General syllabus for third-cycle courses and study programmes in

MATHEMATICS

Matematik

This syllabus was approved on 8 December 2015 (ORU 5.1-04970/2015)¹, ².

By virtue of the Higher Education Ordinance, Chapter 6, Section 26 (1993:100), Örebro University prescribes the following.

1 Subject description

As a scientific discipline, mathematics is primarily a non-empirical subject that based on definitions establishes theorems by means of deductive reasoning. This sets mathematics apart from most natural science subjects, which mainly work inductively. Research within the subject largely consist of intra-scientific basic research, where any applications often arise decades or centuries after the original findings were published. On the other hand, mathematics is the foundation on which natural science rests, and the results are seldom outdated.

At Örebro University, the subject of mathematics has a reasonably wide scope and includes both classical mathematics and applied mathematics. It also encompasses mathematics education, which is an inductive branch of an interdisciplinary nature.

Within applied mathematics, the department has a special focus on numerical analysis and optimisation; within mathematics education on the analysis of mathematical reasoning; and within classical mathematics on analysis, combinatorics and algebra.

The doctoral study programme is offered with two specialisations – mathematics (which includes classical and applied mathematics) and mathematics education.

2 Outcomes

The intended learning outcomes for the award of the degree, the qualitative targets, are evident from annex 1 to this syllabus. The different components of the third-cycle study programme shall together equip the doctoral student to meet all intended learning outcomes³. The intended learning outcomes are referred to in more detail in the degree requirements in sections 5 and 6.

¹ Faculty Board of Business, Science and Engineering
² The English translation of this general syllabus was last amended on 24 October 2018.
³ Under the new higher education system in Sweden, and in accordance with the terminology recommended by the Swedish Council for Higher Education, courses and study programmes on the doctoral level are referred to as third-cycle courses and study programmes. In this document, the terms doctoral and third-cycle are used interchangeably as prefixes to terms related to studies at the doctoral level and they should therefore be considered synonymous [translator’s comment].
3 Admission to the programme – entry requirements and selection etc.

Provisions on entry requirements and selection can be found in annex 2 to this syllabus. For information on admission in other respects, see the admissions regulations for Örebro University.

4 Programme organisation – general information

There are two types of third-cycle, or doctoral, study programmes – one concluding with the doctoral degree (240 credits, corresponding to four years of full-time study) and one concluding with the licentiate degree (120 credits, corresponding to two years of full-time study).

The programmes mainly consist of courses and the writing of a doctoral or licentiate thesis. The programme components are assessed by means of course examination and the public defence of the thesis respectively. The doctoral student is expected to take an active part in seminars and other auxiliary components during their period of study. The student is further recommended to take advantage of the opportunities offered to attend guest lectures etc. at the university, and to attend and contribute at national and international conferences.

For each doctoral student, a minimum of two supervisors will be appointed, supporting the student during their studies. One of them will be nominated principal supervisor. The detailed organisation of the programme shall be determined in an individual study plan.

Credit overview

<table>
<thead>
<tr>
<th>Overview of programme organisation and degree requirements</th>
<th>Courses/examinations, credits</th>
<th>Thesis, no. of credits</th>
<th>Total no. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctoral degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students with a mathematics specialisation</td>
<td>7.5</td>
<td>82.5-97.5</td>
<td>135-150</td>
</tr>
<tr>
<td>Students with a mathematics education specialisation</td>
<td>15</td>
<td>75-85</td>
<td>140-150</td>
</tr>
<tr>
<td>Licentiate degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students with a mathematics specialisation</td>
<td>7.5</td>
<td>47.5-52.5</td>
<td>60-65</td>
</tr>
<tr>
<td>Students with a mathematics education specialisation</td>
<td>15</td>
<td>30-35</td>
<td>70-75</td>
</tr>
</tbody>
</table>

4 Higher Education Ordinance, Chapter 6, Sections 4, 5, 28 and 29 and local guidelines on the organisation of third-cycle courses and study programmes.

5 The Higher Education Ordinance stipulation that at least two supervisors be appointed for each doctoral student does not apply to doctoral students who commenced their studies before 1 July 2007. Instead, the older provision of at least one supervisor applies (point 18, transitional provisions of SFS 2006:1053).
Degree requirements for the Degree of Doctor, 240 credits

For the Degree of Doctor, the doctoral student must
- have received a passing grade in the examinations of the 90-105 and 90-100 credits respectively generated by the courses listed below,
- have received a passing grade on a scholarly dissertation (doctoral thesis) corresponding to 135-150 and 140-150 credits respectively. The thesis is to be defended orally at a public defence event.

Mathematics specialisation

Compulsory courses, total of 7.5 credits

Seminariekurs i matematik [seminar course in mathematics], 7.5 credits
The course and examination shall refer to outcomes D3 (second part), D4, D6 (in part), D8 (in part) and D10 (for outcomes, see annex 1).

Elective courses, total of 82.5-97.5 credits
Which course/courses a doctoral student shall take is determined based on an assessment of what courses will enable them to meet the intended learning outcomes. The doctoral student plans, in consultation with the supervisor, which courses should be part of their programme. The selection is then laid down in the individual study plan. The three blocks II-IV discuss various mathematical fields. Depending on the focus of the student's thesis project, generally two of these will be of a broadening nature, and one of a more in-depth nature.

Block I: Philosophy of science (7.5 credits)
The courses in this block shall refer to outcomes D2 (first part) and D10. Either Philosophy of science, 7.5 credits, or Research and thesis planning in science and technology, 7.5 credits.

Block II: Analysis (minimum of 15 credits)
The courses in this block shall refer to outcomes D1 (first part) and D2 (second part).
Examples of fields covered by this block are functional analysis, integration theory, complex analysis, differential equations, and differential geometry.

Block III: Algebra (minimum of 15 credits)
The courses in this block shall refer to outcomes D1 (first part) and D2 (second part).
Examples of fields covered by this block are algebra, combinatorics and number theory.

Block IV: Computational mathematics (minimum of 15 credits)
The courses in this block shall refer to outcomes D1 (first part) and D2 (second part).
Examples of fields covered by this block are numerical methods for differential equations, optimisation, numeric linear algebra, numerical methods for sparse problems, and inverse problems.

6 Higher Education Ordinance, Chapter 6, Section 32
7 Higher Education Ordinance, Chapter 6, Sections 5 and 33
Doctoral thesis and public defence, 135-150 credits
The thesis project shall refer to all intended learning outcomes. At the public defence event, the assessment of the doctoral thesis and the public defence thereof shall particularly refer to outcomes D1, D3, D5, D6, D7, D8 and D9.

Mathematics education specialisation

Compulsory courses, total of 15 credits

Seminariekurs i matematik/matematikdidaktik [seminar course in mathematics/mathematics education], 7.5 credits
The course and examination shall refer to outcomes D3 (second part), D4, D6 (in parts), D8 (in parts) and D10.

Introduktion till matematikdidaktisk forskning [introduction to mathematics education research], 7.5 credits
The course and examination shall refer to outcomes D1 (first part) and D3 (second part).

Elective courses, total of 75-85 credits

Block I: Philosophy of science (7.5 credits)
The courses in this block shall refer to outcomes D2 (first part) and D10. Either Philosophy of science, 7.5 credits, or Research and thesis planning in science and technology, 7.5 credits.

Block II: Mathematics education and pedagogical theory (minimum of 15 credits)
The course and examination shall refer to outcomes D1 and D3 (first part). Examples of courses that can be taken within this block are Education as science, 15 credits (Örebro University), Theories in the learning and teaching of mathematics, 10 credits (University of Agder, Norway).

Block III: Research methodology in mathematics education (at least 15 credits)
The course and examination shall refer to outcomes D2, D3 (first part) and D9 (second part). Examples of courses that can be taken within this block are Design research in mathematics education, 7.5 credits (Örebro University), Research methodology in mathematics education, 15 credits (University of Agder, Norway).

Block IV: Mathematics – teaching and learning methods (minimum of 15 credits)
The courses in this block shall refer to outcomes D2 (second part), D3 (first part) and D4 (first part). Examples of fields in which we can offer courses with a focus on teaching and learning methods are combinatorics, probability and statistics, and mathematical modelling.

Block V: In-depth courses in mathematics education of relevance to the research field selected (minimum of 22.5 credits)
The courses in this block shall refer to outcomes D1 (second part) and D2 (second part).
Doctoral thesis and public defence
The thesis project shall refer to all intended learning outcomes.

At the public defence event, the assessment of the doctoral thesis and the public defence thereof shall particularly refer to outcomes D1, D3, D5, D6, D7, D8 and D9.

6 Degree requirements for the Degree of Licentiate, 120 credits

The licentiate degree is the degree awarded to those who have been admitted to and successfully completed a licentiate programme. Students who have been admitted to the programme concluding with the doctoral degree have the right to apply for the award of a licentiate degree, as a half-way degree, after completing at least 120 credits\(^8\). The degree requirements in this section apply to the licentiate degree both as a final and as a half-way degree.

For the licentiate degree, the doctoral student must
- have received a passing grade in the examinations\(^9\) of the 55-60 and 45-50 credits respectively generated by the courses listed below,
- have received a passing grade on a scholarly paper (licentiate thesis) corresponding to 60-65 and 70-75 credits respectively\(^10\).

Mathematics specialisation

Compulsory courses within the mathematics specialisation, total of 7.5 credits

Seminariekurs i matematik [seminar course in mathematics], 7.5 credits
The course and examination shall refer to outcomes L4 (in parts), L6 (in parts) and L10 (for outcomes, see annex 1).

Elective courses within the mathematics specialisation, total of 50-55 credits

Which course/courses a doctoral student shall take is determined based on an assessment of what courses will enable them to meet the intended learning outcomes. The doctoral student plans, in consultation with the supervisor, which courses should be part of their programme. The selection is then laid down in the individual study plan.

Block I: Philosophy of science (7.5 credits)
The courses in this block shall refer to outcomes L1 (second part) and L10.
Either Philosophy of science, 7.5 credits, or Research and thesis planning in science and technology, 7.5 credits.

Block II: Analysis (minimum of 7.5 credits)
The courses in this block shall refer to outcome L1.
Examples of fields covered by this block are functional analysis, integration theory, complex analysis, differential equations, and differential geometry.

Block III: Algebra (minimum of 7.5 credits)
The courses in this block shall refer to outcome L1.

\(^8\) Örebro University’s local regulations on qualifications
\(^9\) Higher Education Ordinance, Chapter 6, Section 32
\(^10\) Higher Education Ordinance, Chapter 6, Section 5
Examples of fields covered by this block are algebra, combinatorics and number theory.

Block IV: Computational mathematics (minimum of 7.5 credits)
The courses in this block shall refer to outcome L1.
Examples of fields covered by this block are numerical methods for differential equations, optimisation, numeric linear algebra, numerical methods for sparse problems, and inverse problems.

Licentiate thesis
The thesis project shall contribute to meeting all the outcomes for the programme in relation to the theme of the thesis.

On the examination of the licentiate thesis, the assessment shall especially refer to the outcomes L1, L5, L6, L8, L9 and L11.

Mathematics education specialisation

Compulsory courses within the mathematics education specialisation, total of 15 credits
Seminariekurs i matematik [seminar course in mathematics], 7.5 credits
The course and examination shall refer to outcomes L4 (in parts), L6 (in parts) and L10.

Introduktion till matematikdidaktisk forskning [introduction to mathematics education research], 7.5 credits
The course and examination shall refer to outcome L1 (first part).

Elective courses within the mathematics education specialisation, total of 30-35 credits

Block I: Philosophy of science (7.5 credits)
The courses in this block shall refer to outcomes L1 (second part) and L10.
Either Philosophy of science, 7.5 credits, or Research and thesis planning in science and technology, 7.5 credits.

Block II: Mathematics education theory and research methodology (minimum of 7.5 credits)
The course and examination shall refer to outcomes L1 and L9 (second part).
Examples of courses that can be taken within this block are Education as science, 15 credits (Örebro University), Theories in the learning and teaching of mathematics, 10 credits (University of Agder, Norway), Design research in mathematics education, 7.5 credits (Örebro University), Research methodology in mathematics education, 15 credits (University of Agder, Norway).

Block III: Mathematics – teaching and learning methods of relevance to the research field selected (minimum of 7.5 credits)
The courses in this block shall refer to outcomes L1 and L4 (first part).
Examples of fields in which we can offer courses with a focus on teaching and learning methods are combinatorics, probability and statistics, and mathematical modelling.
Licentiate thesis
The thesis project shall contribute to meeting all the outcomes for the programme in relation to the theme of the thesis.

On the examination of the licentiate thesis, the assessment shall especially refer to the outcomes L1, L5, L6, L8, L9 and L11.

7 Further information
Further information about provisions for doctoral study programmes can be found on the University website. Documents there include the admissions regulations for Örebro University and other information on national and local regulations.

Entry-into-force and transitional provisions
This general syllabus shall be in effect from 1 January 2016.
Outcomes 11

<table>
<thead>
<tr>
<th>Outcomes for the DEGREE OF DOCTOR</th>
<th>Outcomes for the DEGREE OF LICENTIATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the Degree of Doctor, the third-cycle student shall</td>
<td>For a Degree of Licentiate, the third-cycle student shall</td>
</tr>
</tbody>
</table>

Knowledge and understanding

| D1 | L1 | Demonstrate broad knowledge and systematic understanding of the research field as well as advanced and up-to-date specialised knowledge in a limited area of this field, and demonstrate knowledge and understanding in the field of research including current specialist knowledge in a limited area of this field as well as specialised knowledge of research methodology in general and the methods of the specific field of research in particular. |
| D2 | L2 | Demonstrate familiarity with research methodology in general and the methods of the specific field of research in particular. | (for the equivalent to D2, see L1, second part) |

Competence and skills

D3	L3	Demonstrate the capacity for scholarly analysis and synthesis as well to review and assess new and complex phenomena, issues and situations autonomously and critically.	(no direct equivalent to D3)
D4	L4	Demonstrate the ability to identify and formulate issues with scholarly precision critically, autonomously and creatively, and to plan and use appropriate methods to undertake research and other qualified tasks within predetermined time frames and to review and evaluate such work.	Demonstrate the ability to identify and formulate issues with scholarly precision critically, autonomously and creatively, and to plan and use appropriate methods to undertake a limited piece of research and other qualified tasks within predetermined time frames in order to contribute to the formation of knowledge as well as to evaluate this work,
D5	L5	Demonstrate through a dissertation the ability to make a significant contribution to the formation of knowledge through his or her own research.	(no direct equivalent to D5, refer however to L4, second part)
D6	L6	Demonstrate the ability in both national and international contexts to present and discuss research and research findings authoritatively in speech and writing and in dialogue with the academic community and society in general,	Demonstrate the ability in both national and international contexts to present and discuss research and research findings in speech and writing and in dialogue with the academic community and society in general,
D7	L7	Demonstrate the ability to identify the need for further knowledge, and	(comp. L11)
D8	L8	Demonstrate the capacity to contribute to social development and support the learning of others both through research and education and in some other qualified professional capacity.	Demonstrate the skills required to participate autonomously in research and development work and to work autonomously in some other qualified capacity.

Judgement and approach

D9	L9	Demonstrate intellectual autonomy and disciplinary rectitude as well as the ability to make assessments of research ethics, and	Demonstrate the ability to make assessments of ethical aspects of his or her own research,
D10	L10	Demonstrate specialised insight into the possibilities and limitations of research, its role in society and the responsibility of the individual for how it is used.	Demonstrate insight into the possibilities and limitations of research, its role in society and the responsibility of the individual for how it is used, and
	L11	Demonstrate the ability to identify the personal need for further knowledge and take responsibility for his or her ongoing learning (comp. D7).	

11 Extract from the Qualifications ordinance, annex 2, Higher Education Ordinance (1993:100)
Admission to research studies – entry requirements

1 Admission requirements – Higher Education Ordinance

The Higher Education Ordinance stipulates that the number of doctoral students that may be admitted by the university may not exceed the number that can be offered supervision and otherwise acceptable conditions for study and whose studies are funded pursuant to the provisions in the Higher Education Ordinance.12

The requirements for admission to third-cycle courses and study programmes are that the applicant
1. meets the general and specific entry requirements that the university may have laid down, and
2. is considered in other respects to have the ability required to benefit from the course or study programme.13

2 Entry requirements

2.1 General entry requirements

A person meets the general entry requirements for third-cycle courses and study programmes if he or she
1. has been awarded a second-cycle qualification,
2. has satisfied the requirements for courses comprising at least 240 credits of which at least 60 credits were awarded in the second-cycle, or
3. has acquired substantially equivalent knowledge in some other way in Sweden or abroad.

The higher education institution may permit an exemption from the general entry requirements for an individual applicant, if there are special grounds.14

Transitional provisions

a) A person with credits or qualifications from undergraduate programmes under the previous higher education system corresponding to the entry requirements above will also be eligible.15 Exemptions from the entry requirements may be made also in these cases, if there are special grounds.

b) A person who meets the general entry requirements for research study programmes (120 credits from undergraduate programmes or corresponding knowledge), before 1 July 2007 will also be considered to meet the general entry requirements for third-cycle courses and study programmes after that, however, until no later than the end of June 2015.17 Exemptions from this provision are not permitted.

12 Higher Education Ordinance, Chapter 7, Section 34
13 Higher Education Ordinance, Chapter 7, Section 35
14 Higher Education Ordinance, Chapter 7, Section 39
15 Point 10, transitional provisions for SFS 2006:1053
16 A person who has completed an undergraduate programme of at least 120 credits, or in some other way, in Sweden or abroad, has acquired substantially corresponding knowledge
17 Point 11, transitional provisions for SFS 2006:1053

Mathematics
2.2 Specific entry requirements

A person meets the specific entry requirements for third-cycle courses and study programmes in the subject with the mathematics specialisation if they have obtained a second-cycle qualification in mathematics or related subjects, or if they as part of their higher education have passed courses in mathematics of at least 120 credits (including an independent project), of which at least 30 credits are from the second cycle.

A person meets the specific entry requirements for third-cycle courses and study programmes in the subject with the mathematics education specialisation if they have obtained a second-cycle qualification in mathematics education or related subjects, or if they as part of their higher education have passed courses of at least 120 credits (including an independent project) in mathematics and mathematics education (or equivalent), of which at least 45 credits are within the respective field and at least 30 credits in total of these are from on the second cycle.

A person who has acquired substantially corresponding knowledge, in Sweden or abroad, also meets the specific entry requirements.

Transitional provisions
A person with credits or qualifications from undergraduate programmes under the previous higher education system corresponding to the entry requirements in the previous paragraph will also be eligible18.

In such cases, the specific entry requirements of 120 credits as outlined above shall correspond to 80 credits under the previous system, including an independent project at the advanced course level/60 credit level or the higher advanced course level/80 credit level. Of these credits, 20 credits shall be at the higher advanced course level/80 credit level.

2.3 Ability in other respects to benefit from the course or study programme

The assessment whether the applicant has such ability in other respects to benefit from the programme shall be made based on prior courses and programmes taken by the applicant, on other previous activities, as well as on the essays and other independent projects of a scholarly nature that have been submitted by the applicant (compare assessment criteria in accordance with the university’s regulations on the selection of doctoral students below).

3 Selection from among the applicants

In selecting between applicants, their ability to benefit from the programme shall be taken into account. The higher education institution determines which assessment criteria shall be used in determining the ability to benefit from the programme.

However, the fact that an applicant is considered able to transfer credits from prior courses and study programmes or for professional or vocational experience may not alone give the applicant priority over other applicants19.

18 Point 10, transitional provisions for SFS 2006:1053
19 Higher Education Ordinance, Chapter 7, Section 41

Mathematics
Assessment criteria for selection

The criteria A - B aim at facilitating an examination of the applicant’s ability to benefit from the programme. They should therefore be relevant to the applicant’s ability to later achieve the learning outcomes of the programme. The outcomes are described in annex 1 to this general syllabus.

A Courses, study programmes and other previous activities – formal qualifications

The assessment is based on submitted certificates and transcripts as well as on degree certificates and/or course certificates.

Completed courses and study programmes and experience contributing to the applicant’s ability to successfully benefit from the programme applied for are considered an additional qualification.

- Courses and study programmes
Special emphasis is given to the scope, depth and grades of the applicant’s prior courses and study programmes within the subject area applied for, particularly the grades on written independent projects.

Emphasis is also given to the scope, depth and grades of prior courses and study programmes within other fields of great relevance to the subject area applied for.

- Other previous activities
Special emphasis is given to long and independent professional and/or vocational experience of great relevance to the subject area applied for.

B Capability – demonstrated knowledge, competence and skills

The assessment is based on a consideration of the applicant’s submitted essays and other written independent projects of a scholarly nature as well as, if determined by the faculty board and laid down in the general syllabus in question, a brief outline of research interests or a more comprehensive research plan. For those applicants who at this stage are considered to be most qualified, and if it is deemed necessary, references will be taken and interviews will be carried out.

It is considered an additional qualification if the applicant demonstrates such knowledge, competence and skills that contribute to them being successfully able to benefit from the programme applied for. These are for example

- sound theoretical, analytic and methodological knowledge;
- sound ability to discuss, in writing and in speech, issues and conclusions;
- intellectual independence; and
- sound ability to carry out advanced tasks within given time frames.

Special emphasis is given to the applicant’s ability to

- identify and formulate realistic and productive research problems;
- integrate knowledge and experience and apply these in ways and in contexts where they have not previously been used; and

20 Local regulations on the selection of doctoral students to third-cycle courses and study programmes etc.
- conduct a dialogue characterised by independence as well as by an ability to cooperate.

C Weighing up qualifications
The fact that an applicant is considered able to transfer credits from prior courses and study programmes or for professional or vocational experience may not alone give the applicant priority over other applicants (Higher Education Ordinance, Chapter 7, Section 41).

When weighing up the assessment criteria A and B, the greatest emphasis is placed on criteria B, Capability.

D Gender equality
If, followed from the above, applicants are found to have equal qualifications, preference will be given to applicants of the sex that is underrepresented among the doctoral students within the subject area21. The underrepresented sex here refers to if and when the share of either female or male students enrolled on the subject area’s third-cycle study programme amounts to less than 40 per cent.

21 Higher Education Act (SFS 1992:1434), Chapter 1, Section 5, second paragraph and other provisions