformed region. The in-

nermost integral of this probability depends on all variables, while the outermost integral depends on

x1. The computation of this probability is crucial. Botev (2017) suggests using the exponentially tilted

technique in simulation to compute reliably this probability by using the tilted version of each integral.

3.2 Variational Inference

A review of the VI method can be found in Blei et al. (2017). The idea of VI is to minimise the

Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between the complete likelihood of the

model, p(Φ, S, Y ) and a variational distribution, q(Φ, S). Instead of minimising this divergence directly,

I solve an equivalent problem that is to maximise the evidence lower bound (L) where

L = E[log p(Φ, S, Y )]− E[log q(Φ, S)] = log p(Y )−KL[q(Φ, S)||p(Φ, S | Y )]

where E implies Eq(Φ,S). Since log p(Y ) is a constant, minimising KL divergence is the same as max-

imising the evidence lower bound. The problem now is

q∗(Φ, S) = arg max
q∈Q

E[log p(Φ, S, Y )]− E[log q(Φ, S)]
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The common choice of the family, Q, is a mean field family. This family simplifies the optimisation

problem by assuming an independent structure among factors. In my estimation, I also choose a mean

field distribution as

q(Φ, S) =

K∏
k=1

q(Mk,Σk)

K∏
k=1

q(pk·)q(S1:T )

for the Normal distribution, and

q(Φ, S) =

K∏
k=1

q(Mk,Σk)

K∏
k=1

[
T∏
t=1

q(τtk)

]
q(νk)

K∏
k=1

q(pk·)q(S1:T )

for the Student t distribution.

The evidence lower bound (L) is

L = E[log p(Φ)] + E[log p(S | Y,Φ)] + E[log p(Y | Φ)]− E[log q(Φ)]− E[log q(S)]

For any factor in the mean field family, I solve for the optimal variational density by taking the

conditional evidence lower bound that solves variational parameters conditional on the others. For

example, with Φ, I have the conditional evidence lower bound

L∗ = E[log p(Φ, S, Y )]− E[log q(Φ)] = Eq(Φ)

(
Eq(S)[log p(Φ, S, Y )]− Eq(S)[log q(Φ)]

)
The optimal solution is then

q∗(Φ) = exp
{
Eq(S)[log p(Φ | S, Y )]

}
(12)

A detailed explanation can be found in Ormerod and Wand (2010). In the next steps, I find the optimal

solution for each parameter.

The result from VI is the optimal variational density of the model parameter. If an analytical solution

for the conditional expectation of a variational parameter is available, it is used to update the other

variational parameters. Otherwise, I must find a numerical approximation by sampling.

Variational algorithms to approximate the Markov switching model have been developed in Beal (2003),

Ghahramani and Hinton (2000), Gruhl and Sick (2016). However, these works are mainly based on the

Baum-Welch algorithm, which is not familiar in economic literature. The Baum-Welch algorithm belongs

to the class of expectation maximisation algorithm. This iterative algorithm increases the conditional

posterior until the maximum is reached. At each iteration, we find the forward and backward probabilities

as follows:

Ft = p(Y1:t, st | θ) Bt = p(Yt+1:T | st, θ)

Then, the marginal of each state st can be found by the Bayesian rule

p(st | Y1:T , θ) =
FtBt∑
st
FtBt
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The Chib (1996)’s algorithm also belongs to the class of the expectation maximisation algorithm. At

each iteration, we have the forward probabilities using the Bayesian rule from time 1 to time T:

Ft = p(Y1:t | st)

Then at time T, we move backward to time 1:

p(st | Y1:T , θ) =
∑
st+1

p(st, st+1 | Y1:T , θ) (13)

Both methods gives the posterior marginal of the latent state via a recursive process. However, The

former is popular in computer science and engineering, while the latter is more common in economics

(Frühwirth-Schnatter, 2006). In this paper, I propose a novel algorithm to multivariate dimension with

the idea from Chib (1996)’s MCMC algorithm that is common in Bayesian econometric literature.

3.2.1 q(Φ) with multivariate Normal distribution

Under the multivariate normal distribution, the conditional evidence lower bound is

L∗ = E

[
log p(M,Σ) + log p(P ) + log p(S | Y, P ) +

T∑
t=1

log p(yt |M,Σ, P, S)

]
− E[log q(M,Σ) + log q(P ) + log q(S)]

Details can be found in Appendix C.

1. P

Note that log p(s1 = k) is a constant with respect to P . I can ignore this term and start from

t = 2. The optimal solution for q(pk·) is

q∗(pk) ∼ Dir(αk)

where αkj = αkj +
T∑
t=2

φt−1,k,t,j with

Eq(S)[1(st−1 = k, st = j)] = φt−1,k,t,j

as the conditional expectation of the transition probability of state k at time t − 1 to state j at

time t.

2. M,Σ

The optimal solution is then

q∗(Mk,Σk) ∝ exp

{
Eq(−M,Σ)

[
log p(Mk,Σk) +

T∑
t=1

log p(yt | S,M,Σ)

]}

14



Let denote

hk = h+

T∑
t=1

φtk

µk = h
−1

k

(
hµ+

T∑
t=1

φtkyt

)

nk = n+

T∑
t=1

φtk

Ψk = Ψ +

T∑
t=1

φtkyty
′
t − hkµkµ′k + hµµ′

Then I find that the variational density of q∗(Mk,Σk) is a Normal - Inverse Wishart distribution

N− IW(µk, hk, nk,Ψk).

3.2.2 q(Φ) with multivariate Student t distribution

The evidence lower bound is

L = E[log p(M,Σ) + log p(ν) +

T∑
t=1

log p(τt | ν) + log p(P ) + log p(S | Y, P )

+

T∑
t=1

log p(yt |M,Σ, τ, P, S)]

− E[log q(M,Σ) + log q(ν) +

T∑
t=1

log q(τt) + log q(P ) + log q(S)]

Conditional expectations can be found in Appendix E.2.

1. P

This part is similar to the multivariate Normal distribution because the new terms ν and τ are not

involved in estimating q(P ).

2. M,Σ

The optimal solution is

q∗(Mk,Σk) ∝ exp

[
Eq(S),q(τ)[log p(Mk,Σk) +

T∑
t=1

log p(yt | st = k,Mk,Σk, τt)]

]

Let denote

hk = h+

T∑
t=1

φtkE [τt]
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mk = h
−1

(
hµ+

T∑
t=1

φtkE [τt] yt

)

nk = n+

T∑
t=1

φtk

Ψk = Ψ +

T∑
t=1

φtkE [τt] yty
′
t − hµkµ′k + hµµ′

I find that the variational density of q∗(Mk,Σk) is a Normal Inverse Wishart distribution N −

IW(µk, hk, nk,Ψk).

3. τ

The optimal solution is

q∗(τt) ∝ exp [E[log p(τt | νst , st) + log p(yt |Mst ,Σst , τt)]]

I find that this functional form implies

q∗(τt) ∼ G
(
E(νst)

2
+
N

2
,
E(νst)

2
+

1

2
E
[
(yt −Mst)

′
Σ−1
st (yt −Mst)

])
4. ν

The optimal solution is

q∗(νk) ∝ exp

[
E

(
log p(νk) +

T∑
t=1

log p(τt | νk, st = k)

)]

The difficulty is that at this point, because there is no exponential conjugacy in this solution, I

cannot update the variational parameters straightforwardly. Unlike the MCMC algorithm, there

is no room for the Metropolis-Hastings rejection method.

I introduce three approaches to find degrees of freedom.

� Conditional calibration

This is a comparable version to MCMC-CC. I estimate sample degrees of freedom conditional

on other parameters. I use the variance formula to recover the degrees of freedom. This

approach can be denoted as VI-CC because it is equivalent to MCMC-CC.

� Approximation

This approach is proposed by Christmas and Everson (2010). I use Stirling’s approximation

for log Γ
(νk

2

)
in order to have my proposed prior as a conjugate prior. Therefore, the optimal

variational density is

νk ∼ G

vν +

T∑
t=1

φtk

2
, sν +

T∑
t=1

φtkE (τt − log τt)

2
−

T∑
t=1

φtk

2


Let denote this approach as VI-A that is comparable to MCMC-A.
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� Proposing a Gamma distribution of q(ν)

I propose q∗(ν) ∼ G(vν , sν). We find vν and sν that minimise the distance

E[log q(νk)]− E

[
log p(νk) +

T∑
t=1

log p(τt | νk, st = k)

]
with the term inside the bracket as the complete likelihood of vk.

Since I assume the Student t distribution has the second moment, its degrees of freedom must

be greater than 2. Only the result satisfying this condition will be kept. It is not necessary

to update ν every iteration. I can update other parameters for 10 iterations, then update

hyperparameters for ν. It will save computational costs. I denote this approach as VI.

3.2.3 q(S)

The conditional evidence lower bound on S is

L∗ = E[log p(S, Y | Φ)]− E[log q(S)]

The optimal solution is as

q∗(S1:T ) = exp
{
Eq(Φ) [log p(S1:T , y1:T | Φ)− log p(y1:T | Φ)]

}
∝ exp

{
Eq(Φ) [log p(S1:T , y1:T | Φ)]

}
I make a comparison between the complete log-likelihood of the conditional posterior in Equation

5 with the complete log-likelihood of the variational density, q∗(S1:T ). First, the log of the complete

likelihood in Equation 5 is proportional to

T∑
t=2

K∑
j=1

K∑
k=1

1(st = k, st−1 = j) log pjk +

T∑
t=1

K∑
k=1

1(st = k) log p(yt | Φ, st)

Second, the log-likelihood of the optimal solution from the VI where I take the conditional expectation

with respect to Φ is

Eq(Φ)

[
T∑
t=2

log p(st | st−1, P )

]
+ Eq(Φ)

[
T∑
t=1

log p(yt | st,Φ)

]

=

T∑
t=2

K∑
j=1

K∑
k=1

1(st−1 = k, st = j)Eq(Φ)[log pkj ] +

T∑
t=1

K∑
k=1

1(st = k)Eq(Φ)[log p(yt | Φ, st)]

The log of the complete likelihood in Equation 5 is similar to the loglikelihood of the optimal so-

lution. It suggests that the optimal solution shares the same type of density with the conditional

posterior. However, their parameters are not the same. For example, the parameters for the transition

matrix in the conditional posterior density are pkj and in the optimal solution through VI for q(pkj) is

exp(Eq(pkj)[log pkj ]). Let denote

p̃kj = exp(Eq(Φ)[log pkj ]) p̃(yt | Φ, st) = exp(Eq(Φ)[log p(yt | Φ)])
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with the first equality involving normalisation. These newly defined parameters are already found in the

previous steps. Hence, I can find q(st) in the same way I find p(st | y1:T ,Φ), i.e., through a forward

filtering backward smoothing algorithm.

In order to find the marginal variational density of each st, q
∗(st), I note that the structure of this

variational distribution is similar to the conditional posterior distribution, p(S | Y,Φ). Therefore, I can

write that

q∗(S1:T ) ∝
T∏
t=2

K∏
j=1

K∏
k=1

p̃
1(st=k,st−1=j)
jk

T∏
t=1

K∏
k=1

p̃(yt | Φ, st)1(st=k)

∝ p̃(y1 | s1,Φ)

T∏
t=2

p̃(st | st−1, P )p̃(yt | st,Φ)

This expression is similar to Equation 5, the complete likelihood of the conditional posterior distribution

of S. Because the conditional posterior distribution, p(st | Y,Φ), is estimated through the forward-

backward algorithm, I can do the same to find the variational density, q∗(st), at each t.

I use the same Chib (1996)’s algorithm as in MCMC. For any t, the variational forward filtering is

F̃ (st) ∝
p̃(yt | st,Φ)

∑
st−1

p̃(st | st−1, P )F̃ (st−1)∑
st

p̃(yt | st,Φ)
∑
st−1

p̃(st | st−1, P )F̃ (st−1)

with the normalising constant p̃(yt | y1:t−1,M,Σ).

The forward pass at time t = 1 for this optimal solution is

F̃ (s1) =
p̃(s1)p̃(y1 | s1,Φ)∑
s1
p̃(s1)p̃(y1 | s1,Φ)

with the normalising constant p̃(y1 | Φ).

I follow the backward algorithm in Equation 15 to smooth the variational density of states as follows

q∗(st) ∝ p̃(st | y1:T ,Φ) =
∑
st+1

p̃(st | st+1, y1:T ,Φ)p̃(st+1 | y1:T ,Φ)

with the first term

p̃(st | st+1, y1:T ,Φ) =
p̃(st+1 | st,Φ)p̃(st | y1:t,Φ)∑
st
p̃(st+1 | st,Φ)p̃(st | y1:t,Φ)

Similarly, the temporal transition between two states is

q∗(st, st+1) ∝ p̃(st | st+1, y1:T ,Φ)p̃(st+1 | y1:T ,Φ)

The likelihood of the data is

exp(Eq(Φ)[log p(Y | Φ)]) = p̃(y1:T | Φ) = p̃(y1 | Φ)

T∏
t=2

p̃(yt | y1:t−1,Φ) (14)
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On the right-hand side, each factor in this product is a normalising constant of its corresponding forward

pass. Therefore, I store all these constants to calculate the log likelihood of the ELBO.

This approach can be applied to the multivariate Student t distribution. The reason is that the

functional form of the Student t distribution can be rewritten as a Normal distribution, a member of the

exponential family. Because a distribution of the exponential family can be rewritten with an exponential

function, the log in Equation 14 only removes this exponential function. Hence, the expectation and the

exponential function in Equation 14 enter the likelihood without changing its kernel density. If there is

no exponential conjugacy, this variation-backward smoothing algorithm fails to work.

It is important to note that I must maintain numerical stability. Errors may appear during the

execution of the algorithm. The reason lies in the use of likelihood and joint likelihood. These values

are extremely small and easily out of range in any computing programme. Hence, I take note of these

likelihoods and their relevant terms to avoid inaccurate approximations, as in Appendix F. In addition,

my algorithm will keep the log values until the last step before reverting them by an exponential function.

3.2.4 Identification restrictions

Previously developed VI algorithms do not emphasise applications with restrictions. However, restric-

tions are significant in identifying the bull and bear states in economic literature. For example, a sign

restriction on the sum of the mean in each state The bear state should have a negative mean return, while

the bull state should show a positive one. My VI algorithm must address this identification problem.

I address this identification problem by including restrictions in the VI algorithm. Those restrictions

enter directly into the ELBO optimisation problem via the truncated prior in 9 and 11. Since the

distribution of M is truncated by this restriction, I must find the expectation related to M under this

truncation. Because there is no closed-form solution for the expectation of a truncated distribution, I

find it through sampling.

Among all parameters, only M is related to the truncated distribution. Hence, the restricted VI

algorithm is similar to the above ones except for the parts that have M . In particular, I re-evaluate the

lower bounds of M and S.

The optimal variational density for M is

q(M1 | Σ1, ·) = fN (M1 | µ1, h1,Σ1)I (ι′M1 < 0) q(M2 | Σ2·) = fN (M2 | µ2, h2,Σ2)I (ι′M2 > 0)

Under this optimal solution, the expectation with respect to q(M) must be re-evaluated. Details are in

Appendix E.2.

Regarding S, I do not need to revise the previous solution for the optimal density. However, I need
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to use the new expectations relating to the truncated distribution. These expected values are similar to

those I find in the case of M .

3.2.5 Monitoring ELBO

The convergence of both restricted and unconstrained algorithms is similar. However, since there is

a sampling step, the numerical values calculated should result in an erratic lower bound. Therefore, I

monitor the convergence by observing several iterations (defined as Ω iterations) as in Tran et al. (2017).

Instead of observing each iteration, I observe the convergence through the mean of the lower bounds

from these iterations.

The majority of the expected values in the evidence lower bound are available directly (see Appendix

D) except for the expectation of the log likelihood of the data with respect to the variational distribution

q. Note that this is the normalising constant in the forward filtering step. Hence, I have

Eq(Φ,S)[log q(S)] = Eq(S)[Eq(Φ)[log p(S, Y | Φ)]− Eq(Φ)[log p(Y | Φ)]]

So the evidence lower bound is

L = Eq[log p(Φ)]− Eq[log q(Φ)] + Eq[log p(Y | Φ)]

= Eq[log p(P )]− Eq[log q(P )] + Eq[log p(M,Σ)]− Eq[log q(M,Σ)] + Eq[log p(Y | Φ)]

The last term on the right hand side is available in Equation 14.

Another approach to monitoring the convergence of this algorithm is through the loglikelihood of the

data, Eq[log p(Y | Φ)]. This is also available through my algorithm.

3.3 Forecasting

Suppose there are h steps ahead. I start with one step ahead. The conditional predictive density is as

follows

p(yt+1 | y1:t,Φ) =
∑
st+1

p(yt+1 | y1:t, st+1,Φ)

(∑
st

p(st+1 | st,Φ)p(st | y1:t,Φ)

)

This functional form implies a mixture of multivariate normal distributions with the weight being the

probability p(st+1 | y1:t,Φ). This weight is computed by the transition matrix and the current state at

time t. Note that, although there is a case of Student t distribution, it can be rewritten as a Normal

distribution. Therefore, I have the same way of forecasting.

I find the unconditional predictive density by integrating out the model parameters Φ. Suppose there is

a sample of G draws from the conditional posterior distribution p(Φ | y1:t). The unconditional predictive
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density

p(yt+1 | y1:t) =

∫
p(yt+1 | y1:t,Φ)p(Φ | y1:t)dΦ

is calculated unbiasedly from

p(yt+1 | y1:t) ≈
1

G

G∑
g=1

p(yt+1 | y1:t,Φ
(g))

The h-step ahead forecast joint density is the multiplication of multiple 1-step-ahead forecast densities

as

p(yt+1:t+h | y1:t) =

h∏
i=1

p(yt+i | y1:t+i−1)

Each predictive density on the right-hand side is computed separately. The model that is better at

forecasting will have a higher value of predictive likelihood.

It is possible to derive the conditional expected forecasting mean and variance as

ŷt+h = E(yt+h | y1:t,Φ)

=

K∑
k=1

∑
st+h

· · ·
∑
st

E(yt+h | st+h,Φ)p(st+h | st+h−1,Φ) · · · p(st+1 | st,Φ)p(st | y1:t,Φ)

V̂t+h = V ar(yt+h | y1:t,Φ)

=

K∑
k=1

∑
st+h

· · ·
∑
st

E(yt+hy
′
t+h | st+h,Φ)p(st+h | st+h−1,Φ) · · · p(st+1 | st,Φ)p(st | y1:t,Φ)

−

 K∑
k=1

∑
st+h

· · ·
∑
st

E(yt+h | st+h,Φ)p(st+h | st+h−1,Φ) · · · p(st+1 | st,Φ)p(st | y1:t,Φ)


 K∑
k=1

∑
st+h

· · ·
∑
st

E(yt+h | st+h,Φ)p(st+h | st+h−1,Φ) · · · p(st+1 | st,Φ)p(st | y1:t,Φ)

′

where

E(yt+hy
′
t+h | st+h,Φ) = var(yt+h | st+h,Φ) + E(yt+h | st+h,Φ)E(yt+h | st+h,Φ)′

With the MCMC algorithm, I can apply the forecasting formula immediately. Regarding the VI

method, the suitable probability density functions are the variational densities q∗(P ), q∗(S) and q∗(M,Σ)

and the “tilde” probabilities, for example, we replace p(st | y1:t,Φ) with q∗(st), p(st+1 | st,Φ) with

p̃(st+1 | st,Φ). Regarding the multivariate Student t distribution, I extend it to q∗(τ) and q∗(ν).

Although I do not have the sample of G drawn directly from the conditional posterior, the variational

density of P in the last iteration is suitable to find the expected value. Each conditional predictive

density is computed separately.
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4 Algorithm comparison

I compare the performance of two algorithms in terms of how fitted their results are to in-sample data

and how close their point forecasting value is to the out-of-sample data. I use the computing system

SPARTAN with an Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz running MATLAB 2021b. Regarding

the out-of-sample performance, I also measure the economic performance of investment strategies formed

by two algorithms. In addition, I compare the amount of time that needs to be consumed to achieve the

final result for two algorithms.

I carry out multiple simulation studies. These simulation results highlight that the VI algorithm may

lead to similar inferences compared to the MCMC algorithm. In addition, the forecasting performance

of the VI is not necessarily worse. This paper is not the first to observe it. It may surpass the prediction

from MCMC instead. The finding is consistent with Frazier et al. (2022, 2021).

In conclusion, I find the VI algorithm provides fast and accurate inference and comparable forecasting

performance. Its results are close to or identical to the results from the MCMC algorithm. However, the

VI consumes less time.

4.1 Simulation

In this section, I perform several simulations in order to compare the in-sample and out-of-sample

performance between algorithms. I have two sets of simulated data: one with two assets and the other

with 30 assets. The focus is on the novel approach with identification restrictions.

4.1.1 A bivariate example

I conduct a simulation to measure the performance of new algorithms. First, let denote a data of

Y = yit where i = 1 : N ; t = 1 : T . Suppose there are only two states k = 1, 2. The data generating

process is as follows

yit ∼


N(M (1),Σ(1)) if 1 ≤ t < 300

N(M (2),Σ(2)) if 300 ≤ t < 600

N(M (1),Σ(1)) if 600 ≤ t ≤ 1000

We expect our algorithms to be able to identify the latent states, bear and bull, under restrictions. The

true parameters under restrictions are set as

M1 ∼ N([−0.5 − 0.5]′,Σ1)I(ι′M1 < 0) M2 ∼ N([1 2]′,Σ2)I(ι′M2 > 0)
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A similar set up is generated for the Student t distribution. The corresponding distributions are

T(M (1),Σ(1), ν(1)) T(M (2),Σ(2), ν(2))

I start with a simple example with N = 2, i.e., 2 asset series. In order to test the performance of

the new VI algorithm, I carry out this simulation under a comparable MCMC algorithm that performs

with the same set of priors and data. For example: the MCMC-A algorithm is comparable to the VI-A

algorithm. For the VI algorithm, the tolerance level is 10−16, Ω = 20, n = 0.5. Regarding the MCMC

algorithm, the total iterations for the MCMC algorithm are 2,000 with 1,000 burn-ins.

Table 1: Estimated parameters with 2 assets under Normal distribution

Unrestricted Restricted

Parameters MCMC VI MCMC VI True

Mean of the bear state (M̂1) -0.01 1.00 -0.01 1.00 -0.49 0.49 -0.50 0.50 -0.50 0.50

Mean of the bull state (M̂2) 1.04 0.96 1.04 0.96 1.04 0.96 1.04 0.96 1 1

Variance of the bear state (V̂ 1)
0.95 0.04 0.95 0.04 0.94 0.04 0.95 0.04 1 0

0.04 1.05 0.04 1.04 0.04 1.05 0.04 1.05 0 1

Variance of the bull state (V̂ 2)
5.33 3.37 5.32 3.36 5.30 3.34 5.30 3.35 5 3

3.37 5.22 3.37 5.22 3.35 5.18 3.35 5.20 3 5

Notes: Table 1 contains the posterior mean of parameters and the optimal variational parameters of the multivariate

Markov switching model estimated by MCMC algorithm and VI algorithm, respectively. This table includes both

results with and without restrictions. The true parameters are also provided.

The restricted model can identify the bull and bear states, while the unrestricted version cannot. Table

1 shows the estimated results from the normal data. Traditional MCMC and VI algorithms find no bear

state. In particular, all states show a positive mean of returns. Only when we control for the restrictions

can the algorithm detect the bear state. The same insight can be found with the student t distribution

as in Table 12. I plot these estimated densities against the true densities of both states with normal

data in Figure 6. Estimated densities overlap, and they are also quite near the true ones. However, the

unrestricted results are far from the true ones. To conclude, I find that the new algorithm can adapt

restrictions that fulfil the purpose of state identification.

Estimates of conditional probabilities are the same between two algorithms. It is presented visually as

in Figure 2, 3 and 7. In addition, the correlation between two estimated posterior probabilities is almost

1 as in Table 2.

Tables 1 and 12 present parameter estimates. The estimated mean and variance/scale of two methods

are similar and close to the true value. Notably, none of the estimates of the degrees of freedom are

exact. However, these estimates can reflect a distribution with thicker tails. Overall, this implies that

the results from one run of the VI algorithm are similar to the ones from MCMC.
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Table 2: Correlation between conditional posterior probabilities and the true probabilities

Number of assets 2 30

Distribution Normal Student t Normal Student t

Correlation 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

Notes: Table 2 contains the correlation between the mean of the conditional posterior of probabilities and the optimal

variational probabilities in the multivariate Markov switching model estimated by the MCMC algorithm and the VI

algorithm respectively. With 2 assets under Normal distribution, we have the correlation from left to right as without

and with restrictions. With 30 assets under Normal distribution, we have a restricted result. Under the Student t

distribution, from left to right, we have the correlation between results from MCMC-CC vs. VI-CC, MCMC vs. VI,

and MCMC-A vs. VI-A, respectively.

Table 3: Computation time (in seconds)

2 Assets 30 Assets

VI MCMC Proportion VI MCMC Proportion

’Normal’ 7.749 102.46 7.56% 12.190 1195 1.02%

’Student t (CC)’ 21.919 243.80 8.99% 24.905 1259 1.98%

’Student t (A)’ 25.077 260.97 9.61% 35.866 1384 2.59%

’Student t’ 39.264 255.35 15.38% 55.919 3209 1.74%

Note: Table 3 presents the computational cost of estimating the multivariate Markov switching model in order to

identify the bull and bear states. Results are measured in seconds. The last column is the proportion of the computing

time using VI over the one with MCMC.
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In my simulation, the VI algorithm converges faster than the MCMC algorithm. Table 3 presents the

time required to run each algorithm. The MCMC method takes about 10 to 100 times longer than the VI

method. For further investigation, we use the time trace plot of loglikelihood and Geweke (1992)’s plot

to detect the convergence of the MCMC approach. Results are in Figure 2 and Figure 7. These graphs

indicate that the MCMC starts to show convergence after the VI convergence. It is worth mentioning

that we need multiple posterior draws from the MCMC algorithm after it shows convergence. Hence, we

can conclude that the VI consumes less computational time than the MCMC.

4.1.2 A multivariate example

I extended the simulation to 30 time series. The data-generation process is designed so that the

simulation is close to the real data, with 1000 time periods and 20 regime switches. As a consequence,

the duration of the regime is about 5 years in order to mimic the duration of a business cycle. My prior

for the transition matrix favours persistence. As a result of expectations for the duration of the business

cycle, pk· is then (p11, p12) ∼ Dir(99, 1) and (p22, p21) ∼ Dir(99, 1). I keep a similar setting for the prior

and initial values as in the previous subsection.

I find the same insights as in the simulation with the two asset series. The algorithm with identification

restrictions can find the bear and bull states. Figure 10 shows a high similarity visually of each state.

Table 2 emphasizes that the identification of the bull and bear state is the same between two technique.

The parameters estimated by VI are close to the MCMC and to the true ones. Table 4 presents the

average Euclidean distance of the estimated results to the true values. We find a minor discrepancy

between the estimated moments and the true ones. Additional, the estimated results are also close to

each other.

Table 4: Average Euclidean distance to the true value

Bear state Bull State

Mean Variance Mean Variance

MCMC 0.216 0.041 0.010 0.003

VI 0.216 0.041 0.010 0.003

Difference between MCMC and VI 0 0 0 0

Note: Table 4 presents the average Euclidean distance from the posterior and optimal variational mean and variance

from MCMC and VI estimation to the true values. The last row is the direct comparison between results of two

methods.

I extend the simulation studies to multiple sample sizes with T = 100 and N ranging from 100 to

1000.

Figure 1 presents the computing time between two approaches over multiple simulated data sets. The
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Figure 1: Computing time under different sample sizes

Notes: Figure 1 compares the computing time of the MCMC and VI algorithms for multiple sample sizes.

computing time of the VI method is quite stable, costing up to 3 hours for a sample with 1000 series.

However, the computing cost is much higher in the case of the MCMC method, taking 5 days for the

sample with 600 series. Given the tendency of the plot, we expect the huge amount of time needed for

the data with 100 series. In our simulation, we cannot infer the posterior within 10 days. This represents

a significant improvement from our novel approach.

4.2 Computational cost

I compare the computational costs of the MCMC and VI algorithms. The criterion is the big O

notation that captures the time complexity of the algorithm. Notably, I have a restricted optimisation

problem that causes difficulties in finding time complexity.

The algorithm for each parameter is often clear about its complexity. It comes harder when I consider

the forward filtering backward smoothing algorithm and the truncated distribution moments. Regard-

ing the former, in literature, the time complexity of the forward-backward algorithm is well-known as

O(K2T ) in one iteration.

However, it is not easy to find the time complexity of algorithms under restrictions. The issue arises

from drawing a vector that satisfies a linear restriction and then using this sample to estimate param-

eters. In particular, it is to solve for the parameters of a truncated multivariate normal distribution.

Approximation methods are considered in the literature as Botev (2017), Genz and Bretz (2009), Geweke

(1991) and Griffiths et al. (2002). In this paper, I choose Botev (2017)’s method because of its unbiased

and generally reliable result. The complexity of Botev (2017)’s method is O(N3). This sampling tech-

nique ensures that we can apply multiple restrictions to the mean. Notably, the downside of this method
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is the curse of dimension, as well as the other methods, including MCMC. This approach is reliable with

N ≤ 100.

Table 5: Time complexity of MCMC and VI algorithms

Unrestricted MCMC Unrestricted VI Restricted MCMC Restricted VI

P O(KT ) O(T ) O(KT ) O(T )

M,Σ O(KT ) O(K) O(KT ) O(K)

S O(K2T ) O(K2T ) O(K2T ) O(K2T )

Constraint - - O(N3) O(N3)

Expected values - O(K) - O(K)

ỹ - O(KT ) - O(KT )

τ O(KT ) O(KT ) O(KT ) O(KT )

ν O(K) O(K) O(K) O(K)

Total: N O(K2T ) O(K2T ) O(K2T +N3) O(K2T +N3)

Total: T O(K2T ) O(K2T ) O(K2T +N3) O(K2T +N3)

Table 5 presents the time complexity of all algorithms in one iteration. In both problems, the time

complexity of two algorithms is the same under one iteration. Hence, the VI approach should gain a

significant advantage from much faster convergence. This gain is around the ratio between the number

of iterations needed.

4.3 In-sample and out-of-sample performance

I compare both the in-sample performance and the out-of-sample performance between algorithms.

Regarding the in-sample performance, I compare the results of estimators of the mean and covariance be-

tween two algorithms. The difference from the true values is measured by the Kulback-Leibler divergence.

The higher value indicates the estimates are further from the true parameters.

The above approach does not compare the estimated probability. One solution is to compute the log

scores of each estimate. Another criterion is the mean squared error (Chan and Yu, 2022). I generate

Z dataset following the same data generating process as in equation 1 with T = 100 periods. For each

data set y
(j)
t = {y(j)

1 , . . . , y
(j)
N } for j = 1, · · · , Z, I draw G samples of posterior values p(Φ, S | y(g)

1:T ). The

log score is as

1

Z

1

G

1

T

Z∑
i=1

G∑
g=1

T∑
t=1

log p(y
(i)
t | Φ(g))

The estimation shows that a higher log score is more favorable. And for each mean matrix M̂ =
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Figure 2: Comparison between algorithm without restrictions for 2 assets

VI MCMC

VI MCMC

Notes: Figure 2 compares the results of the MCMC and VI algorithms without restrictions. The first row is the

conditional posterior probabilities of states and the optimal variational probabilities of states. The second row is,

from left to right, the time trace of the average log likelihood, and the Geweke (1992)’s plots. Both data are normally

distributed.
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Figure 3: Comparison between algorithm with restrictions for 2 assets

VI MCMC

VI MCMC

Notes: Figure 3 compares the results of the MCMC and VI algorithms with and without restrictions. The first row

is the result under the unrestricted approach. The second row is the result of the restricted approach. For each row,

from left to right, we have the conditional posterior probabilities of states, the optimal variational probabilities of

states, the time trace of the average log likelihood, and the Geweke (1992)’s plots. Both data are normally distributed.
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{M̂1, · · · , M̂T }′ where each M̂t =
∑
st
p(st | y1:T )Mst , I calculate the mean squared errors as

MSEj(M̂) =

T∑
t=1

(M̂t −Mt)
2

T

where Mt is the true value of the mean.

In order to measure the in-sample performance of the VI algorithm, I capture the average difference

between two sets of results from two algorithms using multiple datasets. In this simulation, I choose

R = 100 sets that are generated similarly from the same distribution and similar regime switching. In

each run, I capture the Kullback-Leibler divergence Kullback and Leibler (1951) of the estimates against

true distributions (applicable to the Normal distribution only), log score, and mean squared errors. The

average results for three criteria are in Table 6. All the discrepancies are so small that I can find the two

estimates very close to each other. This implies that the approximating technique provides a result as

good as an exact estimation.

Table 6: Average in-sample performance under Normal distribution

30 assets 2 assets

KL divergence Log score MSE KL divergence Log score MSE

MCMC 1.443 -50.138 0.476 0.042 -3.406 0.095

VI 1.441 -50.138 0.479 0.050 -3.402 0.122

Difference -0.002 0 0.003 0.009 0.003 0.027

Notes: Table 6 contains the average of Kulback-Leibler divergence, log score, and mean squared errors of the estimation

from the MCMC and VI algorithms. The last row, “Difference”, records the gap between the criterion calculated from

the VI algorithm and the one computed from the MCMC algorithm. Data contains 2 assets and 30 assets that are

from Normal distribution.

To compare the out-of-sample performance, I use the log predictive scores, which is the average of the

log predictive densities, and the mean squared of forecasting errors (Gefang et al., 2022) as

MSFE(ŷt+1:t+h) =

h∑
j=1

(ŷt+j − yt+j)2

h

where the data is divided into two parts: the training sample is from time 1 to time t, the forecasting

sample is the rest. I use the training sample to estimate the model and exploit the rest to compute the

predictive likelihood values.

Average results of these measures are in Table 7 and Table 14. The differences between these mea-

sures are relatively small. This conclusion is consistently small in Normal distributions and Student t

distribution. This implies a comparable forecasting performance.
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4.4 Investment strategy

I compare the economic value of the two algorithms through an investment strategy. In particular,

I investigate the out-of-sample forecasting performance for each algorithm. The statistics required are

predictive mean and predictive covariance, which are computed along with the predictive probability of

a state. The prediction is calculated from the posterior simulations. For example, given each draw of

posterior value, Φ(g) and S(g) conditional on the observed sata y1:t, st+1 is simulated as in Equation 2

and predicted returns ŷt+1 are simulated by Equation 1. The simulated data ŷ
(g)
t+1 is a sample of the

predictive distribution p(yt+1 | y1:t). An estimator of the predictive mean and variance can be computed

directly.

For each period in the forecasting horizon, I estimate the model recursively and make the investment

decision. Model comparison in terms of log predictive likelihood and investment strategy is conducted on

the same out-of-sample window. I consider two strategies: a market timing portfolio and a mean-variance

portfolio.

4.4.1 Market timing portfolio

I consider three strategies in this subsection. The first market timing strategy (Strategy 1) is “buy

and hold”. An investor buys an equally weighted (EW) index at time 1 and keeps his investment until

time T . There is no timing in this plan.

The other two strategies are defined based on the predicted probability of market states. In particular,

an investor chooses an allocation between the EW index and risk-free assets. The second strategy

(Strategy 2) is that the investment is on the EW index if the predicted probability of the bull state,

p(st = bull | Ft−1), is more than a threshold, ε. Otherwise, he invests in risk-free assets. Ft−1 is the set

of all information up to time t− 1. In my context, this set contains y1:t−1.

The third method of market timing (Strategy 3) is to use the predicted probability to assign the

proportion of the investment. For example, if the predicted probability of the bull state is 75%, the

investor allocates 75% of his wealth to risk-free assets and the rest to the EW index.

I compare the results of each strategy against multiple criteria, such as descriptive statistics and the

performance fee. The latter is the amount that the investor pays in order to keep two strategies equivalent

in utility. It is calculated based on the quadratic utility function as

U(rpft ) = (1 + rpft )− γ

1 + γ
(1 + rpft )2

where rpft are the returns to portfolio and γ is the investor’s risk aversion coefficient. The performance

31



fee is denoted as ∆. This fee is the cost that equals the utility received from two returns. I find it as

T∑
t=1

U(rpfMCMCt ) =

T∑
t=1

U(rpfV It −∆)

where MCMC and V I denote the results estimated through the MCMC and VI algorithms, respectively.

If utility from portfolios suggested by the MCMC algorithm is higher, ∆ is negative, and vice versa. I

can also compare the performance fees between using the buy-and-hold strategy and strategies using

different estimation methods.

4.4.2 Mean-variance portfolio

In this part, I focus on two strategies. The weight of each index is allowed to vary in order to solve

the corresponding maximisation problem of each strategy. First, I solve for the global minimum variance

portfolio in the optimisation problem as

min
wt

w′tΣ̂twt s.t w′tι = 1

where wt is the weight vector at time t, Σ̂t is the predicted variance-covariance matrix at time t based

on the information up to time t− 1, and ι is the vector of 1 with a conformable length. The solution is

as

wmint =
Σ̂−1
t ι

ι′Σ̂−1
t ι

The algorithm that yields a lower variance is the better one.

Second, I maximise the Sharpe ratio as in the maximisation problem

max
wt

M̂ ′twt

w′tΣ̂twt
s.t w′tι = 1

The optimal solution for weight is as

wmaxt =
Σ̂−1
t M̂t

ι′Σ̂−1
t M̂t

I use this optimal weight to find the predictive returns and the ex-post Sharpe ratio. The algorithm

yielding a higher ex-post Sharpe ratio is the better one.

For both measures, I compute their averages through different algorithms.

I expand my comparison to the out-of-sample performance. I choose h = 100 steps ahead. Prediction

is carried out as in subsection 3.3. For each step ahead, I measure the mean squared forecasting errors,

log predictive score, global minimum variance, Sharpe ratio, and performance fee. Among investment

strategies, I choose the risk free rate of 0 for the whole horizon, and the cutoff to switch, n, in Strategy 2

is 0.5. I record the performance fee of switching from strategy 2 or 3 to strategy 1 under the forecasting
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Table 7: The average out-of-sample performance under Normal distribution

2 assets

MSFE LPS Min.Variance Sharpe ratio Mean SD Strategy 2 Strategy 3

’MCMC’ 11.140 -3.191 3.963 0.528 1.219 2.310 -0.007 -0.007

’VI’ 10.251 -3.000 2.952 0.504 1.118 2.218 -0.007 0

’Difference’ -0.888 0.191 -1.011 0.024 0.101 0.092 0 0

30 assets

MSFE LPS Min.Variance Sharpe ratio Mean SD Strategy 2 Strategy 3

’MCMC’ 142.14 -36.748 0.013 36.967 1.614 0.044 -0.014 0

’VI’ 142.13 -36.731 0.012 40.436 1.612 0.040 -0.014 0

’Difference’ -0.007 0.017 -0.001 -3.469 0.001 0.004 0 0

Notes: Table 7 consists of the measures of the out-of-sample performance for the MCMC and VI algorithms. All

values are in average. MSFE is the mean squared errors of forecasting errors. LPS means the log predictive score.

Min.Variance implies the global minimum variance. Sharpe ratio captures the ex-post Sharpe ratio. Mean is the mean

of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the portfolio. SD is the

standard deviation of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the

portfolio. Columns Strategy 2 and 3 present the performance fee of switching from these strategies towards “buy-and-

hold” strategy. The row Difference shows the gap between the results from the VI and MCMC algorithms.

results of both algorithms. In addition, I can observe the gap in this fee for the two strategies using

results from two techniques.

Average results for the whole window are in Table 7 and Table 14. In addition, Figure 4 presents

a comparison in cumulative mean squared errors and log score. I can find that the performance of

two algorithms is equivalent because the gap between indicators is minor. The special case is that the

investments under Strategy 3 are preferred over the “buy-and-hold” strategy.

5 Applications

I applied my novel algorithms to two sets of data. In this section, only restricted algorithms are

considered. I use the same computing system as in my simulation. The first data set is the monthly

industry portfolio returns from the Kenneth French library (French, 2022). The second data set is the

monthly returns from equity from CRSP data (CRSP, 2022). All returns are annualised. The monthly

risk-free rate is annualised data from the Kenneth French Library.

Both sets involve multiple time series of returns. The difference between two data sets is twofold. First,

the CRSP data may include more time series than the first one. The reason is that there are many firms

on the S&P 500 list, and the number of firms should be greater than the number of industries. Second,
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Figure 4: The out-of-sample performance for 2 assets

(a) Normal return (b) Student t return

(c) Normal log likelihood (d) Student t log likelihood

Notes: Figure 4 presents the out-of-sample comparison between two inference approaches. The first row is the

cumulative one-period-ahead predictive return that is calculated from the optimal ex-ante Sharpe ration. The

second row is the cumulative predictive loglikehood. The first column is the result of the Normal data. The next

two columns are the results from the Student t distribution.
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the industry portfolio data suffers less from the survivorship bias because only existing, well-performing

stocks are included. If there is this bias, the data from the S&P 500 does not involve firms that perform

poorly. Therefore, it may be less biassed to use the states identified from this data to imply the business

cycle.

Table 8: Monthly returns descriptive statistics

Start End N T Mean SD Excess Kurtosis

EW34 1926-Jan 2022-Mar 34 1155 0.113 1.237 1391.9

EW59 1931-Mar 2022-Mar 59 1093 0.115 1.209 3080.4

EW103 1951-Jan 2022-Mar 103 855 0.107 0.967 2234.8

IP40 1926-Jul 2022-Oct 40 1156 1.033 8.609 2795.9

Note: Table 8 presents several descriptive statistics for all four data sets. In particular, I have the starting

month, the ending month, the number of series, duration, mean, standard deviation, skewness and kurtosis.

The multivariate skewness and kurtosis are calculated by the formula in Mardia (1970).

Regarding the CRSP monthly returns, I use returns from equity, excluding dividends. The data set

should be as long as possible in order to convey more observations. However, firms are frequently dropped

from the data. Therefore, the trade-off is unavoidable. The longer the span, the less firms stay. I then

chose three subsets from the original data. The first set (EW34) has 34 stocks, spanning from January

1926 to March 2022. The second set (EW59) has 59 stocks, spanning from January 1951 to March 2022.

The third set (EW103) has 103 stocks spanning from January 19 to March 2022. Their total number of

months is 1155, 1093, and 855, respectively. In this setting, I allow for the longest possible data while

maintaining a high number of firms.

The industry portfolio return data (IP40) is extracted from the Kenneth F. French library. The returns

exclude dividends. It spans from July 1926 to October 2022. Hence, I have 1156 time periods and 40

time series in this data.

Table 8 presents the descriptive statistics of these data sets. The multivariate kurtosis are calculated

by methods in Mardia (1970). The positive excess kurtosis may imply leptokurtism. Although we cannot

conclude about the population property using these sample values, it is worth assuming both the Normal

and Student t distribution assumptions.
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Table 9: Computation time (in seconds)

Normal Student t

MCMC VI Proportion MCMC-CC MCMC-A MCMC VI-CC VI-A VI Corresponding Proportion

’EW34’ 1,477.3 35.8 2.42% 9,776.2 8,893.9 8,514.8 35.9 26.2 68.1 0.37% 0.29% 0.80%

’EW59’ 3,585.3 38.1 1.06% 19,669 21,672 21,157 30.1 30.4 58.9 0.15% 0.14% 0.27%

’EW103’ 7,471.6 107.4 1.43% 42,113 39,582 41,858 50.1 51.0 90.2 0.12% 0.13% 0.22%

’IP40’ 9,610.5 16.3 0.17% 10,567 10,424 10,630 26.3 23.9 58.4 0.25% 0.23% 0.55%

Note: Table 9 presents the computational cost of estimating the multivariate Markov switching model. Results are measured in seconds.
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Table 10: Descriptive statistics of two states under restrictions

EW34 EW59 EW103 IP40

Normal

M1 std1 M2 std2 M1 std1 M2 std2 M1 std1 M2 std2 M1 std1 M2 std2

MCMC -0.025 1.838 0.098 0.847 -0.026 1.815 0.093 0.847 -0.040 1.560 0.093 0.832 -0.041 8.566 0.079 3.471

VI -0.026 1.845 0.101 0.838 -0.028 1.874 0.092 0.848 -0.022 1.443 0.075 0.812 -0.162 13.248 0.610 5.871

Student t

M1 std1 M2 std2 M1 std1 M2 std2 M1 std1 M2 std2 M1 std1 M2 std2

MCMC-CC -0.023 1.474 0.104 1.007 -0.043 1.674 0.090 0.965 -0.289 1.256 0.111 0.871 -0.070 8.570 0.312 4.229

MCMC-A -0.024 1.256 0.102 0.976 -0.041 1.357 0.090 0.946 -0.292 1.276 0.110 0.887 -0.065 8.188 0.322 4.338

MCMC -0.023 1.221 0.105 0.970 -0.039 1.336 0.090 0.943 -0.204 1.359 0.102 0.881 -0.069 7.927 0.381 4.335

VI-CC -0.014 1.273 0.111 0.909 -0.027 1.397 0.123 0.958 -0.004 0.973 0.113 0.808 -0.183 9.956 0.341 7.057

VI-A -0.019 1.203 0.113 0.966 -0.040 1.327 0.096 0.936 -0.073 1.045 0.127 0.870 -0.234 9.238 0.484 6.835

VI -0.019 2.344 0.113 0.995 -0.027 1.498 0.122 1.086 -0.004 1.320 0.115 0.836 -0.183 10.943 0.322 8.011

Notes: Table 10 contains average values of estimated means and variances of two states by MCMC and VI algorithms. M i denotes the average of

means of returns in State i. stdi denotes the average of standard deviations of returns in State i. The results are on three equally-weighted stock

returns series and one industry portfolio returns.
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The risk aversion coefficient is γ = 2 as in Campbell and Cochrane (1999). The threshold for Strategy

2 is ε = 0.5. I choose the prior of the transition matrix as the business cycle is every 5 years on average.

Table 9 shows the computation time of each algorithm for all data sets. My VI algorithm demonstrates

a clear advantage in speed of estimation. Similar to my simulation, the MCMC algorithm requires much

more time to finish. For example, MCMC may take data from the 103 series around 11 hours to complete,

while VI needs only less than 3 minutes.

I justify the VI method through estimated parameters and forecasting performance. Table 10 presents

the average of estimates for all datasets. Results from two algorithms are comparable. Discrepancies

from these results get larger under the larger dimensions. In general, I find the mean of asset returns is

lower on average and is more dispersed in the bear state. This is common in all datasets of this section.

Figure 14, 15, 16, and 17 (in Appendix H) show estimates of the correlation matrix in each state . In

all states, I mostly find positive correlations. Visually, the results from VI and MCMC are very similar.

Figure 5 presents the dynamics of forecasting performance between two algorithms. I have plots of

cumulative predictive returns, which are the returns using the optimal weight of the ex ante Sharp ratio,

and cumulative predictive loglikelihood. Results from VI and MCMC are close to each other.

The two sets of results from multivariate Normal distribution and multivariate Student t distribution

are very similar. Table 10 presents that the bear state exhibits more volatility than the bull state.

Descriptive statistics from different methods are more distant under higher dimensions.

The forecasting criteria show a mixed preference for both methods. Table 11 demonstrates that the

forecasting performance of the portfolio with 34 assets is better with the assumption of multivariate

Student t distribution under mean square forecasting errors, log predictive score, Sharpe ratio, minimum

variance and performance fee. Meanwhile, Table 16 and 17 imply that the results under multivariate

Normal distribution become more favorable when the dimension is larger. Table 18 presents a mixed

preference between two multivariate distributions. I often find that the higher Sharpe ratio aligns with

the higher mean of returns with high risk while the lower minimum variance accompanies with the lower

standard deviation in the Sharpe ratio. Investment strategies using variational inference perform similarly

to those using the MCMC method. I find that strategies using the MS model perform better than the

”buy-and-hold” strategy. In addition, as the dimension increases, more criteria favor the multivariate

normal assumption.

Table 11 shows the average criteria for forecasting and investment performance (Results of other

datasets are in Appendix G.). Results in terms of which method is better are mixed. However, these

criteria present values that are close to each other. Therefore, empirical results indicate that my new VI

algorithm is comparable to the MCMC method in terms of forecasting performance.
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Table 11: Out-of-sample performance for a portfolio with 34 assets

Normal

MSFE LPS Min.Var Sharpe ratio Mean SD Strategy 2 Strategy 3

MCMC 49.468 -18.666 0.263 0.121 0.057 0.471 -0.001 0

VI 49.272 -18.607 0.348 0.089 0.048 0.546 -0.001 0

Student t

MCMC-CC 49.297 -17.610 0.186 0.130 0.060 0.456 0 0

MCMC 49.302 -17.776 0.159 0.135 0.061 0.449 0 0

MCMC-A 49.289 -17.734 0.162 0.137 0.062 0.449 0 0

VI-CC 49.283 -20.875 0.154 0.122 0.055 0.448 0 0

VI 49.361 -19.778 0.232 0.137 0.062 0.449 -0.001 0

VI-A 49.233 -20.511 0.157 0.119 0.055 0.460 0 0

Notes: Table 11 stores the measures of out-of-sample performance for both algorithms for the data of an equally-

weighted portfolio with 34 assets. MSFE is the mean squared errors of forecasting errors. LPS means log predictive

score. Min.Var implies the global minimum variance. Sharpe ratio captures the ex-post Sharpe ratio. Mean is the

mean of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the portfolio. SD is

the standard deviation of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the

portfolio. Columns Strategy 2 and 3 present the performance fee of switching from these strategies towards “buy-and-

hold” strategy.

Figure 5: Cumulative predictive returns and loglikelihood for EW34

(Return (N)) (Return (t-CC)) (Return ( t-A )) (Return (t))

(LLH (N)) (LLH (t-CC)) (LLH (t-A)) (LLH (t))

Notes: Figure 5 consists of out-of-sample results from both VI and MCMC algorithms for the portfolio of 34 equally-

weighted assets. The first column on the left is the result of the Normal assumption. The next columns are the

results of Student t assumption. The upper row contains the cumulative predictive returns that are from the optimal

weight calculated by the ex-ante Sharpe ratio. The second row includes the cumulative predictive loglikehood.
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In all distribution assumptions, we find a positive correlation between asset returns. Figure 14, 15, 16

and 17 depict these strong associations in both bull and bear states. The correlation is stronger under

the data from 40 industry portfolio.

It is difficult to conclude whether the data under higher dimension belongs to the multivariate Normal

or Student t distribution in my application. I find it convinced to assume both types of distributions in

further applications.

The forecasting and investment applications demonstrate the value of the novel variational inference

in exploiting information and weighting each asset in the portfolio.

6 Conclusion

This paper proposes a novel VI algorithm to provide inference for the multivariate Markov switching

model. I contribute to the literature in several facets. The new method gives fast and accurate results in

comparison to an equivalent MCMC approach. The new technique incorporates important restrictions

that require identifying the hidden states easily and tractably. The forward filtering backward smoothing

algorithm is similar to the well-known Chib (1996)’s algorithm in economic literature.

This new VI algorithm estimates the multivariate Markov switching model quickly and accurately.

I measure its accuracy through in-sample and out-of-sample performance. Regarding the in-sample

performance, a comparison is made between the average values of Kullback-Leibler divergence and the

true distribution of the mean, log score, and mean squared errors from 100 different samples under the

same data generation process. My novel approach yields results similar to those of a comparable MCMC

method.

Regarding out-of-sample performance, I measure the average of mean squared forecasting error, log

predictive score, and economic value in investment strategy. There are three strategies: buy and hold an

equally weighted portfolio; use the probability of the bull state to signal the time to invest in a risk-free

asset; and use the predicted probability to allocate the invested weight. My algorithm finds a similar

result to an equivalent MCMC method.

The significant gain from this new algorithm is its computational time. As the time complexity in

each iteration is similar between the VI and MCMC since the VI quickly converges, it gains a significant

improvement in computational time from exploiting this approach. In my simulation, the time consumed

by VI is about a couple hundred times shorter than the comparable MCMC algorithm. In my application,

the new method reduces the estimation time from 11 hours to 3 minutes.

My novel algorithm includes a restriction to identify the bull and bear states from stock returns. This
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restriction is crucial in economic literature, but it is not addressed elsewhere. The reason is that this

restriction impacts the assumption of exponential conjugacy in VI. Without this conjugate assumption,

it is difficult to find an analytical solution. Since my algorithm is capable of incorporating it, results are

identified, and I can interpret their economic meaning.

My method follows the popular Chib (1996)’s algorithm that is well-known in economic literature.

The literature on variational inference only focuses on the Baum-Welch forward-backward algorithm,

which is uncommon in economics. My method is more familiar to economists who apply the variational

inference technique in their research.

I apply this method to the S&P 500 and Kenneth datasets to identify the bull and bear states of

the market and compare their forecasting performance for investment. Results suggest that the new

method shows close forecasting performance while using significantly less computational time. The

MCMC algorithm is a popular solution to both versions of the Markov switching model and provides

exact inference and good predictive performance.

The algorithm has its weaknesses. As the solution for my restricted VI algorithm is tractable, values in

the solution can be obtained through sampling only. In my proposed algorithm, I use Botev’s sampling

technique, which is modern and reliable. However, this technique claims its weakness once the dimension

of the data is greater than 100.
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Appendices

A Student t distribution

Let each vector yt = {y1t, y2t, · · · , yit, · · · , yNt} identically independently distributed in Y = {yt}Tt=1

follow a multivariate Student t-distribution, t(µ,Σ, ν), where µ is the mean, Σ is the scale (a positive

definite matrix) and ν is the degrees of freedom. Its probability distribution function is

f(yt | µ,Σ, ν) =
Γ [(ν +N)/2]

Γ(ν/2)νN/2πN/2 |Σ|1/2

[
1 +

1

ν
(yt − µ)

′
Σ−1(yt − µ)

]−(ν+N)/2

where the expression outside the brackets is the normalizing constant, µ is the mean, Σ > 0 is the scale,

ν > 0 is the degree of freedom. Note that:

mean(yt) = µ if ν > 1

var(yt) =
ν

ν − 2
Σ if ν > 2

We re-write the probability distribution function as

yt | µ,Σ, τt ∼ N(µ,Στ−1
t )

τt | ν ∼ G (a, b)

with a = b = ν
2 as in Liu and Rubin (1995). It follows that the probability distribution function of this

Gamma distribution is

fG(τt | ν) = Γ
(ν

2

)−1 (ν
2

)ν/2
τ
ν/2−1
t exp

{
−ντt

2

}

We choose prior as follows

M | Σ ∼ N(µ, h−1Σ)

Σ ∼ IW (n,Ψ)

ν ∼ G(vν , sν)

The likelihood is

T∏
t=1

f(yt | µ,Σ, ν, τ) =

T∏
t=1

(2π)−N/2τ
N/2
t |Σ|−1/2 exp

{τt
2

(yt − µ)
′
Σ−1(yt − µ)

}

The MCMC algorithm for the Student t distribution needs to scale the auxiliary variable τ in order

for it to have the mean of 1.
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B MCMC algorithm

B.1 Parameter space

I have parameters for the Normal distribution case as

1. {Mk}Kk=1: the mean coefficient of the returns.

2. {Σk}Kk=1: the variance of the returns. And both also vary by states.

3. P : transition matrix. The element pij captures the probability of state i switching to state j.

4. S = {s1, s2, . . . , sT }: the state.

Regarding the Student t distribution, I have some additional parameter

1. {νk}Kk=1: the degrees of freedom

B.2 Variance of a Student t

I use the variance formula of Student t distribution to estimate the degrees of freedom that is

V =
ν

ν − 2
Σ

In particular, I find the sample variance covariance matrix, V̂ , the scale matrix, Σ, and then recover the

degrees of freedom, ν. Note that two sides of the equation are two matrices. I find the value of ν that

minimises the Frobenius matrix distance between two matrices.

Suppose that there are two positive definite matrices X and Y that have the same dimension M ×N .

Their Frobenius matrix distance is

F =

√√√√ M∑
i

N∑
j

|aij |2 =
√
tr(AA′)

where aij is the element on row ith and column jth of matrix A = X − Y with dimension M ×N .

B.3 Stirling’s approximation

The Stirling’s approximation is that

log Γ
(νk

2

)
≈
(
νk
2
− 1

2

)
log
(νk

2

)
−
(νk

2

)
+

1

2
log 2π
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Γ
(νk

2

)
=

√
2π

νk/2

(νk
2e

)νk/2(
1 +O

(
2

νk

))

where the big O implies the error terms in this approximation. In this scenario, the ratio between Γ
(νk

2

)
and

√
2π

νk/2

(νk
2e

)νk/2
is at most proportional to 1 +O

(
2

νk

)
when νk/2 is sufficiently large. It indicates

that the approximation is not good when νk is close to the lower bound of 2 since the true term is twice

of the approximated representation.

The prior of νk is

p(νk) ∝ νvν−1
k exp {−νksν}

The likelihood is

p(τ·k, S |M,Σ, y) ∝
T∏
t=1

(
Γ−1

(νk
2

)(νk
2

) νk
2

τ
νk
2 −1
t exp

{
−νkτt

2

})1(st=k)

Applying the Stirling’s approximation and expand the likelihood, we find

p(τ·k, S |M,Σ, y) ∝
T∏
t=1

((
1 +O

(
2

νk

))−1 (νk
2

) 1
2

)1(st=k)

×
(

exp
{νk

2

}
exp

{(νk
2
− 1
)

log τt

}
exp

{
−νkτt

2

})1(st=k)

∝
T∏
t=1

((
1 +O

(
2

νk

))−1 (νk
2

) 1
2

exp
{
−νk

2
(τt − log τt − 1)

})1(st=k)

My conditional posterior of νk is

p(νk | τ·k, S) ∝ νvν−1
k Γ

−
T∑
t=1

1(st=k) (νk
2

)(νk
2

) T∑
t=1

1(st=k)νk/2

exp

−νk


T∑
t=1

1(st = k)(τt − log τt)

2
+ sν




∝ νvν−1
k

(νk
2

) T∑
t=1

1(st=k)νk/2

exp

−νk


T∑
t=1

1(st = k)(τt − log τt − 1)

2
+ sν




×
(

1 +O

(
2

νk

))− T∑
t=1

1(st=k)

Suppose that we have a good approximation,

p(νk | τ, S) ∝ ν

vν−1+

T∑
t=1

1(st = k)

2


k exp

−νk


T∑
t=1

1(st = k)(τt − log τt)

2
+ sν −

T∑
t=1

1(st = k)

2




48



B.4 Forward filtering backward smoothing

B.4.1 Forward filtering

The forward filtering of states at time t is F (st) = p(st | y1:t,Φ). So if t = 1, I have

p(s1 | y1,Φ) =
p(s1)p(y1 | s1,M,Σ)

p(y1 | Φ)
=

p(s1)p(y1 | s1,M,Σ)∑
s1
p(s1)p(y1 | s1,M,Σ)

where I utilise that p(s1) = p(s1 | y1,M,Σ). If t = 2, I have

p(s2 | y1:2,Φ) =
p(s2, y2 | y1,Φ)

p(y2 | y1,Φ)

=
p(y2 | s2, y1,M,Σ)p(s2 | y1,Φ)∑

s2
p(s2, y2 | y1,Φ)

=
p(y2 | s2, y1,M,Σ)p(s2 | y1,Φ)∑
s2
p(y2 | s2, y1,M,Σ)p(s2 | y1,Φ)

where

p(s2 | y1,Φ) =
∑
s1

p(s2 | s1, y1, P )p(s1 | y1,Φ) =
∑
s1

p(s2 | s1, y1, P )F (s1)

Hence, for any time t, the forward pass is

p(st | y1:t,Φ) =
p(yt | st,M,Σ)p(st | y1:t−1,Φ)∑
st
p(yt | st,M,Σ)p(st | y1:t−1,Φ)

with p(st | y1:t−1,Φ) =
∑
st−1

F (st−1)p(st | st−1, P ). Once I are at the terminal T , the forward is

p(sT | y1:T ,Φ) =

p(yt | sT ,M,Σ)
∑
sT−1

p(sT−1 | y1:T−1,Φ)p(sT | sT−1, P )∑
sT

p(yt | sT ,M,Σ)
∑
sT−1

p(sT−1 | y1:T−1,Φ)p(sT | sT−1, P )

This is also the conditional posterior distribution of sT .

B.4.2 Backward smoothing

The backward smoother goes iteratively from time T to time 1. Note that the marginal density for sT

is available for the forward filtering step. Hence, I start to apply the backward smoother proposed by

Chib (1996) to find

p(sT−1 | y1:T ,Φ) =
∑
sT

p(sT−1 | sT , y1:T ,Φ)p(sT | y1:T ,Φ) (15)

This method is feasible under the assumption of knowing the state at time T . The last term on the right

hand side is the forward filtering at time T . I focus on the first term

p(sT−1 | sT , y1:T ,Φ) =
p(yT | sT , sT−1, y1:T−1,Φ)p(sT−1 | sT , y1:T−1,Φ)

p(yT | sT , y1:T−1,Φ)
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Given sT , sT−1 is irrelevant to yt in the first term. This term is now similar to the denominator. The

second term is as

p(sT−1 | sT , y1:T−1,Φ) =
p(sT | sT−1,Φ)p(sT−1 | y1:T−1,Φ)∑

sT−1

p(sT | sT−1,Φ)p(sT−1 | y1:T−1,Φ)

I then deduce that

p(sT−1 | sT , y1:T ,Φ) =
p(sT | sT−1,Φ)p(sT−1 | y1:T−1,Φ)∑

sT−1

p(sT | sT−1,Φ)p(sT−1 | y1:T−1,Φ)

The marginal probability of sT−1 from Equation 15

p(sT−1 | y1:T ,Φ) =
∑
sT

p(sT | y1:T ,Φ)
p(sT | sT−1,Φ)p(sT | y1:T−1,Φ)∑

sT−1
p(sT | sT−1,Φ)p(sT−1 | y1:T−1,Φ)

Analogously, for any t, I have the conditional posterior density of st is as

p(st | y1:T ,Φ) =
∑
st+1

p(st | st+1, y1:T ,Φ)p(st+1 | y1:T ,Φ)

The first term is

p(st | st+1, y1:T ,Φ) =
p(yt+1:T | st, st+1, y1:t,Φ)p(st | st+1, y1:t,Φ)

p(yt+1:T | st+1, y1:t,Φ)

Under the same argument that yt+1:T depends on st+1, I safely cancel p(yt+1:T | st, st+1, y1:t,Φ) and the

denominator. The conditional posterior density for st is

p(st | y1:T ,Φ) =
∑
st+1

p(st+1 | y1:T ,Φ)
p(st+1 | st,Φ)p(st | y1:t,Φ)∑
st
p(st+1 | st,Φ)p(st | y1:t,Φ)

The joint marginal density of st and st+1 is also available in each time

p(st, st+1 | y1:T ,Φ) = p(st | st+1, y1:T ,Φ)p(st+1 | y1:T ,Φ)

C Variational inference without restrictions

C.1 Multivariate Normal distribution

1. P

The conditional evidence lower bound on P is

L∗ = E[log p(P ) + log p(S | P )]− E[log q(P )]

For a specific row k in P , I have the conditional evidence lower bound as

L = E[log p(pk·) + log p(s1 = k) + log p(st | st−1 = k, pk·)]− E[log q(pk·)]
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Note that log p(s1 = k) is a constant with respect to P . I can ignore this term and start from

t = 2. The optimal solution for q(pk·) is then

q∗(pk·) ∝ exp
{
Eq(−pk·) [log p(pk·) + log(st | st−1 = k, pk·)]

}
Focus on the exponent part

log

K∏
j=1

p
αkj−1
kj + log

K∏
j=1

T∏
t=K

p
1(st−1=k,st=j)
kj

=

K∑
j=1

(αkj − 1) log pkj +

K∑
j=1

T∑
t=2

1(st−1 = k, st = j) log pkj

Take the conditional expectation with the note that only S is relevant K∑
j=1

(αkj − 1) +

K∑
j=1

T∑
t=2

Eq(S)[1(st−1 = k, st = j)]

 log pkj

It suggests that

q∗(pk) ∼ Dir(αk)

where αkj = αkj +
T∑
t=2

φt−1,k,t,j with Eq(S)[1(st−1 = k, st = j)] = φt−1,k,t,j

2. M,Σ

The conditional evidence lower bound on M,Σ is

L = E[log p(M,Σ) + log(Y | S,M,Σ)]− E[log q(M,Σ)]

Hence, for each regime k, the evidence lower bound is

L = E

[
log p(Mk,Σk) +

T∑
t=1

log p(yt | S,M,Σ)

]
− E[log q(Mk,Σk)]

The optimal solution is then

q∗(Mk,Σk) ∝ exp

{
Eq(−M,Σ)

[
log p(Mk,Σk) +

T∑
t=1

log p(yt | S,M,Σ)

]}

Focus on the exponent part

N

2
log

(
h

2π

)
− 1

2
log |Σk| −

1

2
(Mk − µ)′hΣ−1

k (Mk − µ)− n+N + 1

2
log |Σk| −

1

2
tr(Σ−1

k Ψ)

+

T∑
t=1

1(st = k)

(
−1

2
log |Σk| −

1

2
(yt −Mk)′Σ−1

k (yt −Mk)

)

Take the conditional expectation

N

2
log

(
h

2π

)
− 1

2
log |Σk| −

1

2
(Mk − µ)′hΣ−1

k (Mk − µ)− n+N + 1

2
log |Σk| −

1

2
tr(Σ−1

k Ψ)
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+

T∑
t=1

φtk

(
−1

2
log |Σk| −

1

2
(yt −Mk)′Σ−1

k (yt −Mk)

)

Let denote

hk = h+

T∑
t=1

φtk

µk = h
−1

k

(
hµ+

T∑
t=1

φtkyt

)

nk = n+

T∑
t=1

φtk

Ψk = Ψ +

T∑
t=1

φtkyty
′
t − hkµkµ′k + hµµ′

I deduce that the term inside the exponential function is proportional to

− 1

2
log |Σk| −

1

2
(Mk − µk)′hkΣ−1

k (Mk − µk)− n+N + 1

2
log |Σk| −

1

2
tr(Σ−1

k Ψk)

It suggests that the variational density of q∗(Mk,Σk) is a Normal Inverse Wishart distribution

N− IW(µk, hk, nk,Ψk).

C.2 Multivariate Student t distribution

The evidence lower bound is

L = E[log p(M,Σ) + log p(ν) +

T∑
t=1

log p(τt | ν) + log p(P ) + log p(S | Y, P )

+

T∑
t=1

log p(yt |M,Σ, τ, P, S)]

− E[log q(M,Σ) + log q(ν) +

T∑
t=1

log q(τt) + log q(P ) + log q(S)]

1. P

This part is similar to the multivariate normal distribution.

2. M,Σ

The conditional evidence lower bound for Mk and Σk is

L∗ = E

[
log p(Mk,Σk) +

T∑
t=1

log p(yt | st = k,Mk,Σk, τt)

]
− E [log q(Mk,Σk)]
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The optimal solution is

q∗(Mk,Σk) ∝ exp

[
Eq(S),q(τ)[log p(Mk,Σk) +

T∑
t=1

log p(yt | st = k,Mk,Σk, τt)]

]

Focus on the expected value, I have

− 1

2
log |Σk| −

h

2
(Mk − µ)

′
Σ−1
k (Mk − µ)− n+N + 1

2
log |Σk| −

1

2
Tr(ΨΣ−1

k )

−
T∑
t=1

1(st = k)

(
−N

2
log(τtk) +

1

2
log |Σk|+ (yt −Mk)′τtΣ

−1
k (yt −Mk)

)

Taking the conditional expectation

− n+N + 2

2
log |Σk| −

h

2
(Mk − µ)

′
Σ−1
k (Mk − µ)− 1

2
Tr(ΨΣ−1

k )

−
T∑
t=1

φtkEq

[
1

2
log |Σk|+

τt
2

(yt −Mk)′Σ−1
k (yt −Mk)

]

Let denote

hk = h+

T∑
t=1

φtkEq [τt]

mk = h
−1

(
hµ+

T∑
t=1

φtkEq [τt] yt

)

nk = n+

T∑
t=1

φtk

Ψk = Ψ +

T∑
t=1

φtkEq [τt] yty
′
t − hµkµ′k + hµµ′

I deduce that the term inside the exponential function is proportional to

− 1

2
log |Σk| −

1

2
(Mk − µk)′hkΣ−1

k (Mk − µk)− nk +N + 1

2
log |Σk| −

1

2
tr(Σ−1

k Ψk)

It suggests that the variational density of q∗(Mk,Σk) is a Normal Inverse Wishart distribution

N− IW(µk, hk, nk,Ψk).

3. τ

The conditional evidence lower bound for τt is

L∗ = E[log p(τt | νk, st = k) + log p(yt |Mk,Σk, τt)]− E[log q(τt)]

The optimal solution is

q∗(τt) ∝ exp [E[log p(τt | νk, st = k) + log p(yt |Mk,Σk, τt)]]
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Focus on the expected value, I have

1(st = k)

(
νk
2

log
(νk

2

)
− log Γ

(νk
2

)
+
(νk

2
− 1
)

log τt −
νk
2
τt

+
N

2
log τt −

τt
2

(yt −Mk)
′
Σ−1(yt −Mk)

)
Taking the conditional expectation, I find it safe to remove the constant relating to the state(

E(νk)

2
− 1

)
log τt −

E(νk)

2
τt +

N

2
log τt − E

[τt
2

(yt −Mk)
′
Σ−1
k (yt −Mk)

]
=

(
a+

N

2
− 1

)
log τt −

(
b+ E

[
1

2
(yt −Mk)

′
Σ−1
k (yt −Mk)

])
τt

This functional form implies q∗(τt) ∼ G
(
E(νk)

2
+
N

2
,
E(νk)

2
+

1

2
E
[
(yt −Mk)

′
Σ−1
k (yt −Mk)

])
.

Conditional expectations relating to τt must be scaled. We scale E[τt] in order that the average

of this expectation under state k is one. We also scale the E[log τt]. However, this task is straight

forward since it is equivalent to adding a constant to the unscaled value.

4. ν

The conditional evidence lower bound for νk is

L∗ = Eq[log p(νk) +

T∑
t=1

log p(τt | νk, st = k)]− Eq[log q(νk)]

The optimal solution is

q∗(νk) ∝ exp

[
Eq[log p(νk) +

T∑
t=1

log p(τt | νk, st = k)]

]

Focus on the expected value, I have

(vν − 1) log νk − νksν +

T∑
t=1

1(st = k)

(
− log Γ

(νk
2

)
+
νk
2

(νk
2

)
− νk

(
τt − log τt

2

))

Taking the conditional expectation

(vν − 1) log νk − νksν +

T∑
t=1

φtk

(
− log Γ

(νk
2

)
+
νk
2

(νk
2

)
− νk

(
Eq(τ) (τt − log τt)

2

))

The work encounters difficulty at this point. Because there is no exponential conjugacy in this

solution, I cannot update the variational parameters straightforward. Unlike the MCMC algorithm,

there is no room for the use of Metropolist-Hastings rejection method.

In this part, I introduce three approaches to find the degrees of freedom.

� Conditional calibration
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I estimate sample degrees of freedom conditional on other parameters. I use the variance

formula to recover the degrees of freedom.

Vk =
νk

νk − 2
Σk (16)

In particular, I find the sample variance covariance matrix, V̂ , the scale matrix, Σ, and then

recover the degrees of freedom, ν. Note that two sides of the equation are two matrices. I find

the value of ν that minimises the Frobenius matrix distance between two matrices.

Suppose that there are two positive definite matrices X and Y that have the same dimension

M ×N . Their Frobenius matrix distance is

F =

√√√√ M∑
i

N∑
j

|aij |2 =
√
tr(AA′)

where aij is the element on row ith and column jth of matrix A = X − Y with dimension

M ×N .

Provided that sample variance coveriance matrix, Vk, and the expected value of the scale Σk,

it is feasible to recover νk. Note that νk must be greater than 2. I update the value of degrees

of freedom after several iterations. This approach can be denoted as VI-CC because it is

equivalent to MCMC-CC.

� Approximation

This approaches is proposed by Chatzis et al. (2008). I use the Stirling’s approximation for

log Γ
(νk

2

)
in order to have my proposed prior as a conjugate prior. Therefore

(vν − 1) log(νk)− νksν +

T∑
t=1

φtk

(
−
[(

νk
2
− 1

2

)
log
(νk

2

)
−
(νk

2

)
+

1

2
log 2π

])

+

T∑
t=1

φtk

(
νk
2

log
(νk

2

)
− νk

(
Eq (τt − log τt)

2

))
.
= (vν − 1) log (νk)− νksν +

T∑
t=1

φtk

(
1

2
log
(νk

2

)
− νk

(
Eq (τt − log τt)

2
− 1

2

))

It suggests that the variational density as

νk ∼ G

(
vν +

∑T
t=1 φtk

2
, sν +

∑T
t=1 φtkEq (τt − log τt)

2
−
∑T
t=1 φtk

2

)

Let denote this approach as VI-A that is comparable to MCMC-A.

� Proposing a Gamma distribution of q(ν)

I propose q∗(ν) ∼ G(vν , sν). We find vν and sν that minimize the distance

E[log q∗(νk)]− E[log p(νk) +

T∑
t=1

log p(τt | νk, st = k)]
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The first term is

− log Γ (vν) + vν log(sν) + (vν − 1)E[log νk]− sνE[νk]

The second term is

− log Γ (vν) + vν log(sν) + (vν − 1)E[log νk]− sνE[νk]

+

T∑
t=1

φtk

[
− log Γ

(νk
2

)
+
νk
2

log
(νk

2

)
+
(νk

2
− 1
)
E[log τt]−

νk
2
E[τt]

]
Since I assume the Student t distribution has the second moment, its degrees of freedom must

be greater than 2. Only the result satisfying this condition will be kept. It is not necessary

to update ν every iteration. I can update other parameters for 20 iterations, then update

hyperparameters for ν. It will save my computational cost. I denote this approach as VI.

C.3 S

The conditional evidence lower bound on S is

L∗ = E[log p(S, Y | Φ)]− E[log q(S)]

The optimal solution is as

q∗(S1:T ) = exp
{
Eq(Φ) [log p(S1:T , y1:T | Φ)− log p(y1:T | Φ)]

}
∝ exp

{
Eq(Φ) [log p(S1:T , y1:T | Φ)]

}
I make a comparison between the complete log-likelihood of the conditional posterior in Equation

5 with the complete log-likelihood of the variational density, q∗(S1:T ). First, the log of the complete

likelihood in Equation 5 is proportional to

T∑
t=2

K∑
j=1

K∑
k=1

1(st = k, st−1 = j) log pjk +

T∑
t=1

K∑
k=1

1(st = k) log p(yt | Φ, st)

Second, the log-likelihood of the optimal solution from the VI where I take the conditional expectation

with respect to Φ is

Eq(Φ)

[
T∑
t=2

log p(st | st−1, P )

]
+ Eq(Φ)

[
T∑
t=1

log p(yt | st,Φ)

]

=

T∑
t=2

K∑
j=1

K∑
k=1

1(st−1 = k, st = j)Eq(Φ)[log pkj ] +

T∑
t=1

K∑
k=1

1(st = k)Eq(Φ)[log p(yt | Φ, st)]

The log of the complete likelihood in Equation 5 is similar to the loglikelihood of the optimal so-

lution. It suggests that the optimal solution shares the same type of density with the conditional
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posterior. However, their parameters are not the same. For example: the parameters for the transition

matrix in the conditional posterior density is pkj and in the optimal solution through VI for q(pkj) is

exp(Eq(pkj)[log pkj ]). Let denote

p̃kj = exp(Eq(Φ)[log pkj ]) p̃(yt |Mk,Σk) = exp(Eq(Φ)[log p(yt | Φ)])

with the first equation involving normalisation. These newly defined parameters are already found in

the previous steps. Hence, I can find q(st) in the same way I find p(st | y1:T ,Φ), i.e. through forward

filtering backward smoothing algorithm.

In order to find the marginal variational density of each st, q
∗(st), I note that the structure of this

variational distribution is similar to the conditional posterior distribution, p(S | Y,Φ). Therefore, I can

write that

q∗(S1:T ) ∝
T∏
t=2

K∏
j=1

K∏
k=1

p̃
1(st=k,st−1=j)
jk

T∏
t=1

K∏
k=1

p̃(yt | Φ, st)1(st=k)

∝ p̃(y1 | s1,Φ)

T∏
t=2

p̃(st | st−1, P )p̃(yt | st,Φ)

This expression is similar to Equation 5, the complete likelihood of the conditional posterior distribution

of S. Because the conditional posterior distribution, p(st | Y,Φ), is estimated through the forward-

backward algorithm, I can do the same to find the variational density, q∗(st), at each t.

I use the same Chib (1996)’s algorithm as in MCMC. For any t, the variational forward filtering is

F̃ (st) ∝
p̃(yt | st,Φ)

∑
st−1

p̃(st | st−1, P )F̃ (st−1)∑
st

p̃(yt | st,Φ)
∑
st−1

p̃(st | st−1, P )F̃ (st−1)

with the normalizing constant p̃(yt | y1:t−1,M,Σ).

The forward pass at time t = 1 for this optimal solution is

F̃ (s1) =
p̃(s1)p̃(y1 | s1,Φ)∑
s1
p̃(s1)p̃(y1 | s1,Φ)

with the normalizing constant p̃(y1 | Φ).

I follow the backward algorithm in Equation 15 to smooth the variational density of states as follows

q∗(st) ∝ p̃(st | y1:T ,Φ) =
∑
st+1

p̃(st | st+1, y1:T ,Φ)p̃(st+1 | y1:T ,Φ)

with the first term

p̃(st | st+1, y1:T ,Φ) =
p̃(st+1 | st,Φ)p̃(st | y1:t,Φ)∑
st
p̃(st+1 | st,Φ)p̃(st | y1:t,Φ)

Similarly, the temporal transition between two states is

q∗(st, st+1) ∝ p̃(st | st+1, y1:T ,Φ)p̃(st+1 | y1:T ,Φ)
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To find the likelihood of the data, I note

exp(Eq(Φ)[log p(Y | Φ)]) = p̃(y1:T | Φ) = p̃(y1 | Φ)

T∏
t=2

p̃(yt | y1:t−1,Φ) (17)

On the right hand side, each factor in this product is a normalizing constant of its corresponding forward

pass. Therefore I store all these constants to calculate the log likelihood of in the L.

It is important to note that I must maintain a numerical stability. The reason lies in the use of

likelihood and joint likelihood. These values are extremely small and easy to be out of the range in any

computing programs. Hence, I take log of these likelihoods and their relevant terms to avoid inaccurate

approximation as in Appendix F. In addition, my algorithm will keep the log value until the last step

before reverting them by exponential function.

C.4 Variational forward filtering backward smoothing

The forward pass at time t = 1 for this optimal solution is

F̃ (s1) =
p̃(s1)p̃(y1 | s1,M,Σ)∑
s1
p̃(s1 |)p̃(y1 | s1,M,Σ)

with the normalizing constant p̃(y1 |M,Σ). It is necessary to normalize this forward pass before applying

it into the next period. Then, for any t, the forward filtering is

F̃ (st) ∝
p̃(yt | st,Φ)

∑
st−1

p̃(st | st−1, P )F̃ (st−1)∑
st

p̃(yt | st,Φ)
∑
st−1

p̃(st | st−1, P )F̃ (st−1)

where

Eq(Φ)[log p̃(yt | st = k,Φ)] = −1

2
E[log |Σk|]−

1

2
E[(yt −Mk)′Σ−1

k (yt −Mk)] + const

and the normalising constant p̃(yt | y1:t−1,M,Σ).

Then, at time T , the optimal variational density is

q∗(sT ) = F̃ (sT ) =

p̃(yt | sT ,M,Σ)
∑
sT−1

F̃ (sT−1)p̃(sT | sT−1, P )∑
sT

p̃(yt | sT ,M,Σ)
∑
sT−1

F̃ (sT−1)p̃(sT | sT−1, P )

I also follow Chib (1996)’s backward algorithm in Equation 15 to smooth the state variational density.

The other variational densities at other times can be found backwardly as follows

q∗(st) ∝ p̃(st | y1:T ,Φ) =
∑
st+1

p̃(st | st+1, y1:T ,Φ)p̃(st+1 | y1:T ,Φ)

with the first term

p̃(st | st+1, y1:T ,Φ) =
p̃(st+1 | st,Φ)p̃(st | y1:t,Φ)∑
st
p̃(st+1 | st,Φ)p̃(st | y1:t,Φ)
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Similarly, the temporal transition between two states is

q∗(st, st+1) ∝ p̃(st | st+1, y1:T ,Φ)p̃(st+1 | y1:T ,Φ)

D Expectation in variational inference

D.1 Expected values for multivariate Normal distribution

To estimate the evidence lower bound, several expectations requires to be computed.

� Eq(Φ)[log pkj ] = Eq(P )[log pkj ] = ψ(αkj)− ψ
(∑K

j=1 αkj

)
� Eq(Φ)[log p(yt | st = k,Φ)] = −1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(M,Σ)[(yt −Mk)′Σ−1

k (yt −Mk)] + const

where

Eq(Σ)[log |Σk|] = −Eq(Σ)[log |Σ−1
k |]

= −N log 2 + log |Ψk| −
N∑
i=1

ψ

(
nk + 1− i

2

)
Eq(Σ)[Σ

−1
k ] = nkΨ

−1

k

Eq(M,Σ)[(yt −Mk)′Σ−1
k (yt −Mk)] =

N

hk
+ nk(yt − µk)′Ψ

−1

k (yt − µk)

The last line is in Appendix E.2

� E[log p(pkj)] = log Γ

(
K∑
j=1

αkj

)
−

K∑
j=1

log Γ(αkj) +
K∑
l=1

(αkl − 1)Eq(P )[log pkl]

� Eq[log p(Mk,Σk)]

That is

N

2
log

(
h

2π

)
− 1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(M,Σ)[(Mk − µ)′hΣ−1

k (Mk − µ)]

+
n

2
log |Ψ| − nN

2
log 2− N(N − 1)

4
log π

−
n∑
i=1

log Γ

(
n+ 1− i

2

)
− n+N + 1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(Σ)[tr(ΨΣ−1

k )]

.
= −1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(M,Σ)[(Mk − µ)′hΣ−1(Mk − µ)]

− n+N + 1

2
Eq(Σ)[log |Σ|]− 1

2
Eq(Σ)[tr(ΨΣ−1)]

where

Eq(M,Σ)[(Mk − µ)′hΣ−1
k (Mk − µ)] =

Nh

hk
+ (µk − µ)′hnkΨ

−1

k (µk − µ)

Eq(Σ)[tr(ΨΣ−1)] = nktr(ΨΨ
−1

k )
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� Eq[log q(pk)]

That is the negative entropy of pk

K∑
k=1

log Γ(αk)− Γ log

(
K∑
k=1

αk

)
+

(
K∑
k=1

αk − 2

)
ψ

(
K∑
k=1

αk

)
−

K∑
k=1

(αk − 1)ψ (αk)

=

K∑
k=1

log Γ(αk)− ψ

(
K∑
k=1

αk

)
−

K∑
k=1

(αk − 1)ψ (αk)

� Eq[log q(Mk,Σk)]

That is

N

2
log

(
hk
2π

)
− 1

2
E[log |Σk|]−

1

2
E[(Mk − µk)′hkΣ−1

k (Mk − µk)]

+
N

2
log

∣∣∣∣Ψk

∣∣∣∣− nkN

2
log 2− N(N − 1)

4
log π

−
N∑
i=1

log Γ

(
nk + 1− i

2

)
− nkN

2
− nk +N + 1

2
E[log |Σ|]

=
N

2
log

(
hk
2π

)
− 1

2
E[log |Σk|]−

N

2

+
N

2
log

∣∣∣∣Ψk

∣∣∣∣− nkN

2
log 2− N(N − 1)

4
log π

−
N∑
i=1

log Γ

(
nk + 1− i

2

)
− nkN

2
− nk +N + 1

2
E[log |Σ|]

D.2 Expected values for multivariate Student t distribution

To estimate the evidence lower bound, several expectations requires to be computed.

� Eq(Φ)[log pkj ] = Eq(P )[log pkj ] = ψ(αkj)− ψ

(
K∑
j=1

αkj

)

� Eq(Φ)[log p(yt | st = k,Φ)] =
N

2
Eq(τ)[log τt]−

1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(M,Σ,τ)[(yt −Mk)′τtΣ

−1
k (yt −

Mk)] + const

where

Eq(τt) =
Eq(νk) +N

Eq(νk) + Eq
[
(yt −Mk)′Σ−1

k (yt −Mk)
]

Eq

[
(yt −Mk)

′
Σ−1
k (yt −Mk)

]
=
N

hk
+ nk(yt − µk)′Ψ

−1

k (yt − µk)

Eq[νk] =
vν,k
sν,k

Eq(τt) (log τt) = − log

{
b+ Eq

[
1

2
(yt −Mk)

′
Σ−1
k (yt −Mk)

]}
+ ψ

(
a+

N

2

)
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Eq(Σ)[log |Σk|] = −Eq(Σ)[log |Σ−1
k |]

= −N log 2 + log |Ψk| −
N∑
i=1

ψ

(
nk + 1− i

2

)
Eq(Σ)[Σ

−1
k ] = nkΨ

−1

k

Eq(M,Σ,τ)[(yt −Mk)′τtΣ
−1
k (yt −Mk)] =

NEq(τt)

hk
+ nk(yt − µk)′Eq(τt)Ψ

−1

k (yt − µk)

The last line is in Appendix E.2.

� Eq[log p(pkj)] = log Γ

(
K∑
j=1

αkj

)
−

K∑
j=1

log Γ(αkj) +
K∑
l=1

(αkl − 1)Eq(P )[log pkl]

� Eq[log p(τt)] = (a− 1)Eq[log τt]− bEq[τt]

� Eq[log p(νk)] = (vν − 1)Eq[log νk]− sνEq[νk] where

Eq[log νk] = − log sν,k + ψ(vν,k)

Eq[νk] =
vν,k
sν,k

� Eq[log p(Mk,Σk)]

That is

N

2
log

(
h

2π

)
− 1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(M,Σ)[(Mk − µ)′hΣ−1

k (Mk − µ)]

+
n

2
log |Ψ| − nN

2
log 2− N(N − 1)

4
log π

−
n∑
i=1

log Γ

(
n+ 1− i

2

)
− n+N + 1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(Σ)[tr(ΨΣ−1

k )]

.
= −1

2
Eq(Σ)[log |Σk|]−

1

2
Eq(M,Σ)[(Mk − µ)′hΣ−1

k (Mk − µ)]

− n+N + 1

2
Eq(Σ)[log |Σ|]− 1

2
Eq(Σ)[tr(ΨΣ−1)]

where

Eq(M,Σ)[(Mk − µ)′hΣ−1
k (Mk − µ)] =

Nh

hk
+ (µk − µ)′hnkΨ

−1

k (µk − µ)

Eq(Σ)[tr(ΨΣ−1)] = nktr(ΨΨ
−1

k )

� Eq[log q(pk)]

That is the negative entropy of pk

K∑
k=1

log Γ(αk)− Γ log

(
K∑
k=1

αk

)
+

(
K∑
k=1

αk − 2

)
ψ

(
K∑
k=1

αk

)
−

K∑
k=1

(αk − 1)ψ (αk)

=

K∑
k=1

log Γ(αk)− ψ

(
K∑
k=1

αk

)
−

K∑
k=1

(αk − 1)ψ (αk)

61



� Eq[log q(Mk,Σk)]

That is

N

2
log

(
hk
2π

)
− 1

2
E[log |Σk|]−

1

2
E[(Mk − µk)′hkΣ−1

k (Mk − µk)]

+
N

2
log

∣∣∣∣Ψk

∣∣∣∣− nkN

2
log 2− N(N − 1)

4
log π −

N∑
i=1

log Γ

(
nk + 1− i

2

)
− nkN

2
− nk +N + 1

2
E[log |Σ|]

=
N

2
log

(
hk
2π

)
− 1

2
E[log |Σk|]−

N

2

+
N

2
log

∣∣∣∣Ψk

∣∣∣∣− nkN

2
log 2− N(N − 1)

4
log π −

N∑
i=1

log Γ

(
nk + 1− i

2

)
− nkN

2
− nk +N + 1

2
E[log |Σ|]

� Eq[log q(τt)] =

(
a+

N

2

)
Eq[log τt]−

(
b+ Eq

[
1
2 (yt −Mk)

′
Σ−1
k (yt −Mk)

])
Eq[τt]

� Eq[log q(νk)] =

vν +

T∑
t=1

φtk

2
− 1

Eq[log νk]−

sν +

T∑
t=1

φtkEq (τt − log τt)

2
−

T∑
t=1

φtk

2

Eq[ν]

E Variational inference with restrictions

E.1 Optimal variational density

Regarding M , restrictions enter its prior. Distribution of M is a truncated distribution. Particularly,

the probability density function p(M) needs to consider a new normalizing constant. Hence, it impacts

on the approximation of q(M,Σ) so that I re-derive its optimal solution. I focus on state 1, and state 2

should follow the same direction. Its exponent part is

N

2
log

(
h

2π

)
− 1

2
log |Σ1| −

1

2
(M1 − µ)′hΣ−1

1 (M1 − µ)− n+N + 1

2
log |Σ1| −

1

2
tr(Σ−1

1 Ψ)

+

T∑
t=1

1(st = 1)

(
−1

2
log |Σk| −

1

2
(yt −M1)′Σ−1

k (yt −M1)

)
+ log I(ι′M1 < 0)

where the last term indicates a log of a constant relating to M1. I find this last term as a represent of

the new normalizing constant.

Then the conditional expectation is as

N

2
log

(
h

2π

)
− 1

2
log |Σ1| −

1

2
(M1 − µ)′hΣ−1

1 (M1 − µ)− n+N + 1

2
log |Σ1| −

1

2
tr(Σ−1

1 Ψ)

+

T∑
t=1

φt1

(
−1

2
log |Σ1| −

1

2
(yt −M1)′Σ−1

1 (yt −M1)

)
+ log I(ι′M1 < 0)
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Therefore, restrictions on the M will result in the variational density as

q(M1 | Σ1, ·) = fN (µ1, h1,Σ1)I (ι′M1 < 0) q(M2 | Σ2·) = fN (µ2, h2,Σ2)I (ι′M2 > 0)

Under this optimal solution, the terms, Eq(M,Σ)[log p(M,Σ)], Eq(M,Σ)[log q(M,Σ)] and Eq(Φ)[log p(yt |

st = k,Φ)], need to be re-evaluated. For example, the issue lies on the expression, Eq(M,Σ)[(yt −

Mk)′Σ−1
k (yt −Mk)]. Under the restrictions, I derive it as

Eq(M,Σ)[(yt −Mk)′Σ−1
k (yt −Mk)] = tr(h

−1

k E[Σ−1
k ]Σ∗k) + nk(yt − µ∗k)′Ψ

−1

k (yt − µ∗k)

The restriction impacts on the mean of q(M | Σ). Therefore, I must find the mean µ∗k and the variance

Σ∗k instead. It can be done via sampling as in Botev (2017). Other derivations can be found in Appendix

E.2. Note that I must find the mean and variance of Mk before any further updating step.

Regarding S, I do not need to revise the previous solution of the optimal density. However, I need

to use the new expectations relating to the truncated distribution. These expected values are similar to

ones I find in the case of M .

E.2 Expectations under restrictions

I derive the expectation with multivariate Normal and Student t distribution with and without re-

strictions. I start with the expectation without restriction for the Normal distribution case as follows

Eq(M,Σ)[(yt −Mk)′Σ−1
k (yt −Mk)] = Eq(Σ)

{
Eq(M |Σ)[(yt −Mk)′Σ−1

k (yt −Mk)]
}

Since Mk ∼ q∗(Mk | Σk) = N(µk, h
−1

k Σk), I re-write the term inside the bracket as

Eq(M |Σ)[(yt − µk + µk −Mk)′Σ−1
k (yt − µk + µk −Mk)]

= Eq(M |Σ)[(yt − µk)′Σ−1
k (yt − µk)] + 2Eq(M |Σ)[(yt − µk)′Σ−1

k (µk −Mk)]

+ Eq(M |Σ)[(µk −Mk)′Σ−1
k (µk −Mk)]

The first term on the right hand side does not have M . Hence, it is constant with respect to the

expectation. The second term is as follows

2Eq(M |Σ)[(yt − µk)′Σ−1
k (µk −Mk)] = 2(yt − µk)′Σ−1

k (µk − Eq(M |Σ)[Mk]) = 0

The last term is

Eq(M |Σ)[(µk −Mk)′Σ−1
k (µk −Mk)] = Eq(M |Σ)(tr[(µk −Mk)′Σ−1

k (µk −Mk)])

= tr(Eq(M |Σ)[Σ
−1
k (Mk − µk)′(Mk − µk)])

= tr(Eq(M |Σ)[Σ
−1
k h

−1

k Σk])
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= Nh
−1

k

To conclude, I receive

Eq(M,Σ)[(yt −Mk)′Σ−1
k (yt −Mk)] = (yt − µk)′Eq(Σ)

{
Σ−1
k

}
(yt − µk) +Nh

−1

k

= (yt − µk)′nkΨ
−1

k (yt − µk) +Nh
−1

k

Next, I derive the same expectation but under restriction. Under the restriction on states, I have

Mk ∼ q∗(Mk | Σk) = N(µk, h
−1

k Σk)I(Mk > 0), for example. Let µ∗k = E(Mk) and Σ∗k = V ar(Mk).

Then I apply the same above approach to get

Eq(Σ)

{
Eq(M |Σ)[(yt −Mk)′Σ−1

k (yt −Mk)]
}

= Eq(Σ)

{
(yt − µ∗k)′Σ−1

k (yt − µ∗k) + tr(Σ−1
k Σ∗k)

}
= (yt − µ∗k)′Eq(Σ)[Σ

−1
k ](yt − µ∗k) + tr(Eq(Σ)[Σ

−1
k ]Σ∗k)

Similarly, I have the restricted expectations under multivariate Normal distribution

Eq(M,Σ)[(Mk − µ)′hΣ−1
k (Mk − µ)] = (µk − µ)′hnkΨ

−1

k (µk − µ) + tr(hEq(Σ)[Σ
−1
k ]Σ∗k)

Eq(M,Σ)[(Mk − µk)′hkΣ−1
k (Mk − µk)] = tr(h

−1
Eq(Σ)[Σ

−1
k ]Σ∗k)

I now consider the Multivariate Student t distribution. Without restriction, I need to find the expec-

tation

Eq(M,Σ,τ)[(yt −Mk)′τtkΣ−1
k (yt −Mk)] = Eq(Σ)

{
Eq(M |Σ)[(yt −Mk)′Eq(τ)[τtk]Σ−1

k (yt −Mk)]
}

Since Mk ∼ q∗(Mk | Σk) = N(µk, h
−1

k Σk), I re-write the term inside the bracket as

Eq(M |Σ)[(yt − µk)′Eq(τ)[τtk]Σ−1
k (yt − µk)] + 2Eq(M |Σ)[(yt − µk)′Eq(τ)[τtk]Σ−1

k (µk −Mk)]

+ Eq(M |Σ)[(µk −Mk)′Eq(τ)[τtk]Σ−1
k (µk −Mk)]

I use a similar justification as above to have the last term is

Eq(M |Σ)[(µk −Mk)′Eq(τ)[τtk]Σ−1
k (µk −Mk)] = tr(Eq(M |Σ)[Eq(τ)[τtk]Σ−1

k (Mk − µk)′(Mk − µk)])

= NEq(τ)[τtk]h
−1

k

to conclude that

Eq(M,Σ,τ)[(yt −Mk)′τtkΣ−1
k (yt −Mk)] = (yt − µk)′Eq(τ)[τtk]Eq(Σ)[Σ

−1
k ](yt − µk) +NEq(τ)[τtk]h

−1

k

Then

Eq

[
(yt −Mk)

′
Σ−1
k (yt −Mk)

]
= (yt − µk)′Eq(Σ)[Σ

−1
k ](yt − µk) +Nh

−1

k
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Next, I derive the restricted version for multivariate Student t distribution. Note that yt ∼ N(Mk, τ
−1
t Σk).

Under the same assumption about µ∗k and Σ∗k, I have

Eq(M,Σ,τ)[(yt −Mk)′τtkΣ−1
k (yt −Mk)] = (yt − µ∗k)′Eq(τ)[τtk]Eq(Σ)[Σ

−1
k ](yt − µ∗k)

+ tr(Eq(τ)[τtk]Eq(Σ)[Σ
−1
k ]Σ∗k)

Similarly, I have the restricted expectations under multivariate Student t distribution

Eq(M,Σ)

[
(yt −Mk)

′
Σ−1
k (yt −Mk)

]
= (yt − µ∗k)′Eq(Σ)[Σ

−1
k ](yt − µ∗k) + tr(Eq(Σ)[Σ

−1
k ]Σ∗k)

Eq(M,Σ)[(Mk − µ)′hΣ−1
k (Mk − µ)] = (µ∗k − µ)′hnkΨ

−1

k (µ∗k − µ) + tr(hEq(Σ)[Σ
−1
k ]Σ∗k)

Eq(M,Σ)[(Mk − µk)′hkΣ−1
k (Mk − µk)] = tr(h

−1
Eq(Σ)[Σ

−1
k ]Σ∗k)

F Numerical stability

The first formula to keep numerical stability is as

log

[
T∑
t=1

exp(yt)

]
= ymax + log

[
T∑
t=1

exp(yt − ymax)

]

where ymax is the maximum element in y.

And I note that the variance-covariance matrix belongs to the class of Hermitian matrix. It is also

invertible and its eigen values are all positive. Therefore, I have the property as

log(det(A)) = trace(log(A))

In Matlab, I use logm to find the principal logarithm that has all eigenvalues lying between −π and π.

G Tables
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Table 12: Estimated parameters in Student t distribution with 2 assets

Parameters
Bear state Bull state

M̂1 Σ̂1 ν̂1 M̂2 Σ̂2 ν̂2

True
-0.51 5 3

50
1 1 0

6
0.49 3 5 1 0 1

Unrestricted

MCMC-CC
-0.21 4.86 2.94

28.95
0.97 1.1 -0.1

7.33
0.88 2.94 4.71 1.08 -0.1 1.09

MCMC
-0.22 4.86 2.95

23.29
0.97 1.26 -0.1

13.31
0.88 2.95 4.72 1.08 -0.1 1.24

MCMC-A
-0.22 4.71 2.86

16.68
0.97 1.18 -0.11

9.78
0.87 2.86 4.57 1.08 -0.11 1.16

VI-CC
-0.22 4.80 2.91

26.63
0.97 1.12 -0.1

7.62
0.88 2.91 4.65 1.08 -0.1 1.12

VI
-0.21 5.01 3.03

39.97
0.96 1.46 -0.09

39.48
0.89 3.03 4.87 1.09 -0.09 1.41

VI-A
-0.22 4.80 2.91

20
0.96 1.35 -0.1

20
0.87 2.86 4.57 1.08 -0.11 1.16

Restricted

MCMC-CC
-0.57 4.84 2.93

27.51
0.97 1.12 -0.1

8.08
0.54 2.93 4.69 1.08 -0.1 1.11

MCMC
-0.57 4.75 2.87

17.53
0.97 1.21 -0.1

11.1
0.53 2.87 4.58 1.08 -0.1 1.2

MCMC-A
-0.57 4.68 2.83

15.39
0.97 1.15 -0.1

8.96
0.54 2.83 4.51 1.08 -0.1 1.14

VI-CC
-0.57 5.06 3.06

72.93
0.98 1.15 -0.1

8.28
0.54 3.06 4.92 1.08 -0.1 1.14

VI
-0.57 4.96 3

33.61
0.96 1.48 -0.09

47.33
0.54 3 4.82 1.08 -0.09 1.43

VI-A
-0.57 4.68 2.83

15.21
0.97 1.16 -0.1

8.7
0.54 2.83 4.51 1.08 -0.1 1.14

Notes: Table 12 contains the posterior mean of parameters and the optimal variational parameters of the multivariate

Markov switching model estimated by MCMC algorithm and VI algorithm, respectively. This table includes both

results with and without restrictions. The true parameters are also provided.
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Table 13: In-sample performance under Student t distribution

Number of assets 2 30

Log score MSE Log score MSE

’MCMC-A’ -3.140 0.688 -47.161 65.166

’MCMC-CC’ -3.304 0.375 -47.527 63.279

’MCMC’ -3.219 0.466 -47.159 65.169

’VI-A’ -3.078 0.444 -46.972 66.371

’VI-CC’ -3.374 0.342 -47.323 66.409

’VI’ -3.152 0.344 -46.950 66.338

Notes: Table 13 contains the log score and the mean squared errors of the multivariate Markov switching model

estimated by MCMC and VI algorithm. All values are in average. The data is from Student t distribution. There are

2 and 30 assets.

Table 14: Out of sample performance with restricted Student t simulation with 2 assets

MSFE LPS Min.Variance Sharpe ratio Mean SD Strategy 2 Strategy 3

’MCMC-A’ 12.142 -3.115 4.269 0.361 0.869 2.410 -0.003 -0.003

’MCMC-CC’ 12.139 -3.148 4.160 0.361 0.869 2.410 -0.003 -0.003

’MCMC’ 12.138 -3.141 4.235 0.361 0.869 2.410 -0.003 -0.003

’VI-A’ 12.142 -3.114 4.294 0.361 0.869 2.410 -0.003 -0.003

’VI-CC’ 12.140 -3.187 4.329 0.361 0.869 2.410 -0.003 -0.003

’VI’ 12.140 -3.159 6.100 0.361 0.869 2.410 -0.003 -0.003

Notes: Table 14 contains the out-of-sample measures of performance of the multivariate Markov switching model

estimated by MCMC and VI algorithm. MSFE is the mean squared errors of forecasting errors. LPS means log

predictive score. Min.Variance implies the global minimum variance. Sharpe ratio captures the ex-post Sharpe ratio.

Mean is the mean of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the

portfolio. SD is the standard deviation of returns yielded from using the optimal weight of the ex-ante Sharpe ratio

for allocating the portfolio. Columns Strategy 2 and 3 present the performance fee of switching from these strategies

towards “buy-and-hold” strategy. The row Difference shows the gap between the results from VI and MCMC algorithm.

Data is consists of 2 assets.
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Table 15: Out of sample performance with restricted Student t simulation with 30 assets

MSFE LPS Min.Variance Sharpe ratio Mean SD Strategy 2 Strategy 3

’MCMC-A’ 45.212 -27.326 0.094 6.129 1.554 0.254 -0.015 0

’MCMC-CC’ 45.215 -27.493 0.090 5.981 1.543 0.258 -0.015 0

’MCMC’ 45.218 -27.380 0.092 6.099 1.552 0.255 -0.015 0

’VI-A’ 45.206 -27.329 0.089 6.208 1.551 0.250 -0.015 0

’VI-CC’ 45.205 -27.345 0.088 6.204 1.551 0.250 -0.015 0

’VI’ 49.236 -27.366 0.145 6.181 1.553 0.251 -0.015 -0.001

Notes: Table 15 contains the out-of-sample measures of performance of the multivariate Markov switching model

estimated by MCMC and VI algorithm. MSFE is the mean squared errors of forecasting errors. LPS means log

predictive score. Min.Variance implies the global minimum variance. Sharpe ratio captures the ex-post Sharpe ratio.

Mean is the mean of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the

portfolio. SD is the standard deviation of returns yielded from using the optimal weight of the ex-ante Sharpe ratio

for allocating the portfolio. Columns Strategy 2 and 3 present the performance fee of switching from these strategies

towards “buy-and-hold” strategy. The row Difference shows the gap between the results from VI and MCMC algorithm.

Data is consists of 30 assets.

Table 16: Out-of-sample performance for a portfolio with 59 assets

Normal assumption

MSFE LPS Min.Var Sharpe ratio Mean SD Strategy 2 Strategy 3

MCMC 73.455 -31.120 0.194 0.116 0.052 0.447 0.010 0.001

VI 72.783 -29.432 0.265 0.215 0.095 0.442 0.001 0.006

Student t assumption

MCMC-CC 72.659 -27.664 0.166 0.169 0.070 0.414 0.007 0

MCMC 72.667 -27.759 0.151 0.170 0.070 0.410 0.007 0

MCMC-A 72.661 -27.731 0.153 0.172 0.071 0.411 0.007 0

VI-CC 72.788 -28.553 0.168 0.137 0.059 0.430 0.007 0.001

VI 73.025 -28.153 0.261 0.127 0.055 0.431 0.006 0.001

VI-A 72.986 -21.289 0.172 0.131 0.058 0.440 0.006 0.003

Notes: Table 16 stores the measures of out of sample performance for both algorithms to the data

of an equally-weighted portfolio with 59 assets. contains the out-of-sample measures of performance

of the multivariate Markov switching model estimated by MCMC and VI algorithm. MSFE is the

mean squared errors of forecasting errors. LPS means log predictive score. Min.Var implies the global

minimum variance. Sharpe ratio captures the ex-post Sharpe ratio. Mean is the mean of returns

yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the portfolio. SD is

the standard deviation of returns yielded from using the optimal weight of the ex-ante Sharpe ratio

for allocating the portfolio. Columns Strategy 2 and 3 present the performance fee of switching from

these strategies towards “buy-and-hold” strategy.

68



Table 17: Out-of-sample performance for a portfolio with 103 assets

Normal assumption

MSFE LPS Min.Var Sharpe ratio Mean SD Strategy 2 Strategy 3

MCMC 116.76 -33.392 0.133 0.229 0.097 0.424 0.005 0

VI 117.30 -41.671 0.134 0.213 0.085 0.397 0.004 0.001

Student t assumption

MCMC-CC 116.83 -48.798 0.105 0.136 0.078 0.577 0.003 0.002

MCMC 116.83 -48.809 1.797 0.123 0.076 0.615 0.003 0.002

MCMC-A 117.44 -46.031 0.040 0.128 0.309 2.418 0.001 0.004

VI-CC 116.83 -50.948 0.093 0.128 0.077 0.607 0.003 0.002

VI-A 117.33 -38.905 0.010 0.023 0.036 1.582 0.001 0.004

VI 117.19 -37.269 0.098 0.061 0.077 1.250 0.004 0.002

Notes: Table 17 stores the measures of out of sample performance for both algorithms to the data of an equally-

weighted portfolio with 103 assets. All values are in average. MSFE is the mean squared errors of forecasting errors.

Variance includes the minimum variance. Sharpe ratio captures the maximum Sharpe ratio. Columns Strategy 2 and

3 present the performance fee of switching from these strategies towards “buy-and-hold” strategy. The row Difference

shows the gap between the results from VI and MCMC algorithm.

Table 18: Out-of-sample performance for a portfolio with 40 industry portfolio

Normal

MSFE LPS Min.Var Sharpe ratio Mean SD Strategy 2 Strategy 3

MCMC 2616.0 -59.815 29.591 0.156 0.799 5.135 -0.007 0.001

VI 2582.1 -79.352 33.389 0.213 0.955 4.483 -0.005 0.001

Student t

MCMC-CC 2622.9 -67.533 26.779 0.176 0.715 4.053 -0.007 0.002

MCMC 2613.2 -66.967 23.107 0.170 0.686 4.028 -0.007 0.001

MCMC-A 2615.0 -67.000 24.425 0.164 0.663 4.030 -0.007 0.001

VI-CC 2607.4 -77.116 14.720 0.171 0.646 3.774 0.001 -0.002

VI 2603.2 -76.971 36.506 0.192 0.745 3.875 0.001 -0.002

VI-A 2604.9 -64.902 24.430 0.171 0.673 3.928 0.002 -0.004

Notes: Table 18 stores the measures of out of sample performance for both algorithms to the data of an equally-

weighted portfolio with 103 assets. MSFE is the mean squared errors of forecasting errors. LPS means log predictive

score. Min.Variance implies the global minimum variance. Sharpe ratio captures the ex-post Sharpe ratio. Mean is

the mean of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating the portfolio. SD

is the standard deviation of returns yielded from using the optimal weight of the ex-ante Sharpe ratio for allocating

the portfolio. Columns Strategy 2 and 3 present the performance fee of switching from these strategies towards “buy-

and-hold” strategy.
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H Figures

Figure 6: Estimated density of the latent states with and without restrictions for 2 assets

(a) Without restriction (b) With restriction

Notes: Figure 6 shows densities of two states. The left graph is the result of the unrestricted MCMC and VI algorithm.

The right graph is the result of the restricted MCMC and VI algorithm. Both data are normally distributed.
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Figure 7: Estimated probabilities of the latent states with restrictions for 2 assets under Student t

(a) MCMC-CC (b) VI-CC

(c) MCMC (d) VI

(e) MCMC-A (f) VI-A

Notes: Figure 7 contains conditional posterior probabilities of states against and the optimal variational probabilities

from the MCMC and VI algorithm. The first row results from left to right are MCMC-CC, MCMC and MCMC-A,

respectively. The second row results from left to right are VI-CC. VI, and VI-A, respectively.
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Figure 8: Time trace plot of Loglikelihood and Geweke’s plot with 2 assets

(a) MCMC-CC (b) VI-CC

(c) MCMC (d) VI

(e) MCMC-A (f) VI-A

Notes: Figure 8 presents the time trace plots of the average log likelihood and Geweke (1992)’s plots. The first row

is the time trace plot: Left: MCMC-CC vs VI-CC; Middle: MCMC vs VI; Right: MCMC-A vs VI-A. The second

row is the corresponding Geweke (1992)’s plots. The vertical dotted line indicates the time that the VI converges.

Data is from a Student t distribution with 2 assets.
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Figure 9: The in-sample performance for 2 assets

(a) MSE (N) (b) MSE (t)

(c) MSE (t) (d) Log score (N)

(e) Log score (N) (f) Log score (N)

Notes: Figure 9 presents the in-sample comparison between two estimation approaches for 2 assets. The first row is

the mean squared of errors. The second row is the log score. The first column shows the results of the Normal data.

The next two columns show the results of the Student t data.
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Figure 10: Estimated probabilities of the latent states for 30 assets

(a) MCMC (N) (b) VI (N)

(c) MCMC (t-CC) (d) VI (t-CC)

(e) MCMC (t) (f) VI (t)

(g) MCMC (t-A) (h) VI (t-A)

Notes: Figure 10 contains the conditional posterior probabilities of states and the optimal variational probabilities

from the MCMC and VI methods. The first column from the left to right are results of Normal distribution. The next

columns are results of the Student t distribution where from right to left, each column has results from MCMC-CC

& VI-CC, MCMC & VI, and MCMC-A & VI-A, respectively.
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Figure 11: Time trace plot of Log likelihood and Geweke’s plot with 30 assets

(a) Time trace (t-CC) (b) Geweke’s plot (t-CC)

(c) Time trace (t) (d) Geweke’s plot (t)

(e) Time trace (t-A) (f) Geweke’s plot (t-A)

Notes: Figure 11 presents the time trace plot of the average log likelihood and Geweke (1992)’s plots. The first row

is the time trace plot: Left: MCMC-CC vs VI-CC; Middle: MCMC vs VI; Right: MCMC-A vs VI-A. The second

row is the corresponding Geweke (1992)’s plots. The vertical dotted line indicates the time that the VI converges.

Data is from a Student t distribution with 30 assets.
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Figure 12: The in-sample comparison for 30 assets

(a) Log score (N) (b) MSE (N)

(c) Log score (t) (d) MSE (t)

(e) Log score (t) (f) MSE (t)

Notes: Figure 12 presents the in-sample comparison between two estimation approaches for 30 assets. The first row

is the mean squared of errors. The second row is the log score. The first column shows the results of a Normal data.

The next two columns show the results of the Student t data.

76



Figure 13: The out-of-sample performance for 30 assets

Notes: Figure 13 presents the out-of-sample comparison between two inference approaches. The first row is the

cumulative one-period-ahead predictive return that is calculated from the optimal ex-ante Sharpe ratio. The second

row is the cumulative predictive loglikehood. The first column is the result of the Normal data. The next two

columns are the results of the Student t distribution.
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Figure 14: Estimated correlation matrix of bear and bull state of EW34

( Bear - VI) ( Bear - MCMC) ( Bull - VI) ( Bull - MCMC)

( Bear - VI-CC) ( Bear - MCMC-CC) ( Bull - VI-CC) ( Bull - MCMC-CC)

( Bear - VI-A) ( Bear - MCMC-A) ( Bull - VI-A) ( Bull - MCMC-A)

( Bear - VI) ( Bear - MCMC) ( Bull - VI) (Bull - MCMC)

Notes: Figure 14 consists of estimated correlation matrices from both VI and MCMC algorithms. Results are from a

data set, EW34. The first row is the result of the Normal assumption. The next three rows are results of the Student

t assumption.
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Figure 15: Estimated correlation matrix of bear and bull state of EW59

( Bear - VI) ( Bear - MCMC) ( Bull - VI) ( Bull - MCMC)

( Bear - VI-CC) ( Bear - MCMC-CC) ( Bull - VI-CC) ( Bull - MCMC-CC)

( Bear - VI-A) ( Bear - MCMC-A) ( Bull - VI-A) ( Bull - MCMC-A)

( Bear - VI) ( Bear - MCMC) ( Bull - VI) (Bull - MCMC)

Notes: Figure 15 consists of estimated correlation matrices from both VI and MCMC algorithms. Results are from a

data set, EW59. The first row is the result of the Normal assumption. The next three rows are results of the Student

t assumption.
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Figure 16: Estimated correlation matrix of bear and bull state of EW103

( Bear - VI) ( Bear - MCMC) ( Bull - VI) ( Bull - MCMC)

( Bear - VI-CC) ( Bear - MCMC-CC) ( Bull - VI-CC) ( Bull - MCMC-CC)

( Bear - VI-A) ( Bear - MCMC-A) ( Bull - VI-A) ( Bull - MCMC-A)

( Bear - VI) ( Bear - MCMC) ( Bull - VI) (Bull - MCMC)

Notes: Figure 16 consists of estimated correlation matrices from both VI and MCMC algorithms. Results are from

a data set, EW103. The first row is the result of the Normal assumption. The next three rows are results of the

Student t assumption.
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Figure 17: Estimated correlation matrix of bear and bull state of IP40

( Bear - VI) ( Bear - MCMC) ( Bull - VI) ( Bull - MCMC)

( Bear - VI-CC) ( Bear - MCMC-CC) ( Bull - VI-CC) ( Bull - MCMC-CC)

( Bear - VI-A) ( Bear - MCMC-A) ( Bull - VI-A) ( Bull - MCMC-A)

( Bear - VI) ( Bear - MCMC) ( Bull - VI) (Bull - MCMC)

Notes: Figure 17 consists of estimated correlation matrices from both VI and MCMC algorithms. Results are from a

data set, IP40. The first row is the result of the Normal assumption. The next three rows are results of the Student

t assumption.
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Figure 18: Cumulative predictive returns and loglikelihood for EW59

(Return (N)) (Return (t-CC)) (Return (t-A)) (Return (t) )

(LLH (N)) (LLH (t-CC)) (LLH (t-A) ) (LLH (t))

Notes: Figure 18 consists of out-of-sample results from both VI and MCMC algorithms for the portfolio of 59 equally-

weighted assets. The first column on the left is the result of the Normal assumption. The next columns are the result

of the Student t assumption. The upper row contains the cumulative predictive returns that are from the optimal

weight calculated by the ex-ante Sharpe ratio. The second row includes the cumulative predictive loglikehood.

Figure 19: Cumulative predictive returns and loglikelihood for EW103

(Return (N)) (Return (t-CC)) (Return (t-A)) (Return (t) )

(LLH (N)) (LLH (t-CC)) (LLH (t-A) ) (LLH (t))

Notes: Figure 19 consists of out-of-sample results from both VI and MCMC algorithms for the portfolio of 103

equally-weighted assets. The first column on the left is the result of the Normal assumption. The next columns

are the result of the Student t assumption. The upper row contains the cumulative predictive returns that are

from the optimal weight calculated by the ex-ante Sharpe ratio. The second row includes the cumulative predictive

loglikehood.
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Figure 20: Cumulative predictive returns and loglikelihood for IP40

(Return (N)) (Return (t-CC)) (Return (t-A)) (Return (t) )

(LLH) (LLH (t-CC)) (LLH (t-A) ) (LLH (t))

Notes: Figure 20 consists of out-of-sample results from both VI and MCMC algorithms for the portfolio of 40 equally-

weighted industry portfolio. The first column on the left is the result of the Normal assumption. The next columns

are the result of the Student t assumption. The upper row contains the cumulative predictive returns that are

from the optimal weight calculated by the ex-ante Sharpe ratio. The second row includes the cumulative predictive

loglikehood.
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