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Abstract

The goal of this paper is to identify influential analysts who generate abnormal returns when

issuing a new recommendation by building a model that bets on the sparsity of typical analysts’

recommendation data. Based on Bayesian techniques, we estimate a regression model for the

abnormal returns in conjunction with a time-varying Markov switching model for the analysts’

recommendations, using the α–stable distribution as prior, and we find that the influential

analysts are very few. Additionally, we identify publicly available information that contributes

to the abnormal returns besides the analysts’ recommendations. Moreover, we study the analysts’

herding behavior as an application to exemplify the merits of our method. Our findings show

that analysts’ herding behavior is not pervasive when the model accounts for the deviation of

the analysts’ recommendations from the prevailing consensus. Finally, we show that our model

performs better than LASSO, elastic net, and the horseshoe prior, both in-sample and out-of-

sample.
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1. Introduction

Analysts’ recommendations literature dates back almost 30 years2. A popular question in

this literature is whether an abnormal return is generated after a new recommendation. The

answer seems to be subject to the model used. For example, Womack [40], Barber et al. [3],

Green [22], and most recently, Crawford et al. [16] and Crane and Crotty [15] show that analysts’

recommendations generate returns. Conversely, Altınkılıç et al. [1] find that the analysts’ forecast

revisions announcements release little new information, on average, when intraday returns are

used. Further cross-sectional evidence from returns around the announcements confirms that the

revisions are virtually information-free. Kim and Song [28] demonstrate that when piggybacking

is controlled, the temporal differences in price reactions to analyst forecast revisions disappear.

Analysts’ herding behavior is another critical question, though most of the studies illustrate

the possibility of herding rather than test it. Graham [21] attempts to identify herding among

analysts empirically, showing that analysts’ herding behavior is driven by analysts’ ability, cur-

rent reputation status, and prior public information strength. Same, Welch [39] shows that

analysts’ choices are correlated with the prevailing consensus forecast since there is significant

evidence of herding toward the consensus among analysts, which is not related to the consensus

accuracy. Thus, analysts do not tend toward the consensus based on fundamental informa-

tion. Jegadeesh and Kim [27] develop and implement a test to investigate whether sell-side

analysts herd around the consensus. Their empirical results support the herding hypothesis.

However, some researchers question the herding behavior findings, pointing out that the use of

shared information is not adequately controlled, which might be the reason for the clustered

recommendations and not the herding behavior toward consensus (e.g., Bernhardt et al. [5]).

The conceptualization of herding among analysts is crucial since it might inflate institutional

investors’ herding consequences. For example, Brown et al. [10] document that mutual fund

managers herd, as they massively buy stocks with consensus sell-side analyst upgrades and sell

2Brauer and Wiersema [8] provide a review addressing the questions and the key takeaways.
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stocks with consensus downgrades. On the other hand, keeping a considerable distance from the

consensus is not a clear signal.Ashiya [2] documents the analyst’s incentive to generate publicity

by making an extreme recommendation.

The analysts’ recommendations data shows a variety of peculiarities. The updates are not

scheduled, the recommendations may remain unchanged for a long time (Bernhardt et al. [4]),

the stock coverage can be abruptly interrupted, and changes in the analysts’ recommendations

data provider records are possible (Ljungqvist et al. [29]). Moreover, the recommendations are

categorical, contrary to the rest of the variables. Besides, since only a few analysts issue recom-

mendations for a stock on any given day and the rest say nothing, it is obviously a very sparse

model. One popular way to deal with it is to assume that only a handful of strong predictors

exist at any point in time, that is, to bet on sparsity (Hastie et al. [23]). This assumption can

be leveraged by a researcher using a shrinkage estimation method such as LASSO (Tibshirani

[34]) or elastic net (Zou and Hastie [42]). To deal with sparse Bayesian estimation, Carvalho et

al. [11] introduced the horseshoe prior, which has been found empirically to outperform LASSO

but also Bayesian model averaging in terms of out-of-sample predictive sum-of-squares error.

Though, the horseshoe prior has its own drawbacks.

In this paper, we propose a model for abnormal returns that uses as regressors each analyst’s

information (new and immediately preceding recommendation, target price expected return,

target price revision, and deviation of the analyst’s new recommendation from the prevailing

consensus) and variables that capture the market conditions. We employ Bayesian techniques to

estimate the model for the abnormal returns in conjunction with a time-varying Markov switching

model for the analysts’ recommendations. To deal with sparsity, we use the one-sided (or half-

stable) distribution as a prior, which imposes heavy zero constraints, allowing the less important

coefficients to shrink to zero and, as a result, revealing the influential analysts. As with Chinco

et al. [12], we differ from the existing literature by not including variables that other researchers

have already identified using the standard econometric methods. Furthermore, we benchmark

our model’s performance against three alternatives: LASSO, elastic net, and the horseshoe,
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and we conclude that it performs better, both in-sample and out-of-sample. We show that

very few analysts are influential, so their recommendations have investment value. Additionally,

we examine whether analysts herd by distinguishing between conditional and unconditional

herding. Conditional (unconditional) herding is inferred by the relationships among the analysts’

recommendations coefficients obtained from the estimation of the abnormal returns model when

we account (do not account) for the effect of the deviation of the analyst’s new recommendation

from the prevailing consensus. We show that conditional herding is not pervasive given the

sparse structure of the coefficient estimates. On the contrary, the structure is very dense when

unconditional herding is assumed.

The structure of the paper is as follows: Section 2 describes sparse Bayesian estimation and

goes over some prior formulations used to model sparsity. Section 3 details our data. Section 4

develops the model. Section 5 presents the empirical results. Section 6 evaluates the performance

of our proposed methodology, and section 7 concludes the paper.

2. Sparse Bayesian Estimation

Buy and hold abnormal returns is a standard method of measuring long-term abnormal re-

turns. Jegadeesh and Kim [27] compute the h−day buy-and-hold abnormal returns, ABRx,t,t+h,

after a recommendation revision for stock x on date t, asABRx,t,t+h =

t+h∏
τ=t

(1 +Rx,τ )−
t+h∏
τ=t

(1 +Rm,τ ),

where Rx,τ is the daily return of the stock x, and Rm,t is the market index return. Day 0 is

the recommendation date or the next trading day. Assume that ABR = Xβ + v is a model

for the ABR, where X ∈ Rn×K is the explanatory variables matrix, β ∈ RK is the vector of

unknown parameters, and v is the error term. Often the number of regressors (K) is large or too

large for us to interpret them individually. We typically want to minimize the sum of squares

plus some penalty on the coefficients. In some instances, we may also have K � n and are

interested in exploiting sparsity because many regression coefficients will be zero. To do so, reg-

ularization methods were developed. For example, the formulation min
β∈RK

(ABR−Xβ)′(ABR−

Xβ) + λ
∑K
k=1 |βk|, λ ≥ 0 leads to the LASSO estimator (Tibshirani [34]). The “compromise”
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objective function min
β∈RK

(ABR−Xβ)′(ABR−Xβ) + λ1

∑K
k=1 |βk|+ λ2

∑K
k=1 β

2
k, λ1, λ2 ≥ 0 is

called elastic net and it was is developed to cope with the limitations of LASSO (Zou and Hastie

[42]). λ (or λ1, λ2 for the elastic net) is the penalty parameter. λ is typically chosen either

using information criteria, cross-validation, or a Bayesian prior, which rests on the idea that the

LASSO is connected to the Laplace distribution which has a mixture interpretation.

To deal with sparse Bayesian estimation, Carvalho et al. [11] introduced the horseshoe prior

as a global–local Gaussian scale mixture under a half–Cauchy prior with density p(βk|τ) =∫∞
0

1
τλk

φ
(
βk

τλk

)
2

π(1+λ2
k)

dλk, τ > 0, and φ(·) is the standard normal density. In particular, for

the model y|β ∼ N (β, σ2I), when it is believed that β is sparse, Carvalho et al. [11] proposed

to use the following specification

βk|λi ∼ N (0, λ2
k), λk|τ ∼ C+(0, τ), τ |σ ∼ C+(0, σ), (1)

where C+(0, s) is the half–Cauchy distribution with zero location and scale parameter s defined

over positive real numbers. This horseshoe prior has no tuning parameters and has excellent

performance. The half–Cauchy distribution is one of the Cauchy distribution’s symmetric halves

(if unspecified, it is the right half that’s intended). The half–Cauchy has many properties; some

of these properties are useful, and we may want them in the prior. A common choice for a prior

on a scale parameter is the inverse gamma (not least, because it’s conjugate for some familiar

cases). When a weakly informative prior is desired, very small parameter values are used. The

half–Cauchy is quite heavy-tailed, and it, too, might be regarded as fairly weakly informative in

some situations. Gelman [19] advocates for half–t priors (including the half–Cauchy) over the

inverse gamma because they have better behavior for small parameter values but only regard it

as weakly informative when a large scale parameter is used. Gelman has focused more on the

half–Cauchy in more recent years. The paper by Carvalho et al. [11] gives additional reasons for

choosing the half–Cauchy in particular. For σ, the prior p(σ) ∝ σ−1 is assumed.

Such global–local priors have been introduced by Carvalho et al. [11], Polson and Scott [32],
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and Polson and Scott [33] to account for sparsity via global shrinkage and identify parameters

by local shrinkage. Many authors (Polson and Scott [32], Polson and Scott [33], Datta and

Ghosh [18]) have found empirically that horseshoe outperforms LASSO but also Bayesian model

averaging in terms of out-of-sample predictive sum-of-squares error. “[I]t has a closed form

marginal prior for β, yet with a spike at origin and heavy tails and more importantly, admits a

global–local scale mixture representation” (Bhadra et al. [6], p. 412). Moreover, horseshoe and

other so-called global–local priors are optimal in variable selection, estimation, and forecasting.

Horseshoe estimators are important since they have near-minimax rates in both an empirical

Bayes and full Bayes approach (van der Pas et al. [37], van der Pas et al. [38], van der Pas et al.

[35], van der Pas et al. [36] ). The horseshoe prior has proven to be a noteworthy alternative for

sparse Bayesian estimation, but has previously suffered from two problems. First, there has been

no systematic way of specifying a prior for the global shrinkage hyperparameter based on prior

information about the degree of sparsity in the parameter vector. Second, the horseshoe prior

has the undesired property; there is no possibility of specifying separately information about

sparsity and the amount of regularization for the largest coefficients, which can be problematic

with weakly identified parameters, such as the logistic regression coefficients in the case of data

separation.

2.1. Horseshoe-like Priors

A proper prior that has the same behavior is the horseshoe-like prior (Bhadra et al. [6]),

which has the following form: p(βk|τ) = 1
2πτ log

(
1 + τ2

β2
k

)
, βk ∈ R, k = 1, . . . ,K, τ > 0. Setting

α = τ2, it turns out that this can be written as

βk|λk, a ∼ N
(

0, a
2λk

)
, p(λk) = 1

2
√
π
λ
−3/2
k (1− e−λk), a > 0, λk > 0, k = 1, . . . ,K.

If E(u2
t ) = 1, then the posterior mode is given by E(β|a, y, λ,X) = [X ′X +D(λ)]

−1
X ′y, where

λ = [λ1, . . . , λK ]′, D(λ) = diag
(

2λk

a

)
, and

(
X ′X +D−1

)−1
= D − DX ′(XDX ′ + In)−1XD,

which is O(nK2) for large K. One can update these elements via an EM algorithm using for

6



λ the form λk = 1
2πa1/2

(
a
β2
k
− a

a+β2
k

)
, k = 1, . . . ,K, and for a, the updating scheme, a :=

a3/2

Kπ

∑K
k=1

1
a+β2

k
. By Bhadra et al. [6], Lemma 5.1, we use the following representation for Gibbs

sampling:

βk|tk, τ ∼ N
(

0, τ
2

t2k

)
, tk|sk ∼ N (0, sk), sk ∼P

(
1
2

)
,

where t2k = 2λk, τ > 0, sk > 0, k = 1, . . . ,K, and P denotes the Pareto distribution.

One-sided (or half-stable) distribution can be used instead of the horseshoe-like prior. The

distribution function of the half-stable distribution is denoted by S(α, β, d, c), where d, c are

location and scale parameters, 0 < α ≤ 2 is the characteristic exponent, and −1 ≤ β ≤ 1 is the

skewness parameter. For d = 0, s = 1 we have the standard form. When β = 1, the distribution

is “maximally skewed”, and for α < 1, it is defined over positive reals. The distribution obtained

is an α–stable distribution, and our interest focuses on this. The family is denoted by Sα(c),

and its density is denoted by f(x;α, c). So, we can replace (1) by

βk|λk ∼ N (0, λ2
k), λk|c ∼ S(α, 1, 0, c), c|σ ∼ S(α, 1, 0, σ), α < 1, k = 1, . . . ,K. (2)

The joint prior of the regression coefficients from (2) is as follows.

p(β, λ, α, c) =

{
K∏
k=1

(2πλ2
k)−1/2e−β

2
k(2/λ2

k)f(λk;α, c)

}
f(c;α, σ)K , (3)

where f(λk;α, c) is the density of Sα(c), f(c;α, σ) is the density of Sα(σ), and λ = [λ1, . . . , λK ]′.

Conditionally on λ, drawing β involves drawing the parameters β from a heteroskedastic linear

model. The conditional posterior of each λk is

p(λk|βk, α, c) ∝ λ−1
k e−β

2
k(2/λ2

k)f(λk;α, c), k = 1, . . . ,K. (4)

We draw a candidate λ
(c)
k from a distribution whose density is q(λk) ∝ λ−(ν̄+1)

k e−β
2
k(2/λ2

k) (Zellner

[41], p. 371, equation A37b) where ν̄ is a parameter. The candidate is accepted with probability
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min

{
1,

p(λ
(c)
k |βk,α,c)/q(λ

(c)
k )

p(λ
(s)
k |βk,α,c)/q(λ

(s)
k )

}
, where s denotes the current number of MCMC iteration. We select

the parameter ν̄ using some initial experimentation with representative values of βk, α and c

and, finally, select ν̄ = 4 yielding acceptance rates close to 30% on average. The conditional

posterior of c is

p(c|α, σ)(c;α, σ)K
K∏
k=1

f(λk;α, c). (5)

We use inversion of the numerical cumulative distribution function to provide an “exact” draw

from this conditional posterior using 50 points in its support. This involves the computation of

a stable density function but the computation at the 50 different points is easily parallelizable.

We use the same technique to generate random numbers from p(σ|α, c) ∝ f(c;α, σ)K and the

conditional posterior of the characteristic exponent, viz. p(α|λ, c) ∝ p(α)
∏K
k=1 f(λk;α, c), where

p(α) denotes a flat prior on α.

3. Data Description

We obtain 925,555 analysts’ recommendations from I/B/E/S for 4,173 stocks, which are cur-

rent or past constituents of the S&P 500, Nasdaq, and NYSE indices, issued by 12,716 analysts

(or 833 brokerage firms) identified through their analyst code3. The sample covers the period

from January 1, 1999, to April 30, 2020. I/B/E/S transforms the analysts’ recommendations

(e.g.“buy (hold, sell)”, “market underperform (outperform)”, etc) to numerical scores where “5”

stands for strong sell, “4” for sell, “3” for hold, “2” for buy and “1” for strong buy. If the analyst

has no opinion on what to recommend, a “0” recommendation is issued. In our data set, “no

opinion” recommendations account for 0.1% of the recommendations will be excluded from our

analysis. From 837,107 recommendations, excluding the initial and “no opinion” recommenda-

tions, 108,972 are upgrades, 103,866 are downgrades, and 624,269 are reiterations, confirming the

3There are additionally 420 analysts who are not identifiable. Additionally, our sample satisfies the criteria
mentioned by other studies, (e.g., Jegadeesh and Kim [27]) that is, more than two analysts issue recommendations
in the same period for a stock whose price should be at least $1 on the day before the recommendation revision
date. The interested reader can find the breakdown per year of the number of recommendations, recommendation
changes, recommendations per level, analysts, and brokerage firms in Online Appendix, Table 1.
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reluctance of the analysts to change their recommendations4 (Bernhardt et al. [4]). Furthermore,

only 6,571 of the recommendation changes are three- and four-class upgrades/downgrades, and

contrary to some studies, we keep them in our analysis.

The majority of analysts’ recommendations are accompanied by a target price for the stock,

which is very important for investors (Huang et al. [26]). Based on the target price, we model

analyst’s exaggeration through the analyst’s target price expected return (Huang et al. [25]), and

the analyst’s target price revision (Brav and Lehavy [9]). The analyst’s target price expected

return (TER) is the return between the price of the stock at the date before the recommendation

announcement and the analyst’s target price. The analyst’s target price revision (DTar) is the

return between the analyst’s new target price and his previous one. Following Jegadeesh and

Kim [27], we also employ the deviation of the analyst’s new recommendation from the prevailing

consensus (NC). We find that the distributions are very skewed with very long right tails

showing that the analysts are very optimistic5.

To calculate the abnormal returns, we use the daily price changes of the stock and the

market index (i.e., S&P 500, Nasdaq or NYSE Index) quoted by Refinitiv Eikon. In addi-

tion, we include variables to capture the market conditions that might affect the abnormal

returns directly, and indirectly the analyst’s recommendation (Conrad et al. [14], Peng and

Xiong [31]). The variables are the following: 1. VIX Index, 2. Price to earnings (P/E) of

S&P 500 Index, 3. Growth rate of the trailing 12-month sums of earnings of S&P 500 Index,

4. DEBT/EBITDA ratio of the S&P 500 Index, 5. Net equity expansion on the NYSE Index,

calculated as NetIssuet = Mcapt −Mcapt−1(1 + vwretxt), where Mcap is the total market

capitalization, and vwretx is the value weighted return (excluding dividends) on the NYSE In-

dex, 6. Yield to maturity for the three-month Treasury bill, 7. 2/10 U.S. Government bond yield

spread, 8. Moody’s BAA and AAA-rated corporate bond yields spread, 9. U.S. inflation, 10. U.S.

ISM Manufacturing Purchasing Managers Index, 11. Growth rate of the U.S. Conference Board

4The sample transition probability matrix is given in Online Appendix, Table 3.
5See Online Appendix, Table 4.
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Leading Economic Indicators Index, 12. U.S. Business Cycle Phase, suggesting the four stages of

the business cycle: expansion, slowdown, contraction, and recovery. Similar variables are used

to construct the investor sentiment to study its correlation with analysts’ forecast errors (Hribar

and McInnis [24]).

4. Model

Jegadeesh and Kim [27] to determine if the analyst’s recommendations generate abnormal

returns fit the following regression model,

ABRx,t,t+h = αh + bh × Imulti + ch × Isingle + dh ×NCx,t + vt,h, (6)

where h = {0, 1, 2} is the event window, and vt,h
iid∼ N (0, σ2

h) the error term. The dummy

variables Imulti and Isingle take the value of 1, if there is a multi/single upgrade, and the

value of -1, if there is a multi/single downgrade. Isingle takes the value of zero if there is no

recommendation change. Obviously, they take the sign of expected abnormal returns conditional

on an upgrade or a downgrade, and they are used to pool upgrades and downgrades of different

level changes in the same regression. Additionally, according to Jegadeesh and Kim [27], if

analysts herd close to the consensus, then d > 0. On the contrary, when analysts exaggerate

their differences with the consensus, then d < 0.

In the spirit of (6), we build a model for the abnormal returns accounting for the each

analyst’s recommendations and the regressors discussed in Section 3. Regarding the analyst’s

recommendations, we introduce the dummy variables I(Rt−1 = i) and I(Rt = j), that take

the value 1, if the analyst’s recommendation is i (j) ∈ {−2,−1, 0, 1, 2} at t − 1 (t). The past

recommendation accounts for the fact that “prior analyst’s choices are an important influence

on the next recommendations” (Welch [39], p. 370). The analyst’s view about the stock is
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completed with the variables TER, DTar, and NC. Therefore, the full model is:

ABRx,t,t+h = X ′tβ1 +

 (1)︷ ︸︸ ︷
TERt, DTart, NCt, IRt−1

, IRt
, . . . ,

(G)︷ ︸︸ ︷
TERt, DTart, NCt, IRt−1

, IRt︸ ︷︷ ︸
wt

β2 + vt+h (7)

where Xt ∈X contains the market conditions variables discussed in Section 3,wt contains the

variables of all the G analysts covering the stock, and β2 is a conformable parameter vector.

Along these lines, we can determine (i) whose analysts’ recommendations generate abnormal

returns, (ii) whether a given analyst follows the recommendations of other analysts, and (iii)

which market conditions variables are important in a given horizon h = 0, 1, 2.

Next, we assume that analyst’s recommendations, Rt and Rt−1, are governed by a time-

varying Markov switching model with transition probabilities mapping the recommendations

“strong sell”, “sell”, “hold”, “buy”, and “strong buy” to the numbers -2,-1,0,1,2, respectively.

The analyst moves from his previous recommendation (row-)i to his new recommendation

(column-)j, with probability pij,t = Pr(Rt = j|Rt−1 = i), i, j ∈ {−2,−1, 0, 1, 2}. The transition

probability matrix P is normalized so that the sum in each row is 1. Suppose that zt includes

the variables, TER, DTar, and NC. We propose to parameterize the transition probabilities as

pij,t =
Φ(z′itγij)∑M

m=1 Φ(z′itγim)
, t = 1, 2 . . . , T, (8)

where γij , i, j ∈ {−2,−1, 0, 1, 2}, are coefficients arranged so that the intercepts corresponding

to each equation are in increasing order, Φ(·) is the standard normal distribution function, and,

M is the number of states, which in our case is five. Additionally, we modify the distributional

assumption in (6) as vt,h ∼ N (0,Σ), where Σ is the variance-covariance matrix of the error

terms. To model endogeneity, we include vt and vt−1 among the regressors zt that determine

the transition probabilities. Computationally, this is not particularly demanding as we use a

fast MCMC to provide statistical inferences6. Moreover, the α–stable distribution prior comes

6See, Online Appendix, Section 2.
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in handy as we have a large number of parameters.

If θ ∈ Θ denotes the entire vector of parameters, the likelihood function for date t is

lt(θ) = |Σ|−1/2 exp
{
− 1

2U
′
tΣ
−1U t

}
Pr(Rt = j, Rt−1 = i), (9)

where U t = [ABRx,t,t+h − X ′tβ1 − wtβ2, h ∈ H]′ assuming Rt−1 = i and Rt = j, i, j ∈

{−2,−1, 0, 1, 2}. The probability Pr(Rt = j, Rt−1 = i) is defined by

Pr(Rt = j, Rt−1 = i) =
∑
i

Pr(Rt = j|Rt−1 = i) Pr(Rt−1 = i). (10)

The overall likelihood is L(θ) =
∏T
t=1 lt(θ). Apart from drawing β=(β1,β2), λ, α, c, σ, the

remaining parameters are drawn using a fast MCMC procedure as described in the Online

Appendix, Section 2.

5. Results

The results are inferred from LASSO, elastic net, the horseshoe and the α–stable distribution

prior applied to the analysts’ recommendations data7.

5.1. Analyst’s Recommendation Transition Probability Mechanism

Table 1 contains the transition probabilities (8) evaluated at the mean of the posterior dis-

tributions of the zt coefficients, assuming the α–stable distribution prior8. The transition proba-

bilities notably differ from their empirical counterparts9. Analysts are more reluctant to change

“sell” (41%) or “buy” (30.2%) rather than “hold” (21.4%), “strong sell” (16.1%), or “strong

buy” (10.3%) recommendations. They are very keen to do two-level upgrades (all statistically

significant at a 1% significance level), or downgrade a stock from “strong buy” to “hold”(24.4%)

7Additionally, we run the exercise using the brokerage recommendations data. Selected results are reported
in the Online Appendix, Section 3.

8The posterior distribution of α has a mass between 0.58-0.72, suggesting that the distribution is indeed a
“maximally skewed” stable distribution. See also, Online Appendix, Figure 1.

9See Online Appendix, Table 3.
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rather than to “strong sell,” “sell,” or “buy,” while there is a weak evidence of downgrades from

“buy” to “sell” recommendation. This is due to the unwillingness of the analysts to issue negative

recommendations, mainly because these firms are accounted for as future investment banking

clients. Additionally, the stock might underperform for several reasons, for example, an event

causing market stress; therefore, the analyst keeps it in the portfolio in the prospect of over-

performance. Furthermore, analysts willingness to change their recommendation from “strong

sell” to “buy” (31%), highlights their aversion to negative recommendations again. The three-

levels downgrade from “buy” to “strong sell” is statistically significant only at 10%. Finally, the

transition probabilities from “hold” recommendations range from 21.4%-27.1%, excluding the

upgrades to “buy” recommendations, which are not statistically significant. The re-iteration of

“hold” recommendations has the smallest probability (21.4%), suggesting that analysts, through

their recommendations, seek to generate fees for the brokerage firms they work for. Lastly, the

four-level upgrade/downgrade is statistically significant only at 10%.

Table 1: Posterior mean estimates of analysts’ recommendations transition probabilities

P =



Strong sell Sell Hold Buy Strong buy

Strong sell 0.161
(0.021)

∗∗∗ 0.272
(0.014)

∗∗∗ 0.252
(0.044)

∗∗∗ 0.310
(0.019)

∗∗∗ 0.005
(0.003)

∗

Sell 0.108
(0.033)

0.410
(0.045)

∗∗∗ 0.278
(0.017)

∗∗∗ 0.189
(0.015)

∗∗∗ 0.015
(0.020)

Hold 0.254
(0.076)

∗∗∗ 0.271
(0.049)

∗∗∗ 0.214
(0.055)

∗∗∗ 0.006
(0.004)

0.255
(0.048)

∗∗∗

Buy 0.108
(0.065)

∗ 0.178
(0.098)

∗ 0.230
(0.047)

∗∗∗ 0.302
(0.092)

∗∗∗ 0.182
(0.081)

∗∗

Strong buy 0.228
(0.133)

∗ 0.220
(0.155)

0.244
(0.016)

∗∗∗ 0.205
(0.033)

∗∗∗ 0.103
(0.017)

∗∗∗


Note: The table reports the sample means (with sample standard deviations in parentheses)
of posterior mean estimates across the sample for the transition probabilities assuming h = 0.
***, **, and *denote the statistical significant transition probabilities at 1%, 5% and 10%
significance level, respectively.

Table 2 summarizes the impact of TER, DTar, and NC, to the transition probabilities. The

positive coefficient on a covariate means that the stocks with a higher value of that covariate are

more likely to move to that recommendation level. We comment only the major contribution

13



of each variable in absolute value. TER positively affects the probability of reiterating “sell”

recommendations (0.1524), and negatively, the downgrade from “buy” to “hold” (-0.2394). Same,

DTar, positively affects the probability of reiterating “strong sell” recommendation (0.1764),

and negatively, the upgrade from “hold” to “buy” (-0.1715). Finally, NC, positively affects the

transition probability from “hold” to “strong sell”, and negatively, the downgrade from “buy”

to “hold” (-0.0765).
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5.2. Cross-sectional Determinants of Abnormal Returns

Table 3 reports the cross-sectional regression results for the coefficients of (7) using the α–

stable distribution prior, at the recommendation revision day (h = 0). The coefficient associated

with TER is significantly larger than that of the rest variables, confirming that it provides

valuable information regarding a firm’s value not already reflected in analysts’ recommendations

(Da et al. [17]). Like in Brav and Lehavy [9], we document significant abnormal returns increasing

in the favorableness of DTar. It seems that both TER and DTar bring new information to the

market that is not subsumed by the analyst’s recommendation, capturing the implications of

both short-term earnings forecast revisions and P/E ratio revisions, strengthening the argument

that target price is informative. Since both embody information about the earnings or the P/E

ratio, they highlight the analysts’ views about the firm’s prospects’ overall assessment. In its

turn, the positive slope coefficient of NC suggests that as the new recommendation deviates from

the consensus, it conveys information to the market, adding to the findings of Jegadeesh and Kim

[27]. Abnormal returns are more favorable for upgrades and more damaging for downgrades when

the new recommendation is farther away from the consensus than close. The positive herding

coefficient supports the hypothesis of herding toward the consensus, and we employ further

analysis of this in Section 5.4. Finally, we identify new factors that contribute to abnormal

returns. The statistically significant market conditions variables that generate abnormal returns

are the S&P 500 P/E Index, the 2/10 U.S. government bond yield spread, the U.S. inflation,

and the U.S. ISM Manufacturing Purchasing Managers Index. In contrast to the other three

variables that favor index investing, an increase in the S&P 500 P/E Index favors stock investing.
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Table 3: Cross-sectional regression results

Variable
Posterior mean

estimates

TER 0.038
(0.014)

∗∗∗

DTar 0.012
(0.003)

∗∗∗

NC 0.010
(0.003)

∗∗∗

VIX Index −0.005
(0.005)

S&P 500 P/E Index 0.017
(0.004)

∗∗∗

Trailing 12M Earnings growth rate of S&P 500 Index 0.005
(0.004)

DEBT/EBITDA of S&P 500 Index −0.003
(0.004)

Net equity expansion 0.012
(0.005)

3M T-bill yield 0.005
(0.005)

2/10 U.S. Government bond yield spread −0.008
(0.002)

∗∗∗

Moody’s BAA and AAA-rated corporate bond yields 0.003
(0.002)

U.S. inflation −0.004
(0.001)

∗∗∗

U.S. ISM Manufacturing Purchasing Managers Index −0.015
(0.003)

∗∗∗

U.S. Conference Board Leading Economic Indicators Index growth rate 0.002
(0.002)

U.S. business cycle phase 0.005
(0.004)

I(Rt−1 = −2) −0.004
(0.002)

∗∗

I(Rt−1 = −1) −0.004
(0.001)

∗∗∗

I(Rt−1 = 0) 0.003
(0.001)

∗∗∗

I(Rt−1 = 1) 0.002
(0.001)

∗∗

I(Rt−1 = 2) 0.004
(0.002)

∗∗

Continued on next page
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Table 3 – continued from previous page

Variable
Posterior mean

estimates

I(Rt = −2) −0.015
(0.003)

∗∗∗

I(Rt = −1) −0.0073
(0.001)

∗∗∗

I(Rt = 0) 0.020
(0.004)

∗∗∗

I(Rt = 1) 0.015
(0.004)

∗∗∗

I(Rt = 2) 0.018
(0.005)

∗∗∗

Note: The table reports the posterior mean estimates of coefficients of (7). The standard errors
of the estimates are reported in the parenthesis. ***, **, and *denote the statistical significant
coefficients at 1%, 5% and 10% significance level, respectively.

Furthermore, we examine the structure of the market conditions coefficients. To have a

visualization of the exact relationships, we randomly draw 200 analysts. Additionally, to com-

pare the sparsity among the models and, which will imply later, the percentage of influen-

tial analysts who generate abnormal returns, we report the normalized ‖`‖0−norm defined by

‖A‖norm := # {(i, j), Ai,j 6= 0} /(n ∗ m), A ∈ Rn∗m. For the non-zero elements, we report

the standard descriptive statistics. The estimated coefficients of our analysts’ random sample

are plotted in Figure 1. The relationship structure emphasizes how the importance of shared

information differs. It may justify analysts’ favor (or not) over certain stocks, given their out-

performance in current market conditions. Analysts’ choices might be wrongly interpreted as

herding behavior since these variables account for common information among analysts and in-

vestors. As Jegadeesh and Kim [27] mention, “analysts may herd or take similar actions because

they receive correlated information”. Likewise, Graham [21] argues that herding likelihood in-

creases with the level of correlation across informative signals. The coefficient estimates based on

the α–stable distribution prior are shown in 1(a). It is shown that the structure is very sparse,

except for the U.S. business cycle phase variable, where 140 out of the 200 randomly chosen

18



analysts assign a positive coefficient, ranging from 0.0007 to 0.2958, which is the highest among

all the other market conditions variables. Figures 1(b)-(d) show the coefficients of the market

conditions variables using the horseshoe prior, LASSO, and elastic net. The figures are very

much alike but much more dense than Figure 1(a). For the horseshoe prior, the least important

variable is the growth rate of the trailing 12-month sums of earnings of S&P 500 Index, and

the most important one is U.S. inflation (the coefficients are equal to 0.0002 and 0.2977, respec-

tively). Similarly, the yield to maturity of the three-month Treasury bill and the growth rate of

the trailing 12-month sums of earnings of the S&P 500 Index are the least and most important

variables for LASSO (the coefficients are equal to 0.000 and 0.3283, respectively). Finally, for the

elastic net, the least and most important variables are the U.S. business cycle phase and the U.S.

ISM Manufacturing Purchasing Managers Index (the coefficients are equal to 0.0004 and 0.3163,

respectively). All the figures in Figure 1 acknowledge the crucial role of the U.S. business cycle

phase variable by assigning a positive coefficient by more than 132 out of 200 analysts. This is

because a sector’s, and consequently a stock’s, outperformance is closely related to the business

cycle phase. For example, a cyclical company follows the overall economy’s trends, making its

stock price very volatile. So, if the economy enters the recession phase, the analyst might bias

his recommendation downwards for a cyclical stock.

5.3. Posterior Distributions of Abnormal Returns

Continuing reporting the results of Table 3, it appears that all the dummy variables are

statistically significant, and the signs of the coefficients are in line with what is expected. The

coefficients of the “positive” recommendations satisfy the expected ordering (“strong buy” �

“buy”) and demonstrate that “strong buy” recommendations generate larger price reaction than

“buy” recommendations, either t or t−1. Similarly, for the “negative” recommendations, “strong

sell” recommendations have a more significant negative price impact than “sell” recommenda-

tions at time t, and the same effect at t− 1. “Hold” recommendations have a positive impact on

the abnormal returns, implying that “hold” is accounted as a positive recommendation, despite

the fact that a savvy investor might interpret it as essentially “sell” (Bradshaw [7]). In Figure
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2, for the model handling the prior of β with the α–stable distribution, we plot the marginal

posterior densities which do not have a point mass at zero, of the coefficients of I(Rt = 1) for

each analyst10. It is interesting to note that the means of the distributions are far from zero and

that analysts’ number is dramatically diminished as the days pass, implying that not all analysts’

recommendations generate abnormal returns. To conclude, the central question of whether an

analyst’s new or his previous recommendations have investment value is positively answered.

Still, it does not hold for all the analysts covering a stock.

Figure 3(a) shows the average posterior predictive densities of ABR across all analysts11.

Table 4 shows that the reactions to recommendation changes yield an average posterior abnormal

return of 3.5% on the day of the event, and 2.2% and 1.8% for h = 1 or h = 2-days holding

period after the recommendation revision, highlighting the cost of investment delay.

Table 4: Posterior moments of abnormal returns

h = 0 h = 1 h = 2
Mean 0.035 0.022 0.018

Median 0.033 0.023 0.017
StDev 0.0032 0.0014 0.0017

Mean Absolute Deviation 0.0026 0.0011 0.0014

Note: Posterior mean estimates of the abnormal returns ABRx,t,t+h evaluated for h = 0, 1, 2
days holding period following the revision date t, when the α–stable distribution prior is
used for the estimation (7).

This finding agrees with the existing literature, which documents that while security analysts’

stock recommendations lead to an immediate price reaction, a drift continues, adding to the

argument of markets’ semi-strong inefficiency, where public information can predict future stock

returns (see, for example, Womack [40], Barber et al. [3]). If the market reacts efficiently to

the information in recommendations, there should not be any predictable drift in stock prices.

Figure 3(b) shows the corresponding cumulative distribution functions to examine stochastic

dominance. The strategy of the immediate reaction to the analyst’s recommendation dominates.

We further investigate whether profitable investment strategies based on analysts’ recommen-

10Similarly, see Online Appendix, Figure 2 for the marginal posterior densities of the I(Rt−1 = 1) coefficients.
11For each analyst, see Online Appendix, Figure 3.
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dations exist. Figure 4 depicts the posterior distributions of expected ABR using the α–stable

distribution prior, the horseshoe prior, LASSO and elastic net, the day after the recommen-

dation (h = 1), controlling for one of the possible recommendations. All the expected ABR

have positive means, implying that analysts’ recommendations have investment value even one

day after the revision. Figure 4(a) shows that the most profitable strategy is to follow “strong

buy” recommendations, and after that, “strong sell”, “sell”, “hold” and “buy” recommenda-

tions. Furthermore, in Figures 4(b)-(d), the posterior densities of the expected ABR of “strong

buy” recommendations become bimodal. Still, the mode of the highest return is much bigger

than that centered at zero. Our findings are in line, for example, with Womack [40], who show

that favorable/unfavorable changes in individual analyst recommendations are accompanied by

positive/negative returns at the time of their announcement.

5.4. Analysts Herding Behavior

We take up the critical question of whether an analyst i tends to follow an analyst j more or

less consistently. We randomly draw 200 analysts and plot the coefficients of the dummy variable

“buy” at the recommendation revision day in Figure 5. The figures are inferred from (7) for each

analyst when each other analyst is included and handled by the α–stable distribution prior and

the horseshoe prior12. Although the mean of the non-zero elements is close to zero, the rest of the

descriptive statistics of the non-zero elements reported in each figure imply that some coefficients

are very strong in absolute values. The positive coefficients can be explained as the group

of analysts who systematically issue similar recommendations. On the contrary, the negative

coefficients suggest that some analysts are systematically “contrarian”, either because some of

them have private information that leads them to issue contrarian recommendations (Bernhardt

et al. [5]), or because they want to generate publicity by making extreme recommendations

(Ashiya [2]). In other words, a less-talented analyst may mimic the recommendation of a well-

12In the Online Appendix, Figures 4-7 gather the results obtained from all the estimation methodologies
discussed, presenting the relationships of 200 randomly chosen analysts when they issue “buy” and “sell” recom-
mendations, for h = 0, 1, 2.
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known analyst or issue a contrarian recommendation, betting on an unanticipated event that

could change the firm’s prospects, consequently elevating him to the top of the analysts.

Additionally, we examine if analyst-i follows a list, Li, of other analysts controlling for NC,

adding to the literature of empirical identification of herding. Accordingly, we distinguish be-

tween conditional and unconditional herding. Conditional (unconditional) herding is inferred by

the relationships among the analysts’ recommendations coefficients obtained from the estimation

of the abnormal returns when we account (do not account) for the effect of NC in the estimation

of (7). Assuming that h = 0 and the α–stable distribution prior, we plot only the statistically

significant coefficients of I(Rt = 1) in Figure 613. Hence, we investigate the structure of “buy”

recommendation coefficients and how this is modified when the information conveyed by NC is

included or not. In Figure 6(a), the relationships are very sparse conditionally on NC, implying

that herding tendencies are very weak, leaving very few significant signals to generate market

price reactions. To have a clear view, we provide details for the statistically significant coef-

ficients in Table 5 for the whole sample, including all the MCMC draws. It appears that the

α–stable distribution prior is the one that shrinks most of the less important analysts’ effects to

zero, as only the 3.5% of the coefficients are not zero. In addition, the percentages of meaningful

analysts’ recommendations equal to 12.3%, 7.3%, and 13.1%, when the significance level is < 1%,

1%− 5%, 5%− 10%, respectively. The fractions are quite small, implying that not all analysts

are influential, generating abnormal returns. A similar result is found by Loh and Stulz [30],

who conclude that only 12% of the recommendation changes are influential.

13For h = 1 and 2 days holding period, see Online Appendix, Figure 8. For the other recommendations, the
same exercise is done.
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Table 5: Statistically significant coefficients obtained at conditional herding

α–stable Horseshoe LASSO ENET
% of non-zero coefficients (||Anorm||) 3.5% 17.2% 15.3% 14.8%

of which “significant” at < 1% 12.3% 21.2% 27.2% 24.3%
of which “significant” at 1%–5% 7.3% 23.35% 32.5% 35.8%
of which “significant” at 5%–10% 13.1% 17.3% 37.8% 40.2%

Note: The table reports the % of non zero coefficients and accordingly, the statistically
significant coefficients at 1%, 5% and 10% obtained om the estimation of (7) using different
estimation approaches. Numbers represent averages across all MCMC draws.

Figure 6(b) shows that under unconditional herding, the 11% of analysts are influential, when

the issue a “buy” recommendation, having in its turn investment value. The relationships among

the analysts remain consistent and strong, and analysts tend to follow each other in the absence

of consensus. This suggests that unconditional herding is based more on the strength of prior

public information and is reinforced by the actions of the market leader, which increases with

the level of correlation across informative signals. Based on Graham [21] results, conditional

or unconditional herding exists because some analysts have either a greater incentive to hide in

the consensus herding14, or a conservatism in backing the “consensus” of the high reputation

analysts to protect their current status.

6. Bayes Factor and Out-of-Sample Behavior

Next, in Figure 7(a)-(c) we present the densities of Bayes factors (BF) in favor of the α–

stable model against the LASSO, the elastic net, and the horseshoe prior, respectively, when

B={5, 10, 100} analysts are randomly omitted from the data. To obtain these sample distribu-

tions, we randomly omit all B analysts’ observations and re-estimate the models. We perform

this exercise 500 times. The BF is defined as BF12 = p(y|M1)
p(y|M2) , where p(y|M1) is the likelihood

of the data (when parameter uncertainty has been taken into account) under model M1, and

p(y|M2) is the probability to observe the data under model M2. BF in favor of the α–stable

distribution prior are overwhelming.

14For example, Clement and Tse [13] present results indicating that less experienced analysts are more likely
to herd.
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Another interesting issue is how the different models perform in terms of out-of-sample be-

havior. We take up the problem of model comparison using predictive Bayes factors (Gneiting

and Raftery [20]). Given a data set, we split it into an in-sample set for estimation (denoted

y0) and an out-of-sample set (denoted y1 with y = y1

⋃
y0) which is used for computing the

predictive marginal likelihood

PML = p(y1|y0) =

∫
p(θ, y1|y0)dθ =

∫
p(y1|θ, y0)p(θ|y0)dθ, (11)

where θ are the model’s parameters. The term p(θ|y0) is the posterior of the parameters con-

ditional on the in-sample observations and the multivariate integral in (11) can be accurately

approximated as follows. Suppose
{
θ(s), s = 1, 2, . . . , S

}
is a sample that converges to the dis-

tribution whose density is p(θ|y0). In turn, the integral is approximated using

PML(y1) = S−1
S∑
s=1

p(y1|θ(s), y0). (12)

With independent observations, (12) reduces to PML(y1) = S−1
∑S
s=1 p(y1|θ(s)), which is fairly

easy to compute. We denote by PML0 the predictive marginal likelihood of our new model

using the α–stable distribution prior, and PMLj the predictive marginal likelihood using either

LASSO, or elastic net, or the horseshoe prior. The predictive Bayes factor (PBF) is defined as

PBF0:j =
PML0(y1)

PMLj(y1)
.

We leave aside the 100 last observations from the sample, and we perform MCMC again by

introducing these observations in blocks of five observations at a time. Figure 7(d) depicts the

findings. In the initial period, all the PBFs are normalized to unity. As we see, the marginal

likelihood values and Bayes factors differ widely between LASSO, elastic net, and the horseshoe

prior. This is understandable given that different shrinkage methods (LASSO, elastic net) and

priors (α–stable, horseshoe) make different assumptions about sparsity and, thus, fit and parsi-
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mony. Clearly, we do not expect different priors to yield the same results, and, especially, the

predictions in terms of abnormal returns can be quite different, as we see in our application.

7. Conclusions

This paper introduces a new modelling approach to examine the existence of influential

analysts that generate abnormal returns when they issue new recommendations. Given the

scarcity of analyst recommendation data, we propose estimating a model for abnormal returns

using the α–stable distribution as prior, in conjunction with a time-varying Markov switching

model for the analysts’ recommendations.

We find that very few analysts’ recommendations generate abnormal returns, yet profitable in-

vestment strategies based on analysts’ recommendations exist. Additionally, we examine whether

analysts herd by distinguishing between conditional and unconditional herding. Conditional

(unconditional) herding is inferred by the relationships among the analysts’ recommendations

coefficients obtained from the estimation of the abnormal returns model when we account (do

not account) for the effect of the deviation of the analyst’s new recommendation from the pre-

vailing consensus. We show that conditional herding is not pervasive given the sparse structure

of the coefficient estimates. On the contrary, the structure is very dense when unconditional

herding is assumed. Finally, we provide evidence that the estimation using the α–stable distri-

bution performs better than LASSO, elastic net, and the horseshoe prior, both in-sample and

out-of-sample.

Future research will focus on building a model combining the information inferred from

analysts and brokerages and on identifying the factors differentiating the results obtained from

the two datasets.
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(a) α–stable distribution prior
‖A‖norm = 4.75%, x̄=0.0800, M=0.0603, s=0.0599,

min=0.0007, max=0.2958.

(b) Horseshoe prior
‖A‖norm = 32.63%, x̄=0.0773, M=0.0630, s=0.0602,

min=0.0002, max=0.2977.

(c) LASSO
‖A‖norm = 34.16%, x̄=0.0831, M=0.0732, s=0.0592,

min=0.0000, max=0.3283.

(d) Elastic net
‖A‖norm = 34.5%, x̄=0.0807, M=0.0699, s=0.0589,

min=0.0004, max=0.3163.

Figure 1: Posterior mean estimates of the coefficients of the market conditions variables15. Notes: Results are
based on that h = 0. The numbers at the x-axis correspond to the following variables: 1. VIX Index, 2. Price
to earnings (P/E) of S&P 500 Index, 3. Growth rate of the trailing 12-month sums of earnings of S&P 500
Index, 4. DEBT/EBITDA ratio of the S&P 500 Index, 5. Net equity expansion on the NYSE Index, 6. Yield to
maturity for the three-month Treasury bill, 7. 2/10 U.S. Government bond yield spread, 8. Moody’s BAA and
AAA-rated corporate bond yields spread, 9. U.S. inflation, 10. U.S. ISM Manufacturing Purchasing Managers
Index, 11. Growth rate of the U.S. Conference Board Leading Economic Indicators Index, 12. U.S. business cycle
phase. The y-axis presents 200 randomly chosen analysts.

15To compare the sparsity among the models, we report the normalized ‖`‖0−norm defined by ‖A‖norm :=
# {(i, j), Ai,j 6= 0} /(n ∗m), where A ∈ Rn∗m. Also, we report the mean (x̄), the median (M ) and the standard
deviation (s) of the non-zero elements.
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(a) h=0 (b) h=1

(c) h=2

Figure 2: Marginal posterior densities of coefficients of I(Rt = 1). Notes: The α–stable distribution prior is used.
Only the not zero mass marginal posterior densities are plotted.

(a) Average posterior predictive densities (b) Cumulative distribution functions

Figure 3: Average posterior predictive densities and cumulative distribution functions of abnormal returns. Notes:
The densities are obtained using the α–stable distribution prior, for h = 0, 1, 2 days after the recommendation
revisions.
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(a) α–stable distribution prior (b) Horseshoe prior

(c) LASSO (d) Elastic net

Figure 4: Posterior densities of the expected abnormal returns of the investment strategies. Note: It is assumed
that h = 1.

(a) α–stable distribution prior
‖A‖norm = 24.71%, x̄=0.0807, M=0.0699, s=0.0589,

min=-3.8295, max=3.8936.

(b) Horseshoe prior
‖A‖norm = 14.95%, x̄=-0.0038, M=-0.0033, s=1.0069,

min=-3.3345, max=3.1894.

Figure 5: Relations between the coefficients of the variable I(Rt = 1) at the recommendation revision day
(h = 0)16.
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(a) Conditional herding
‖A‖norm = 0.54%

(b) Unconditional herding
‖A‖norm = 11.81%

Figure 6: Consistency in following given analysts at the recommendation revision day (h = 0). Notes: In both
cases, only the statistically significant coefficients of I(Rt = 1) assuming the α–stable distribution prior are
plotted14.

(a) against LASSO (b) against elastic net

(c) against horseshoe (d) Predictive Bayes factors

Figure 7: Bayes factor and predictive Bayes factor for model comparison.

16To compare the sparsity among the models, we report the normalized ‖`‖0−norm defined by ‖A‖norm :=
# {(i, j), Ai,j 6= 0} /(n ∗m), where A ∈ Rn∗m. Also, we report the mean (x̄), the median (M ) and the standard
deviation (s) of the non-zero elements.

29



Acknowledgements

We are grateful to Valerio Poti for his insightful and constructive suggestions that improved

the paper in various ways. Also, we thank members of the COST (European Cooperation in

Science and Technology) Action 19130 for their comments.

Funding

This paper has received funding from the European Union’s Horizon 2020 research and in-

novation program “FIN-TECH: A Financial supervision and Technology compliance training

programme” under the grant agreement No 825215 (Topic: ICT-35-2018, Type of action: CSA).

References
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