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Abstract
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1 Introduction

One of the most studied capital market phenomenon is the relation between asset’s return

and its recent relative performance history, termed momentum effect. By betting on past

returns, a momentum strategy has historically delivered competitive Sharpe ratios and high

excess returns, and therefore became central to the market efficiency debate and one of the

focal point in empirical asset pricing studies.1 However, despite strong positive average risk-

adjusted returns, momentum strategies are subject to ”crashes”, meaning infrequent periods

of large and persistent negative returns (see Daniel & Moskowitz 2016).

These large losses are often associated with a time-varying exposure to systematic risk

factors. For instance, Kothari & Shanken (1992) argue that sorted portfolios inherit exposure

to market risk from the formation period. As a result, momentum portfolios formed during

bear markets are likely to bet against high beta stocks, thus generating adverse performance

when these periods are over (see, e.g., Grundy & Martin 2001). Following the major market

decline of 1932, during the tail of the great depression, the momentum strategy up-market

beta is almost three times larger than the down-market beta; similarly, towards the end of

the great financial crisis of 2008/2009 the up-market beta of the momentum strategy is more

than five times larger than the down-market beta.

A conventional approach to mitigate the effect of the asymmetric exposure of momentum

portfolios to market risk is to leverage up or down the winner-minus-loser (WML) portfolio

based on the conditional volatility of the strategy returns (see, e.g., Barroso & Santa-Clara

2015, Daniel & Moskowitz 2016). This grounds on the fact that momentum returns volatility

is highly predictable, whereas the conditional expected returns, i.e., momentum risk premium,

is often hard to measure due to the relatively low signal-to-noise ratio of the realised returns.

However, while focusing on volatility to dynamically manage the risk of a momentum strategy

certainly simplifies the empirical analysis, assuming risks can be unequivocally mapped by

volatility is based on the unspoken assumption that momentum crashes affect only the scale of

the returns distribution but not its asymmetry over time. That is, skewness risk is ignored.2

In this paper we offer a different method to measure and manage risk associated to the

momentum strategy. Our approach is that momentum risk premium does not only represent

1Jegadeesh (1990) first document that stocks that performed well in the past have the tendency to out-
perform the market, while stocks that performed poorly tend to underperform it. Grinblatt, Titman &
Wermers (1995) find that momentum strategies are common among investment funds, while several papers
document the pervasiveness of this anomaly across countries Rouwenhorst (1998), Fama & French (2012) and
asset classes (see, e.g., Moskowitz & Grinblatt 1999, Moskowitz, Ooi & Pedersen 2012, Asness, Moskowitz &
Pedersen 2013).

2Skewness risk in financial modeling is the risk that results when observations are not spread symmetrically
around an average value, but instead have a skewed distribution. As a result, the mean and the median can
be different.
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a compensation for risk expressed by volatility, but also for the exposure to skenwess risk and

its interplay with conditional volatility. We show both analytically and in simulation that

considerable time variation in the strategy returns skewness simply arises from the asym-

metric exposure of the WML portfolio to normally distributed market returns. Yet, if returns

asymmetry varies over time, volatility is not an accurate representation of the strategy’s risk

(see, e.g., Glosten, Jagannathan & Runkle 1993). However, the explicit dynamics and effect

of skewness risk on momentum premium has been mostly overlooked so far in the literature.

The importance of the third moment of the distribution of returns has recently been

investigated more generally by Harvey & Siddique (2000), that integrate conditional skewness

within an otherwise asset pricing model. Jacobs, Regele & Weber (2015) uncover a robust

relation between expected skewness and cross-sectional momentum, specifically in relation

to past losers. Intuitively, the reason why skewness might be as important as volatility

to model the momentum strategy risk is straightforward, if not often appreciated: volatility

scaling is based on the assumption that the conditional distribution of the momentum returns

is normal, that is the conditional mean and median are the same. Assuming returns are

spread symmetrically around an average value over time implicitly ignores the fact that

negative shifts in the risk premium of the strategy might occur even in periods where the

volatility does not change significantly. As such, volatility targeting might represent, at least

in theory, an insufficient tool to mitigate the risk of momentum portfolios especially during

period of dramatic losses (crashes). In other words, by assuming that the momentum strategy

returns are symmetrically distributed around the conditional mean at each time t, when they

are not, could cause volatility-managing adjustments to understate the overall risk of the

strategy during momentum crashes.

In order to tease out the economic significance of time-varying skewness risk in US equity

momentum, we propose a parametric model which allows to recover the location, scale and

asymmetry of the strategy returns distribution over time. This allows to provide a deeper

understanding of the role of volatility, skewness, and their interplay in shaping the dynamics

of momentum risk premium. More specifically, our modeling framework allows to characterize

the closed-form dynamics of the strategy risk premium, i.e., conditional expected returns, and

conditional volatility as a direct function of the estimated returns asymmetry. As a result, we

can single out a skewness-hedging component from an otherwise standard dynamic strategy

that maximises the conditional Sharpe ratio (see, e.g., Daniel & Moskowitz 2016).

1.1 Findings

Building upon the intuition of Kothari & Shanken (1992), Grundy & Martin (2001), we show

both analytically and in simulation that the asymmetric exposure of the momentum strategy
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to market risk generates skewness in the conditional distribution of the WML portfolio returns.

This holds even assuming both the returns on the market portfolio and the error terms are

normally distributed. Simple recursive estimates of the up- and down-market betas show that

the asymmetry in the exposure to market risk tend to widen during momentum crashes. This

suggests that the asymmetry of the conditional distribution of momentum returns might not

necessarily be constant over time. We build upon this intuition and investigate the shape

of the conditional distribution of the daily returns on a standard momentum strategy in

US common stocks over the 1927-2020 time period. The main contribution of the paper is

fourfold.

First, we find a significant time variation in the skewness risk associated with momentum

investing, which accounts for the large crashes that the strategy has experienced in 1932,

2001 and 2009. This is due to a different pattern of upside and downside risk of the loser

and winner portfolios. For instance, although the skewness of the past winners portfolios

significantly decreased in the aftermath of the great depression, the conditional skewness of

the returns on the past losers portfolios turned highly positive. That is, the WML portfolio

implicitly was ”buying” a moderately lower downside risk, but at the same time was ”selling”

a substantially higher upside risk, with the latter more than offsetting the former. As a result,

the conditional skewness of the WML tend to become more negative during the tail of recessions

and throughout periods of large drawdowns.

The second main result pertains the role of time-varying skewness for the dynamics of the

momentum premium. Notice that our framework allows to define the conditional expected

returns on the momentum strategy as a direct function the location, i.e., mode, the scale

and the asymmetry of the returns distribution. A second-order Taylor expansion shows

that the risk premium associated to the momentum strategy is not only related to time-

varying volatility, but it is also affected by the time variation of returns asymmetry. This

result points to a nonlinear interaction between volatility and skewness risk in shaping the

momentum premium. For instance, increasing skewness risk tend to dominate volatility risk at

times during the momentum crashes of 1930s, 2001 and 2009. On the other hand, volatility

plays a dominant role for the dynamics of momentum expected returns primarily within

recessions. More generally, we show there is a significant amplification mechanism between

skewness and volatility that helps to explain the dynamics of risk premiums for the momentum

strategy, especially during the 2001 dot-com bubble and the great financial crisis of 2008/2009.

The third main result relates to the dynamics of the risk-return trade-off of the momentum

strategy. The evidence on the shape of the trade-off between risks and rewards for momentum

strategies has been often inconclusive. Theodossiou & Savva (2016) argue that such ambiguity

is primarily due to the fact that returns embed a linear combination of skewness and volatility

premiums. When the skewness of the predictive distribution is negative, these two premiums
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offset each other, generating a highly uncertain dynamics for the risk-return trade-off. Our

approach allows for a more general, non-linear, time-varying, interaction between skewness

and volatility premiums. We document a time-varying risk-return trade-off which is mostly

negative particularly around momentum crashes: while the premium pertaining volatility is

only mildly negative, the non-linear interaction with conditional skewness further exacerbates

the slope of the risk-return profile, which becomes even more negative. This is due to the effect

of conditional skewness on the risk premiums rather than on returns’ conditional variance.

Larger negative skewness triggers a downward correction of the expected returns on the

momentum strategy, whereas we find a less pervasive impact of skewness on the variance of

the returns. The limited effect of the skewness on volatility is likely mitigated by the presence

of heavier tails in the returns distribution, which are explicitly accounted for by the model.

The last main result of the paper relates to the economic value of explicitly modeling

time-varying skewness risk in momentum portfolios. We expand from Daniel & Moskowitz

(2016), and derive an economically significant skewness-hedging component from an other-

wise standard optimal dynamic strategy that maximises the conditional Sharpe ratio. More

specifically, we leverage the direct dependence of the risk premium on volatility and skewness

within our model and disentangle two components in the optimal managed portfolios; a first

component that shrinks the allocation in the risky momentum strategy as volatility increases,

and a second component which, for a given level of volatility, further shrinks the optimal al-

location to zero as the returns skewness becomes more negative. We show that managed

portfolios that account for time-varying skewness risk fare better than the dynamic or con-

stant volatility adjustments proposed by Barroso & Santa-Clara (2015), Daniel & Moskowitz

(2016). Perhaps more importantly, our skewness-managed momentum strategy generates

higher Sharpe and Sortino ratios as well as a performance which is positively skewed, that is,

unconditionally, the probability of a large gain based on our enhanced momentum strategy

is higher than the probability of a large loss, unlike most competing approaches. In addition,

the returns on our skew-managed momentum strategy are not spanned by the returns on the

market, standard Fama & French (1993) factors, or by the returns on a constant or dynamic

volatility managed momentum portfolio.

1.2 Literature

In addition to Barroso & Santa-Clara (2015) and Daniel & Moskowitz (2016), our work relates

to a long standing literature that seeks to understand the origins and the dynamic properties

of momentum returns, such as Jegadeesh (1990), Rouwenhorst (1998), Moskowitz & Grinblatt

(1999), Griffin, Ji & Martin (2003), Moskowitz et al. (2012), Novy-Marx (2012), Asness et al.

(2013), among others. Building upon the intuition that market risk exposure in momentum
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strategies might not be symmetric, in this paper we first show that this generates asymmetry

in the returns conditional distribution and then focus on the dynamics and effect of skewness

risk in the strategy risk premium.

A second strand of literature we relate to is about the role of higher order moments in

portfolio allocation (see, e.g, Guidolin & Timmermann 2008) and asset pricing models (see,

e.g., Dittmar 2002, Harvey & Siddique 2000, Kraus & Litzenberger 1976). Within the context

of momentum strategies, a variety of approaches have been proposed; for instance, Grundy

& Martin (2001), which suggest to dynamically hedge systematic risk factors to reduce the

risk of the strategy. However, Daniel & Moskowitz (2016) show that this strategy is not

implementable in a realistic setting as it suffers from forward-looking bias. Instead, they

proposed an adjusted strategy improving upon the volatility managed portfolio approach of

Barroso & Santa-Clara (2015) and Moreira & Muir (2017).

Finally, this paper connects to a third strand of literature which propose the use of dynamic

econometric modeling for non-Gaussian distribution. More specifically, we rely on the score-

driven framework put forward by Creal, Koopman & Lucas (2013) and Harvey (2013). This

setting has proven to be particularly suitable for accommodating parameters’ time variation

under different distributional assumptions (Koopman, Lucas & Scharth 2016).3 To the best

of our knowledge, our paper is the first to propose the use of such framework within the

context of risk managed portfolios. Among the advantages of the score-driven dynamics, the

robustness to outlying observations is the perhaps the most prominent. This is particularly

relevant when working with daily portfolio returns, as in our case. The filtering framework

algorithm which is used to estimate the model parameters over time is, in fact, robust to the

information supplied by extreme observations, and turns them into feasible updates for the

parameters of interest. As a result, parameter estimates tend to be less volatile and better

identified, compared to Hansen (1994) and Harvey & Siddique (1999). In addition, unlike

existing methodologies, our score-driven model allows to derive in closed form both conditional

expected returns and volatility, as well as the risk-return trade-off which explicitly depend

on the conditional asymmetry in the returns distribution. This gives a clear advantage when

dissecting the marginal contribution of skewness in the dynamics of risk premiums, conditional

variance, as well as on the shape of the trade-off between risks and rewards.

3Parameters’ updating based on the score of the predictive likelihood always reduces the local Kullback-
Leibler divergence between the true conditional density and the model-implied one, even under severe mis-
specification (Blasques, Koopman & Lucas 2015).
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2 The returns in US equity momentum

We construct momentum decile portfolios based on daily returns of firms listed on the NYSE,

Amex and Nasdaq, with CRSP code 10 or 11. Decile portfolios are constructed daily but

are rebalanced monthly. We follow Daniel & Moskowitz (2016) and form portfolios based on

an all-firms breakpoints, that is an equal number of firms is present in each decile portfolio,

rather than an equal number of just NYSE firms as in Fama & French (1996).4 The risk

free rate is the monthly 1-month T-bill rate, and the market return is the value-weighted

index of all the CRPS firms; both series are obtained from Kenneth French data library.5

Decile portfolios are formed on the basis of eleven-month (J = 11) look-back period, from

months t − 12 through t − 1, and are rebalanced each month (K = 1). We skip the most

recent month, which is our formation period, to avoid the short-term reversal documented by

Jegadeesh (1990) and Lehmann (1990). Stocks are sorted into deciles, ranked on the basis of

their performance over the past J months, then the momentum strategy consists of investing

1$ in the portfolio of past winners (the 10th decile) and selling 1$ of past losers (the 1st

decile), with a K−months holding period. This 12 2 long-short portfolio is often referred to

as the winners-minus-losers (WML) strategy.

The left panel of Figure (1) compares the cumulative performance of investing 1$ in the

WML portfolio against a buy-and-hold investment in the market and the risk-free rate. The

performance is calculated from the second half of the 1920s holding the investment until the

end of 2020. Clearly, momentum has delivered a substantially higher performance with respect

to both the aggregate stock market and the risk-free rate over the last century. The average

excess return of the WML portfolio is close to 19%, almost three times the 7.5% offered by the

market. On the other hand, the volatility is somewhat comparable, with an unconditional

annualised standard deviation of 24% for momentum vs 17% of the market. This translates

in a Sharpe ratio for the momentum strategy of 0.78 on an annualised basis, almost double

with respect to the aggregate stock market (Sharpe ratio: 0.44). Figure 1 also suggests that

the market beta on the WML is also reasonably low, at least unconditionally. A simple static

CAPM regression shows that the market beta is indeed slightly negative and significant (β=-

0.15, t-stat=-17.4), which result in a highly positive and significant annualised Jensen’s alpha

(α=22.2, t-stat=8.3). In other words, a typical momentum strategy á la Jegadeesh & Titman

(1993) not only produce a quite high risk-adjusted performance, but also possibly provides a

significant diversification with respect to aggregate market fluctuations.

Nevertheless, the right panels of Figure 1 show that despite its strong performance, mo-

mentum has experienced few severe downturns. Daniel & Moskowitz (2016) define these

4Refer to http://www.kentdaniel.net/data/momentum/mom_data.pdf for additional information.
5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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events as momentum ”crashes”. They are associated with extremely negative monthly re-

turns, ranging from -90% to -75%, in 1932 and 2009, respectively; at the daily frequency,

cumulative returns over the same months produced losses of -65% to -70%. Sample statistics

suggest that the higher excess returns are associated with higher variance, with momentum

bearing about 50% more risk than the market, and significantly lower skewness. Thus, the

profitability of this strategy comes at the cost of significant drawdowns.

Intuitively, the occurrence of sporadic but persistent large negative returns induce signif-

icant asymmetry in the distribution of momentum portfolio returns. In Table 1 we report

different measures of skewness for both the past winners, past losers and the WML portfolio.

The first row reports the sample skewness, defined as the standardized third moment of the

sample distribution of returns. The p-values for the Bai & Ng (2005) significance test are

reported in parentheses. The sample skewness measure suggests that the portfolio of past

losers, the short-leg of the momentum strategy, does not show any significant asymmetry,

as suggested by the p-values. On the other hand, the market, past winners and the WML

strategy all show significant, negative skewness, with the latter displaying twice the asym-

metry with respect to past winners.6 These values hint that the strategy is often subject to

extreme losses, not being matched by gains of similar magnitude. In addition to the sample

skewness, we also report the Bowley skewness measure calculated as QSα = q(α)+q(1−α)−2q(50)
q(α)−q(1−α)

,

with q(α) being the αth quantile of the data. Such measure is robust to the presence of

outliers, which tend to weaken the validity and interpretability of returns asymmetry mea-

sures (see Kenney & Keeping 1939, Kim & White 2004). The second and third rows in Table

(1) reports the results of two robust specifications of returns asymmetry based on different

quantiles, QSα, α = 95, 90. Even after accounting for the presence of outliers, WML returns,

as well as past winners’, still display marked negative asymmetry. The estimates for the

past winners and losers suggest that, as we remove more outliers, past winners tend to be

more negatively skewed compared to the strategy. This suggests that the strategy skewness

is mostly induced by large losses realized by past winners.

2.1 Asymmetric market betas and skewness risk

Grundy & Martin (2001) argue that long-short portfolios formed during bear markets are

likely to sell high-beta, and buy low-beta stocks as firms dropping with the market will still be

high-beta firms. Daniel & Moskowitz (2016) document the asymmetric nature of the market

risk exposure of momentum strategies is at the core of momentum crashes and is primarily

due to the past losers portfolio: during bear markets and high volatility, the short leg of

6Daniel & Moskowitz (2016) report the same measure for monthly momentum returns over the period
1927-2013. They find that WML returns display a skewness of -4.70, against a skewness of just -0.82 for past
winners.
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the strategy commands a higher premium, resulting in higher gains as the market rebounds.

This pattern in dynamic betas of the loser portfolio implies that momentum strategies in bear

markets behave as written call options on the market; that is, when the market falls, they

gain a little, but when the market substantially rises – at the tail of, or outside, recession

periods –, they lose much. The same intuition is underlying the volatility-managed momentum

strategy proposed by Barroso & Santa-Clara (2015). Similarly, Dobrynskaya (2015) finds that

unconditionally decile momentum portfolios show a remarkable monotonic increase in the level

of downside risk, suggesting that past winners tend to be associated with higher downside

risk, whereas past losers show higher upside risk.

We now build upon this existing evidence and show that the asymmetric exposure to

market risk generate negative and possibly highly time varying returns skewness. Let consider

a standard conditional CAPM specification which separates up-market and down-market

betas (see, e.g., Ang, Chen & Xing 2006, Lettau, Maggiori & Weber 2014),

rt = α + βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (1)

with mt ∼ N (µm, σ
2
m) the normally distributed market portfolio and I(mt ≥ µm) (I(mt <

µm)) an indicator function that takes value one if the market returns are above (below) the

mode µm and zero otherwise. In Appendix A we show that the distribution of βmt conditional

on the indicator I(·) can be characterised as a split-Normal (or two-piece Normal) distribution

(see Johnson, Kotz & Balakrishnan 1995) such that the difference between the expected value

E [βmt] and the mode βµm takes the form,,

E [βmt]− βµm =

√
2

π
(σm − σm) ∝ σm

(
β − β

)
(2)

with σ2
m = β2σ2

m and σ2
m = β

2
σ2
m. It is easy to see that under the assumption of equal betas

across market states, i.e., β = β = β, there is no asymmetry in the marginal returns of the

distribution such that E [βmt] = βµm (see Arnold & Groeneveld 1995). Also, in Appendix A

we show that for equal up-market and down-market betas the variance of the systematic com-

ponent is defined as V [βmt] = β2σ2
m, such that the marginal distribution of the momentum

strategy returns is equal to the standard CAPM formulation rt ∼ N (α + βµm, β
2σ2

m + σ2
e).

On the other hand, with asymmetric betas β 6= β, Eq.(2) shows that for β < β (β > β) the

expected value of the systematic CAPM component is lower (higher) than the mode, that is

the marginal distribution of the returns is negatively (positively) skewed even assuming that

the market returns and the residual et are both normally distributed. Figure 2 reports the

unconditional estimates of the upside and downside market betas for both the past losers
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and winners portfolios as well as the WML strategy. The left (right) panel reports the estimates

based on daily (monthly) returns.7 The daily estimates show that the losers portfolio are

more exposed to upside market risk (β = 1.36) vs downside market risk (β = 1.27), in relative

terms compared to the unconditional market beta (β = 1.31). The opposite holds for the

winners portfolio (β = 1.09, β = 1.22, β = 1.16), consistent with the intuition in Grundy &

Martin (2001). As a result, the WML strategy has a quite sizable and negative up-market beta

(β = −0.27) while the down-market beta is close to zero (β = −0.04). The magnitude of the

spreads in the upside and downside market betas is even higher at the monthly frequency

(right panel of Figure 2).

The left panel of Figure 3 shows the marginal distribution and joint distributions of the

returns on the WML strategy and the market portfolio. Returns are simulated assuming a

two-piece Normal distribution as in Eq.(A2) in Appendix A by using the unconditional β and

β estimates above. In order to isolate the effect of the upside and downside beta estimates

returns on the market portfolio are assumed to be normally distributed with mean zero and

volatility equal to the historical standard deviation. The error terms et is also normal with

zero mean and variance equal to one. Despite both the market returns and the residuals

are assumed normally distributed, the negative spread in market betas generate a slightly

negatively skewed (skew = -0.1) marginal distribution.

As suggested by Daniel & Moskowitz (2016), the spread between upside and downside

betas tend to exacerbate during momentum crashes. Thus, we expand the unconditional

results in Figure 2 follow Ang et al. (2006), and calculate the downside market beta over time

for the losers, winners portfolios and the WML strategy as,

βi
t

=
covt(r̃

i
t+1,min{m̃t+1, 0})

vart(min{m̃t+1, 0})
i = losers, winners, WML, (3)

where r̃it and m̃t are the demeaned returns for the momentum strategy and the demeaned

excess market returns, respectively (see, e.g., Hogan & Warren 1974). The denominator of (3)

captures the variance of the downside market excess returns, and is generally referred to as

the relative semi-variance. Therefore, high downside betas imply that return is significantly

exposed to market’s downswings. Upside betas β
i

t hold a similar interpretation and are

computed by substituting the min function in (3) with the max operator.

Figure 4 reports the estimates for the spread Bt = β
WML

t − βWML

t
for the periods indicated as

7The estimates of the upside, β, and downside, β betas are based on the following regression:

rit = α+ βi min(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.
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momentum crashes by Daniel & Moskowitz (2016).8 To estimate the time-varying downside

and upside betas for the momentum strategy returns, we follow Bali & Engle (2010), Tsai,

Chen & Yang (2014) and implement a dynamic conditional correlation (DCC) model as

originally proposed by Engle (2002). For the easy of exposition we report both the daily

DCC estimates of Bt as well as a smoothed version of the estimates based on a quarterly

moving average of the daily estimates. Recessions are highlighted in gray where momentum

crashes are color-coded in red shading. Except few nuances, the spread Bt is primarily

negative during the momentum crash of the 30’s (left panel). The difference between upside

and downside betas tend to spike in 1935 and 1938, although remains persistently large and

negative for the entire decade. The momentum crash of the 2001/2002 (right panel) shows

a slightly different dynamics, with Bt > 0 during the dot-com bubble collapse, which then

switch negative towards the tail of the recession. The momentum crash during the great

financial crisis of 2008/2009 is characterised by a large negative spread between upside and

downside betas for the WML portfolio returns. The Bt difference is persistently negative and

is as large as -2.5 on a daily basis.

As per Eq.2, the differences in the spread Bt should lead to a higher skewness in the

marginal distribution of the momentum returns. The middle and the right panels in Figure 3

shows the simulation results based on the conditional estimates for two specific time stamp of

the momentum crashes reported in Figure 4. Consistent with the intuition from an asymmet-

ric CAPM formulation the implied returns skewness of momentum returns markedly differ

from the full sample simulation. For instance, in March 1935 – in the middle of the largest

momentum crash – the average quarterly difference β − β is as large as -1.5. As a result,

the marginal distribution of the momentum returns (middle panel) is much more negatively

skewed (skew = -0.805). Similarly, in the middle of the great financial crisis of 2008/2009,

the average quarterly spread Bt expands to -1.4, with a corresponding skew = -0.529 of the

simulated momentum returns.

3 Modeling the returns distribution

The asymmetry in the market betas for both the WML strategy (see Figure 4) and their dynamic

effect on the marginal distribution of the momentum returns (see Figure 3), suggests that

returns asymmetry might not be constant over time and possibly more pronounced during

periods of large negative (positive) upside (downside) betas. Yet, it is important to notice

that downside and upside risk exposure of past winners and past losers do not linearly map

into the long-short strategy exposure to market risk.

8For the ease of exposition, the estimates for both the losers and the winners portfolios are not reported
in the main text. They are available upon request to the authors.
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We now introduce a flexible modeling framework which allows to capture the time variation

in the first three moments of the conditional distribution of the momentum strategy returns,

that is the location, scale and asymmetry parameters. Let rt be the return on the momentum

portfolio at time t:

rt = µt + εt, εt ∼ Sktν(0, σ
2
t , ρt) (4)

where the innovations εt follow a Skew-t distribution with ν degrees of freedom (see Gómez,

Torres & Bolfarine 2007).9 The time-varying parameters ft = (µt, σt, ρt)
′ represent the loca-

tion µt, the scale σt, and the asymmetry ρt of the conditional distribution of the momentum

returns. More specifically, the third moment ρt is key for the shape of the distribution of the

returns; when ρt > 0 (ρt < 0) the conditional distribution of the momentum strategy returns

features negative (positive) skewness at time t. The vector of moments ft = (µt, σt, ρt)
′ is

updated at each time t in a data-driven fashion as in Creal et al. (2013) and Harvey (2013):

ft+1 = ft + κst (5)

where st is the scaled score, and κ contains the structural parameters regulating the law of

motion of the moments. The scaled score is defined as st = St|t−1∇t, with ∇t = ∂`t
∂f ′t

being

the gradient of the conditional log-likelihood function with respect to the dynamic location,

scale and asymmetry parameters. The scaling matrix St|t−1 is proportional to the square root

of the Moore-Penrose pseudo-inverse of the diagonal of diag(It) = diag
(
E
[
− ∂2`t
∂ft∂f ′t

])
, i.e.,

the information matrix.10 As a result, the scaled score is a martingale difference sequence

with conditional variance equal to one.11 The full derivation of the scaled scores in stm

the gradients of the conditional log-likelihood and the scaling matrix St|t−1 is provided in

Appendix B.1.

Notably, our model belongs to the observation-driven class (see Cox 1981, for details), as

the dynamics of the moments of the conditional distribution ft is entirely data driven, i.e.,

is a function of past obervations only. For instance, the GARCH models of Engle (1982),

Bollerslev et al. (1987) are observation-driven model which can be nested within our model

specification as special cases.

9This distribution is particularly suitable to the case into consideration as it nests the Student-t, skew-
Gaussian and Gaussian distributions, as liming cases.

10Creal et al. (2013) suggest alternative scaling matrix as the identity matrix or I−1t|t−1. The former choice

leaves the score unscaled, with Var[st] = It|t−1, whereas the latter scaling matrix sets the variance of the
scaled score to the inverse of Information matrix.

11Note, however, that the covariance matrix is not diagonal as there is a covariance term between location
and scale that is non-zero. We choose to ignore the off-diagonal elements of It for computational stability
purposes and to restrict the feedback effect of the parameters to their own score, as in Lucas & Zhang (2016).
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Estimation procedure. A feature of observation-driven models is the straightforward com-

putation of the likelihood function (see, e.g., Creal et al. 2013, Harvey 2013). However, the

optimization and computation of confidence intervals remain challenging, in particular when

models are rich in parameters and non-linearities. For this reason, we opt for a Bayesian

estimation procedure for the structural parameters of the model. Perhaps more importantly,

Bayesian estimators are not affected by local discontinuities and potentially multiple local

minima and/or flat areas of the likelihood. This is because one can more easily explore the

entire surface of the likelihood function, particularly in the high-dimensional setting, via sim-

ulation from the prior distributions from different initial random samples (see, e.g., Tian, Liu

& Wei 2007, Belloni & Chernozhukov 2009).

Let κ be the score loadings, η is the inverse of the Skew-t degrees of freedom and f̄0 =

[µ̄0, δ̄0, γ̄0] collects the initial values of the time-varying parameters. Prior specifications for

these parameters read:

κ ∼ G−1(aκ, bκ), η ∼ G−1(aη, bη) · I(η∈H), f̄0 ∼ N (m0, s0)

We set Inverse Gamma priors for the score loadings such that they reflect the a-priori expec-

tation of small but positive coefficients, in line with the properties of the score-driven filters

(for further discussion, see Blasques, Koopman & Lucas 2014). We set aκ = 4, and bκ = 1,

such that the prior distribution has a mean of 0.3 and variance of 0.05. We use an inverse

gamma prior for η, the inverse of the degrees of freedom parameter, with aη = 2 and bη = 10.

In line with Juárez & Steel (2010), these values allow the distribution to explore a wide range

of feasible values for ν, with a mean of 20 and a median of 10. In order to ensure the existence

of, at least, the first three moments, we restrict the support to the H = [0, 0.33] set. The

initial values of the time-varying parameters are drawn from a multivariate Gaussian distri-

bution, with mean vector m0, and s0 = 0.5I3. The mean vector m0 is obtained by matching

the unconditional properties of the data.

Once the prior distributions are specified, the parameters of the time-varying distribution

are estimated via simple simulation-based optimization, that is by solving arg maxθ `t(rt, ft;Ft−1, θ)×
π(θ), where θ∗ is the vector of parameter that maximizes the posterior distribution of the

model. π(θ) contains prior information about the model’s parameters, and ` is the likelihood

function of the data (see Chernozhukov & Hong 2003 for more details).

3.1 Momentum premium dynamics

Our modeling framework allows to explicitly consider the effect of both the location µt, scale

σt and asymmetry ρt parameters on the dynamics of the expected returns on the momentum
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strategy. The conditional expected returns are of particular relevance for our purpose. As

a matter of what, within the context of reduced-form empirical asset pricing models, the

ex-ante expected returns on zero-cost long-short portfolios is often considered a proxy for the

strategy risk premium (see, e.g., Gu, Kelly & Xiu 2020).

Within the context of our modeling framework, the expected value of the returns con-

ditional on information at time t can be derived by reparametrizing the Skew-t density of

Gómez et al. (2007) as a two-piece distribution which allows to model the conditional mo-

ments as weighted averages of the moments of a Half-t distribution (see Arellano-Valle, Gómez

& Quintana 2005, Gómez et al. 2007). Specifically, the moment generating function for the

returns distribution is computed as:

E[rj] =

j∑
k=0

(
j

k

)
σkµj−kµ̂k. (6)

Therefore, the expected return at time t on the strategy returns follows:

Et(rt+1) = µt − g(ν)ρtσt, ν > 1 with g(ν) =
4νC(ν)

ν − 1
(7)

where C(·) is a combination of Gamma functions and constants, and ν are the degrees of

freedom. A full derivation of the moment generating function, and the corresponding expected

returns, from the two-piece Half-t distribution is provided in Appendix C. Based on Eq.(7),

the risk premium on the momentum strategy depends on both the scale and the asymmetry

of the returns distribution at each time t. The parameter ρt is of particular importance

since drives the returns asymmetry (or the shape) and maps directly into the value of the

conditional skewness.

To better understand the role of the scale and asymmetry parameters on the model-

implied risk premium, we implement a comparative static analysis by looking at the changes

in expected returns from ρt, σt and the degrees of freedom ν. Figure (5) shows the results

assuming for simplicity that µt = 0. The left panel reports the expected value as a function of

ρt and σt. To increase the readability of the heatmap, we also report the partial derivative of

(7) with respect to ρt and ν for varying values of σt. Two facts emerge: first, the effect of the

returns asymmetry on expected returns is amplified by the scale σt. When the distribution

of the returns is negatively skewed, i.e., ρt > 0, the higher the volatility the lower is the

conditional expected returns, i.e., negative risk-return trade-off. On the other hand, when

the returns distribution is positively skewed, i.e., ρt < 0, the conditional expected return

increases with σt. This is consistent with the idea that high volatility with positive skewness

is associated with large positive gains from the strategy. Second, the interplay between
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asymmetry and volatility is multiplicative, that is the curvature of the expected returns as a

function of the scale σt increases more than linearly as a function of the returns asymmetry

ρt. The steepness of the curvature is regulated by the degrees of freedom ν, as suggested

by the behaviour of the partial derivatives. This suggests that the more extreme the return

observations are, the higher the sensitivity of the conditional expectation to changes in returns

scale and asymmetry.

The right panel of Figure (5) shows the effect of the returns asymmetry ρt and the thickness

of the tails, as proxied by the degrees of freedom ν on the conditional expected returns.

Thicker tails, meaning lower values of ν push the strategy expected returns to more extreme

values, depending on the sign of the returns asymmetry. For instance, for a small value

ν = 2, the expected returns range between -3 and +2 for ρt = 1 and ρt = −1, respectively.

For higher values of ν, the sensitivity of the expected returns to changes in the asymmetry

parameter decreases. The fact that the effect of a change in the shape parameter depends

on ν, is perhaps more visible in the plot of the partial derivative of (7) with respect to ρt:

the effect of the returns asymmetry on the risk premium is mitigated by thinner tails of the

returns distribution, while still dictating the sign of the expected returns.

3.2 Time-varying skewness as a sufficient statistics

Given the tight relationship between the distance between up-market and down-market betas

and returns asymmetry shown in Section 2.1, one can consider using dynamics betas within a

conditional Gaussian framework to capture momentum crashes instead of using our approach.

While, in principle, this is a suitable modeling choice, we believe that our framework provides

several practical advantages. First, our approach allows to characterise the dynamics of

momentum strategy risk and returns on a daily basis, instead of aggregating returns at the

conventional monthly frequency. On the one hand, this provides a much more granular

representation of risks and returns in momentum portfolios. On the other hand, the returns

conditional volatility and skewness can be modeled daily, without the need to use often hard to

obtain intra-day returns. The aggregation aspect is particularly relevant when it comes to the

properties of the realized variance and skewness of portfolio returns. For instance, in Appendix

D we show that standard realised volatility estimates based on the monthly aggregation of

the daily squared portfolio returns – as in Barroso & Santa-Clara (2015), Daniel & Moskowitz

(2016) – tend to produce distorted monthly realised volatility estimates during returns crashes.

Perhaps more importantly, the second main advantage of our modeling framework is that, by

modeling the distribution of the residuals as a Skew-t, we can capture sources of asymmetries

beyond the spread in the upside vs downside market betas. As a matter of fact, Section 2.1

suggests that while a great deal of asymmetry in the returns distribution can be captured by
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asymmetric betas, there is still a considerable amount of skewness in the marginal distribution

of the momentum returns which could come from either the market portfolio and/or the

residuals. This would require to specify a much more complex model with time-varying betas

and volatility, as well as non-Normality in the residual terms. Related to this, Appendix B

shows that the updating scheme of the location, scale and asymmetry parameters is robust

to outlying observations. In other words, unlike standard realised variance and skewness

measures which are notoriously sensitive to outliers (see Kenney & Keeping 1939, Kim &

White 2004), our modeling framework can track the time-variation of skewness only if it

is actually present in the conditional distribution of the returns once outliers are filtered

out (see, Harvey 2013, Blasques et al. 2015). More specifically, the score-driven mechanism

updates the time-varying moments ft of the conditional distribution depending on the slope

and curvature of the log-likelihood function, in that it maximises the local fit of the model

at each point in time. To summarise, we view our approach as a parsimonious, robust, and

more comprehensive method to capture returns asymmetries in the conditional distribution

of the momentum returns compared to modeling the dynamics of the market betas.

4 Expected returns, volatility and skewness

The location parameter capture the center of the distribution and it is equivalent to the

conditional mean for models with symmetric distributional assumptions, i.e., ρt = 0. To

initially gauge the magnitude and the dynamic of returns asymmetry we look at the estimates

of the conditional scale parameter µt against the conditional mean of the returns as per

Eq.(7). The left panel of Figure 6 reports the estimates for the WML portfolio. Two things

emerge: first, there is a considerable time variation in the location parameter (red line),

which supports the idea of a time-varying risk premium (see Eq.(7)). Second, there is a

major disconnection between the location parameter and the conditional mean Et [rt+1]. Such

disconnection is particularly pronounced during the momentum crashes of 1932-1939 and

2008-2009. For instance, while the expected returns from the WML strategy become largely

negative in the aftermath of the great depression and the great financial crisis, the location

parameter µt remains largely in positive territory. For a given level of volatility, Eq.(7) shows

that Et [rt+1] < µt implies that the returns asymmetry is negative, i.e., ρt > 0.

The top-left panel of Figure 6 shows that the disconnection between µt and Et [rt+1] is

particularly evident for past winners, whereby the estimate of the location parameter is

primarily positive, while the conditional expected returns are often largely negative, especially

during momentum crashes as indicated by Daniel & Moskowitz (2016). On the other hand,

the asymmetry seems more limited for the past losers sub-portfolio. The location and the

conditional expected returns tend to align fairly close with the partial exception of the 2001
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and 2008 crashes, where expected returns are lower than the conditional mode estimates.

Put together, the right panels of Figure 6 suggest that the compounding effect of negative

skewness in both past losers and past winners tend to exacerbate the asymmetry of the

WML returns. The location parameter (red line) is largely positive, whereas the conditional

expected returns (black line) is often in negative territory with large negative spikes around

momentum crashes.

The fact that the conditional expected returns are lower than the location of the distribu-

tion, and that such discrepancy tend to exacerbate during momentum crashes suggest that

there is indeed significant, time-varying, pro-cyclical negative asymmetry for both legs of

the momentum strategy. The left panel of Figure (7) shows the estimates of the conditional

skewness for the WML portfolio returns. The Figure reports the daily skewness estimates in

black, and a five year smoothed trend in green. The dashed red horizontal line represents

the sample mean of the skewness estimate. The conditional asymmetry of momentum re-

turns shows substantial time variation, especially around recessions and momentum crashes.

In particular, the conditional density of momentum returns shows mildly negative skewness

ahead of crashes, in line with what implied by the relative upside and downside betas (see

Figure 4), and it drops quite substantially during crashes. For instance, in the aftermath of

August 1932, momentum skewness remains below-mean for about two decades before it starts

increasing steadily. This is in line with the pattern observed for the cumulative performance

of the strategy, where a full recovery from the loss incurred in 1932 only happened during the

1950s.12

The right panels shows the conditional skewness estimates of the past winners (top panel)

and the past losers (bottom panel) sub-portfolios. The asymmetry of the returns is much

more pronounced for past winners than past losers. For the former, the time-varying

skewness is in deep negative territory essentially for the whole sample. Interestingly, past

losers tend to have a significant upside exposure towards the tail of recessions, that is the

skewness becomes positive at the latest stage of both the great depression, the dot-com bubble

and the great financial crisis. This explains why the conditional skewness of the WML tend

to become more negative during the tail of recessions and throughout momentum crashes:

although the skewness of the past winners portfolios significantly decreased in the aftermath

of the great depression, the conditional skewness of the returns on the past losers portfolios

turned highly positive. In other words the WML portfolio implicitly is “buying” a moderately

12The average value of the dynamic skewness estimate is roughly -0.3 (red dotted line), which is smaller
than the sample skewness of -1.2 (see Table 1). The discrepancy between the sample skewness estimate and
the average skewness from our model is due to the robustness of the score-driven model to outliers. The
updating mechanism based on Skt innovations allows the mitigate the effect of outliers for the parameters
estimates, ensuring the estimated time-varying µt, σt, ρt to be robust to extreme realizations (Harvey & Luati
2014, Delle Monache, De Polis & Petrella 2021).
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lower downside risk, but at the same time was “selling” a substantially higher upside risk,

with the latter more than offsetting the former.

Figure 8 delve into the two major momentum crash periods of 1932-1939 (top panels)

and 2001-2009 (bottom panels) as indicated by Daniel & Moskowitz (2016). The left panels

shows the conditional skewness for the WML portfolio. To a large extent, consistent with

Eq.(7) and the estimates in Figure (6), the asymmetry of the returns is most negative during

the momentum crash of 1932-1939, and significantly drops from -0.1 to -0.4 towards the tail

of the great financial crisis. The mid and right panels show that this is mostly due to the

increasing risk on the upside for the past losers sub-portfolio, which represents the short

leg of the momentum strategy. Yet, the dynamics of the conditional skewness during the

2009 momentum crash is slightly different. It is really the incremental risk on the downside

of past winners that seems to weigh more for the negative skewness of the WML portfolio.

Interestingly, both legs of the momentum strategy turns out to have negative skewness during

the 2001 momentum crash, which result in a relatively mild risk on the downside for the WML

strategy in the aftermath of the dot.com bubble burst. To a large extent, Figure 8 shows that

dynamics of skewness during momentum crashes differ across periods. This is possibly due

to differences in the marginal effect of volatility vs skewness in shaping the momentum risk

premium.

As a matter of act, Eq.(7) shows that while the nature of the discrepancy between the

conditional mode and expected returns is intuitively due to the asymmetric nature of the

returns distribution, it is nevertheless also impacted by the dynamics of the scale parameters

σt, as also shown analytically in Figure (5). Similar to expected returns in Eq.(7), we can

derive the conditional variance of the momentum returns based on the moment generating

function in Eq.(6) as,

V art [rt+1] = σ2
t

(
ν

ν − 2
+ h(ν)ρ2

t

)
, ν > 2 with h(ν) =

3

ν − 2
− g(η)2, (8)

with h(ν) � 0 gauging the interaction between the fat-tailedness of the distribution, via

ν and the asymmetry parameter ρt. Appendix C provides a complete derivation of how to

obtain Eq.(8). Notice that for ρt = 0, V ar reduces to the Student-t variance: σ2
t

ν
ν−2

. As such,

for ρ2
t ∈ (0, 1), the Student-t variance is increased by a factor proportional to the degree of

asymmetry. Figure 9 shows the estimates of V olt =
√
V art [rt+1] for both the past winners

(top-right) and losers (top-right) sub-portfolios. Returns on the past losers portfolio tend

to be more volatile, in fact almost twice more volatile than the returns for the past winners,

especially around momentum crashes. This is reflected in a highly time-varying volatility

for the WML strategy (right panel), with volatility spikes around both during the 1929-1932

recessions, the dot-com bubble and the great financial crisis of 2008/2009 and subsequent
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momentum crashes. Such time variation in the strategy risk is consistent with the findings

in Barroso & Santa-Clara (2015), Daniel & Moskowitz (2016) and suggest that not only the

distribution might become more asymmetric around momentum crashes, but also that both

tails of the distribution tend to be thicker in particular towards the end of recession periods.

4.1 Dissecting the momentum premium

Equation (7) states that the conditional expected return of a momentum strategy, Et[rt+1]

is a nonlinear function of the mode µt, the scale σt and the asymmetry ρt of the returns

distribution. More specifically, to a first approximation, we can distinguish two sources

of expected returns: the location parameter, µt, and a nonlinear function of higher-order

moments: homt = −g(ν)σtρt. In this setting, positive values of ρt (that is, negative skewness)

get amplified by a higher value of the scale parameter σt (and a constant term, function of

the degrees of freedom, g(ν)). We highlighted the interplay between scale and shape of the

distribution on the model-implied expected returns in Figure 5.

To decompose the effect of time-varying volatility and skewness on the momentum risk

premium, we perform a second-order expansion of Eq.(7) around the unconditional mean

values f = (µ, σ, ρ)′. Let f̃t = ft − f , the conditional expected returns on the momentum

strategy can be decomposed as:

Et[rt+1] = µ− hom+ µ̃t + g(ν)ρσ̃t + g(ν)σρ̃t + g(ν)σ̃tρ̃t

Figure (10) reports the results of this decomposition for the two main momentum crashes

of 1932-1939 and 2001-2009 as indicated by Daniel & Moskowitz (2016). Different colored

areas represent the five components of the decomposition. More specifically, in addition to

the dynamics of momentum risk premium (black line), we report the effect of the changes in

the location µt (green) , the scale σt (light pink), the asymmetry ρt (violet) of the conditional

distribution, and the interplay between scale and asymmetry σt ·ρt (purple). As we primarily

focus on the dynamics of skewness risk during momentum crashes, for the ease of exposition

we report the risk premium decomposition only for the two major momentum crash periods

as indicated by Daniel & Moskowitz (2016).13

The left panel reports the momentum crash between 1932 and 1938. The results suggest

that during the great depression the risk premium is not uniquely a compensation for high

volatility, as suggested by Barroso & Santa-Clara (2015), Daniel & Moskowitz (2016). Outside

recessions the effect of ρt becomes fairly relevant, in fact dominant from mid 1935 to essentially

the mid of the 1938 recession. In other words, what emerges is that when volatility is above

13The results for the full the sample are available upon request.
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average, the drag exerted by the hom component increases. In the Figure this is captured

by the pink shaded area, representing the term, ∂Et[rt+1]
∂σ̃t

, being negative. In the aftermath of

the 1932 recession this relation steadily changes: the effect of returns skewness on expected

returns increases, while the volatility term and the second-order term, ∂Et[rt+1]
∂ρ̃t

, becomes more

muted due to a significant decrease in volatility. This suggests that while volatility risk is

particularly prominent within recessions, the returns skewness play a significant role for the

dynamics of the strategy risk premium during the momentum crash after the great depression.

A slightly different pattern emerges for the dot-com bubble, as shown in the right panel

of Figure (10). The negative effect of the returns variation on expected returns is rather

clear. The partial derivative ∂Et[rt+1]
∂σ̃t

is largely negative from 2001 to late 2002. However, the

interplay with the asymmetry of the returns, captured by the pink shaded area, represent-

ing the term, ∂Et[rt+1]
∂σ̃t∂ρ̃t

, is highly positive. This suggests that despite the negative effect of a

higher-than-average volatility on expected returns in the aftermath of the dot-com bubble,

such negative effect is offset by a large and positive effect due to a lower than average returns

asymmetry (see also left panels in Figure 8). In other words the relatively low skewness in the

returns offset the effect of a large spike in volatility. Interestingly, outside the two momentum

crashes of 2001 and 2009, neither volatility nor skewness play any significant role for the

dynamics of the momentum risk premium. As far as the great financial crisis of 2008/2009

is concerned, the risk premium decomposition suggests that expected returns primarily rep-

resents a compensation for an outlying spike in volatility throughout the recession period.

More specifically, despite the returns asymmetry is relatively lower than average during the

post-2008 momentum crash, the effect of volatility is so large than the conditional expected

returns are essentially dominated by the second moment. This is in line with the conditional

skewness and volatility estimates as shown in Figure 7-9.

Revisiting the momentum risk-return trade-off. Figures 10 suggests that the role of

volatility for the dynamics of momentum risk premium should be red in conjunction with the

returns asymmetry. For instance, when the strategy asymmetry is close to zero, as in the tail

of the dot-com bubble, a large volatility does not translate in a negative risk premium but

its effect is offset by a smaller-than-average returns skewness. In addition, the results shows

that the compensation for skewness risk changes during momentum crashes. That is, while

a lower than average skewness drag down returns during the post-1932 momentum crash,

the opposite holds for the momentum crashes of 2002 and 2009. This suggests that returns

asymmetry plays a key role, both on itself and when interacted with the returns dispersion

around the location, i.e., volatility. This is consistent with some of the early literature on

the risk-return trade-off; if returns asymmetry varies over time, volatility is not an accurate

representation of the strategy’s risk (see, e.g., Glosten et al. 1993).
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The results from Figure 10 suggest that there is possibly a negative risk-return trade-off,

especially during momentum crashes. However, such trade-off does not uniquely depend on

the returns volatility, but could be linked to the dynamics of the returns asymmetry as well.

By rearranging the terms in Eq.(7) using the conditional variance in Eq.(8), we can define

the conditional expected returns:

Et[rt+1] = µt + λ(ρt)
√
Vt(rt+1), (9)

where λ(ρt) captures the time-varying risk-return trade-off as a nonlinear function of the

time-varying asymmetry of the returns, and is defined as:

λ(ρt) = − g(ν)√
ν
ν−2

+ h(ν)ρ2
t

ρt (10)

As a result, the shape of the risk-return tradeoff directly depends uniquely on the asymmetry

of the conditional distribution of the returns as captured by the shape parameter ρt. More

specifically, the higher the level of skewness, that is the more positive is the value of ρt, the

more negative is the slope parameter λ (ρt) conditional on the degrees of freedom ν.

The left panel in Figure (11) compares the theoretical vs the actual shape of the λ(ρt).

Clearly, the more negative the returns asymmetry, meaning the skewness, the more negative

becomes the risk-return trade-off. In addition, the results highlight that such negative relation

is non-linear, and is slightly concave in the ρt parameter. Specifically, this points to a nonlinear

interaction between volatility and skewness risk, in contrast to what argued by Theodossiou

& Savva (2016). During periods of increased downside risk our model reduces the probability

to realised positive returns, compared to lower returns, thus delivering a negative risk-return

trade-off. The right panel of Figure (11) reports the value of λ(ρt) over time. The blue line

shows the actual value of the slope parameter, whereas the dashed horizontal line reports

the risk-return trade-off as a function of the unconditional mean ρ. The evidence shows that

the risk-return trade-off is negative, on average. This contributes to an ongoing debate on

the sign of the trade-off between risks and rewards for momentum strategies is often unclear.

Theodossiou & Savva (2016) argue that such inconclusiveness is due to the fact that returns

embed a linear combination of skewness and volatility premiums. When the skewness of the

predictive distribution is negative, these two premiums offset each other, generating a highly

uncertain dynamics for the risk-return trade-off. Our approach allows for a more general, non-

linear, time-varying, interaction between skewness and volatility premiums. Yet, we clearly

document a negative risk-return trade-off on average across the sample period.

Yet, the effect of the conditional variance on the expected returns is not constant over

time, but is highly volatile and tend to become more negative particularly around momentum

20



crashes. Larger negative skewness triggers a downward correction of the expected returns on

the momentum strategy, whereas we find a less pervasive impact of skewness on the variance

of the returns. The limited effect of the skewness on volatility is likely mitigated by the

presence of heavier tails in the returns distribution, which are explicitly accounted for by the

model. Nevertheless, the conditional skewness still affect conditional volatility of the returns,

and therefore the risk-return trade-off in relative terms.

In order to disentangle the role of the slope parameter λ (ρt) vis-á-vis the conditional

variance V art [rt+1] for the dynamics of expected returns, we look at the correlation between

Et [rt+1] and each of the two components taken singularly. Figure (12) shows the scatter

plots of the expected return and the conditional volatility, the slope and the interaction

λ (ρt)
√
V art [rt+1]. The red and blue crosses highlight observations form the 1932 and 2009

crash periods, respectively. For low levels of conditional volatility, expected returns cluster

around zero, with higher dispersion towards positive figures, and the least square fit (gray line)

points to a mildly negative correlation. The mild negative correlation between the conditional

volatility and expected returns is mainly due to higher scale values associated to the crashes.

By looking at the trade-off between risk premium and
√
V art [rt+1] during momentum crashes,

we see that the negative correlation is much more pronounced, with all outlying values of the

scale clustered during these two periods. These results indicate a strong performance of the

strategy for moderate levels of volatility risk, suggestive of a negative risk-return trade-off,

in line with what documented by Barroso & Santa-Clara (2015) and Barroso & Maio (2019).

The correlation between expected return and the slope parameter λ (ρt) displays instead a

mildly positive correlation: higher values of ρt – which imply higher negative skewness and

lower λ (ρt) – depress expected returns. Notably, the relationship between expected returns

and the slope on conditional volatility is rather non-linear during momentum crashes.

Interestingly, when the slope and the conditional volatility are interacted, there is a close to

perfect fit to the conditional expected returns. The right panel of Figure (12) highlights how

this translate into a distinctively negative correlation with expected returns. The interaction

of the two parameters results in a strongly negative effect on Et[rt+1]: low values of conditional

volatility and ρt are associate to close-to-zero asymmetry. When both the scale increase and

the shape of the distribution becomes more negative, the amplification mechanism leads to

a larger negative effect on expected returns than that exerted by the sole asymmetry. This

result suggests that the high risk premium associated to the momentum strategy is not only

related to time-varying volatility, but it is also significantly affected by the time variation of

the third moment.
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5 A skewness-managed momentum strategy

Few papers have attempted to improve the profitability of momentum investing. Grundy &

Martin (2001) propose to hedge the exposure to time-varying volatility to attenuate momen-

tum crashes. However, as noted by Daniel & Moskowitz (2016), this approach is not imple-

mentable in real-time, and suffers from a potentially relevant forward-looking bias. Other

strategies attempt to time the volatility associated with momentum returns (see Barroso &

Santa-Clara 2015 and Moreira & Muir 2017). Specifically, Barroso & Santa-Clara (2015)

propose to target the annualized unconditional volatility of the market, by estimating the

realised volatility of the momentum strategy on a rolling window basis. Within this setting,

during periods of high volatility the strategy unwind the investment in the WML portfolio,

while during periods of low (compared to the market’s) volatility the strategy increases its

exposure to the momentum strategy. This should increase the risk-adjusted returns on the

momentum strategy. The main drawback is that the trade-off between risk and return is

assumed constant over time, that is, expected returns move in lock-step with volatility.

Figures 11-12, however, show that the assumption of a constant trade-off between risk

and rewards of a momentum strategy does not hold in practice within the context of a non-

Normal modeling framework. Based on a similar consideration, Daniel & Moskowitz (2016)

put forward a dynamic strategy aimed at maximising the conditional Sharpe ratio of the

strategy, with weights given by:

wt =
1

2γ

Et[rt+1]

V art[rt+1]
(11)

where γ is a constant controlling the unconditional volatility of the strategy. The conditional

expectation Et[rt+1] is assumed positive and constant during bull markets, while it varies

during bear market periods. The conditional volatility V art[rt+1] is estimated as a weighted

average of asymmetric GARCH volatility (Glosten et al. 1993), and 6-month realized volatility.
14

We build upon Daniel & Moskowitz (2016) and leverage on the dynamics of the conditional

expected returns from our modeling framework as per Equation (7). More specifically, we

replace the conditional mean Et[rt+1] of the momentum strategy returns and decompose the

optimal Sharpe ratio weights in two components,

wt =
1

2γ

Et[rt+1]

V art[rt+1]
=

1

2γ

µt − g(ν)ρtσt
V art[rt+1]

=
1

2γ

µt
V art[rt+1]︸ ︷︷ ︸
w1,t

− 1

2γ

g(ν)σtρt
V art[rt+1]︸ ︷︷ ︸
w2,t

. (12)

14Refer to Appendix C in Daniel & Moskowitz (2016) for additional details.
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where w1,t would be the equivalent of Daniel & Moskowitz (2016) under the assumption of

symmetric returns, i.e., ρt = 0 (see Eq.7-8), and w2,t capturing the variations in the time-

varying asymmetry.15 For a given level of conditional variance, w2,t becomes more negative as

the shape parameter ρt becomes more positive (more negative skewness). Therefore, during

periods of high negative skewness our strategy unwind the investment in the WML portfolio

more than a dynamic volatility targeting adjustment, while during periods of low or zero

returns asymmetry the strategy tend to coincide with a standard volatility-managed port-

folio (see, e.g., Moreira & Muir 2017). For this reason w2,t represents a skewness hedging

component within the context of the maximum Sharpe ratio strategy. We argue that, under

time-varying returns asymmetry, this should out-perform the adjustments proposed by Bar-

roso & Santa-Clara (2015), Daniel & Moskowitz (2016). Albeit successful in improving upon

a standard WML portfolio, their approaches ignore the effect of returns asymmetry to gauge

the optimal investment in a momentum strategy vis-á-vis a riskless asset.

One comment is in order. A growing body of literature is concerned with the exten-

sion of the well-known mean-variance framework towards considering the skewness dynamics

(see, e.g., Menćıa & Sentana 2009). This is typically implemented by including higher order

moments in the agents’ utility maximisation and asset allocation problem. However, our

modeling framework allows to elicit both the conditional mean and the conditional variance

of the momentum returns as a direct function of both the location, the scale and the asym-

metry parameters (see Eq.7 and Eq.8). The advantage is twofold: first, we can still gauge

the benefit of explicitly modeling time-varying returns asymmetry within the context of the

benchmark maximum Sharpe ratio approach as in Barroso & Santa-Clara (2015) and Daniel

& Moskowitz (2016). In fact, compared to a model where ρ = 0, our specification captures

returns’ underlying asymmetry via the first two moments. for instance, Eq.(7) shows that a

higher ρt estimate, meaning a more negative skewness, implies a lower conditional mean for a

given value of the scale σt. Similarly, a more negative skewness implies a higher volatility of

the returns as per Eq.(8). Second, we can construct a portfolio allocation based on real-time

predictions of the conditional location, scale and asymmetry of the returns distribution, which

defines both Et[rt+1] and V art[rt+1] in Eq.(11).

Figure 13 reports the decomposition of the maximum Sharpe Ratio targeting weights

for the two major momentum crashes periods as indicated by Daniel & Moskowitz (2016).

The left panel covers the momentum crashes of 1932 and 1940. The right panel reports

the momentum crashes of 2001 and 2009. The red dashed line represent the unconditional

mean. NBER recession are identified by gray shaded areas, while red shaded areas highlight

momentum crashes periods. The component associated with the central tendency, w1,t is

15Recall that the asymmetry parameter has a sizable effect on the mean of the returns, whereas it has little
impact on their variance.
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reported in blue, while the skewness hedging component −w2,t, is in red. The total weight,

wt, is reported in black. Few interesting facts emerge; first, except few nuances, the tendency

component w1,t tend to dominate the skewness hedging component, that is wt > 0 for most

of the momentum crashes. Second, however the aggregate exposure to momentum is lower

than would be without considering the returns asymmetry, meaning −w2,t < 0 across both

momentum crashes. In other words, the skewness hedging component is non-zero and tends

to be larger during the 1932-1939 crash period, in fact twice as large as during the dot-com

and 2009 crashes. Third, the investment in the momentum strategy is significantly lower

during the crashes of 2001 and 2009 than in the period in between crashes. This suggests

that the combination of lower volatility and lower skewness increases the leverage on the WML

portfolio.

In a set of unreported results, we calculate the Sharpe ratio, the Sortino ratio, the maxi-

mum drawdown and the returns skewness of both the total portfolio adjustment wt, as well

as the two components w1,t and w2,t separately. The Sharpe (Sortino) from the total port-

folio wt is 3.57 (7.50) annualised compared to the 2.93 (5.24) annualised from the tendency

component w1,t alone. The maximum drawdown of the combined w1,t and w2,t components

is almost a third than the tendency component alone. Finally, the aggregate risk managed

WML shows a positive skewness which is more than double of the strategy without skewness

hedging adjustment (0.286 vs 0.135).

5.1 Out-of-sample managed portfolio returns

We compare our skewness managed strategy, the maximum skewed-Sharpe ratio with skew-

ness (mSSR), against the approach of Daniel & Moskowitz (2016, mSR), and two versions of the

strategy in Barroso & Santa-Clara (2015): the constant volatility (cVol), and the equivalent

which accounts for skewness in variance (cSVol). The strategies that overlook skewness are

computed by re-estimating the models constraining ρ = 0. For each strategy implementation

the model’s structural parameters are re-estimated each month, that is the time-varying pa-

rameters µt, σt and ρt are extracted on a daily basis within a given month, assuming that the

structural parameters of the score-driven transition (see Section 3) remain constant. This is

to limit the computational cost of the real-time estimation procedure. The first forecast and

portfolio choice is generated in January 1st 1930, that is we use three years of daily returns

as initial burn-in sample for the recursive forecasts.

We evaluate the portfolios by means of three distinct performance measures. The first is

the Sharpe ratio, SRi = E[R̃i]

V ol(R̃i)
, which measures the reward of the investment once volatility

has been accounted for. We evaluate improvements in risk-adjusted returns with respect to

the standard WML strategy based on the appraisal ratios and we test for the significance of
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these improvements following Ledoit & Wolf (2008). Despite its widespread use, two common

pitfalls of the Sharpe ratio are that it fares badly with dynamic strategies (Marquering &

Verbeek 2004), and it overlooks non-Gaussian features of the investment. Therefore, we

compare the portfolios by means of a second measure: the Sortino ratio (see, e.g., Sortino &

Van Der Meer 1991). The Sortino ratio entails a penalization only for those returns falling

below a certain threshold. The threshold, commonly referred to as minimum accepted return

(MAR), is generally set at the risk free rate. The denominator of this ratio is V ol(R̃i|R̃i < 0),

with R̃i being the excess return of strategy i. This accounts for the fact that investors

typically dislike negative returns (Kraus & Litzenberger 1976), and weight losses more than

gains (Kahneman & Tversky 2013). A third measure we calculate to compare the different

strategies performance is the Bowley skewness calculated as QSα = q(α)+q(1−α)−2q(50)
q(α)−q(1−α)

, with

q(α) being the αth quantile of the data. We choose a value of α = 5, which corresponds to a

5% cut-off for the returns distribution.

Table (2) reports the results. The results support the idea that by explicitly considering

the time-varying asymmetry of the momentum returns distribution provide some significant

economic gain. The Sharpe ratio of the skew-managed strategy, mSSR, is 3.5% in annualized

term, about four times higher than ratio delivered by the plain WML strategy; compared to

mSR approach, by explicitly considering the dynamics of skewness for the expected returns

and volatility delivers a gain of about 20% in terms of risk-adjusted annualized returns, and

an appraisal ratio of 0.8. Benchmark volatility-managed strategies, cSVol and cVol, improve

upon the plain WML investing, delivering appraisal ratios around 1, but remain less profitable

compared to the skew-managed strategies. Notice these strategies are not able to pick up the

effect of time-varying skewness, as this has a smaller impact on the second moment compared

to its effect on expected returns.

Sortino ratios suggest even bigger gains associated with our skew-managed strategy: risk-

adjusted returns are not only higher, but they also are less exposed to crashes and therefore to

downside risk. That is, Sortino measures are able to provide a measure of risk-adjusted returns

net of the “bad” volatility, while treating “good’ volatility as beneficial for maximising returns.

A higher Sortino ratio for our skew-managed momentum strategy implies that the effect of bad

volatility is mitigated by the explicit effect of time-varying skewness. Quantile skewness values

confirm that mSSR portfolio return are characterized by positive unconditional skewness of

0.28, suggesting that the upside potential of the portfolio is about 1.75 times its downside

risk.
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5.2 Transaction costs and risk aversion

Figure 13 shows that the dynamics of the portfolio weights could take relatively large values,

that is the leverage on the WML portfolio could be substantial. This is in line with the Daniel &

Moskowitz (2016) estimates. Notice that, our goal is not to propose an actual trading strategy

that can be implemented off the shelf, but rather to show the dynamic of the returns asymme-

try and its economic value within the context of a benchmarj, pseudo-real, portfolio allocation

framework. Neverthelss, given the substantial volatility in the risk-managed weights, we now

assess the robustness of the results by evaluating the portfolio performances net of transaction

costs and performance fees. We implement three difference exercises: first, let Ri,t = 1 +Ri,t

denote the gross returns at time t for strategy i, i = mSSR, mSR, cSvol, cVol, WML. Re-

balancing the portfolios each day requires to adjust the position in momentum returns by a

costly trading of magnitude |wi,t+1−wi,t| and cost c. Following DeMiguel, Garlappi & Uppal

(2009), we define the evolution of wealth for strategy i as:

Wi,t+1 = Wi,tRi,t (1− c|wi,t+1 − wi,t|) , (13)

such that returns net of transaction fees can be computed as r − c =
Wi,t+1

Wi,t
− 1.

As a second measure of net economic value we follow Fleming, Kirby & Ostdiek (2003)

and evaluate the maximum performance fee an investor with mean-variance utility function

would be willing to pay to access the investment signal from each model. For any pair (i, j)

of strategies, the fee F arises as the solution to:

T−1∑
t=0

(
(Ri,t −F)− δ

2(1 + δ)
(Ri,t −F)2

)
=

T−1∑
t=0

(
Rj,t −

δ

2(1 + δ)
R2
j,t

)
, (14)

where δ is the degree of relative-risk aversion. Finally, as a third measure to further under-

stand the out-performance of our strategy, we also consider Modigliani & Modigliani (1997)

abnormal return measure, A. For any pair of strategies (i, j), we leverage up or down strategy

i so as to match the risk profile of strategy j, and we evaluate the annualized, risk-adjusted

abnormal returns:

Ai,j = V oli(SRi − SRj). (15)

Table 3 reports the results. We compute performance fees and abnormal returns with

respect to the unmanaged WML strategy. We consider several level of transaction costs, ranging

from 0 to 50 bps; for the performance fees we set δ = 5. Overall, relative to the simple WML

strategy, a skew-managed portfolio realizes higher annualized average net of any level of
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transaction fees. In addition, such strategy commands higher performance fees and realizes

larger abnormal returns. The relative ranking of each strategy remains unaltered regardless

the level of transaction costs considered.

We repeat the economic evaluation reported above controlling for different levels of risk

aversion. Table 4 report the performance fees F for risk aversion levels of 2, 7 and 15. These

levels compare agents with a strong risk aversion to investors prone to take on more risks.

Overall, the main results largely hold: considering time-varying skewness when maximising

the Sharpe ratio delivers the highest performance fees across different levels of risk aversion.

These results suggest hedging for predictable variations in the returns skewness is economi-

cally meaningful, regardless the level of risk aversion.

5.3 Sub-sample performance

As a check on the robustness of our results, we perform the same economic performance

analysis over a set of approximately quarter-century sub-samples: 1927 to 1949, 1950 to

1974, 1975 to 1999, and 2000 to 2013. We use the same conditional mean and variance

equation in each of the four subsamples. Panels (a)–(d) of Figure 14 plot the cumulative log

returns by subsample. For ease of comparison, returns for each of the strategies are scaled

to an annualized volatility of 19% in each subsample. In each of the four subsamples, the

ordering of performance remains the same. The skew-managed strategy outperforms both the

constant and dynamic volatility managed-portfolios as proposed by Barroso & Santa-Clara

(2015) and Daniel & Moskowitz (2016), which outperform the static WML strategy. As the

sub-sample plots show, part of the improved performance of the skew-managed strategy over

the static and dynamic volatility-adjusted strategies is the amelioration of big crashes. But,

even over sub-periods devoid of those crashes, there is still improvement.

5.4 Spanning tests

A more formal test of the skew-managed portfolio’s success is to conduct a series of spanning

tests with respect to the other competing momentum strategies and risk factors. Using daily

returns, we regress the risk-managed portfolio returns on a host of factors that include the

market, the Fama & French (1993) three factors, the static WML, the dynamic volatility mSR

as in Daniel & Moskowitz (2016), and the constant volatility (cVol) momentum strategies

as in Barroso & Santa-Clara (2015). The annualized alphas and corresponding t-stats (in

parenthesis) from these regressions are reported in Table 5.

The first column reports the regression results for all strategies on the market and the

static WML portfolio. The alphas are highly significant across all different strategies, with the

highest alpha at 76% (t-statistic = 33.2) annualised, indicating that the performance of the
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mSSR managed portfolio is not captured by the market and the static momentum returns.

The second column adds the size and value Fama & French (1993) factors in addition to

the market. Again, all of the alphas are highly significant, with the mSSR managed portfolio

showing the largest risk-adjusted annualised performance (alpha = 75%, t-statistic = 33.15).

Hence, our dynamic skew-managed momentum strategy’s abnormal performance is not be-

ing driven by dynamic exposure to these other factors or to the static momentum portfolio.

Columns 3 and 4 replicate the same analysis by replacing the static WML strategy with the

constant volatility adjustment as in Barroso & Santa-Clara (2015) (cVol). The alphas signif-

icantly drop in magnitude, but for the mSSR remain as high as 50.6% annualised (t-statistic =

28.8), suggesting that the dynamic skew-managed momentum portfolio is not spanned by the

constant volatility portfolio. The last two columns replicate the same analysis by replacing

the static WML strategy with the dynamic volatility adjustment as in Daniel & Moskowitz

(2016) (mSR). Again, the results show that the returns on the skew-managed portfolio strat-

egy cannot be explained by a dynamic volatility targeting strategy. This holds independently

of using the market or the Fama & French (1993) factors to calculate the risk-adjusted re-

turns. Interestingly, the alphas on the constant volatility targeting is negative and significant,

which suggests dynamic volatility targeting generates a higher performance. This results is

consistent with Daniel & Moskowitz (2016).

6 Conclusions

We propose a flexible parametric model to capture the dynamics of the conditional distribu-

tion of the momentum returns over time. Our approach is to use both the location, scale and

asymmetry parameters of the returns distribution to quantify the interplay between volatility

and skewness in shaping the dynamics of the risk premium of the momentum strategy. As a

result, our model provides a dynamic characterization of the effect of volatility and skewness

on the risk-return trade-off of an otherwise standard momentum strategy. We see both the

volatility and the skewness as key ingredients to understand the risk premium dynamics in

US equity momentum strategies.

Empirically, we show that the conditional skewness of the momentum returns is time

varying and tend to become more negative during momentum crashes. This is particularly

relevant for the momentum crash period in the aftermath of the great depression. In addition,

by comparing a skew-managed maximum Sharpe ratio portfolio strategy with both a constant

and dynamic volatility targeting strategy, our results highlight the economic relevance of

explicitly considering the time variation in the returns skewness to capture the risk premium

dynamics and make more informed risk managing within the context of momentum strategies.
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Table 1: Skewness in US equity momentum

This table reports different measures of skewness for both past winner and losers portfolios, as well as the
WML momentum strategy and the aggregate market portfolio. The first row reports the sample skewness, with
p-values for the Bai & Ng (2005) test in parentheses; the remaining rows report the quantile skewness (QSα),

computed as q(α)+q(1−α)−2q(50)
q(α)−q(1−α) , with α = 95, 90. The sample period is from July 1st 1926 to September 30th

2020, daily.

losers winners WML Market

Skewness 0.140 -0.682 -1.230 -0.476

(0.264) (0.022) (0.001) (0.059)

QS95 -0.035 -0.075 -0.038 -0.063

QS90 -0.038 -0.085 -0.062 -0.079

Table 2: Risk-adjusted momentum performance

The table reports the ranking of six different managed portfolios: the mean-variance-skewness (mSSR), the
mean-variance (mSR), constant volatility with skewness (cSVol), constant volatility without skewness (cVol)
and the WML strategy. The measure we report are the Sharpe ratio, that is the ratio of annualized excess mean
return over the annualized excess return variance, the Appraisal ratio, computes as the square root of the
difference between two consecutive Sharpe ratios, the Sortino ratio, which uses the annualized excess return
downside variance as denominator, and the quantile skewness at the 5% cut-off. We report in parentheses the
bootstrapped p-values for the differences in consecutive Sharpe ratios as in Ledoit & Wolf (2008). The sample
period is from July 2nd 1929 to September 30th 2020, daily. Portfolio weights are generated in real-time by
recursive forecasts of the conditional mean and variance of the returns based on the model parameters.

Sharpe Appraisal Sortino MaxDD Skew

mSSR 3.574
(0.000)

1.643 7.501 0.183 0.286

mSR 2.942
(0.000)

1.438 5.272 0.291 0.168

cSVol 1.979
(0.000)

1.050 3.000 0.444 −0.046

cVol 1.958
(0.000)

1.041 2.971 0.442 −0.045

WML 0.875 1.213 1.133 −0.056
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Table 3: Transaction costs and performance fees

The table reports the out-of-sample terminal returns net of transaction costs (r−c, DeMiguel et al. 2009), the
performance fee (F , Fleming et al. 2003), and the abnormal return (A) measures of Modigliani & Modigliani
(1997). The performance fees are computed for a risk aversion coefficient of 5. All the measures are reported
in annual basis points. The first column reports the level of transaction costs, expressed in basis points (bps).
The sample period is from July 2nd 1929 to September 30th 2020, daily. Portfolio weights are generated
in real-time by recursive forecasts of the conditional mean and variance of the returns based on the model
parameters.

mSSR mSR cSVol cVol

c (bps) r − c F A r − c F A r − c F A r − c F A

0 0.447 0.426 0.441 0.342 0.322 0.338 0.147 0.133 0.180 0.145 0.130 0.177

1 0.442 0.422 0.436 0.339 0.318 0.335 0.146 0.131 0.179 0.143 0.129 0.175

5 0.424 0.403 0.418 0.325 0.305 0.321 0.140 0.125 0.172 0.137 0.123 0.169

10 0.401 0.380 0.396 0.309 0.289 0.305 0.133 0.118 0.164 0.130 0.115 0.161

50 0.218 0.197 0.212 0.177 0.156 0.173 0.075 0.060 0.100 0.072 0.057 0.097

Table 4: Transaction costs and risk aversion

The table reports the performance fees, F , relative to the managed portfolios for different values of risk
aversion. We consider δ = 1, 7, 15. The fees are computed with respect to the plain WML strategy. All
the measures are reported in annual basis points. The first column reports the level of transaction costs,
expressed in basis points (bps). The sample period is from July 2nd 1929 to September 30th 2020, daily.
Portfolio weights are generated in real-time by recursive forecasts of the conditional mean and variance of the
returns based on the model parameters.

mSSR mSR cSVol cVol

c (bps) δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15

0 0.426 0.411 0.400 0.358 0.133 0.126 0.121 0.104 0.130 0.123 0.119 0.101

1 0.422 0.406 0.396 0.354 0.131 0.124 0.120 0.102 0.129 0.122 0.117 0.099

5 0.403 0.388 0.377 0.336 0.125 0.119 0.114 0.096 0.123 0.116 0.111 0.093

10 0.380 0.365 0.355 0.312 0.118 0.111 0.107 0.089 0.115 0.109 0.104 0.086
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Table 5: Spanning tests

The table reports results of a series of spanning regressions where the dependent variables are the returns
on different managed momentum portfolios based on constant volatility (cVol) as in Barroso & Santa-Clara
(2015), dynamic volatility (mSR) as in Daniel & Moskowitz (2016), and skew-managed constant volatility
(cSVol) and dynamic volatility (mSSR) strategies. Each portfolio returns is regressed onto the market and
other Fama & French (1993) common risk factors in addition to the static WML portfolio. The sample size is
from 1st August 1929 to September 30th 2020, daily.

Mkt+WML FF3+WML Mkt+cVol FF3+cVol Mkt+mSR FF3+mSR

mSSR 76.004
(33.283)

75.331
(33.150)

50.639
(28.856)

49.864
(28.620)

17.285
(20.016)

16.751
(19.643)

mSR 50.698
(28.258)

49.916
(28.006)

25.063
(22.953)

24.744
(22.738)

cSVol 20.006
(20.208)

19.314
(19.755)

0.328
(9.428)

0.331
(9.497)

−7.075
(−8.439)

−6.573
(−7.883)

cVol 19.650
(19.844)

18.957
(19.389)

−7.293
(−8.649)

−6.791
(−8.096)
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Figure 1: Cumulative performance of the WML strategy

The plot reports the cumulative performance of a 12 2 momentum strategy, the market and treasury bond
returns. The cumulative performance is reported in log-scale. Gray shaded bands highlight NBER recession.
Red shaded bands indicate momentum crash periods, as indicated in Daniel & Moskowitz (2016).

(a) Full sample

(b) 1930-1940 crash

(c) 2000-2009 crash
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Figure 2: Static upside vs downside market betas

The figures plot the upside, β, and downside, β, for the losers, winners and WML portfolios give by the
following regression:

rit = α+ βi min(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.

The sample period is from July 1st 1926 to September 30th 2020. The left (right) panel reports the estimates
based on daily (monthly) returns.

(a) Daily (b) Monthly

Figure 3: Simulated momentum strategy returns

This figure reports the marginal distribution of the returns on the momentum strategy (y-axis) and the returns
on the market portfolio (x-axis) and the corresponding joint distribution. Returns are simulated assuming
a two-piece Normal distribution as in Eq.(A2) in Appendix A. The left panel shows the joint distribution
for the full sample whereby the middle and the right panels show the joint distributions of the market and
momentum returns during momentum crashes.

(a) Sample (b) 22/03/1935 (c) 30/09/2008
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Figure 4: Momentum crashes and the exposure to downside and upside risk

The plots report the relative downside (dot-dashed red) and upside (dashed blue) betas, and the risk exposure
asymmetry in solid black. Top panels span the 1927-1940 period, while bottom panels cover from 2000 to
2020. Gray shaded bands highlight NBER recession. Red shaded bands indicate momentum crash periods,
as indicated in Daniel & Moskowitz (2016).

(a) 1927-1940 period (b) 2000-2020 period

Figure 5: The role of scale and shape parameters for expected returns

The left panel reports the expected value surface for values of ρt and σt; the smaller windows in the plot
illustrate the partial derivative of Eq.(7) with respect to ρt and ν for varying values of σt. Similarly, the right
panel reports the expected value surface for values of ρt and ν; the smaller windows in the plot illustrate the
partial derivative of the expected value with respect to ρt and ν for varying values of ν. Both surfaces are
reported for zero location.

(a) ρt and σt (b) ρt and ν
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Figure 6: Conditional expected momentum returns and the location parameter

The plot reports the time-varying location parameter µt (red line) and the conditional expected returns as
in Eq.(7) (black line). We report the values for the WML portfolio (left panel), the past losers (bottom-right
panel) and the past winners (top-right panel) sub-portfolios. NBER recession are identified by gray shaded
areas, while red shaded areas highlight momentum crashes periods, as indicated in Daniel & Moskowitz (2016).
The sample period is from July 1st 1926 to September 30th 2020, daily.

(a) WML portfolio

(b) Past winners

(c) Past losers
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Figure 7: Conditional skewness of momentum returns

The plot reports the time-varying skewness estimates for the WML portfolio (left panel), the past losers

(bottom-right panel) and the past winners (top-right panel) sub-portfolio returns. The horizontal red dashed
line represents the sample mean of the conditional skewness estimates. The green line represents a smoothed
representation of the daily conditional skewness estimates. NBER recession are identified by gray shaded
areas, while red shaded areas highlight momentum crashes periods, as indicated in Daniel & Moskowitz
(2016). The sample period is from July 1st 1926 to September 30th 2020, daily.

(a) WML portfolio

(b) Past winners

(c) Past losers
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Figure 9: Conditional volatility of momentum returns

The plot reports the time-varying volatility estimates based on Eq.(8) for the WML portfolio (left panel), the
past losers (bottom-right panel) and the past winners (top-right panel) sub-portfolios. NBER recession are
identified by gray shaded areas, while red shaded areas highlight momentum crashes periods, as indicated in
Daniel & Moskowitz (2016). The sample period is from July 1st 1926 to September 30th 2020, daily.

(a) WML portfolio

(b) Past winners

(c) Past losers
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Figure 10: Risk premium decomposition over momentum crashes

The figure reports the decomposition of the expected returns, in black, into a location component (green
shaded area), a scale component (pink shaded area), an asymmetry component (purple shaded area) and the
interplay between volatility and asymmetry (magenta shaded area) and the hom component (purple shaded
area). NBER recession are identified by gray shaded areas, while red shaded areas highlight momentum
crashes periods, as indicated in Daniel & Moskowitz (2016).

(a) 1932-1939 period (b) 2001-2009 period

Figure 11: Risk-return trade-off of the momentum strategy

The left panel of the figure reports the theoretical shape of λ(ρt) (dashed curve) and its realized value (blue
marks). The right panel of the figure shows the time series of the slope parameter λ(ρt) for t = 1, . . . , T . The
sample period is from July 1st 1926 to September 30th 2020, daily.

(a) The λ (ρ) parameter (b) Time series dynamics
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Figure 12: Decomposing the risk-return trade-off

The three panels report the the correlation plots between the expected return and the volatility, the slope
parameter λ (ρt) and the fitted value of the risk-return trade-off in Eq.(??). Red crosses highlight observations
relative to the 1932 crash. Blue crosses highlight observations relative to the 2009 crash.

(a) Expected returns vs volatility (b) Expected returns vs slope

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-1.5

-1

-0.5

0

0.5

(c) Realised vs fitted expected re-
turns

Figure 13: Managed portfolio weights

The plot reports the decomposition of the maximum Sharpe Ratio targeting weights. The component asso-
ciated with the central tendency, w1,t, is reported in blue, while that hedging the overall uncertainty, w2,t, is
in red. The total weight, wt, is reported in black. The left panel covers the momentum crashes of 1932 and
1940. The right panel reports the momentum crashes of 2001 and 2009. The red dashed line represent the
unconditional mean. NBER recession are identified by gray shaded areas, while red shaded areas highlight
momentum crashes periods as indicated by Daniel & Moskowitz (2016).

(a) 1932-1939 crash period (b) 2001-2009 crash period
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Figure 14: Cumulative returns across sub-samples

This figures shows the compounded returns assuming 1$ initial investment of the standard WML portfolio and
all different competing risk-managed strategies based on constant volatility targeting (see Barroso & Santa-
Clara 2015), dynamic volatility targeting (see Daniel & Moskowitz 2016), and our skew-managed momentum
strategy (see Eq.(12)). The figure reports four different sub-samples; the three major momentum crashes and
two samples without large losses in momentum.

(a) 1932-1939 crash period (b) 1950-1975 period

(c) 1975-2000 period (d) 2001-2009 crashes period
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A From asymmetric betas to skewness

Let consider the conditional regression model in Eq.(1),

rt = α + βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (A1)

with mt ∼ N (µm, σ
2
m) the normal distributed market portfolio and I(mt ≥ µm) (I(mt < µm))

an indicator function that takes value one if the market returns are above (below) the mode
µm and zero otherwise. The distribution of βmt conditional on the indicator I(·) can be
defined as a split-Normal (or two-piece Normal) distribution of the form (see Johnson et al.
1995),

f (βmt) =

{
C exp

{
− 1

2σ2
m

(
βmt − βµm

)2
}

if mt ≤ µm

C exp
{
− 1

2σ2
m

(
βmt − βµm

)2
}

if mt > µm
(A2)

with C =
√

2
π

(σm + σm)−1 and σ2
m = β2σ2

m and σ2
m = β

2
σ2
m. Following Wallis (2014), the

expected value of the distribution takes the form

E [βmt] =

√
2

π
(σm − σm) + βµm, (A3)

Notice that for β = β = β, then we have σ2
m = σ2

m = σ2
m, such that E [βmt] = βµm. That

is, the mean and the mode of the conditional distribution of the momentum returns coincide,
i.e., E [rt] = α+ βµm. Similarly, the variance of the split-Normal in Eq.(A2) takes the form ,

V [βmt] =

(
1− 2

π

)(
σ2
m − σ2

m

)2
+ σmσm (A4)

such that for no asymmetry in the betas estimates the first component
(
1− 2

π

)
(σ2

m − σ2
m)

2
=

0, and we are left with V [βmt] =
√
β2σ2

m

√
β2σ2

m = β2σ2
m. As a result, for β = β = β,

and given et ∼ N(0, σ2
e), we obtain that the marginal distribution of the momentum strategy

returns is rt ∼ N (α + βµm, β
2σ2

m + σ2
e). Now let us assume that β 6= β, and indicator of the

asymmetry of the returns distribution can be defined as the difference between the expected
value E [βmt] and the mode βµm, which is given by

E [βmt]− βµm =

√
2

π
(σm − σm) ∝

√
β

2
σ2
m −

√
β2σ2

m,

= σm

(√
β

2 −
√
β2

)
= σm

(
β − β

)
(A5)

that is, for β = β there is no returns asymmetry, whereas for β < β (β > β) the expected
value is lower (higher) than the mode, that is the marginal distribution of the returns is
negatively (positively) skewed.
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B Econometric framework

Assume that the variable yt is generated by the observation density D(θ, ft), with θ collecting
the static parameters of the distribution. The score-driven setting postulates the dynamics
of the time-varying parameters, ft, being:

ft+1 = $ +

p−1∑
i=0

αist−i +

q−1∑
j=0

βjft−j, (B1)

which we refer to as GAS(p, q) dynamics.16 The scaled score st is a non-linear function of
past observations and past parameters’ values. For `t = logD(θ, ft), we define:

st = St∇t, ∇t = ∂`t
∂ft
, St = I−

1
2

t = −E
(

∂2`t
∂ft∂f ′t

)− 1
2

,

where ∇t corresponds to the gradient vector of the log-likelihood function, `t, and the scaling
matrix St−1 is proportional to the square-root generalized inverse of the Information matrix
It−1.17 Within this framework, the parameters are updated in the direction of the steepest
ascent, in order to maximize the local fit of the model.

B.1 Score-driven Skew-t model

In this appendix we provide details on the scaled scores for the Skew-t distribution of Gómez
et al. (2007), the use of the link functions and the matrix representation of the model. Refer
to Appendix B in Delle Monache et al. (2021) for detailed derivations.

Scaled scores. Assume the conditional distribution of yt being the Skew-t of Gómez et al.
(2007), yt|Yt−1 ∼ sktν(µt, σ

2
t , ρt), with log-likelihood

`t(yt|θ, Yt−1) = log C(η)− 1

2
log σ2

t −
1 + η

2η
log

[
1 +

ηε2
t

(1− sgn(εt)ρt)2σ2
t

]
, (B2)

log C(η) = log Γ

(
η + 1

2η

)
− log Γ

(
1

2η

)
− 1

2
log

(
1

η

)
− 1

2
log π,

where Γ(·) is the Gamma function, sgn(.) is the sign function, and η = 1/ν is the inverse of
the degrees of freedom.

Differentiating the log-likelihood function in (C18) with respect to location, scale and

16Creal et al. (2013) refer to the Generalized Autoregressive Score (GAS) model, while Harvey (2013) names
it Dynamics Conditional Score (DCS) model. We stick to the former notation throughout this appendix.

17Refer to Creal et al. (2013) for additional details on this choice.
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asymmetry we obtain the gradient vector ∇t =
[
∂`t
∂µt
, ∂`t
∂σ2
t
, ∂`t
∂ρt

]′
, with elements:

∂`t
∂µt

=
1

σ2
t

[
(1 + η)σ2

t εt
(1− sgn(εt)ρt)2σ2

t + ηε2
t

]
=

1

σ2
t

wtεt, (B3)

∂`t
∂σ2

t

=
1

2σ2
t

[
(1 + η)ε2

t

(1− sgn(εt)ρt))2σ2
t + ηε2

t

− 1

]
=

1

2σ4
t

(wtε
2
t − σ2

t ), (B4)

∂`t
∂ρt

= − sgn(εt)

(1− sgn(εt)ρt)

(1 + η)

(1− sgn(εt)ρt))2σ2
t + ηε2

t

ε2
t = − 1

σ2
t

sgn(εt)

(1− sgn(εt)ρt)
wtε

2
t , (B5)

where

wt =
(1 + η)

(1− sgn(εt)ρt)2 + ηζ2
t

, (B6)

and ζt = εt
σt

is the standardized innovations. The first panel in Figure fig. B1 illustrates the
shape of the weights in eq. (B6) against the standardized innovations: when the distribution
is Gaussian (black), wt is constant and implies no discounting of extreme realizations; once fat
tails are factored in (red), large realizations, in absolute value, get down-weighted by means
of the classic outlier-discounting typical of the symmetric Student-t distribution (see, e.g.,
Delle Monache & Petrella 2017). When the distribution is positively (negatively) skewed,
i.e., for ρt < 0 (ρt > 0), negative (positive) prediction errors are less likely in expectation,
and as such command a larger update of the parameters. This asymmetric treatment of the
prediction error is more pronounced as skewness grows larger (i.e., |ρt| → 1).

The Fisher information matrix is computed as the expected values of outer product of the
gradient vector, for a fixed number of degrees of freedom:

It|t−1 = Et−1[∇t∇′t] =


(1+η)

(1+3η)(1−ρ2t )σ2
t

0 − 4c(1+η)

σt(1−ρ2t )(1+3η)

0 1
2(1+3η)σ4

t
0

− 4c(1+η)

σt(1−ρ2t )(1+3η)
0 3(1+η)

(1−ρ2t )(1+3η)

 . (B7)

Given we model γt = log σt and δt = atanh(ρt), for the chain rule we have:

∂`t
∂γt

=
∂`t
∂σ2

t

∂σ2
t

∂γt
,

∂`t
∂δt

=
∂`t
∂ρt

∂ρt
∂δt

, (B8)

where
∂σ2
t

∂γt
= 2σ2

t and ∂ρt
∂δt

= (1−ρ2
t ). We can thus define the vector of interest as ft = (µt, γt, δt)

′

with the associated Jacobian matrix

Jt =
∂(µt, σ

2
t , ρt)

∂f ′t
=

 1 0 0
0 2σ2

t 0
0 0 1− ρ2

t

 . (B9)
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As such, the scaled score reads:

st = (J ′tdiag(It)Jt)−
1
2J ′t∇t =

 sµt
sσt
sρt

 =


√

(1+3η)(1−ρ2t )
(1+η)

wtεt√
(1+3η)

2
(wtζ

2
t − 1)

−sgn(εt)
√

(1+sgn(εt)ρt)(1+3η)
3(1−sgn(εt)ρt)(1+η)

wtζ
2
t

 . (B10)

The reminder of fig. B1 plots the updating mechanism for the time-varying parameters, as
per eq. (B10). The location updates in the direction of the prediction error, while heavy
tails introduce the typical S-shaped influence function (see, e.g. Harvey & Luati 2014); in our
case this adapts to the asymmetry of the conditional distribution. The shape updates in the
opposite direction of the prediction error, such that for negative innovations the distribution
becomes more left skewed. On the contrary, updates of the scale do not depend on the sign
of the innovations, but on their magnitude. Notice that, while the scores for the location
and shape parameters are negatively correlated (Corr(sµ,t, sδ,t) = − 4C√

3
), updates of σt are

(unconditionally) uncorrelated with revisions of the other parameters, as suggested by the
Information matrix.

In practice, to prevent numerical instability, it is often the case to replace the scaling
matrix Ṡt = (J ′tdiag(It)Jt)−

1
2 with its smoothed estimator, S̈t = (1−λ)S̈t−1 +λṠt, 0 < λ < 1.

C Moments and score-vector derivation

In this Section, to simplify the notation, we drop the time subscript from the time-varying
parameters. Consider the Skew-t distribution proposed by Gómez et al. (2007):

p(y|µ, σ, ρ, ν) =
C
σ

[
1 +

1

ν

(
y − µ

σ(1− sgn(y − µ)ρ)

)2
]− 1+ν

2

, (C11)

where C =
Γ( ν+1

2 )
√
νπΓ( ν2 )

. Arellano-Valle et al. (2005) shows that any symmetric density on R
can be uniquely determined from a density on R+, and a Skew − t distribution can then
be expressed in terms of strictly positive densities. Specifically, we can re-parametrize the
density in C11 as a two-piece distribution (Fernández & Steel 1998):

p(y|µ, σ, ρ, ν) =


C
σ

[
1 + 1

ν

(
y−µ
σ+

)2
]− 1+ν

2

, y ≥ µ

C
σ

[
1 + 1

ν

(
y−µ
σ−

)2
]− 1+ν

2

, y < µ

(C12)

where σ+ = (1− ρ)σ and σ− = (1 + ρ)σ are the scale parameters of the two Half-t densities
on each side

P (y ≥ µ) =
σ+

σ+ + σ−
=

1− ρ
2

, P (y < µ) =
σ−

σ+ + σ−
=

1 + ρ

2
. (C13)
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Figure B1: Properties of the score vector updating scheme

The figure reports the theoretical properties of the score vector for the dynamics of the location, scale and
asymmetry parameters as a function of the standardized residuals.

(a) wt (b) Location sµ,t

(c) Log-volatility sγ,t (d) Asymmetry sδ,t

The two-piece formulation allows to consider separately the two halves of the distribution
when taking expectations: for y = µ + σζ, where ζ ∼ Sktν(0, 1, ρ), the moments of y are
weighted averages of the moments of |ζ|, where |ζ| ∼ Htν , is an Half-t distribution (see, e.g.,
Gómez et al. 2007).18 Specifically:

E[ζr] = µ̂r =
1

2

[
(1− ρ)r+1 + (−1)r(1 + ρ)r+1

]
dr(ν), (C14)

where dr(ν) =
∫∞
−∞ |ζ|

rp(ζ)dζ < ∞ is the rth moment of the Half-t distribution (Johnson

18Notice that the Half-t distribution is a special case of the folded-f distribution (Psarakis & Panaretoes
1990).
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et al. 1995). Starting from C14, the moments of y are the computed as:

E[yj] =

j∑
k=0

(
j

k

)
σkµj−kµ̂k.

Therefore, the expected value and variance of y are given by:

E[y] = µ+ µ̂1σ

= µ− 4νC(ν)

ν − 1
ρσ, ν > 1 (C15)

E[y2] = µ2 + 2µσµ̂1 + σ2µ̂2

= µ2 − 2µσ2 4νC(ν)

ν − 1
ρ+ σ2 (1 + 3ρ2)ν

ν − 2
, ν > 2 (C16)

V ar(y) = E[y2]− E[y]

= µ2 − 2µσ2 4νC(ν)

ν − 1
ρ+ σ2 (1 + 3ρ2)ν

ν − 2
−
(
µ− 4νC(ν)

ν − 1
ρσ

)2

= σ2

(
(1 + 3ρ2)ν

ν − 2
−
(

4νC(ν)

ν − 1
ρ

)2
)

= σ2

[
ν

ν − 2
−

(
3

ν − 2
−
(

4νC(ν)

ν − 1

)2
)
ρ2

]
, ν > 2 (C17)

C.1 Score derivations

Consider the log-likelihood function

`t(yt|θ, Yt−1) = log C(η)− 1

2
log σ2 − 1 + η

2η
log

[
1 +

ηε2
t

(1− sgn(εt)ρ)2σ2

]
, (C18)

log C(η) = log Γ

(
η + 1

2η

)
− log Γ

(
1

2η

)
− 1

2
log

(
1

η

)
− 1

2
log π,

where Γ(·) is the Gamma function, sgn(.) is the sign function, and η = 1/ν is the inverse of
the degrees of freedom.

Differentiating (C18) with respect to location, scale and asymmetry we obtain the gradient

vector ∇t =
[
∂`t
∂µ
, ∂`t
∂σ2 ,

∂`t
∂ρ

]′
. Recall that εt = yt − µ, ζt = εt

σ
and ωt = (1+η)

(1−sgn(εt)ρ)2+ηζ2t
, and let

f(µ, σ2, ρ) = 1 +
ηε2

t

(1− sgn(εt)ρ)2σ2

=
(1− sgn(εt)ρ)2)σ2 + ηε2

t

(1− sgn(ε2
t )ρ)2σ2

. (C19)

To avoid overburdening the notation, in what follows ∂f(x)
∂x

= f ′x and a = −1+η
2η

.

51



The score with respect to the location parameter reads

∂`t
∂µt

= wt
ζt
σ
.

Proof. Define
g(µ) = a log f(µ, σ2, ρ),

such that ∂`t
∂µ

= ∂g(µ)
∂µ

= a
f ′µ

f(µ,σ2,ρ)
. For

f ′µ =
2η

(1− sgn(εt)ρ)2σ2
εt,

it follows:

∂`t
∂µ

= −1 + η

2η

2η

(1− sgn(εt)ρ)2σ2
· εt ·

(1− sgn(εt)ρ)2σ2

(1− sgn(εt)ρ)2σ2 + ηε2
t

=
(1 + η)

(1− sgn(εt)ρ)2σ2 + ηε2
t

εt

= ωt
ζt
σ

.

The score with respect to the squared scale parameter reads

∂`t
∂σ2

t

=
(wtζ

2
t − 1)

2σ2
t

.

Proof. Define

g(σ2) = − log σ2

2
+ a log f(µ, σ2, ρ),

such that ∂`t
∂σ2 = ∂g(σ2)

∂σ2 = − 1
2σ2 + b

f ′
σ2

f(µ,σ2,ρ)
.

For

f ′σ2 = − ηε2
t

(1− sgn(εt)ρ)2σ4
t

,

it follows:

∂`t
∂σ2

= − 1

2σ2
− η + 1

2η
·
[
− ηε2

t

(1− sgn(εt)ρ)2σ4
t

· (1− sgn(ε2
t )ρ)2σ2

(1− sgn(εt)ρ)2)σ2 + ηε2
t

]
=

1

2σ2

(
(η + 1)ε2

t

(1− sgn(ε2
t )ρ)2σ2 + ηε2

t

− 1

)
=

(wtζ
2
t − 1)

2σ2

.
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The score with respect to the shape parameter reads

∂`t
∂ρt

= − sgn(εt)

(1− sgn(εt)ρt)
wtζ

2
t .

Proof. Define
g(ρ) = a log f(µ, σ2, ρ),

such that ∂`t
∂ρ

= ∂g(ρ)
∂σ2 = a

f ′ρ
f(µ,σ2,ρ)

.
For

f ′ρ =
2(sgn(εt)− ρ)ηε2

t

(1− sgn(εt)ρ)4σ2
,

it follows:

∂`t
∂ρ

= −η + 1

2η
· 2(sgn(εt)− ρ)ηε2

t

(1− sgn(εt)ρ)4σ2
· (1− sgn(ε2

t )ρ)2σ2

(1− sgn(εt)ρ)2)σ2 + ηε2
t

=
η + 1

(1− sgn(εt)ρ)2) + ηζ2
t

· (sgn(εt)− ρ)ζ2
t

(1− sgn(εt)ρ)2

= − sgn(εt)

(1− sgn(εt)ρ)
ωtζ

2
t

.

C.2 Transformed parameters’ scores

Here we provide a proof of the equivalence between the the score vector arising from the
restriction imposed on the scale and shape parameters. To ensure positive scale and bounded
shape, we model γ = log σ, δ = atanh(ρ).

Proof. Let consider γ = log σ being the log-scale, it follows that σ = exp γ, and the gradient
is

∂`

∂γ
=

∂`

∂σ2

∂σ2

∂γ
=

∂`

∂σ2
2σ2.

Proof. For the shape parameter ρ = tanh δ, we model δ = atanhρ and the gradient is

∂`

∂δ
=
∂`

∂ρ

∂ρ

∂δ
=
∂`

∂ρ
(1− ρ2).
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Therefore, the score vector with respect to µ, γ, and δ will be equal to:

 sµ,t
sγ,t
sδ,t

 =

√
(1 + 3η)

(1 + η)


√

(1− ρ2)wtζt√
(1+η)

2
(wtζ

2
t − 1)

−
√

(1−ρ2)
3

sgn(εt)
(1−sgn(εt)ρ)

wtζ
2
t

 , (C20)

where

wt =
(1 + η)

(1− sgn(εt)ρ)2 + ηζ2
t

, ζt =
εt
σ
. (C21)

D Returns aggregation and the realised moments

Barroso & Santa-Clara (2015) and Daniel & Moskowitz (2016) study the properties of mo-
mentum strategies, and exploit them to implement “henhanced” strategies robust to crashes.
The former use daily momentum strategy returns to compute 6-months realized volatility
measures to implement a volatility-managed momentum strategy. This approach increases
the profitability of the strategy, as measured by the Sharpe Ratio (SR), reduces portfolio’s
kurtosis and rises the skewness. Daniel & Moskowitz (2016) target a maximum SR strategy,
where the weights are given by µt

λσ2
t
, where λ is a constant aimed a achieving a specific volatil-

ity target, µt is obtained as the fitted values of a regression of the Winners-Minus-Losers
(WML) portfolio returns on market risk (proxied by 6-months realized volatility) in bear
market states. The volatility estimate, σ2

t , is the fitted value of a regression of 22-days WML
realized volatility on 6-months realized volatility and daily GJR volatility (Glosten et al.
1993). Therefore, σ2

t is a measure of volatility net of a long-term component and leverage
effect, that proxies, to some extent, return skewness. The authors show that a momentum
strategy based on these signals outperforms volatility-managed momentum portfolios, both
in- and out-of-sample.

A common approach taken by both Barroso & Santa-Clara (2015) and Daniel & Moskowitz
(2016) is to recover measures of monthly returns risk using realized volatility measures. These
measure are then used in monthly-level analyses. Nevertheless, momentum returns sampled
at the daily frequency might be troublesome when aggregated to the monthly frequency, or if
used to compute realized moments. While the two separate legs of the WML strategy can be
aggregated relying on standard techniques, a problem arises when dealing with WML returns.

Consider the simple net excess returns for past winners, Xi,t, and past losers, Yi,t, sampled
in day i and month t; assume that in one month we observe D daily returns. The 1-month
holding period (HP) returns can be computed as:

Xt =
D∏
i=1

(
1 +Xi,t

)
− 1; Yt =

D∏
i=1

(
1 + Yi,t

)
− 1.

Now, consider Zi,t = Xi,t − Yi,t, the long-short (LS) portfolio that buys Xt and sells Yt.
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Figure D2: Different aggregation rules
Monthly returns are reported with red dash-dotted lines. Realized simple returns, that is the exponential
transform of the sum of log returns within each month, correspond to the blue stars. NBER recession are

identified by gray shaded areas, while red shaded areas highlight momentum crashes periods.

Following Daniel & Moskowitz (2016), the monthly return is given by

Zt =
D∏
i=1

(
1 +Xi,t − Yi,t +

rft−1

D

)
− 1,

that is, at the end of each period the investments in both the long and short side of the
portfolio are adjusted to set their value equal to the total value of the portfolio (Vt+1 =
Vt(1 + Xt − Yt + rft )). Notice that by this definition, the LS-strategy’s 1-month HP return
and the WML monthly return will be different as Zt 6= Xt − Yt, with differences amplified
around crashes periods. Given zi,t = log(1 + Zi,t), z

r
t =

∑D
i=1 zi,t are the realized monthly

return. Dissecting this measure, we can rewrite:

zrt =
D∑
i=1

zi,t =
D∑
i=1

log(1 + Zi,t) =
D∑
i=1

log
(
1 +Xi,t − Yi,t +

rft−1

D

)
.

Differently, the monthly log-returns of the portfolio that buys Xt and sells Yt is z̃t = log(1 +
Z̃t) = log(1 +Xt − Yt). Expanding this measure we get:

z̃t = log

(
1 +

D∏
i=1

(1 +Xi,t)−
D∏
i=1

(1 + Yi,t) + rft−1

)
.

The difference between the two methods lies in the order in which the cross-sectional and
time aggregations are preformed. In the first case, the portfolio aggregation is performed
day-by-day, and then log-returns are cumulated over time; in the second case, first we com-
pute the monthly returns for the two legs of the strategy, and then the monthly portfolio is
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constructed.19 Figure D2 illustrate the two aggregation approaches for the three portfolios.
As both procedures are correct and admissible, they should deliver the same value throughout
the sample, as it is the case for the two legs of the strategy (xt and yt). Nevertheless, as evi-
dent from the bottom panels, this equivalence does not hold for zt during crash periods, where
monthly strategy returns are systematically bigger in absolute value, therefore emphasising
their severity for the longer-term investor.

Figure D3 zooms in these periods, illustrating the departure of the two methodologies
as crashes occur in 1932 and 2009, for both realized returns and volatilities. Months in
red represent the worst returns within the year. Months realizing the worst returns also
experience the greatest distances between realized and monthly returns, with differences in
1932 being the most pronounced. Interestingly, as returns recover from the crashes, the
equivalence between the two methods restores. When the log-transformation is applied to
these returns, the wedge between the two measures further increases. Figure D4 illustrate
how negative returns exceeding 50% worryingly decrease, possibly overstating the severity
of the returns. Therefore, as illustrated in the bottom panels in Figure D3, volatilities are
more sensitive to the aggregation method, which could results in a severe mischaracterization
of risk, especially during crashes. Such differences would be further amplified if we consider
higher-order realized moments, such as realized skewness.

As a consequence, realized volatility measures computed for the WML strategy returns
may be ill-suited to study momentum strategy performances (Barroso & Santa-Clara 2015,
Daniel & Moskowitz 2016). Hence, in this work we propose a parametric model which captures
the dynamics of the first three moments of the conditional distribution of daily momentum
returns. This methodology is robust to the use of log-transformation, and the filtering pro-
cedure we implement allows to manage outlier returns associated to momentum crashes.

19Eventually, the difference boils down to the difference between the product of a sum and the sum of a
product.
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Figure D3: Aggregation during crashes
The top panels report two series of realized returns: the cumulative product of the strategy returns over

each month (daily) and the difference between the cumulative products of the two legs of the strategy over
time (monthly). The bottom panels report the realized volatilities associated with the realized returns.
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Figure D4: Logarithmic approximation
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