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1 Introduction

The class of conditional correlation (CC-)GARCH models of financial time series has

become a standard tool for modelling and forecasting correlations between financial returns.

Following the constant conditional correlation (CCC-)GARCH model of Bollerslev (1990)

many parametric extensions have been proposed in the literature on building more flexible

models for describing time-varying conditional correlations. The models introduced by

Tse and Tsui (2002) and Engle (2002) with dynamic conditional correlations postulating

a GARCH-type dynamics on the correlations have become particularly popular among

practitioners. For surveys about these and other multivariate GARCH models, see Bauwens

et al. (2006) and Silvennoinen and Teräsvirta (2009).

As a result of financial market connectivity, the analysis of interdependence and

interactions in volatility is also useful to earn knowledge on how information is transmitted

across markets. Understanding the transmission mechanism of financial market movements

is important for portfolio risk management and for successful hedging and trading strategies.

A large number of studies have documented evidence of interdependence and linkages

across financial markets or assets. Empirical studies providing evidence for volatility

spillovers include Baillie and Bollerslev (1990), King and Wadhwani (1990), Hamao et al.

(1990), Lin et al. (1994), Cifarelli and Paladino (2005), among others.

Despite the extensive literature investigating co-movements between financial markets,

most of research has been focused on the interdependence in terms of the conditional first

moments of the distribution of returns, and less attention has been devoted to exploring

financial interactions in terms of the second moments. A few examples of the former

include Diebold and Yilmaz (2009) who used vector autoregressive methods for examining

the transmission of financial market movements. Chiang and Wang (2011) proposed an

autoregressive range-based volatility model and employed a smooth transition copula

function to further examine financial volatility contagion between financial stock markets

of the G7 countries. Leung et al. (2017) used a linear regression approach to study volatility

spillovers (or interactions) between the GARCH volatilities of equity and exchange rate

markets to equity markets during periods of financial crises. Yet, the findings in Engle
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and Susmel (1993) and Diebold and Yilmaz (2009) suggest that cross-market volatility

interactions convey more insightful information about the dynamics of co-movements

across markets than linkages in returns.

Several specification techniques have been employed in the literature for examining

the dynamics of financial market interdependence, but few attempts to investigating time-

varying volatility transmission mechanism spillovers exist in the literature. An interesting

extension that builds on the assumption of time-invariant correlations in an attempt to

capture volatility spillovers was suggested by Jeantheau (1998) generalizing the diagonal

CCC-GARCH model to the so-called extended (E)CCC-GARCH model wherein dynamic

volatility interactions between markets are allowed in the form of cross-market ARCH

and GARCH effects. Yet recent research found evidence of time-variation and structural

shifts in the transmission mechanisms of shocks to volatility during periods of financial

market distress. The contribution of this work is to propose a new model specification

into this literature. Examples documenting time-varying volatility spillovers can be found

in Karanasos et al. (2014), Jung and Maderitsch (2014), Karanasos et al. (2018) and Liu

and Gong (2020), among others.

While the class of conditional correlation GARCH models has been extensively employed

for quantifying and examining volatility transmission mechanism spillovers, less attention

has been addressed to the misspecification of the GARCH structure of these models, and

the contribution of this paper lies in that direction. Testing the assumption of constant

volatility spillovers between time series is an important specification tool for building

multivariate GARCH models. Modelling volatility spillovers would be only relevant when

the null hypothesis of no interactions is rejected. For a comprehensive discussion of tests

for volatility spillovers see, for example, Hong (2001), Nakatani and Teräsvirta (2009)

and Pedersen (2017). Other specification issues of interest include alleviating the curse of

dimensionality in large systems or developing models whose parametric structure is well

suited for time-varying co-movements across markets.

In the vast existing literature on multivariate volatility models there are yet some

unanswered questions and issues that remain unsolved. Some of these challenges shall be
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addressed in this work as follows. Firstly, the majority of vector GARCH processes have

been designed under the underlying assumption of weak and strict stationarity. However,

the condition of stationarity may not be suitable when modelling economic processes using

a rather long return series given that structural changes may occur over a long time period.

Therefore, our modelling procedure extends the vector GARCH process by allowing a more

flexible specification which accounts for the potential nonstationary nature of volatility.

Secondly, it is well know that the conditional variance tends to change upon the arrival

of market-specific news information or volatility spillovers between different markets, see

e.g. Engle et al. (1990), Tchahou and Duchesne (2013) and Hafner and Herwartz (2006).

Practitioners are particularly interested to understand changes in volatility since these

are closely related to the arrival process of news or the market dynamics in response to

news between markets. Here the strategy is to formulate a parametric specification to

identifying the presence of causality in variance or, alternatively, to test how changes

volatility in a given market affect the volatility in other markets under nonstationarity.

Structural instability in volatility spillovers from periods of market distress to periods

of tranquility has been documented in Karanasos et al. (2014) Karanasos et al. (2018)

and Liu and Gong (2020), among others. One advantage of new parametric specification

over existing ones is its flexibility of modelling the evolutionary behavior of transmission

mechanisms of shocks depending on the state of the economy. Finally, a statistical testing

procedure shall be designed to detect time-varying causality in variance and identify the

direction of causation under the presence of nonstationarity.

This paper contains two novelties. First, we propose a novel extension of the ECCC-

GARCH representation of Jeantheau (1998) suited to model time-varying conditional

variances and cross-market volatility interactions. It is based on decomposing additively

the conditional variance equations into two components, one describing clustering volatility

specified as a measurable function of the past of all elements of the vector of returns, and

another representing the misspecification of the volatility structure. One type of model

misspecification includes omitting a time-dependent component to the extended vector

GARCH model in the form of structural changes in the volatility process. Other types
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of model misspecification in the functional form of the conditional variances could also

be considered. Second, we introduce statistical tests based on the Lagrange multiplier

principle as an useful validation tools to reveal against such type of model misspecification.

Monte Carlo simulations show that the tests have reasonable good size and power in finite

samples.

Our modelling strategy relies on by first testing the adequacy of the specification against

the alternative of the additive time-dependent vector GARCH model and estimating such

nonlinear extension only in case of rejection of the null hypothesis. For numerical simplicity,

we shall adopt the two-step estimation approach proposed by Francq and Zakoïan (2016)

where the univariate conditional variances are estimated equation-by-equation in the first

step and the conditional correlations are estimated in the second step conditionally on the

first step estimates. Finally, we shall illustrate our modelling cycle with an application

to study the dynamics of the co-movements among bond yield returns on the 10-year

government Greek, Irish and Portuguese sovereign markets.

The remaining sections of this paper are organised as follows. Section 2 introduces

the new model and its properties. In Section 3 is discussed the equation-by-equation

estimation of parameters and the asymptotic properties of the quasi-maximum likelihood

estimator (QMLE). Section 4 is devoted to Lagrange multiplier tests for time-varying

volatility interactions. Section 5 presents the modelling strategy of the new specification.

Section 6 presents some evidence of the small sample properties of the statistical tests

by Monte Carlo simulations. In Section 7 we illustrate the functioning of the modelling

strategy to sovereign bond yield returns. Finally, Section 8 concludes the paper.

2 The model and assumptions

Consider the observable stochastic m−dimensional vector of returns

εt = Σ
1/2
t ζt =Dtzt, t = 1, ..., T, (1)
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where the stochastic vector zt = (z1t, ..., zmt)
′ is a sequence of independent random variables

with Ezt = 0 and a positive definite time-varying covariance matrix Eztz
′
t = P t = [ρij,t],

such that ρii,t = 1, ∀i, and ρij,t 6= 0,∀i 6= j, i, j = 1, ...,m. It follows that the error vector

ζt = P
−1/2
t zt ∼ iid(0, Im), where Im is the (m ×m) identity matrix. Without loss of

generality, we assume the conditional mean of the vector of returns to be equal to zero.

The conditional covariance matrix Σt = [σij,t] of εt is assumed to be multiplicatively

decomposed in the usual fashion:

Σt =DtP tDt (2)

where Dt = diag(σ1(t/T ), . . . , σm(t/T )) is a diagonal matrix of conditional standard

deviations of the process εt, T is the sample size, and P t = [ρij,t] is the conditional

correlation matrix for εt whose elements ρij,t can be time varying for ∀i 6= j. Each

component σi(t/T ), i = 1, ...,m, is a smooth time-dependent function describing structural

changes in the conditional variance. With these assumptions, the vector process εt is a

martingale-difference

E(εt|Ft−1) = 0 (3)

with a symmetric conditional covariance matrix defined as

E(εtε
′
t|Ft−1) = Σt (4)

where Ft−1 is the σ−algebra generated by the past information about εt available at time

t− 1.

In this paper, we generalise the class of conditional correlation GARCH models

by introducing nonstationarity in the own-market volatility process and cross-market

volatility interactions. We shall rely on statistical inference to specify the most appropriate

parameterization of σ2
i (t/T ) so that it captures completely the past information. More

details about the statistical test shall be discussed in Section 4. We assume that σ2
t =
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(σ2
1t, ..., σ

2
mt)
′ is defined as a time-varying representation measurable with respect to Ft−1

with the additive decomposition:

σ2
t = ht + gt (5)

where ht is the stationary component allowing for volatility interactions across markets and

gt is the time-dependent volatility component of rescaled time. This rescaling technique

for the calendar time is useful for obtaining a meaningful asymptotic theory (Dahlhaus

and Rao (2006)), but establishing the asymptotic properties of the maximum likelihood

estimators is beyond the scope of this paper.

LetAr andBs be (m×m) matrices with positive entries, whereAr = (α′1,r, . . . ,α
′
m,r)

′,

with αi,r = (αi1,r, ..., αim,r) is the ith row of Ar, and Bs = (β′1,s, . . . ,β
′
m,s)

′, with βi,s =

(βi1,s, ..., βim,s) is the ith row of Bs. Setting ht = (h1t, ..., hmt)
′ we assume the stationary

component ht to have the following vector GARCH (p, q) representation:

ht = ω +

q∑
r=1

Arε
2
t−r +

p∑
s=1

Bsht−s (6)

where ε2t = (ε21t, ..., ε
2
mt)
′ and ω is an (m × 1) vector of intercepts with strictly positive

entries.

To introduce time-variation in the volatility dynamics, we define the nonstationarity

component gt as follows:

gt =

(
ω∗ +

q∑
r=1

A∗rε
2
t−r +

p∑
s=1

B∗sht−s

)
G(t/T ) (7)

where gt = (g1t, ..., gmt)
′ is a m× 1 stochastic time-varying vector, ω∗ is an m× 1 intercept

vector, A∗r = (α∗′1,r, . . . ,α
∗′
m,r)

′, with α∗i,r = (α∗i1,r, ..., α
∗
im,r) is the ith row of A∗r, and B

∗
s are

(m×m) matrices, and G(t/T ) = diag(G1(t/T ; γ1, c1), . . . , Gm(t/T ; γm, cm)) is a diagonal

matrix of m transition functions defined below in (8). Further simplification of the model is

possible by letting Bs and B∗s to be diagonal to alleviating the computational burden and

reducing dimensionality without preventing the high-dimensional property of the model.

In what follows, we shall assume Bs = diag(β11,s, ..., βmm,s) and B∗s = diag(β∗11,s, ..., β
∗
mm,s)
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while keeping the specification of the correlation matrix fairly general. Each component of

the matrix G(t/T ) is represented by the general logistic transition function Gi(t/T ; γi, ci),

i = 1, ...,m, with the form

Gi(t/T ; γi, ci) =

(
1 + exp

{
−γi

ki∏
k=1

(t/T − cik)

})−1
, γi > 0, ci1 < · · · < ciki (8)

where ci = (ci1, . . . , ciki)
′ is the vector of ki location parameters. The function Gi(t/T ; γi, ci)

is continuous for γi < ∞ and bounded between zero and one. By construction, when

γi = 0 for all i = 1, . . . ,m, the model collapses into the augmented GARCH specification

of Francq and Zakoïan (2016). The parameters ci and γi determine the location and the

speed of transition from one state to another. For smaller values of γi, the changes between

volatility regimes are smooth, but when γi → ∞, structural breaks can be identified

at cik, k = 1, . . . , ki. The dimension of ci is determined by testing a sequence of nested

hypothesis as in Lin and Teräsvirta (1994) and Teräsvirta (1994). Equations (1)-(8) jointly

define the time-varying extended conditional correlation (TV-ECC-) GARCH model. The

modelling strategy for building the TV-ECC-GARCH model is similar to the specific-to-

general strategy for nonlinear models of the conditional mean considered in, among others,

Teräsvirta (1998a) and Teräsvirta et al. (2010). Details shall be considered in Section B in

the Supplementary Appendix.

Furthermore, we assume that the following conditions are satisfied:

Assumption 1. The true vector of parameters θ0 ∈ Θ lies in the interior of the compact

parameter space Θ.

Assumption 2. The log-likelihood has a unique maximum at the true parameter vector

θ0 ∈ Θ.

Assumption 3. The error terms zi,t ∼ iid with E[zi,t|Ft−1] = 0, E[z2i,t|Ft−1] = 1, i =

1, ...,m. In addition, E|z2(2+φ)i,t | <∞ for some φ > 0 and i = 1, ...,m.

Assumption 4. The elements of G(t/T ) satisfy infτ∈ΘGi(t/T ; γi, ci) ≥ Gmin > 0, for

i = 1, ...,m.
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Assumption 5. The slope parameters and the location parameters satisfy, respectively,

the identification restrictions γi > 0 and ci1 < · · · < ciki , i = 1, ...,m.

Assumption 6. P t is a positive-definite correlation matrix for all θ0 ∈ Θ.

Remark 1. Assumptions 1 and 2 are standard regularity conditions. The "fourth-moment

restriction" in Assumption 3 is necessary to guarantee the existence of the variance of

the score. Assumption 4 is required for positivity and boundedness of the deterministic

component git, i = 1, ...,m. The conditions in Assumption 5 are identification restrictions

required for the existence of a unique maximum value for the log-likelihood function.

Assumption 6 is needed for positive definiteness of Σt.

Many different forms of parameterizations are possible for P t. We shall focus on the

constant correlation structure, that is, P t = P , when deriving the misspecification test

of the GARCH equations in Section 4. The above formulation nests the special case

of the extended constant conditional correlation (ECCC-)GARCH model in Jeantheau

(1998). The assumption of nonnegative volatility parameters is a sufficient condition for

ensuring the positive definiteness of the conditional covariance matrix in this specification;

for references see the Definition 3.1 in Jeantheau (1998), the Assumption 3 in Ling and

McAleer (2003) and the Section 3 in Francq and Zakoïan (2012). In order to allow for

negative volatility spillovers, we refer to the conditions derived in Conrad and Karanasos

(2010).

A very flexible model can be obtained by letting the specification of P t unspecified. An

often used parsimonious specification for the correlation matrix is defined by the dynamic

conditional correlation (DCC-) GARCH model of Engle (2002). Alternatively, we allow

the unconditional correlations to change smoothly between two extreme states as in the

smooth transition conditional correlation model of Silvennoinen and Teräsvirta (2005,

2015).

Remark 2. Positive definiteness of Σt is ensured provided that the conditional variances

σ2
i (t/T ) are strictly positive and P t is a well-behaved correlation matrix. The additional

conditions that elements of ω+ω∗ are positive, and the elements of Ar+A
∗
r and diag(Bs+
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B∗s), r = 1, . . . , q, s = 1, . . . , p are non-negative are sufficient to guarantee σ2
i (t/T ) > 0,

for all i = 1, ...,m. When these constraints are satisfied and P t is positive definite, the

matrix Σt is positive definite almost surely for all t.

3 Equation-by-equation estimator

3.1 The log-likelihood function

We begin by introducing some notation. Let the parameter vector θ be partitioned into

θ = (ϑ′,ρ′)′, where ϑ denotes the volatility parameter vector and ρ = vecl(P t) is the

m(m− 1)/2-dimensional vector of correlation parameters, where the operator vecl stacks

the lower off-diagonal elements of the symmetric m × m matrix P t. The vector ϑ is

further partitioned into ϑ = (φ′,ϕ′)′, where φ = (φ′1, ...,φ
′
m)
′ and ϕ = (ϕ′1, ...,ϕ

′
m)
′ are

vectors containing the parameters in ht and gt, respectively. Assume that the vector ϕ is

decomposed into ϕ = (ψ′, τ ′)′, where ψ = (ψ′1, ...,ψ
′
m)
′ and τ = (τ ′1, ..., τ

′
m)
′. For each

i, i, j = 1, ...,m, denote φi = (ωi, α
′
i1, . . . , α

′
im, β

′
i)
′, where αij = (αij,1, . . . , αij,q)

′ and

βi = (βii,1, . . . , βii,p)
′, ψi = (ω∗i , α

∗′
i1, . . . , α

∗′
im, β

∗′
i ), where α∗ij = (α∗ij,1, . . . , α

∗
ij,q)

′,

β∗i = (β∗ii,1, . . . , β
∗
ii,p)

′, and τ i = (γi, ci)
′ with ci = (ci1, . . . , ciki)

′. The identity matrix

Im is of size m×m. Furthermore, assume the subscript 0 denotes quantities evaluated

at the true parameter values and the "hat" denotes the maximum likelihood estimator

under the null hypothesis. Thus, the true parameter vector equals θ0 = (ϑ′0,ρ
′
0)
′, where

ϑ0 = (φ′0,ϕ
′
0)
′.

Under the assumption of normality, εt|Ft−1 ∼ N (0,Σt), the log-likelihood function for

observation t conditional on the initial values can be expressed as

LT (θ) =
T∑
t=1

`t(θ) =
T∑
t=1

m∑
i=1

`it(θ), `t(θ) =
m∑
i=1

`it(θ) (9)
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where

LT (θ) = −(mT/2) ln(2π)− (1/2)
T∑
t=1

ln |Σt| − (1/2)
T∑
t=1

ε′tΣ
−1
t εt

= −(mT/2) ln(2π)−
T∑
t=1

ln |Dt| − (1/2)
T∑
t=1

ln |P t| − (1/2)
T∑
t=1

z′tP
−1
t zt.(10)

Maximising LT (θ) =
∑T

t=1

∑m
i=1 `it(θ) with respect to θ yields the quasi-maximum

likelihood estimator (QMLE) θ̂T :

θ̂T = arg max
θ0∈Θ

LT (θ) (11)

Equation (46) implies the following decomposition of the log-likelihood function for

observation t, equation i:

`it(φ,ϕ,ρ) = `Vit (φ,ϕ) + `Ct (φ,ϕ,ρ) (12)

Using decomposition (12), maximum likelihood estimation of θ can be carried out in two

steps similarly to the two-step approach suggested by Engle (2002) for estimating the

DCC-GARCH model. Yet, due to the higher-dimensional parameter space, the estimation

of parameters by full maximum likelihood is time-demanding and numerically challenging.

One solution to alleviate the computational burden is to apply the equation-by-equation

estimation suggested by Francq and Zakoïan (2016). The assumption of diagonality

of Bs and B?
s enables the estimation of the variance equations separately allowing for

cross-market volatility interactions. This formulation facilitates the estimation of the

model even when the covariance matrix is of large dimension. The equation-by-equation

estimation proceeds in two steps:
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1. Estimate φi and ϕi equation-by-equation by maximising

LViT (φi,ϕi) =
T∑
t=1

`Vit (φi,ϕi)

=− (1/2)
T∑
t=1

{
ln(2π) + ln(hit(φi) + git(ϕi)) +

ε2it
hit(φi) + git(ϕi)

}
(13)

with respect to φi and ϕi for each i, i = 1, . . . ,m, separately. This yields the

estimators φ̂iT and ϕ̂iT , i = 1, ...,m.

2. After estimating the volatility equations, obtain ρ̂ given φ̂iT and ϕ̂iT by maximising

LCT (ρ|φ̂T , ϕ̂T ) = −(1/2)
T∑
t=1

{
ln |P t(ρ)|+ z′tP−1t (ρ)zt − z′tzt

}
(14)

where zt = (z1t, ..., zmt)
′ with zit = εit/(hit(φ̂iT ) + git(ϕ̂iT ))

1/2, i = 1, ...,m.

The two-step estimation of the time-varying extended conditional correlation GARCH

requires careful definition of the score and the Hessian of the log-likelihood function. For

space considerations, the analytical expressions of the first and second derivatives of the

log-likelihood function are given in the Appendix.

3.2 Asymptotic properties

Under mild regularity conditions, Ling and McAleer (2003) established consistency and

asymptotic normality of the QMLE for the general class of vector ARMA-GARCH

models (without any diagonality assumption) with constant conditional correlations.

Moreover, strict stationarity and ergodicity are also proved for these models. In a

restricted formulation, consistency of the QMLE estimator for the ECCC-GARCH model

was established by Jeantheau (1998) and the condition for the existence of the fourth-order

moment was derived by He and Teräsvirta (2004). Recently, Francq and Zakoïan (2016)

showed strong consistency and asymptotic normality of the equation-by-equation estimator

of the augmented GARCH model with constant conditional correlations. They show that
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when the errors differ from the normal distribution, the equation-by-equation estimator

is also asymptotically more efficient than the quasi-maximum likelihood approach when

the parameters are jointly estimated. The asymptotic results of the second-step of the

equation-by-equation estimator need yet to be further investigated.

Since under the null of constant volatility interactions, our model with constant

conditional correlations collapses into the augmented GARCH model of Francq and

Zakoïan (2016), we can rely on their following result. Under suitable assumptions and

regularity conditions, the asymptotic distribution of the equation-by-equation estimator is

√
T (θ̂T − θ0)

d→ N (0,J −1T (θ0)IT (θ0)J −1T (θ0)) (15)

where IT (θ0) and JT (θ0) can be consistently estimated by

IT (θ̂T ) = (1/T )
T∑
t=1

st(θ̂T )st(θ̂T )
′ (16)

and

JT (θ̂T ) = −(1/T )
T∑
t=1

∂2`t(θ̂T )

∂θ∂θ′
, (17)

respectively. If we further assume zt|Ft−1 ∼ N (0,P), then IT (θ0) = −E[JT (θ0)] and the

asymptotic covariance matrix reduces to I−1T (θ0).

Extending their asymptotic results to our model is a nontrivial problem and beyond the

scope of the present paper. For inference, we shall assume that the asymptotic distribution

of the equation-by-equation estimator is normal. It then follows that

√
T (θ̂T − θ0)

d→ N (0, I−1T (θ0)). (18)
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4 Testing the adequacy of the extended vector GARCH

model

In this section, first we shall introduce a statistical test against a general form of additive

misspecification in the extended vector GARCH process and thereafter we focus our

attention on the specific form of tests for parameter constancy against smooth changes in

the conditional variance equations.

4.1 The general misspecification test

One may expect that over a long observation period, certain economic, environmental

and social events affecting the financial institutions cause the structure of volatility to

change over time. Similarly, volatility transmissions between markets are very likely to

behave differently across tranquil and turbulent times. It thus seems inappropriate to

assume that the parameters remain constant when the series of returns to be modelled

is long. Testing the constancy of parameters is therefore an important statistical tool

to validate the specification of the estimated model. A rejection of the hypothesis of

parameter constancy against an additive time-dependent vector GARCH model might be

seen as evidence of the hypothesis of time-varying volatility parameters. Of course, other

types of misspecification are also possible. Since the rejection of the null hypothesis does

not imply that the data have been generated by the time-varying extended conditional

correlation (TV-ECC-) GARCH model, the LM-type test can be viewed as a general

misspecification test for multivariate GARCH models.

We shall start with the general misspecification hypothesis for which tests against

specific alternatives can be easily derived and then we present explicit formulas for the

alternative of interest. In order to shorten the notation, let hit = hit(φi) and git = git(ϕi),

i = 1, ...,m, where the additional component git is an Ft−1−measurable function depending

on the additional parameters ϕi. In what follows, assume that the true process of the
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conditional variance is additively misspecified by introducing a new component

εit = σitzit, i = 1, ...,m (19)

σ2
it = hit(φi) + git(ϕi), (20)

where the errors zit form a sequence of independent random variables with mean zero and

variance one, for each i = 1, ...,m. The function git = git(ϕi) is at least twice continuously

differentiable with respect to ϕi, such that under the null hypothesis git(ϕi) = 0 if and

only if ϕi = 0. Since Dt is diagonal, it follows that the Gaussian quasi-log-likelihood

function (??) is further simplified to

`it(θ) = −(1/2){ln 2π + ln{hit(φi) + git(ϕi)}+
ε2it

hit(φi) + git(ϕi)
}. (21)

The average score of (21) is partitioned as

s(ϑi) = (sφ(ϑi)
′, sϕ(ϑi)

′)′ (22)

where

s(ϑi) = (1/T )
T∑
t=1

∂`it(θ)

∂ϑi
= (2T )−1

T∑
t=1

(z2it − 1)xit. (23)

The components of (23) are

sφ(ϑi) = (1/T )
T∑
t=1

∂`it(ϑ)

∂φi
= (2T )−1

T∑
t=1

(z2it − 1)x1i,t = (2T )−1
T∑
t=1

(z2it − 1)
1

hit + git

∂hit
∂φi

,

(24)

and

sϕ(ϑi) = (1/T )
T∑
t=1

∂`it(θ)

∂ϕi
= (2T )−1

T∑
t=1

(z2it − 1)x2i,t = (2T )−1
T∑
t=1

(z2it − 1)
1

hit + git

∂git
∂ϕi

,

(25)

where zit = εit/(hit + git)
1/2 and xit = (x′1i,t,x

′
2i,t)

′, with x1i,t = (hit + git)
−1(∂hit/∂φi) and

x2i,t = (hit + git)
−1(∂git/∂ϕi).

Setting ĥit = hit(φ̂iT ), ĝit = git(ϕ̂iT ) and ẑit = εit/(ĥit + ĝit)
1/2, the average score
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evaluated at ϑ̂T under the null hypothesis yields

s(φ̂iT ,0) = (0′, sϕ(φ̂iT ,0)
′)′ (26)

where

sϕ(φ̂iT ,0) = (2T )−1
T∑
t=1

(ẑ2it − 1)x̂2i,t|H0i
(27)

is the relevant (nonzero) block in the LM test statistic. It follows that, under regularity

conditions, φ̂iT −→ φi0 and ϕ̂iT −→ ϕi0 in probability as T −→∞.

Denoting

IiT (ϑ0) = Es(φi0,0)s(φi0,0)
′ =

Iφφ,i(ϑ0) Iφϕ,i(ϑ0)

Iϕφ,i(ϑ0) Iϕϕ,i(ϑ0)

 (28)

the corresponding south-east block of the inverse of IiT (ϑ̂T ) evaluated under the null

equals

{
IiT (ϑ̂T )

}−1
[ϕi,ϕi]

=
{
Iϕϕ,i(ϑ̂T )− Iφϕ,i(ϑ̂T )I−1φφ,i(ϑ̂T )Iϕφ,i(ϑ̂T )

}−1
, (29)

where Iνκ,i(ϑ̂T ), ν, κ = φ,ϕ, is a consistent plug-in estimator of Iνκ,i(ϑ0). The subscripts

ν and κ indicate the blocks defined by the block structure of IiT (ϑ0). Assuming zit is

normal, then

Iνκ,i(ϑ̂T ) = (2T )−1
T∑
t=1

v̂νt,iv̂
′
κt,i, ν, κ = φ,ϕ, (30)

is a consistent estimator of Iνκ,i(ϑ0) under H0, where v̂νt,i = ĥ−1it ∂ĥit/∂νi and v̂κt,i =

ĝ−1it ∂ĝit/∂κi. Theorem 1 presents the univariate LM-type statistic for the test against a

general additive alternative. Specific alternatives for the test can be easily adapted into

our framework, where ẑit, v̂νt,i, and v̂κt,i, ν, κ = φ,ϕ, have to be modified accordingly.

Theorem 1 (Univariate test statistic). Consider the model (19)-(20) and assume

that the standard regularity conditions hold. Furthermore, assume that under the null

hypothesis H0i : ϕi = 0, the function git = git(ϕi) ≡ 0 and the appropriate estimates for
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xit = (x′1i,t,x
′
2i,t)

′ are defined as x̂1i,t = h−1it (φ̂iT )
∂hit(φ̂iT )

∂φi
|H0i

, x̂2i,t = h−1it (ϕ̂iT )
∂git(ϕ̂iT )
∂ϕi

|H0i
,

and ζ̂it = ε2it/hit(φ̂iT )− 1. Let ϑ̂T be a consistent estimator of ϑ0. Then, under the null

hypothesis H0i : ϕi = 0, the LM type statistic for the volatility equation i

ξLMi = (1/2)
T∑
t=1

ζ̂itx̂
′
2i,t

{
IiT (ϑ̂T )

}−1
[ϕi,ϕi]

T∑
t=1

ζ̂itx̂2i,t (31)

is asymptotically χ2-distributed with dim(ϕi) degrees of freedom.

In practice, an asymptotically equivalent test to the LM test in Theorem 1 may be

carried out in a straightforward way using auxiliary least squares regressions as follows:

1. Estimate φi by maximum likelihood under H0i and compute ζ̂it = ε2it/ĥit − 1,

x̂1i,t =
1

ĥit

∂ĥit
∂φi
|H0i

and x̂2i,t =
1

ĥit

∂ĝit
∂ϕi
|H0i

for t = 1, . . . , T .

2. Regress ζ̂it on x̂1i,t and x̂2i,t, t = 1, . . . , T, and obtain the coefficient of determination

R2
i .

3. Under the null hypothesis, the test statistic

ξLMi = T ×R2
i (32)

has an asymptotic χ2 distribution with dim(ϕi) degrees of freedom.

Note that the partial derivatives ∂ĥit/∂φi|H0i
and ∂ĝit/∂ϕi|H0i

are computed recursively,

where it is assumed ε2i0 = hi0 = T−1
∑T

t=1 ε
2
it, i = 1, . . . ,m, as the initial values in the

recursion.

To further examine whether the coefficients of the additive component in the augmented

version of equation (20) for each i = 1, ...,m, are jointly zero, we propose a multivariate

version of the LM-type test statistics (31) or (32). The general procedure involves testing

the joint hypothesis of no additive misspecification in the system of variance equations, so

that a rejection of the null hypothesis is evidence of model misspecification. The extension

of the univariate case to the multivariate case is straightforward and the multivariate test

statistic is presented in the Corollary 4.1.
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Corollary 4.1 (Multivariate test statistic). Consider the model (19)-(20) and assume

that the standard regularity conditions hold. Due to the block-diagonality of the information

matrix, under the null hypothesis H0 : ϕ = 0, the multivariate LM-type statistic defined by

ξLM =
m∑
i=1

ξLMi (33)

where ξLMi is given by (31) or (32) for each i = 1, ...,m, has an asymptotic χ2 distribution

with dim(ϕ) degrees of freedom.

The robust versions of the univariate and multivariate test statistics to non-normal

innovations can be constructed using the procedure by Wooldridge (1990, 1991). The

results of Wooldridge enable us to construct test statistics robust to deviations from

distributional assumptions. The approach to calculating the robust univariate test statistic

proceeds as follows:

1. Estimate φi consistently by maximum likelihood under the null hypothesis and

compute ζ̂it = ε2it/ĥit − 1, x̂1i,t =
1

ĥit

∂ĥit
∂φi
|H0i

and x̂2i,t =
1

ĥit

∂ĝit
∂ϕi
|H0i

for t = 1, . . . , T.

2. Regress x̂2i,t on x̂1i,t, t = 1, ..., T, and save the vector of residuals r̂it from the

regression.

3. Regress 1T on ζ̂itr̂it, t = 1, ..., T, and compute the residual sum of squares RSSi.

Under H0i, the robust statistic

ξrobi = T −RSSi (34)

has an asymptotic χ2 distribution with dim(ϕi) degrees of freedom.

For the robust multivariate statistic, repeat the previous steps 1−3, for all i = 1, ...,m,

and compute the LM-type test statistic

ξrob =
m∑
i=1

ξrobi (35)

which is asymptotically χ2−distributed with dim(ϕ) degrees of freedom.
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4.2 Testing for smoothly time-varying volatility and spillovers

We now consider specific alternatives belonging to the general misspecification test pre-

sented in Section 4.1. We begin by deriving the test for parameter constancy against the

alternative of a smoothly time-varying augmented GARCH model and next we focus on

the volatility-based statistical test of co-movements within this class of models.

In order to derive the misspecification test statistic rewrite the variance equation (20)

as:

σ2
it = ωi +

m∑
j=1

αijε
2
j,t−1 + βiσ

2
i,t−1 +

(
ω∗i +

m∑
j=1

α∗ijε
2
j,t−1 + β∗i σ

2
i,t−1

)
G̃it(t/T ; γi, ci)(36)

where, for simplicity, we restrict our discussion to the case when the augmented GARCH

component is of order one (pi = qi = 1) in (6)-(7) since first-order models describe well

the majority of financial applications. For notational convenience, we let G̃it(t/T ; γi, ci) =

Git(t/T ; γi, ci)− 1/2 without losing generality.

The null hypothesis of parameter constancy against smoothly time-varying volatility

corresponds to testing H0i : γi = 0 against H1i : γi > 0 in (36). When γi = 0 holds, the

parameters ω∗i , α∗ij, β∗i and ci, j = 1, . . . ,m, constitute a vector of unidentified nuisance

parameters. We circumvent the identification problem by approximating G̃it(t/T ; γi, ci)

with its first-order Taylor expansion evaluated at γi = 0 as in Luukkonen et al. (1988).

Using Taylor’s theorem, we obtain

G̃it(t/T ; γi, ci) =

ki∑
k=0

γi(t/T )
kc̃ik +Rit(t/T ; γi, ci) (37)

where Rit(t/T ; γi, ci) is the remainder term. Replacing G̃it(t/T ; γi, ci) in (36) by (37) and

rearranging terms, gives

σ2
it = κi+

m∑
j=1

aijε
2
j,t−1+biσ

2
i,t−1+

ki∑
k=1

(t/T )k

(
κ∗ik +

m∑
j=1

a∗ijkε
2
j,t−1 + b∗ikσ

2
i,t−1

)
+Rit(t/T ; γi, ci)

(38)

where the parameters are functions of the original ones in (36). Under H0i, the remainder
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Rit(t/T ; γi, ci) = 0, so that the remainder does not affect the asymptotic null distribution

of the test statistic. Using (38) we can transform the original testing problem into testing

against the following approximate alternative:

εit = σitzit, zit ∼ iid(0, 1), i = 1, ...,m, (39)

where

σ2
it = κi +

m∑
j=1

aijε
2
j,t−1 + biσ

2
i,t−1

+

ki∑
k=1

κ∗ik(t/T )
k +

m∑
j=1

ki∑
k=1

a∗ijk(t/T )
kε2j,t−1 +

ki∑
k=1

b∗ik(t/T )
kσ2

i,t−1 (40)

Model (39)-(40) reduces to the null model under the auxiliary null hypothesis of

parameter constancy:

H0i : κ
∗
ik = a∗ijk = b∗ik = 0, j = 1, . . . ,m, k = 1, ..., ki. (41)

The following corollary defines the test statistic for testing the null hypothesis in (41).

Corollary 4.2. Consider the model (39)-(40) and let φi = (κi, a
′
i, bi)

′ with ai = (ai1, ..., aim)
′

and ϕi = (κ∗′i , a
∗′
i1, ..., a

∗′
im,b

∗′
i )
′ with κi = (κi1, ..., κiki)

′, a∗ij = (a∗ij1, ..., a
∗
ijki

)′ and bi =

(bi1, ..., biki)
′, i, j = 1, ...,m, k = 1, ..., ki. In addition, denote υit = (1, ε2′t−1, σ

2
i,t−1)

′,

εt = (ε1t, ..., εmt)
′, Z1i,t = [(t/T )kε2j,t−1] (j = 1, ...,m, k = 1, ..., ki) and Z2i,t = [(t/T )kσ2

i,t−1]

(i = 1, ...,m, k = 1, ..., ki). Under H0 : ϕi = 0, the LM-type statistic (31), where

x̂i1,t =
1

ĥit

∂ĥit
∂φi
|H0i

= σ̂2
−1
it (υ̂it + bi

∂σ̂2
i,t−1

∂φi
|H0i

) (42)

x̂i2,t =
1

ĥit

∂ĝit
∂ϕi
|H0i

= σ̂2
−1
it

(
((t/T ), ...., (t/T )ki , (vecZ1i,t)

′, (vecZ2i,t)
′)′ + bi

∂σ̂2
i,t−1

∂ϕi
|H0i

)(43)

is asymptotically χ2-distributed with dim(ϕi) degrees of freedom.
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5 Specification strategy of additive extended GARCH

models

We design a model-building cycle for the TV-ECC-GARCH model identical to the specific-

to-general strategy for nonlinear models recommended by Granger (1993) and Teräsvirta

(1998b), among others. The technique involves a sequential procedure for specifying the

parameterization of the volatility component and determining the shape of the transition

function using a sequence of LM-type tests. Formal asymptotic theory for these tests is not

yet available, and thereafter we assume the test statistics to approximate the chi-squared

distribution. The modelling cycle for specifying additive extended GARCH models consists

of the following stages:

1. Estimate the extended GARCH model as in Francq and Zakoïan (2016). The

determination of the lag structure may be done using a model selection criterion.

This may be preceded by testing the null hypothesis of no volatility interactions as

in Nakatani and Teräsvirta (2009) and Pedersen (2017).

2. Test parameter constancy against the additive time-dependent vector GARCH model

(TV-ECC-GARCH) alternative using the LM-type statistic described in Section 4.2

at the significance level α(1): HTV-ECC
0i : κ∗ik = a∗ijk = b∗ik = 0, j = 1, . . . ,m, k =

1, ..., ki. in (36) in Section 4.2. If HTV-ECC
0i is rejected, then select the order k ≤ 3 in

the exponent of Git(t/T ; γi, ci) based on a sequence of nested tests as in Teräsvirta

(1994). This is done by testing the following sequence of nested hypotheses:

H03i : ϕi3 = 0

H02i : ϕi2 = 0 | ϕi3 = 0

H01i : ϕi1 = 0 | ϕi2 = ϕi3 = 0

where ϕik = (κ∗ik, a
∗
i1k, . . . , a

∗
imk, b

∗
ik)
′, i = 1, . . . ,m, k = 1, 2, 3, by means of LM-type

tests using auxiliary regressions. The choice of k proceeds as follows. Carry out

the three sequential tests and observe the hypotheses rejected. If H01i and H03i are
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rejected more strongly, measured by p-values, than H02i, then select either k = 1 or

k = 3. If testing H02i yields the strongest rejection, then select k = 2.

3. If parameter constancy is rejected, then sub-hypotheses are tested to determine

whether the TV-ECC-GARCH model is necessary to characterize the data or either

whether a model with a subset of time-varying parameters is sufficient. The statistical

tests are conducted using the significance level α(2) = τα(1), where τ ∈ (0, 1). Here

we set τ = 0.5. In what follows, assume the partitioned vector ϕik = (ϕ′ik,1,ϕ
′
ik,2)

′,

where ϕik,1 = (κ∗ik, a
∗
ik, b

∗
ik)
′ denotes the vector of standard GARCH parameters and

ϕik,2 = {a∗ijk}, i 6= j, j = 1, . . . ,m, k = 1, 2, 3, denotes the cross-market ARCH

coefficients. In order to identify individual changes in the dynamics of volatility (or

co-volatility) for a subset of return series, we shall proceed as follows:

(a) Test the hypothesis of parameter constancy in the standard GARCH coefficients

HTV-VOL
0i,1 : ϕi1,1 = ϕi2,1 = ϕi3,1 = 03 | ϕi1,2 = ϕi2,2 = ϕi3,2 = 0.

(b) Test the hypothesis of parameter constancy in the cross-market ARCH coeffi-

cients

HTV-CO-VOL
0i,2 : ϕi1,2 = ϕi2,2 = ϕi3,2 = 0 | ϕi1,1 = ϕi2,1 = ϕi3,1 = 0.

(c) If either HTV-VOL
0i,1 or HTV-CO-VOL

0i,2 is rejected, then select k = 1, 2, 3, by testing

the following sequence of nested hypotheses at the significance level α(3) = τα(2):

H03i,s : ϕi3,s = 0 | ϕik,r = 0

H02i,s : ϕi2,s = 0 | ϕik,r = 0 and ϕi3,s = 0

H01i,s : ϕi1,s = 0 | ϕik,r = 0 and ϕi3,s = ϕi2,s = 0,

for r 6= s, r, s = 1, 2, by means of auxiliary regressions as before. Rejection of

H0i,2 provides evidence for time-varying cross-market ARCH effects revealing
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changes in volatility spillovers between the returns.

An appealing feature of this testing approach is that it makes it possible to identify

individual changes in the volatility dynamics (or co-volatility) for a subset of return

series. As a result, statistical evidence of time-varying volatility parameters is

a necessary, yet not a sufficient condition for volatility-based spillovers. In this

framework, rejecting the null hypothesis suggests that the volatility parameters are

jointly time-varying, but it does not imply that every coefficient is changing over time.

As a matter of fact, the hypothesis for parameter constancy can be rejected when

structural changes occur in the volatility dynamics but the co-volatility parameters

remain constant.

6 Small sample properties

6.1 Design of the experiments

In this section, we investigate by Monte Carlo simulations the finite sample behaviour of

the tests presented in Section 4. We shall first report the empirical size and the power

results of the parameter constancy tests. Thereafter, we carry out several robustness

checks regarding the implementation of the tests. The experiments are conducted for

the bivariate, trivariate and five-variate cases, that is, for m = 2, 3, 5. We generated 5000

replications at sample sizes T = 1000, 2500 and 5000 for each data generating process

(DGP). The first 1000 generated observations from each data set have been discarded

to reduce initialization effects. For the size simulations we use the bivariate extended

conditional constant correlation GARCH model of Jeantheau (1998) whose volatility

component is given by

ht = ω + A1ε
2
t−1 + B1ht−1 (44)

where we restrict the matrix of GARCH parameters B1 to be diagonal and we let the

conditional correlation parameter ρ12 to vary between 0.3 and 0.9. The generated data

satisfy the weak stationarity condition established in Jeantheau (1998) where the spectral
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radius of A + B, denoted by λ(A + B), is smaller than unity. For the power simulations

we use the extended version of (44) with time-varying parameter matrices where the model

is specified as

ht = ω + A1ε
2
t−1 + B1ht−1 +

(
ω∗ + A∗1ε

2
t−1 + B∗1ht−1

)
G(t/T ) (45)

where A and A∗ are non-diagonal matrices of ARCH coefficients, B and B∗ are diagonal

matrices of GARCH coefficients and G(t/T ) is the diagonal matrix of logistic transition

functions defined in (8). Only parameter combinations satisfying the sufficient conditions

for weak stationary in each extreme volatility state are considered. All computations have

been carried out using the open-source statistical software package R.

6.2 Size simulations

To illustrate the behaviour of the parameter constancy test in small samples we present

the results from the size simulations. The data generated processes (DGPs) from four

bivariate ECC-GARCH(1,1) models used in the size simulations are reported in Table

1. The artificial series have the following dynamics. The persistence in volatility varies

from moderate (0.905) in DGP 1-2 to very high (0.992) in DGP 4. DGPs 2 and 4 have

low correlations (ρ12=0.3) with moderate and very high persistence, respectively, while

DGP 3 is characterised by higher cross-market volatility interactions and high correlations

(ρ12=0.9). The simulation study shows that the non-robust tests are severely-size distorted

and the robust statistics clearly outperform their non-robust versions. These simulations

are available upon request. For the sake of saving space, we only report the actual rejection

frequencies for the robust tests statistics when T = 2500, 5000.

Size discrepancy plots for the robust tests statistics are displayed in Figure 1. The figures

show the size discrepancies, that is, the differences between the actual rejection frequencies

and the nominal sizes (vertical axis) plotted against the nominal sizes (horizontal axis).

As expected, the size distortions decrease with the number of observations but increase

with the level of persistence in volatility. Furthermore, size distortions tend to increase
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with the level of correlation and decrease with the magnitude of the volatility interactions.

Overall, the robust tests have reasonably good size in finite samples with the exception

of DGP1 characterised with high correlation and small volatility interactions where size

is largely distorted. Thus, the test may tend to reject more often when the correlations

are large and interactions are small. Looking at the results of the multivariate test, the

empirical size is also distorted to some extent. The size properties of the tests suggest that

the asymptotic distribution of the test statistics may be a poor approximation of their true

distribution in some situations. In order to improve inference and obtain well-behaved

tests, bootstrap procedures may be used in order to mitigate the poor size properties in

those cases.

6.3 Power simulations

In this section we present the results from the power simulations for the robust test

statistics. There is no direct benchmark at which we can compare our tests, but it may be

interesting to investigate their power in small samples. We simulate the bivariate model

under the alternative using four alternative specifications. The DGPs from (45) are listed

in Table 2. The upper panel defines the volatility structure in the first extreme state which

is common to all DGPs and from where parameters change to the second extreme volatility

state. The sign and magnitude of the parameters that are changing over time are shown

in the lower panel. In DGPs 5 and 6 the ARCH and GARCH parameter matrices are

time-varying, respectively. DGPs 7 and 8 have a similar design but the vector of constants

is also assumed to be time-dependent. Selected results from the power simulations are

displayed in Figure 2. The rejection frequencies for the tests under the generated data

behave as expected. The actual rejection frequencies show that power increases notably

with the sample size, meaning that a long time series is required for a well-behaved test

in terms of power. Detecting time dependence in the volatility interactions can be quite

difficult against DGP 5, but the power increases sharply if the true alternative contains

additional changes in the constants at all sample sizes. Interestingly, the tests also become

less powerful against DGPs when the level of the unconditional correlations is quite large.
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In general, the power against DGPs clearly increases with the number of time-varying

parameters. Therefore, one expects the power of the multivariate test to be clearly stronger

compared to that of the univariate parameter constancy test.

7 Empirical application

In this section we illustrate the usefulness of the multivariate time-varying extended

GARCH framework to sovereign bond markets. We employ daily data on 10-year govern-

ment bond yields from October 3, 2005 until September 30, 2015 (2608 observations) to

investigate volatility spillovers between sovereign bonds markets from Greece (GR), Ireland

(IR) and Portugal (PT). The data were collected from the Thomson Reuters Datastream

and transformed into continuously compounded rates of return. To avoid estimation

problems, the observations in the series are truncated with a threshold of +/−10 standard

deviations above/below extremely large returns. The aim is to investigate cross-market

volatility transmissions and the dynamics of bond market co-movements during the global

financial crisis and the European debt crisis. The daily 10-year government benchmark

bond yields and their truncated returns are depicted in Figure 3. After the Greek deficit

revision, Greece government bonds increased sharply, followed foremost by Portugal and

Ireland. In fact, the Greek financial bailout in May 2010 was followed by the Irish bailout

in November 2010 and the Portuguese bailout in April 2011. A closer look to the percent

changes reveals an increasing pattern in the volatility on these European sovereign bond

markets starting in late 2009. For the Irish series, the increase in volatility is more

pronounced at the end of the sample period.

Summary statistics for the truncated series of yield percent changes can be found in

Table 3. As expected, the bond yield returns exhibit a skewed and heavy-tailed distribution

suggesting the series to be non-normally distributed. Results of the robust portmanteau

Q(5) statistic of Francq and Zakoïan (2009) show time-dependence in the first moment

for the Greek and Portuguese bond returns. To filter out the linear dependence we fit an

AR(1) to the Greek bond returns and an ARMA(1,1) to the Portuguese bond returns.

There is also evidence of higher-order ARCH effects in the bond returns from the results
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of the LM test of Engle (1982).

We apply the modelling strategy for the additive extended GARCH model and begin

with the appropriate LM-type tests. First, we investigate the hypothesis that the ARCH

and GARCH matrices are diagonal. The tests proposed by Nakatani and Teräsvirta (2009)

and Pedersen (2017) are performed under the null hypothesis of no volatility spillovers.

The results (not shown here but available upon request) strongly indicate the presence

of volatility interactions as the p-values of the test statistics are smaller than 0.05. Next

we turn out attention to testing parameter constancy against the extended additive time-

dependent vector GARCH model. Robust versions of the univariate and multivariate

test statistics for testing the constancy of volatility interactions are reported in Table

4. Results of the test statistics for the constancy of the full set of volatility parameters

are shown in the upper panel. It is seen from the p-values that the null of constant

parameters is strongly rejected by the univariate and multivariate test statistics suggesting

that the volatility parameters are time-varying and thereby providing support for the

TV-ECC-GARCH model. In what follows, we attempt to disentangle changes in the

dynamics of volatility (or co-volatility) by showing the parameter constancy test results in

the standard GARCH coefficients and cross-market ARCH effects in the middle and lower

panels of Table 4, respectively. The strong rejection of the parameter constancy hypothesis

suggests structural changes in the standard GARCH coefficients and co-volatility processes

during the observation period.

Specification of the TV-ECC-GARCH model includes determining the parameterisation

of the transition function by choosing ki. After parameter constancy is rejected, we

attempt to identify the number of locations using the sequence of nested null hypothesis as

discussed in Section B of the Supplementary Appendix. Since the null hypothesis yielding

the strongest rejection (measured by the p-value of the robust test) is H02i, the rule is to

select ki = 2 for the Irish bond market. As for Greek and Portuguese returns, a single

transition parameter suffices to capture the dominant changes in the volatility dynamics

since the p-value of the test of H01i is the smallest. For a more detailed discussion about

this procedure see Teräsvirta (1994).
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For fitting the TV-ECC-GARCH model we use the two-step approach of Francq and

Zakoïan (2016) where the algorithm consists in estimating the individual conditional

variances equation-by-equation and obtaining estimates of the conditional correlations

specification in the second step. To obtain fully efficient estimates, the procedure must be

repeated iteratively until convergence where the estimates are obtained by maximizing the

full log-likelihood function. Compared to the two-step procedure, the multi-step approach

yields more accurate estimates, but the computational burden is severely aggravated and

the estimation problem becomes numerically more difficult. The two-step estimates of the

model can be found in Table 5. The estimation results are broadly consistent with the

results of the parameter constancy tests. The estimates as shown in the upper panel of

Table 5 indicate there is evidence of structural changes in the volatility dynamics. We find

an increasing trend in the baseline volatility for the three bond markets. Not surprisingly,

the level of persistence increases from the low- to the high-volatility extreme state over

time. This is precisely what one would expect moving from a tranquil to a turbulent

period in the bond markets. The change in the volatility persistence is explained mostly

by higher ARCH effects and smaller GARCH coefficients between the extreme states of

volatility for Ireland and Portugal.

The off-diagonal elements of the estimated ARCH matrix for each extreme volatility

state are reported in Table 5. The results suggest that the bidirectional cross-market

volatility effects between the Portuguese and Greek sovereign bonds changed over time. In

other words, the effect of shocks to the Portuguese bond on the volatility of the Greek

bond increased significantly after October 2009. Conversely, we observe that the effect

of shocks to the Greek bond on the volatility of the Portuguese bond is notably larger

before January 2011. The effects on the Irish bond volatility from shocks to the Greek

bond seem to be stronger before March 2010 and after April 2015. When the shock

occurs to the Portuguese bond, the effects on the Irish bond volatility are significantly

higher between March 2010 and April 2015. Our results suggest higher effects on the

Portuguese sovereign bond volatility after January 2011 from shocks to the Irish bond.

Overall, volatility interactions appear to be stronger during the most acute phase of the
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European sovereign debt crisis. Our findings suggest that volatility-based contagion is

identified bidirectionally for the pairwise Greece−Portugal and Ireland−Portugal, and

unidirectionally from Greece to Ireland.

In the lower panel of Table 5 are reported the estimated transition parameters. The

slope estimates yield smooth changes between the extreme states of volatility as depicted

in Figure 4. From the results, a single transition seems to be sufficient to capture the

dominant changes in the volatilities of the Greek and Portuguese markets whereas two

major structural changes can be identified in the Irish bond market. By looking at the

locations of transition, the mid-point of change1 occurs in October 2009 for the Greek

sovereign bond market and in January 2011 for the Portuguese sovereign bond, few months

before its financial request. With respect to the Irish sovereign bond, the first and second

structural changes occur, respectively, in March 2010 and April 2015.

A closer look to the estimated volatilities of the sovereign bond returns in Figure 5

shows an increasing trend following the Greek deficit revision (marked by the red dotted

line) which is particularly remarkable for Ireland and Portugal by the end of the sample

period. The results further suggest that the ARCH effects are assumed to be constant,

the impact of larger shocks tends to be underestimated by the ECCC-GARCH model.

Therefore, constant volatility interactions may be insufficient to capture all the variation

in the daily volatilities during periods of market distress. This result is especially notable

for the volatility processes of the Greek and Irish sovereign bonds. For smaller shocks

and calm periods, the estimated volatility processes from the TV-ECC-GARCH and

ECCC-GARCH models remain very close. Extending the specification by allowing cross

effects between markets does improve the model fit to the data according to model selection

by the Bayesian information criterion. Accounting for nonstationarity in the volatility

equations leads to further improvement in the estimation of the model as persistence is

notably reduced and the information criteria is minimized by fitting the TV-ECC-GARCH

model.
1For a general transition function, the transition may be already half-completed at c if γ is small.

When the speed of transition is very high, it has no implication for defining the phases of transition using
the estimated locations.
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Test results associated with the hypothesis of constant conditional correlations strongly

reject the null hypothesis against the alternative of dynamic conditional correlations and

smoothly time-varying correlations. Results are not shown, but they are available upon

request. For more details on the tests, we refer to Engle (2002) and Silvennoinen and

Teräsvirta (2005, 2015). The estimated results for different correlation structures are visible

in Figure 6. We choose estimating the bivariate models over the 3-dimensional model in

order to obtain more precise estimates for the transition parameters in the TV-ETVC-

GARCH(1,1) model. The estimation results have interesting interpretations. We observe

that the short-run dynamic correlations obtained from the TV-EDCC-GARCH(1,1) model

tend to fluctuate around the time-varying unconditional correlations estimated from the

TV-ETVC-GARCH(1,1) model. The time-varying (un)conditional correlations show a

decreasing trend over time suggesting that the co-movements of the yield returns become

weaker during the period of higher uncertainty. The long-term time-varying correlations

show a downward trend movement descending to a level lower than that of before the

global and sovereign debt crises and turn out to become smaller than "normal" market

co-movements proxied by the constant conditional correlations.

8 Conclusions

In this paper we propose an additive structure for the extended vector GARCH process

to investigate the dynamics of co-dependence volatility across financial markets. In this

regard, we consider the general class of conditional correlation GARCH models where the

volatility parameters are allowed to change smoothly over time by adding a deterministic

time-dependent component to the variance equations. Within our approach, the timing of

volatility regime changes is identified from a purely data-driven procedure.

For detecting changes in the volatility and co-volatility spillovers, we develop a Lagrange

multiplier test for testing the hypothesis of parameter constancy where the rejection of

the null hypothesis provides evidence for structural changes in the (co-)volatility processes.

Crisis-contingent structural changes in the volatility interactions can be interpreted as

cross-market contagion, thereby the new test can be regarded as a volatility-based test of
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contagion. Simulation experiments show that the robust univariate LM-type version of

the test to departures from normality is reasonably well-behaved in finite samples.

Our modelling technique is applied to Greek, Irish and Portuguese sovereign bond

returns and we find the new statistical test to be an useful tool in model specification for

the extended vector GARCH model. Results indicate a strong rejection of the parameter

constancy hypothesis suggesting structural changes in the standard GARCH coefficients

and co-volatility processes during the observation period. Once the model accounts for

time-variation in the volatility interactions, the fit of the model substantially improves and

the evidence for volatility persistence is remarkably decreased. The computational burden

of the higher-dimensional model is alleviated by estimating the conditional variances

equation-by-equation for each individual series in the first step and the correlation matrix

in the second step. Our estimation results further suggest that volatility interactions

seem to be stronger during the most acute phase of the European sovereign debt crisis.

Volatility-based contagion is also identified bidirectionally for the pairwise Greece-Portugal

and Ireland-Portugal, and unidirectionally from Greece to Ireland.

Albeit the tests for structural changes in the dynamics of volatility (or co-volatility)

seem rather robust against time-varying conditional correlations, it would be of interest

to extend these tests to cover the extended conditional correlation GARCH model with

time-varying correlations. Another interesting practical question would be to investigate

how volatility responds to negative and positive shocks within this framework. A possible

extension to the model would be to include the so-called leverage effect as in Francq and

Zakoïan (2012), but since empirical evidence is scanty in response of conditional volatility

to the sign of shocks for bond returns (Cappiello et al. (2006)), the effects of asymmetric

volatility shocks were not considered in this work. Such issues, however, are left for future

research.
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Appendix A: The score and the hessian of the log-likelihood

function

Under the assumption of normality, εt|Ft−1 ∼ N (0,Σt), the conditional log-likelihood

function for observation t is defined as

`t(θ) = −(m/2) ln(2π)− (1/2) ln |Σt| − (1/2)ε′tΣ
−1
t εt

= −(m/2) ln(2π)− ln |Dt| − (1/2) ln |P t| − (1/2)z′tP
−1
t zt (46)

In order to define the first and second partial derivatives of (46), denote the score

vector for observation t as st(θ) = ∂`t(θ)/∂θ and let

s(θ) = (1/T )
T∑
t=1

st(θ) = (1/T )
T∑
t=1

(
∂`t(θ)

∂ϑ′
,
∂`t(θ)

∂ρ′

)′
(47)

be the average score. The score vector of (46) has the following form

st(θ) = (st(ϑ)
′, st(ρ)

′)′ (48)

where st(ϑ) = (st(ϑ1)
′, ..., st(ϑm)

′)′ is partitioned into st(ϑi) = (st(φi)
′, st(ϕi)

′)′, i =

1, ...,m. The notation st(θ̂) defines the score evaluated at the maximum likelihood estimator

θ̂.

The analytical expressions of the first partial derivatives of (46) with respect to θ are

given in the following lemma.

Lemma 8.1. The blocks of the ith element of the score vector (48) for observation t have

the following representation

st(ϑi) =
∂`it(θ)

∂ϑi
= −(1/2) 1

σ2
it

∂σ2
it

∂ϑi

(
1− z′teie

′
iP
−1
t zt

)
, i = 1, ...,m, (49)

st(ρ) =
∂`t(θ)

∂ρ
= −(1/2)∂vec(Pt)

′

∂ρ
{vec(P−1t )−P−1t ztz

′
tP
−1
t } (50)
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where the vec(·) operator stacks the columns of the matrix underneath one another, ei =

(0′i−1, 1,0
′
m−i)

′ and
∂σ2

it

∂ϑi
=

(
∂σ2

it

∂φ′i
,
∂σ2

it

∂ϕ′i
,
∂σ2

it

∂τ ′i

)′
(51)

with
∂σ2

it

∂ϑi
= ωit +

pi∑
k=1

(βik + β∗ikGi(t/T ))
∂σ2

i,t−k

∂ϑi
(52)

where ωit = (υ′it,υ
′
itGi(t/T ), g

′
τit
(git/Gi(t/T )))

′, with υit = (1, ε2i,t−1, ..., ε
2
i,t−qi , hi,t−1, ..., hi,t−pi)

′

and gτit = (gγit, g
′
cit
)′ with gcit = (gci1t, . . . , gciki t)

′, i = 1, . . . ,m. The blocks of gτit are

gγit =
∂Gi(t/T )

∂γi
= Gi(t/T )(1−Gi(t/T ))

ki∏
k=1

(t/T − cik)

gcikt =
∂Gi(t/T )

∂cik
= −γiGi(t/T )(1−Gi(t/T ))

ki−1∏
l=1,l 6=k

(t/T − cil), i = 1, . . . ,m.

Proof. The expressions for the blocks in (49)-(50) are proven in Appendix 12 of Silvennoinen

and Teräsvirta (2017).

The population information matrix equals

IT (θ0) = (1/T )Es(θ0)s(θ0)
′ = Est(θ0)st(θ0)

′ (53)

where st(θ0) is the score evaluated at the true parameter vector θ0. The negative of the

expected Hessian matrix evaluated at θ0 equals

JT (θ0) = −(1/T )E[HT (θ0)] = −(1/T )E
T∑
t=1

∂2`t(θ0)

∂θ∂θ′
. (54)

The Hessian for observation t of the log-likelihood function (46) has the partitioned form

Ht(θ) =
∂2`t(θ)

∂θ∂θ′
=

Hϑϑ,t(θ) Hϑρ,t(θ)
Hρϑ,t(θ) Hρρ,t(θ)

 =

∂2`t(θ)∂ϑ∂ϑ′
∂2`t(θ)
∂ϑ∂ρ′

∂2`t(θ)
∂ρ∂ϑ′

∂2`t(θ)
∂ρ∂ρ′

 (55)

where the elements for the sub-blocks in (55) are given in the following lemma.
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Lemma 8.2. The sub-blocks of the second-order partial derivatives of the log-likelihood

function (14) in Section 3.1 for observation t are given by

Hϑiϑj ,t(θ) =
∂2`it(θ)

∂ϑi∂ϑ
′
j

= −(1/4) 1

σ2
itσ

2
jt

∂σ2
it

∂ϑi

∂σ2
jt

∂ϑ′j

(
e′iP

−1
t eje

′
jztz

′
tei
)

(56)

for i 6= j, i,j=1,...,m,

Hϑiϑi,t(θ) =
∂2`it(θ)

∂ϑi∂ϑ
′
i

= −(1/2) 1

σ2
it

(
1

σ2
it

∂σ2
it

∂ϑi

∂σ2
it

∂ϑ′i
− ∂2σ2

it

∂ϑi∂ϑ
′
i

)
(
e′iP

−1
t ztz

′
tei − 1

)
− (1/4)

1

(σ2
it)

2

∂σ2
it

∂ϑi

∂σ2
it

∂ϑ′i
e′iP

−1
t (I + eie

′
i) ztz

′
tei

(57)

for i = j, i=1,...,m,

Hϑiρ,t(θ) =
∂2`it(θ)

∂ϑi∂ρ
= −(1/2) 1

σ2
it

∂σ2
it

∂ϑi
(ei ⊗ ei)

′(ztz
′
tP
−1
t ⊗P−1t )

∂vec(Pt)

∂ρ
(58)

and

Hρρ,t(θ) =
∂2`it(θ)

∂ρ∂ρ′
= −(1/2)∂vec(Pt)

∂ρ′
{P−1t ⊗P−1t − (P−1t ztz

′
tP
−1
t ⊗P−1t

+ P−1t ⊗P−1t P−1t ztz
′
tP
−1
t )}∂vec(Pt)

∂ρ

(59)

where ⊗ denotes the Kronecker product.

Proof. See Appendix 12 of Silvennoinen and Teräsvirta (2017). The analytical expressions

for each element of ∂2σ2
it/∂ϑi∂ϑ

′
i can be obtained by straightforward calculation.

The expressions for ∂vec(Pt)
′/∂ρ depend on the form of the correlation structure. For

further details we refer to Bollerslev (1990) for constant conditional correlations, Engle

(2002) for dynamic conditional correlations and Silvennoinen and Teräsvirta (2015, 2017)

when the (un)conditional correlations are assumed to change smoothly over time.
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Appendix B: Tables

Table 1: Data generating processes for size simulations for tests of parameter constancy

DGP 1 DGP 2 DGP 3 DGP 4

A1

 0.10 0.005

0.005 0.05

 0.10 0.005

0.005 0.05

0.10 0.07

0.02 0.05

 0.10 0.005

0.005 0.05



B1

0.80 0

0 0.85

 0.80 0

0 0.85

 0.80 0

0 0.85

 0.88 0

0 0.94


ρ12 0.90 0.30 0.90 0.30

λ(A1 +B1) 0.905 0.905 0.937 0.992

Note: The vector of constants in the conditional variances equals ωωω = [0.10 0.20]′ for all DGPs.
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Table 2: Data generating processes for power simulations for tests of parameter constancy

ωωω =
[
0.10 0.20

]′
A1 =

0.10 0.05

0.05 0.05

B1 =

0.80 0

0 0.85


DGP 5 DGP 6 DGP 7 DGP 8

ωωω∗
[
0.20 0.10

]′ [
0.20 0.10

]′
A∗1

 0.01 0.015

0.015 0.01

  0.01 0.015

0.015 0.01


B∗1

0.04 0

0 0.03

 0.02 0

0 0.03


λ
(
A

(∗)
1 +B

(∗)
1

)
0.995 0.975 0.995 0.975

Note: In the power simulations, we set c11 = 0.50, c21 = 0.75, γ1 = 5, γ2 = 10 and ρ = 0.70 for
all DGPs.
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Table 3: Descriptive statistics of the daily government bond yield percent changes

MIN. MEAN MAX. S.D. SK KR Q(5) ARCH(5)

GREECE −27.95 0.085 27.95 2.606 −0.592 28.96 16.28 40.08
(0.000) (0.000) (0.006) (0.000)

IRELAND −19.09 −0.019 19.09 1.914 1.012 19.84 10.46 79.32
(0.000) (0.000) (0.063) (0.000)

PORTUGAL −20.44 0.011 18.46 2.022 0.526 12.48 19.84 18.50
(0.000) (0.000) (0.001) (0.000)

Note: SK and KR denote, respectively, the excess kurtosis and skewness. Q(5) is the portmanteau
test statistic for serial correlation of Francq and Zakoïan (2009) robust to the presence of ARCH
effects up to order 5 and ARCH(5) is the test for ARCH effects of Engle (1982) up to order 5
(p-values in parentheses).
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Table 4: Robust test statistics from the testing for parameter constancy in the univari-
ate and multivariate forms for all parameters (upper panel), for the standard GARCH
coefficients (middle panel) and for the cross-market ARCH coefficients (lower panel). The
p-values are reported in parentheses.

GREECE IRELAND PORTUGAL

H0i: ϕi3 = ϕi2 = ϕi1 = 05 33.72 40.35 29.83
(0.004) (0.000) (0.013)

H03i: ϕi3 = 05 8.043 3.988 6.281
(0.154) (0.551) (0.280)

H02i: ϕi2 = 05|ϕi3 = 05 2.618 17.53 1.962
(0.759) (0.004) (0.854)

H01i: ϕi1 = 05|ϕi3 = ϕi2 = 05 13.32 7.102 15.64
(0.021) (0.213) (0.008)

H0: ϕ1 = (ϕ′GR,1,ϕ
′
IR,1,ϕ

′
PT,1)

′ = 015 36.06
(0.002)

H0i,1: ϕi3,1 = ϕi2,1 = ϕi1,1 = 03 30.35 25.33 15.85
(0.000) (0.003) (0.051)

H03i,1: ϕi3,1 = 03 5.467 3.256 3.473
(0.141) (0.354) (0.324)

H02i,1: ϕi2,1 = 03|ϕi3,1 = 03 1.327 11.76 1.388
(0.723) (0.008) (0.708)

H01i,1: ϕi1,1 = 03|ϕi3,1 = ϕi2,1 = 03 9.396 6.926 11.56
(0.024) (0.074) (0.009)

H0i,2: ϕi3,2 = ϕi2,2 = ϕi1,2 = 02 24.66 9.287 19.27
(0.000) (0.158) (0.004)

H03i,2: ϕi3,2 = 02 3.236 3.361 1.406
(0.198) (0.186) (0.495)

H02i,2: ϕi2,2 = 02|ϕi3,2 = 02 4.304 6.338 6.446
(0.116) (0.042) (0.040)

H01i,2: ϕi1,2 = 02|ϕi3,2 = ϕi2,2 = 02 8.784 0.735 3.849
(0.012) (0.692) (0.146)
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Table 5: Estimation results (standard errors in parentheses) for the variance equations
(upper panel) and transition functions (lower panel) of the TV-ECC-GARCH(1, 1) model
in the extreme states.

STATE I

GREECE IRELAND PORTUGAL

ω̂ 0.117 0.012 0.001
(0.042) (0.007) (0.008)

Â1

0.091 0.006 0.000
(0.034) (0.015) (0.028)

0.023 0.000 0.013
(0.011) (0.017) (0.016)

0.040 0.000 0.008
(0.011) (0.008) (0.015)

B̂1

0.702
(0.080)

0.947
(0.016)

0.944
(0.012)

STATE II

GREECE IRELAND PORTUGAL

ω̂ + ω̂∗ 0.609 0.053 0.131
(0.059) (0.036) (0.043)

Â1 + Â∗1

0.243 0.000 0.015
(0.013) (0.006) (0.007)

0.000 0.211 0.034
(0.013) (0.149) (0.014)

0.002 0.020 0.032
(0.004) (0.008) (0.009)

B̂1 + B̂∗1

0.742
(0.011)

0.755
(0.133)

0.924
(0.014)

GREECE IRELAND PORTUGAL

γ̂i 12.76 15.49 6.962
(1.773) (12.91) (2.233)

ĉi1 0.400 0.441 0.529
(0.032) (0.205) (0.084)

Oct 2009 Mar 2010 Jan 2011

ĉi2 0.954
(0.178)

Apr 2015

45



Appendix C: Figures
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(b) DGP 2
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Figure 1: Size discrepancy plots for tests of parameter constancy tests using artificial series
generated according to the DGPs in Table 1. The size discrepancy is plotted against the
nominal size. Results are shown for the univariate robust (ui_T), i = 1, 2, and multivariate
robust (m_T) test statistics defined in (34) and (35), respectively, with x̂i1,t and x̂i2,t
given in (42) and (43) for T = 2500, 5000. The number of replications for each simulation
equals 5000.
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Figure 2: Power curves of the tests for parameter constancy tests using artificial series
generated according to the DGPs in Table 2. Results are shown for the univariate robust
(ui_T), i = 1, 2, and multivariate robust (m_T) test statistics defined in (34) and (35),
respectively, with x̂i1,t and x̂i2,t given in (42) and (43) for T = 2500, 5000. The number of
replications for each simulation equals 5000.
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Figure 3: Daily 10-year government bond yields and truncated percent changes. The
threshold for truncation is +/− 10 times the sample standard deviation.
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Figure 4: Estimated transition functions for the Greek, Irish and Portuguese sovereign bond
returns. The dashed vertical lines indicate the dates of the Lehman Brothers bankruptcy
(green line), the Greek deficit revision (red line) and the first Greek financial bailout in
May 2010, the Irish bailout in November 2010, the Portuguese bailout in May 2011 and
the second Greek bailout in July 2011 (blue line).
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Figure 5: Estimated conditional volatilities for the Greek, Irish and Portuguese sovereign
bonds from the TV-ECC-GARCH(1, 1) model (blue curve) and ECCC-GARCH(1, 1)
model (grey curve). The dashed vertical lines indicate the dates of the Lehman Brothers
bankruptcy (black line), the Greek deficit revision (red line) and the first Greek financial
bailout (green line).
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Figure 6: Estimated bivariate dynamic conditional correlations (grey line) from the TV-
EDCC-GARCH(1,1) model, time-varying unconditional correlations (blue line) from the
TV-ETVC-GARCH(1,1) model and constant conditional correlations (red line) from the
TV-ECC-GARCH(1,1) model.
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