This page in Swedish

Anas Alhashimi

Title: Postdoctoral Researcher School/office: School of Science and Technology


Phone: +46 19 303458

Room: T1227

Anas Alhashimi

About Anas Alhashimi

I am a post-doctoral researcher at Mobile Robotics and Olfaction Lab (MR&O) at Örebro University. I finished my PhD at the department of computer science, electrical and space engineering, Luleå university of technology (2018). I have Bachelors and MSc degrees in electronic and communications engineering (1999, 2002).  I m interested in the following research topics:

  • FMCW radar and Laser range finder (Lidar) for robotic applications
  • Statistical sensor modeling and calibration
  • Parameter estimation and model order selection under variable noise variance (heteroscedasticity)
  • Joint parameters and state estimation (linear and non-linear systems)
  • Monte Carlo methods
  • Robot Localization and Mapping
  • Robot Navigation and path-planning


Research Experience
PhD Researcher

  • developed statistical sensor modeling and calibration algorithms
  • developed joint parameters and state estimation algorithms for sensor calibration when the data is incomplete

Master’s Researcher

  • presented self-orgnizing neural networks for radar signal deinterleaving
  • developed algorithms for identifing radar PRF (Pulse Repetition Frequency)


Articles in journals |  Chapters in books |  Conference papers | 

Articles in journals

Alhashimi, A. , Varagnolo, D. & Gustafsson, T. (2017). Calibrating distance sensors for terrestrial applications without groundtruth information. IEEE Sensors Journal, 17 (12), 3698-3709.
Alhashimi, A. , Varagnolo, D. & Gustafsson, T. (2015). Joint Temperature-Lasing Mode Compensation for Time-of-Flight LiDAR Sensors. Sensors, 15 (12), 31205-31223.
Ata'a, A. & Abdullah, S. (2007). Deinterleaving of radar signals and PRF identification algorithms. IET radar, sonar & navigation, 1 (5), 340-347.

Chapters in books

Alhashimi, A. , Pierobon, G. , Varagnolo, D. & Gustafsson, T. (2018). Modeling and Calibrating Triangulation Lidars for Indoor Applications. In: Kurosh Madani, Dimitri Peaucelle, Oleg Gusikhin, Informatics in Control, Automation and Robotics: 13th International Conference, ICINCO 2016 Lisbon, Portugal, 29-31 July, 2016 (pp. 342-366). . Springer.

Conference papers

Adolfsson, D. , Magnusson, M. , Alhashimi, A. , Lilienthal, A. & Andreasson, H. (2021). CFEAR Radarodometry - Conservative Filtering for Efficient and Accurate Radar Odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021). Paper presented at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021), Prague, Czech Republic, (Online Conference), September 27 - October 1, 2021.
Alhashimi, A. , Del Favero, S. , Varagnolo, D. , Gustafsson, T. & Pillonetto, G. (2018). Bayesian strategies for calibrating heteroskedastic static sensors with unknown model structures. In: 2018 European Control Conference (ECC). Paper presented at European Control Conference (ECC), Limassol, Cyprus, June 12-15, 2018. (pp. 2447-2453). IEEE.
Alhashimi, A. , Varagnolo, D. & Gustafsson, T. (2016). Statistical modeling and calibration of triangulation Lidars. In: Oleg Gusikhin; Dimitri Peaucelle; Kurosh Madani, ICINCO 2016 Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics. Paper presented at 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2016), Lisbon, Portugal, July 29-31, 2016. (pp. 308-317). SciTePress.