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Abstract—In this paper, new results in random matrix
theory are derived which allow us to construct a shrink-
age estimator of the global minimum variance (GMYV)
portfolio when the shrinkage target is a random object.
More specifically, the shrinkage target is determined as
the holding portfolio estimated from previous data. The
theoretical findings are applied to develop theory for
dynamic estimation of the GMV portfolio, where the
new estimator of its weights is shrunk to the holding
portfolio at each time of reconstruction. Both cases with
and without overlapping samples are considered in the
paper. The non-overlapping samples corresponds to the
case when different data of the asset returns are used to
construct the traditional estimator of the GMV portfolio
weights and to determine the target portfolio, while
the overlapping case allows intersections between the
samples. The theoretical results are derived under weak
assumptions imposed on the data-generating process. No
specific distribution is assumed for the asset returns
except from the assumption of finite 4 + ¢, ¢ > 0,
moments. Also, the population covariance matrix with
unbounded spectrum can be considered. The perfor-
mance of new trading strategies is investigated via an
extensive simulation. Finally, the theoretical findings are
implemented in an empirical illustration based on the
returns on stocks included in the S&P 500 index.
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I. INTRODUCTION

Global minimum-variance (GMV) portfolio is the one of
the mostly used investment strategies by both practitioners
and researchers in finance. This portfolio possesses the
smallest variance among all optimal portfolios obtained as
solutions of Markowitz’s mean-variance optimization prob-
lem (cf., Markowitz (1952)). It solves the following problem

(L1)

where w denotes the vector of the portfolio weights which
determines the structure of the investor portfolio, the symbol
1, stands for the p-dimensional vector of ones, and X is
the covariance matrix of the p-dimensional vector of asset

returns y = (y1, ..., Yp) |
The solution of the optimization problem (I.1) is given by
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The weights of the GMV portfolio have several nice prop-
erties, which simplify its applicability in practice and, thus,

make it a popular investment strategy. The weights of the
GMV portfolio do not depend on the mean vector of the asset
returns, which we will denote by w in the following. This
is the only mean-variance optimal portfolio whose weights
are independent of p. Moreover, the GMV portfolio has
a special location on the set of the mean-variance optimal
portfolios, which is a parabola in the mean-variance space
and is known as the efficient frontier (cf., Merton (1972)).
Its mean and variance determines the location of the vertex
of this parabola (see, e.g, Kan and Smith (2008), Bodnar and
Schmid (2009)).

The application of (I.2) requires the knowledge of 3
in practice, which is usually not provided. The covariance
matrix 3 has to be estimated by using historical data of the
asset returns, before the GMV portfolio can be constructed.
The quality of the estimator of ¥ has a large impact on the
stochastic properties of the holding GMV portfolio and it
leads to further uncertainty in the investor decision problem,
known as the estimation uncertainty. The estimation uncer-
tainty can have a great impact on the constructed portfolio
which could be larger than the one induced by the model
uncertainty included in the optimization problem (I.1). The
effect becomes even stronger, when the portfolio dimension
is comparable to the sample size used to estimate 3.

Traditionally, the covariance matrix is estimated by its
sample counterpart given by

n
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with ¥, = 2 37" | yi, where y1, .., yn denotes the sample
of asset returns and Y, = (y1,..,¥n) denotes the data
matrix. The symbol I,, stands for the n-dimensional identity
matrix. Then, the sample (also known) as the traditional
estimator of wgasy is obtained as

. S,'1
Wg = n P

=_=n P L4
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The distributional properties of Ws have extensively been
studied in statistical and econometric literature. Jobson and
Korkie (1980) derive the asymptotic distribution of Wg
assuming that the asset returns are independent and nor-
mally distributed and the portfolio dimension is considerably
smaller than the sample size. Okhrin and Schmid (2006)
obtain the exact distribution of the sample estimator of the
GMV portfolio weights assuming normality, while Bodnar
and Schmid (2008) extend these results to elliptically con-
toured distribution and develop a statistical test theory on
the GMV portfolio weights.



However, when the portfolio dimension is comparable
to the sample size, the results derived under the classical
asymptotic regime, that is when p is considerably smaller
than n, cannot longer be used. Moreover, the effect of
dimensionality considerably influences the estimation of the
covariance matrix needed to determine the weights of the
GMV portfolio. Using the recent results of the random
matrix theory several improved estimator for the weights of
the GMV portfolio has been suggested when the portfolio
dimension is comparable to the sample size, i.e., under the
large-dimensional asymptotic regime (see, e.g., Bai and Sil-
verstein (2010)). The properties of high-dimensional optimal
portfolio weights are also studied by Fan et al. (2012),
Hautsch et al. (2015), Ao et al. (2019), Kan et al. (2019),
Bodnar et al. (2022a), Cai et al. (2020), Ding et al. (2021),
among others.

Shrinkage approach is one of the mostly used methods
to construct an improved estimator for the weights of the
GMV portfolio. Shrinkage-type estimators were first pro-
posed by Stein (1956) with the aim to reduce the estimation
error present in the sample mean vector computed for a
sample from a multivariate normal distribution. Recently,
this procedure has also been applied in the construction
of the improved estimators of the high-dimensional mean
vector (cf, Chételat and Wells (2012), Wang et al. (2014),
Bodnar et al. (2019b)), covariance matrix (see, e.g., Ledoit
and Wolf (2004), Ledoit and Wolf (2012), Bodnar et al.
(2014)), inverse of the covariance matrix (see, e.g., Wang
et al. (2015), Bodnar et al. (2016)), as well as of the optimal
portfolio weights (see, Golosnoy and Okhrin (2007), Frahm
and Memmel (2010), Ledoit and Wolf (2017), Bodnar et al.
(2018), Bodnar et al. (2022b)). Interval shrinkage estimators
of optimal portfolio weights have recently been derived by
Bodnar et al. (2019a), Bodnar et al. (2021a).

The shrinkage estimator for the weights of the GMV
portfolio are obtained as a linear combination of the sample
estimator W and the target portfolio b with b 1 = 1. The
estimator is expressed as (see, Bodnar et al. (2018))

Wsi = PnWs + (1 —,)b (L5)
where

A (1 — Cn)Rb

Pn = (1.6)

Ccn + (1 — C?’L)Rb7

with Ry, = (1 —¢,)b'S, b1} S;'1, — 1 and ¢, = p/n.
Bodnar et al. (2018) show that the shrinkage estimator out-
performs the sample estimator of the GMV portfolio weights
in terms of minimizing the out-of-sample portfolio variance
and the difference becomes drastic when p approaches n.
Moreover, the shrinkage estimator of the GMV portfolio
weights (I.5) provides a simple and a promising procedure
how the one-period portfolio choice problem based on min-
imizing the portfolio variance can be solved in practice.
Once an optimal portfolio is determined, an investor faces
with the problem of optimal portfolio reallocation in the
next period of time. One of the important decision to be
made by the investor is to decide whether the holding
portfolio is optimal or has to be adjusted (see, e.g., Bodnar
(2009)), while Golosnoy et al. (2019) consider the exponen-
tial smoothing method to predict the weights of the GMV
portfolio over some periods of time. In the current paper
we contribute to the literature by developing a dynamic
GMV portfolio based on the shrinkage approach. At each
time point of the portfolio reconstruction the traditional
estimator of the GMV portfolio weights is shrunk towards
the weights of the holding portfolio, which by construction
are the shrinkage estimator of the GMV portfolio from
the previous period. The practical advantage of the new
dynamic trading strategy is two-fold: (i) First, it diminishes

the transaction costs required for the reconstruction of the
holding portfolio; (ii) Second, it reduces the out-of-sample
variance of the constructed GMV portfolio by applying the
shrinkage approach in the estimation of the portfolio weights.

From the perspectives of statistical theory, we develop
new results that allow us to use the shrinkage estimators
with a random target. These estimators are obtained under
weak conditions imposed on the data-generating process. In
particular, only the existence of the fourth moments is needed
without explicit specification of the probability distribution
assumed for the asset returns. Moreover, no assumption
about the spectrum of the population covariance matrix is
imposed in the paper. The eigenvalues of the covariance
matrix can be as large as in the factor models (see, e.g., Fan
et al. (2008), Fan et al. (2013), Ding et al. (2021)). We only
require that the ratio of the variances of the target portfolio
and the GMYV portfolio is bounded. Moreover, the derived
theoretical results allow the application of the overlapping
samples in the determination of the target portfolio and in the
construction of the traditional portfolio used in the specifi-
cation of the shrinkage GMV portfolio. Finally, the obtained
findings are implemented in the R-package DOSPortfolio
(see, Bodnar et al. (2021b)).

It is remarkable that the statistical methods developed
in the paper can be linked to the approaches applied in
statistical signal processing by noting that the GMV portfolio
is related to the Capon or minimum variance spatial filter in
signal processing literature (cf, Verdd (1998) and Van Trees
(2002)). Rubio et al. (2012) and Yang et al. (2018) investigate
the estimation risk of the high-dimensional minimum vari-
ance beamformer, while Li et al. (2004) study its constrained
versions. The applications of random matrix theory to signal
processing and portfolio optimization are presented in Feng
and Palomar (2016), Bodnar et al. (2019a), Bodnar et al.
(2021a).

The rest of the paper is organized as follows. In Section II,
the main theoretical findings of the paper are provided. The
dynamic shrinkage estimator for the weights of the GMV
portfolio is derived in the case of non-overlapping samples
in Section II-A, while Section II-B presents the results in
the overlapping case. The performance of the new trading
strategies is investigated in Section III via an extensive
simulation study, where the approaches are also compared
to the existing ones. In Section IV, the new approaches to
estimate the GMV portfolio are implemented to the real data
consisting of the returns on stocks included in S&P 500
index. Concluding remarks are given in Section V, while the
technical proofs are moved to the supplementary material.

II. DYNAMIC ESTIMATION OF GMV PORTFOLIO

Throughout the paper we assume that the GMV portfolio
is constructed at time point ¢; by using the sample of size
n1, and then the investor updates the constructed GMV
portfolio as new information arrives on the capital market.
The information set is presented as a sequence of asset
returns taken between time point ;1 and ¢; for¢ =2, ..., 7T.
Between each pairs (¢;,—1,t;) it is assumed that n; vectors
of asset returns are available which are collected into the
data matrix Y, that is assumed to possess the following
stochastic representation:

Y, =pl) + 57X, (IL1)

where X,,, is a p X n; matrix which consists of independent
and identically distributed (i.i.d.) real random variables with
zero mean and unit variance. Also, we assume that the entries
of X,,, 7 =1,...,T, possess the 4 + ¢, € > 0, moments,
while no specific distributional assumption is imposed on
the element of X,,,. To this end, it is assumed that Y,
i =1,...,T, are independent random matrices.



We consider an investor who opts on the shrinkage
estimation of the GMV portfolio weights in each period of
time t;. Namely, after constructing the shrinkage estimator
of the GMV portfolio as defined in (I.5) at time point ¢1,
the investor updates the GMV portfolio weights by shrinking
their sample estimator computed at each time point ¢; to the
holding GMV portfolio determined at time point ¢;—1. Two
estimation strategies are developed in this section, which
are based on non-overlapping and overlapping samples,
respectively. The first procedure can be related to the rolling
window estimation but with probably different sample sizes.
The main advantage here is that smaller sample sizes are
used in the construction of the sample weights of the GMV
portfolio and, thus, the extreme observation observed in the
asset returns will sooner be detected. Such a strategy might
be recommendable during the turbulent period on the capital
market, since it allows a faster adjustment of the holding
portfolio. In contrary, when the stable period on the capital
market is present, then the investor would prefer to use all
available information, which leas to the extended window
estimation strategy. In this case the part of data used in
the construction of the GMV portfolio has already been
used to determine the currently holding portfolio to which
the new estimator is shrunk and, consequently, we have
the case with overlapping samples. Both situations require
completely different techniques from random matrix theory
to be developed in order to derive the stochastic properties
of the estimation procedures, which are developed in the
consequent two subsections.

A. Dynamic GMYV portfolio with non-overlapping
samples

Under the non-overlapping scenario, the investor uses the
sample of asset returns collected in Y, to construct the
sample estimator of the GMV portfolio at each time point
t; expressed as

& 8.1y (I1.2)
WSin; = T7a—14 s
ST 1S,
where
1 1 T T
Sn, = —=Y,, (I, — —1,,1,. | Y,.. (I1.3)
n; — 1 N4 * ¢

The shrinkage estimator of the GMV portfolio is then
obtained at time point ¢; by shrinking (I1.2) to the weights
of the holding portfolio, i.e., to the shrinkage estimator of
the GMV portfolio Wsg;n, , constructed in the previous
period, by minimizing the loss function determined as the
out-of-sample variance with respect to the shrinkage inten-
sity 1y, in the following way:

min Li(:) = min Wer SWs (I1.4)

with
VIRI.SILI;TLi = wiws;ni + (1 - /l/)i)WSH;ni,17 (HS)

where WsH;n, = b is the shrinkage target used for the con-
struction of the shrinkage estimator for the GMV portfolio
weights at time point ¢;.

Rewriting (I1.4) we get

+ 2wi(1 - wi)w:s‘r;mz:wSH;ni—l
+ (1 - wi)QW—SrH;ni_lzwsH;ni,17

which is minimized at

(I1.6)

~T N -
WSHin; 1 b)) (WSH;ni_l - WS;ni)

Y, =

(WSH:nz‘—l - WS;M)T Y (WSH?"H—I - WS;"H) .

(IL7)

In Theorem II.1 we derive the asymptotic equivalent to
1y, which can be used in the construction of the shrinkage
estimator at time point ¢;.

Theorem II.1. Let Y, possess the stochastic representa-
tion as in (IL.1) and let b be the deterministic shrinkage
target for i = 1. Assume that the relative loss of portfolio b
given by

ro= Vb 1,27 '1,b'Sb -1 (IL.8)
Vemv
is uniformly bounded in p, where
Vb = bTEb and VG]\/[V = WgA{VEWGMV = #
17311,
(11.9)

are the variances of the target portfolio b and of the
population GMV portfolio, respectively. Then it holds that

(1 — Ci)Ti71

[n, =i 50 with = o S

(IL.10)

for p/ni — ¢ € (0,1) as n — oo where T; is
the asymptotic equivalent of the relative loss T gy, =

ing
152711PVAV§H;M 3WsH;n; —1 of the portfolio with weights
WsH;n,; given by

ri = (¥7)?

fori=1,..,T.

Ci
1—Ci

+ (1 — )i (IL11)

The proof of Theorem II.1 is given in the supplementary
material. Its results provide a simple recursive algorithm how
the shrinkage intensities have to be computed in practice.
Independently of the number of portfolio reallocations, 7',
the only unknown quantity in the algorithm is the relative
loss of of the target portfolio b used in the construction of
the shrinkage estimator at time ¢ = 1. Using the sample Y,
its consistent estimator is given by

fo = (1 - ﬁ) 1,8.11,b" S, b— 1. (IL12)

ni
Then, the resulting (bona fide) shrinkage estimator of the
GMV portfolio at time ¢ is given by

WEFm, = Vi Wsim, + (1 —¥))Wppm,_,  (LI3)

where w;k _ (ni—p)ri—a

; = Gispritr and 7; is computed recursively
y

P = (§7) =L+ (1= d)) i

n; —p

(IL14)

with 7 as in (II.12) and WgF;n, = b.
We conclude this section with several important remarks:

Remark 11.2. The deterministic target portfolio b can also be
replaced by the sample GMV portfolio computed by using
data available before the sample Y, is taken. If we denote
these data by Y,,, then the target weights b are replaced
by

Sro 1p

——no P IL.15
17 Sn 1, (L15)

Ws ino —
In this case the relative loss ro does not longer depend on
the population covariance matrix 3 and following the proof
of Theorem II.1 it is given by

. Co p

TO=m T— Kk ——.
1—co no —p



As a result, the (bona fide) shrinkage estimator of the GMV
portfolio weights is obtained as in (II.13) and (II.14) with
7o replaced by 7o and Wpr;n, = Wg;n,. In a similar way
other random targets can be employed into our model, e.g.,
nonlinear shrinkage Ledoit and Wolf (2012), but then the
asymptotics and estimation of 7o becomes highly nontrivial
and one needs to handle every of those targets separately.
Because of the large number of possible target portfolios
b we leave this interesting topic for the future research. For
the sake of brevity concentrate ourselves on the naive equally
weighted target b = 1,/p in our simulation and empirical
studies.

Remark 11.3. The results of Theorem II.1 are derived under
very week conditions which require the existent of 4 + ¢,
€ > 0, moments only. No structural assumption on 3 neither
on b are imposed.

Remark 11.4. Other consistent estimators for 7o can be
constructed. For instance, we can update our estimator at
each time point ¢; as soon as new data of the asset returns
become available. Let N; = 23:1 n; be the total number
of asset return vectors available at time point ¢; and let Y ,
be the p X N; matrix of the asset returns up to time N;
that is Y, = (Yn; Yny .- Yn, ). Then, at time point 7, a
consistent estimator for ro is obtained by

Fosi = (1 - %) 1,85'1,b Sy,b—1.  (IL16)
K3

where Sy, is the sample covariance matrix based on the data
matrix Yy, as given in (I.3) with n = N;. Then, the (bona
fide) shrinkage estimator of the GMV portfolio weights is
computed following (II.13) and (II.14) with 7 replaced by
70;4. Since larger dataset is used to estimate 7o, we expect
that this approach will perform better as the one suggested
in (I.12) - (II.14). On the other side, the new method is
more time demanding, since the recursion in (II.14) has to
be started from the beginning at each time ¢;.

B. Dynamic GMYV portfolio with overlapping samples

In this section, we present the shrinkage estimator for
the GMV portfolio which is constructed based on the over-
lapping samples. In Remark 1.4 it is suggested to use all
available data Y,,,Yn,,..., Yo, up to time point ¢; to
determine a consistent estimator for the relative loss ro of
portfolio b. Here, we use the similar idea in the construction
of the sample estimator of the GMV portfolio weights at time
t;. Such an approach possesses an advantage that we only
require n > p, while the other sample sizes no, ..., nr can
also be smaller than the portfolio dimension p.

Using the notations N;, Y,, and Sy, introduced in
Remark I1.4, we define

s31,

1S5,

Ws.N, (IL17)

as the sample estimator of the GMV portfolio weights based
on data of the asset returns included in Y n,. Substituting

Ws;n,; instead of Wg;p, in (IL5), the loss function L;(v);)
in (IL.4) is maximized at

~T - -
x WSH?Ni—IE (WSH§N1L—1 _WS§N1')

(‘?VSH;Ni,l — WS;N,i)T b (WSH;N,i,l — ‘TVS;Ni) .
(IL.18)

In Theorem II.5 we derive an iterative procedure for com-
puting the deterministic equivalents to Wy, fori=1,...,T.
The proof of Theorem IL5 is given in the supplementary
material.

Theorem IL.S. Let Y., possess the stochastic representa-
tion as in (IL.1) and let b be the deterministic shrinkage
target for i = 1. Assume that the relative loss of portfolio b
given by Ry = lngllpb—rzb — 1 is uniformly bounded
in p. Then it holds that

[Ty, — U7 =30

for p/N; — C; € (0,1) as N;j — oo, j = 1,...,% and
t=1,....,T where

* (Ri—1+1)— K;
v = 11.19
R+ )+ (1 -G - 2K (119)
i—1
Ki=Bi10+ Y Bi1Dii, (I1.20)
j=1
Ci 2
R; = (U])? 1— U’ Ri_
(W) E + (1= W) R
22U (1 — U (K, — 1), (I1.21)
(I1.22)
with Bo0 =1, Bi_1,-1 = ¥i_; and
ﬂzfl;k = (1 - \Ilgfl)ﬁ';;%kv (1123)
for k =0,...i — 2. Finally, Dj ; is given by
D= 1- 21 -Gj) _ )
(1-CH+1-Cgh +\/(1— o) +aa-cogt
(11.24)

Similarly, to the case with non-overlapping samples, the
recursive procedure derived in Theorem IL.5 depends only
on a univariate unobservable quantity Ry, which is the
relative loss of the target portfolio b at time point t;.
Both approaches suggested in Section II-A can be used to
construct a consistent estimator for Ry, and hence to obtain
a (bona fide) estimator of the GMV portfolio weights. These
procedures are the following:

o We estimate Rg by

Ro =70 = (1 - N%) 1,S3'1,b Sy, b1 (11.25)
as in (I1.12). In this case the estimator for Ry is
constructed by using the first sample Yy, only and
the recursive procedure of Theorem IL.5 is then used
leading to the (bona fide) optimal shrinkage estimators
for the weights at each time point ¢;, ¢ € 1,...,7T
expressed as

WprN, = Viws, + (1= V) Warn, , (11.26)

where W7 is computed recursively as in Theorem
IL.5 with Ry replaced by R and using the empirical
counterpart for C; given by Cn, = p/N;.

o At each time point ¢, we use all available information
to estimate Ry, i.e.,

Ro;i = To;i = (1 - %) 1;S§31prssz -1

(IL.27)

and recompute the recursion of Theorem II.5 at each
time point ¢;. Since a larger dataset is used to estimate
Ry, better results are expected although the compu-
tations becomes more time demanding in the second
case.

To this end, we note that the deterministic target portfolio
b can be replaced by the sample GMV portfolio computed



by using data Y, available before the first sample Y n, as
in (II.15) of Remark II.2. In this case we get

RO = L ’
no —p
which is used in the iterative computation of Theorem II.5
instead of Ro. Since no unknown quantities are present in
the definition of Ry, the iterative procedure of Theorem II.5
becomes deterministic.

III. FINITE-SAMPLE PERFORMANCE

A. Benchmark strategies and the setup of the simula-
tion study

The suggested dynamic estimation strategies are com-
pared to several benchmark strategies via en extensive simu-
lation study in this section, while the results of the empirical
illustration are provided in Section IV. The performance
of the following eight dynamic trading strategies will be
established:

Strategy 1:
Bona fide shrinkage estimator of the GMV port-
folio (II.13) with (II.14) following Theorem II.1
where 7 is estimated from the first sample as in
(IL.12);

Strategy 2:
Bona fide shrinkage estimator of the GMV port-
folio (I1.26) where ¥ is computed recursively as
in Theorem II.5 and Ry is estimated from the first
sample as in (I1.25);

Strategy 3:
Bona fide shrinkage estimator of the GMV port-
folio (II.13) with (II.14) following Theorem II.1
where 7o is recomputed as in (I[.16) when a new
sample becomes available;

Strategy 4:
Bona fide shrinkage estimator of the GMV portfo-
lio (I1.26) where ¥ is computed recursively as in
Theorem I1.5 and Ry is recomputed as in (I1.27)
when a new sample becomes available;

Strategy S:
Sample estimator of the GMV portfolio computed
at each time ¢;, ¢ = 1,2,...,7T, ie., ¢; = 1 in
(ILS5) for i =1,2,...,T};

Strategy 6:
Target portfolio b used at each time ¢;, i =
1,2,...,T,ie., ¢ =0in (IL5) fori = 1,2, ..., T}

Strategy 7:
One-period shrinkage estimator of the GMV port-
folio (I.5) with (I1.6) reconstructed at each time t;,
i =1,2,...,T with equally-weighted portfolio as
the target portfolio.

Strategy 8:
Ledoit-Wolf nonlinear shrinkage estimator of the
GMV portfolio (see, Ledoit and Wolf (2017))
computed at each time ¢;, ¢ =1,2,...,T";

The first four strategies are based on the theoretical
results derived in Sections II-A and II-B where two different
methods for constructing bona fide shrinkage estimators of
the GMV portfolio weights are explored following the dis-
cussion after Theorems II.1 and IL.5, respectively. Strategies
5 to 7 are the benchmark strategies which are based on
the traditional estimator of the GMV portfolio, on the target
portfolio, and on the one-period shrinkage estimator. The last
Strategy 8 is the recent state-of-the-art method of Ledoit
and Wolf (2017), which efficiently applies the nonlinear
shrinkage estimator of the covariance matrix on the GMV
portfolio weights.

Since the GMV portfolio is the solution of the portfolio
optimization problem with the aim to minimize the portfolio
variance, the relative loss in the out-of-sample variance is
used as a performance measure in this comparison study
which for the portfolio with the estimated weights W is
expressed as:

e N

. 3w — V,

Relative loss (w) :w
oMV

=1"s 1w ' =w -1, (IIL1)
where we use the formula for the global minimum variance
Vamv given in (IL9).

In the simulation study, we will look at two investment
horizons 7" = 10 and 7" = 20. For each segment we
let n;, = 250, which would correspond to an investor
who rebalances the holding portfolio on a yearly basis.
The parameters of the listed below models are simulated
according to gt = (p1, ..., ptp) | with p; ~ U(—0.2,0.2)
and the covariance matrix X is configured such that 20%
of the eigenvalues are equal to 0.2, 40% equal to one and
40% equal to 4, whereas the eigenvectors are generated from
the Haar distribution. Following this simulation setup 3 will
have the same spectral distribution for all considered values
of the concentration ratio c,.

Four different stochastic models for the data-generating
process will be considered, which are listed below:

Scenario 1: ¢-distribution

The elements of x; are drawn independently from t¢-
distribution with 5 degrees of freedom, i.e., x¢; ~
t(5) for j =1, ...,p, while y is constructed accord-
ing to (IL.1).

Scenario 2: CAPM

The vector of asset returns y; is generated according
to the CAPM (Capital Asset Pricing Model), i.e.,

ye = p+ Bz + %%,

with independently distributed z; ~ N(0,1) and
x¢ ~ Np(0,TI). The elements of vector 3 are drawn
from the uniform distribution, that is 8; ~ U(—1,1)
fori=1,...,p.

Scenario 3: CCC-GARCH model of Bollerslev (1990)
The asset returns are simulated according to

yi|Ze ~ Np(p, 3)

where the conditional covariance matrix is specified
by

s, = D;/?CD;/? with D; = diag(h1.., ha.s, .
where

— ;) + Biahyi1,

forj=1,2,...,p,and t =1,2,....mn;, 1 = 1,...,T.
The coefficients of the CCC model are sampled ac-
cording to a1 ~ U(0,0.1) and 8,1 ~ U(0.6,0.7)
which implies that the stationarity conditions, a1 +
Bj,1 < 1, are always fulfilled. The intercept o is
thereafter chosen such that the unconditional covari-
ance matrix is equal to 3.
Scenario 4: VARMA model

The vector of asset returns y; is simulated according
to a

hjt = ajo + aj1(yje—1

Y = u+F(yt,1—u)+21/2xt, with x¢ ~ Np(0,I)

for t = 1,...,n4 ¢ = 1,...,7, where I' =
diag(y1,7v2, .-, ¥p) where v, ~ U(—0.9,0.9) for
t=1,..,p.

RS h’Pvt)7
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Fig. 1: Relative losses for the different time steps ¢ and investment horizons 7'. Data were simulated following
Scenario 1 for different values of c.
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Fig. 2: Relative losses for the different time steps ¢ and investment horizons 7'. Data were simulated following
Scenario 2 for different values of c.

Scenario 1 and Scenario 2 fulfill the conditions imposed  on the data-generating model in Section II. The application
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Fig. 4: Relative losses for the different time steps ¢ and investment horizons 7'. Data were simulated following
Scenario 4 for different values of c.

of both scenarios result in samples that consist of indepen- dent random vectors with finite 4 + €, ¢ > 0, moments.



Furthermore, the covariance matrix possesses finite eigen-
values in Scenario 1, while it has an unbounded spectrum
in Scenario 2 (cf., Fan et al. (2013)). On the other side,
the samples obtained following Scenario 3 and Scenario 4
consist of dependent observations. In Scenario 3 the random
vector are uncorrelated although a non-linear dependence
is present in the time series structure of the model, while
the elements of the samples obtained from Scenario 4 are
strongly linearly dependent.

For each segment of the time partition we generate a
new sample of n = 250 observations, which is applied
in the computation of fi, S,;, Sn,, Ws;n;, and WsH;n,.
As a target portfolio we use the equally weighted portfolio
with the weights b = 1,/p. The results of the simulation
study are based on 5000 independent runs from which the
average relative loss is computed for each scenario, strategy
and several values of the concentration ratio c.

B. Performance of the trading strategies

Figures 1 to 4 present the results of the simulation
study for ¢ = 3,5 = 6, and ¢ = 10 when T = 10
and for ¢ = 6,2 = 13 and ¢« = 20 when T = 20.
Interestingly, the computed average loss show a similar
behaviour independently of the data-generating model used
to draw the samples. This observation also holds in the case
of Scenario 3 and Scenario 4, which by construction do
not fulfill the assumptions imposed on the data-generating
model in the derivation of the theoretical results. As such,
one can conclude that the presence of non-linear dependence
structure between the observation vectors or even strong
linear dependence has only minor impact on the validity of
the results derived in Theorem II.1 and Theorem IL5.

The best performance is obtained for Strategy 2, Strategy
3, and Strategy 4, which are followed by Strategy 1. The
differences between the computed values for Strategies 2
to 4 are very small and are present at the fourth decimal.
All dynamic estimation strategies considerably outperform
the four considered benchmark strategies, independently of
the scenario used to generate samples. On the third place we
rank the nonlinear shrinkage estimator, i.e., Strategy 8, while
the single-period shrinkage estimator is ranked on the place
four. Finally, we note that for Scenarios 1-4 the traditional
estimator performs better than the portfolio strategy based
on the target portfolio, when the concentration ratio c is
smaller than 0.75, while it produces extremely large values
of relative losses, when c¢ approaches one. This observation
becomes even more prominent in case of the Scenario 4,
where a strong autocorrelation was employed. Here already
for ¢ = 0.5 the target portfolio starts outperforming the
traditional estimator. To this end, we conclude that the
dynamic re-estimation of the relative loss of the target
portfolio b shows a significant improvement when non-
overlapping samples are used and the concentration ratio ¢
is relative large. In contrast, the application of the dynamic
re-estimation of the relative loss in the case of overlapping
samples leads to the considerably large computation time
without large improvements. Finally, the increase of the
trading horizon 7" has only a minor impact on the plots
presented in Figures 1 to 4. The larger value of T slightly
reduces the computed average relative losses in the case of
Strategy 1, while they become a slightly large for the single-
period shrinkage approach.

IV. APPLICATION TO STOCKS FROM S&P 500

In this section we will apply the suggested new ap-
proaches and the benchmark strategies presented in Section
III on daily market data. The computation is performed
by using the R-package DOSPortfolio (see, Bodnar et al.
(2021b)).

A. Data description

We will use daily returns on 348 stocks included in the
S&P500 index from March 2011 up until March 2020. The
stocks were chosen by the availability of their price data
during the trading period. Two portfolios of size p = 100
(high-dimensional case) and p = 50 (low-dimensional case)
are considered, where 50 stocks are chosen randomly from
348 stocks included in the empirical study for the first
portfolio, while the second one contains the first 50 stocks in
the alphabetic order of the former portfolio. We set ¢ = 0.25
or ¢ = 0.5 and will therefore use n; = 200 trading days for
each year <.

Figure 5 presents the descriptive statistics computed for
the univariate series of the randomly chosen 100 stocks.
Namely, the first four (centralized) sample moments of the
univariate time series of asset returns are depicted in the
figure, which are computed for the whole period from March
2011 up until March 2021. The returns are on average
positive over this period, while the sample skewness is
on average negative with the sample distribution to be
skewed to the left and with a few assets having very large
(negative) values. The largest negative skewness corresponds
to the Mondelez International, Inc. (ticker MDLZ) which is
also among those assets with highest kurtosis. Finally, we
note that the computed kurtosis are relatively large for the
considered stocks, showing that the assumption of normality
might not be fulfilled for the considered data.

B. Results of the empirical illustration

A consequence of the exponential weighting schemes to
which the shrinkage estimators belong to, is that the portfolio
structure changes by smaller increments. As a result, we
expect that the portfolio turnover of the dynamic (esti-
mated) GMV portfolios based on the introduced shrinkage
approaches to be smaller in comparison to the unconstrained
strategy (1; = 1), but to be larger in comparison to the static
portfolio choice (¢); = 0). For each strategy k introduced
in Section II-A, let w® denote the vector of the weights
induced by the kth strategy and let wgﬁ-) stand for the weight
for the j-th asset after the i-th portfolio rebalancing.

For each strategy k the turnover is defined by (see e.g.
Golosnoy et al. (2019))

T
1
Turnover*) = T Z W™ — w1 (Iv.1)
i=1

The turnover can be seen as the cost for transitioning from
one portfolio to another, given that the transaction costs
are constant for all assets and time periods. The amount
of turnover will affect the development of wealth of the
portfolio. Moreover, following Golosnoy et al. (2019), we
will compute the average absolute values of holding portfo-
lio weights, the average minimum and maximum portfolio
weights, the average sum of negative weights in the portfolio,
and the average fraction of negative weights in the portfolio
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as further performance measures. They are given by
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Moreover, we also consider important classical portfolio
performance measures: total excess portfolio return, out-of-
sample variance and average Sharpe ratio. The computed
values of the introduced performance measures are sum-
marized in Table I for Strategies 1 to 8 over the entire
period. The corresponding values for Strategy 6 are also
included in the table but many of its entries are obviously
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of the asset returns from 100 randomly selected assets
from March of 2011 to March of 2021.

equal to zero since the weights are all equal. In fact,
Strategy 6 has the smallest values of them all for the
first 5 performance measures. Similarly, no negative weights
are present in the target portfolio since each asset will be
assigned a weight of 1/p. Due to this fact we have chosen
to highlight the second to best strategy, which is Strategy
8. If the investor is interested in the portfolio weights, then
Strategy 8 is the best as it takes the smallest positions, short
the smallest amount of stocks and so forth. The average
maximum weights, mean of all shorted and the proportion
shorted seem to increase slightly with p. It seems as though
when p increases, Strategy 8 decrease in the other metrics
regarding the portfolio weights. The same is not true for the
other strategies, especially Strategy 5. This can most likely
be attributed to the nonlinear shrinkage of the eigenvalues,
which seem to have a direct impact on the magnitude and
direction of the weights. None of the other strategies has
the same flexibility and can not compete with it. The other
strategies seem to have natural ordering in terms of the first
five metrics. Strategy 1 through 4 are better than Strategy
7, which in turn is better than Strategy 5. One interesting
feature of the re-estimation strategies, Strategy 3 and 4,
does not imply a large change in the metrics. One of the
largest changes can be seen in the mean out of the shorted
weights for Strategy 4 when p = 200. When we re-estimate



the initial relative loss, we change the shrinkage coefficients
and all dynamic GMV portfolios thereafter. For the portfolio
weights, that seem to imply an increase in certain metrics.

The last performance measures, seen in the four last rows
of Table I are based on the portfolio return. Strategy 3 and
Strategy 4 have the largest portfolio return. Since we only
present up to 4 decimals both are highlighted. In reality, they
differ on the sixth decimal, which can of course make a
big difference depending on the capital invested. In contrast,
Strategy 1 and Strategy 2 beat all of other strategies in
terms of portfolio variance when p = 150 and Strategy 2
has the least amount of variance when p = 200. We can also
see that as p increases, the variances of Strategies 5 to 8
increase. The dynamic shrinkage becomes an increasingly
important feature in this context. It does not suffice to
optimize for the out-of-sample variance, which Strategies
1 to 4 and Strategy 7 does, but also the dynamic nature of
the investment process. These decrease with p. In turn, for
p = 150 Strategy 4 gives the highest Sharpe Ratio and for
p = 200 Strategy 2 gives the highest Sharpe Ratio. From
the out-of-sample variance it is not surprising to see that
Strategy 5 provides the worst Sharpe ratio.

The last performance measure in the last row is turnover.
As one can expect, Strategy 5 is worst, generating the largest
turnover. This classic strategy has the most flexibility. How-
ever, this flexibility often leads to unnecessary reconstruction
of the holding portfolio. This becomes apparent in more
extreme case when p/n is close to one. The smallest turnover
is given by Strategy 1. The dynamic shrinkage force small
movements between reallocations. However, in Strategy 3
and Strategy 4 we change the perception of the initial
relative loss. This implies that algorithm change its opinion
of what the optimal weights should have been. It causes the
weights to change more relative to Strategy 1 and Strategy
2. The re-estimation caused a larger return for p = 150,
a higher variance but also, in turn, a higher turnover. The
dynamic shrinkage approach does not optimize towards
decreasing turnover but it is a consequence of enforcing
small movements. This also implies that other strategies
can be close to the dynamic shrinkage approach. Strategy
8 shows promise of this feature. When p increases the
nonlinear shrinkage estimator becomes more stable (between
reallocation periods) and increases its turnover slightly.

The development of the investors wealth for the eight
trading strategies introduced in Section III-A over 10 years
is depicted in Figures 6 and 7. The wealth is computed
according to a buy-and-hold strategy until next reallocation
period. That is, given that n; days has passed, we use these to
estimate the portfolio weights and then rebalance the holding
portfolio to the new portfolio according to the different
strategies. The wealth is accumulated on a daily basis which
corresponds to the frequency of data used to construct the
portfolio.

The portfolios are the same as presented in I, e.g., one
set of assets with p = 150, p/n; = 0.6 and another
with p = 200, p/n; = 0.8. In both scenarios the trading
strategies based on the dynamic shrinkage approach using
the re-estimation technique produce the largest wealth at the
end of the investing period.

In Figure 6 where p = 150 the worst is Strategy 5 in
terms of the wealth. However, there is a number of strategies
that have close to the same performance. These are Strategy
7 and Strategy 8. Throughout the whole period they are very
close to each other where Strategy 8 deviates the most from
the other two. The next grouping is Strategy 1, Strategy 2
and Strategy 6, the equally weighted portfolio. Strategy 6
provides slightly less increase in wealth. The other two are
very close in terms of their final wealth. They also seem to
move in tandem. Their wealth is similar but from I we can
see that Strategy 1, Strategy 2 perform slightly different.

The classical benchmark, Strategy 6, starts of accumulating
a lot of wealth, but decrease just prior to 2016. In this figure,
it also becomes clear why Strategy 1 and Strategy 2 had the
smallest variance in Table I. They vary very little in contrast
to other strategies.

In Figure 7 where p = 200, we have a slightly different
scenario. Strategy 3 and 4 still provide the largest final
wealth and Strategy 1 and 2 second to that. Thereafter there
seem to be a clearer separation between the rest in terms of
final wealth. Strategy 6 is still the best out of Strategies 5
through 8. However, Strategy 8 is very close to deliver the
same performance. The traditional GMV portfolio takes on
both large turnover and does not provide any decent result.
It almost cuts the wealth by half in the end of this period.
The last strategy, Strategy 7 is able to catch up and ends on
a positive note.

All portfolios are hit quite heavily by COVID in the early
2020, which is indicated by a dashed line on the Ist of
March, 2020'. Some portfolios are quick to adapt to the event
and other are not. However, all portfolios seem to experience
a very sharp increase in wealth post COVID. This can most
likely be attributed to the very bullish scenario which was
caused by banks all over the world pushing capital into the
market.

In Table II we show the largest negative difference of
the strategies wealth throughout the whole period. We can
see that Strategy 2 has the smallest decrease in wealth
between days during this period where Strategy 1 comes
in second. These strategies seem to have been robust against
the COVID crisis. Thereafter, Strategy 3 and Strategy 4
have the smallest decrease. However, these are almost twice
the size. The rest of the strategies are on a similar level.
They all exhibit close to a drop of 0.2 units in wealth.

These results are in line with the previous empirical
findings of Bodnar et al. (2021a) who document that the
equally weighted portfolio performs well in the stable period
on the capital market, but its performance is very bad
during the turbulent periods. To conclude, all four of the
proposed dynamic shrinkage strategies show impressively
good performance over the state-of-the-art static portfolios
especially in case when p becomes close to n;.

V. SUMMARY

In many practical situation an investor after constructing
an optimal portfolio faces the problem of the portfolio
reallocation based on the new data which arrive on the capital
market after the portfolio was built. We deal with challenging
task in the current paper by developing several dynamic
optimal shrinkage estimators for the weights of the GMV
portfolio. In the derivation of the theoretical findings, new
results in random matrix theory are deduced which allow us
to obtained optimal shrinkage estimator in both important
cases with and without overlapping samples. In the case of
non-overlapping samples, the investor uses the data of asset
returns after the last reconstruction of the portfolio, while
the whole data might be used in the case of overlapping
samples. It is remarkable that the two settings require differ-
ent theoretical results in random matrix theory to be derived
results and they result in quite different optimal shrinkage
intensities. Moreover, only minor distribution assumption are
imposed on the data-generating process, like the existence of
4+-¢, € > 0, moments are required only. Also, the covariance
matrix might have an unbounded spectrum.

The results of the simulation study show that the dy-
namic shrinkage procedures derived in the paper are robust
against violations of the model assumptions. In particular,

I'This is of course somewhat arbitrary since it is hard to specify
a certain day that COVID hits the market.



TABLE I: Performance measures over 7' = 8 periods of portfolio rebalancing. The strategy which is most
performant (in terms of its measurement) is highlighted in bold on each row.Each Strategy is abbreviated "S.".

Type Portfolio size S. 1 S.2 S.3 S. 4 S.5 S. 6 S. 7 S. 8
w®)] 150 0.0245 00248  0.0255 0.0265  0.0477 0.0067 0.0298  0.0209
200 0.0218 00228 0.0224 0.0248 _ 0.0627 0.0050 _ 0.0300 _ 0.0173
* 150 0.1107 0.1120  0.1568  0.1633  0.2434 0.0067  0.1537 _ 0.0836
maxw 200 0.1736  0.1812  0.1642  0.1823 _ 0.5628 0.0050  0.2633 _ 0.0865
S 150 0.1155 -0.1171 -0.1018 -0.1065 -0.1882 0.0067 -0.1134 -0.0652
minw 200 0.0938 -0.0983 -0.0940 -0.1052 03338 0.0050 -0.1554 -0.0523
(k) 150 13387 -13617 -14102 -14903 -3.0742 0.0000 -1.7380 -1.0648
wi (w;™ < 0) 500 16802 -1.7767 -1.7367 -19807 -5.7679 0.0000 -2.4933 -1.2292
) 150 04592 04592 04392 04442 04750 0.0000 04392  0.4050
I(w;™ <0) 200 04513 04519 04469 04656  0.4863 0.0000 04460  0.4250
_ 150 0.0003  0.0003 _ 0.0004  0.0004 0.000l 0.0003  0.0002 _ 0.0001
Y (k) 200 0.0003 __0.0003 _ 0.0004 _ 0.0004 -0.000 _0.0003 _0.0001 _ 0.0002
150 0.0062 0.0062 0.0083  0.0083  0.0123 0.0120 0.0112 _ 0.0099
Tw (k) 200 0.0055 0.0054 0.0080 _0.0078 _ 0.0156 00122 00124 _ 0.0102
SR 150 0.0485  0.0486 _ 0.0513 _ 0.0525 _ 0.0107 0.0250 0.0143 _ 0.0138
200 0.0510 0.0514  0.0464  0.0496 -0.0067 0.0208  0.0069 _ 0.0180
Turmover(*) 150 0.0462 00507 14516 15016  8.6568 0.0000 5.2351  3.1340
200 0.1193 0.1372 _1.9099 2.0772 155228 0.0000 7.1262 _ 3.4561
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Fig. 6: Development of the investor wealth based on the dynamic trading strategies described in Section III-A.

In this figure the portfolio size is equal to 150.

we conclude based on the results of the simulation study,
that the performance of the suggested dynamic approach
will not be strongly influenced when the asset returns are
generated from a multivariate GARCH model and from a
VARMA model. Although, both multivariate times series
model assume that the asset returns are time dependent, it
has only a minor influence the suggested trading strategies.
Finally, we apply the new approaches to real data of returns
on stocks included in the S&P 500 index and compare them
with several benchmark approaches, consisting of investing
into the target portfolio, the sample GMV portfolio, and the
single-period GMV portfolio. Several performance measures
are considered and it is shown that the dynamic shrinkage
portfolio constructed by using overlapping samples possesses

the best performance in terms of the turnover and the
development of the portfolio weights.

The dynamic strategies based non-overlapping sample
are simple to implement and they provide drastically less
turnover in comparison to the benchmark approaches. Al-
though the approaches based on the overlapping estimators
are harder to implement, they decrease the turnover by
50% in comparison to the corresponding non-overlapping
strategies with no significant loss in wealth. Furthermore,
they require that the sample size is larger than the portfolio
dimension only when the portfolio is constructed for the
first time, while the non-overlapping approaches need the
sample size to be larger than the portfolio dimension by
each reconstruction of the portfolio.
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Fig. 7: Development of the investor wealth based on the dynamic trading strategies described in Section III-A.

In this figure the portfolio size is equal to 200.

TABLE II: The largest loss in wealth between days throughout the whole period. The strategy which is most
performant, e.g. smallest loss, is highlighted in bold on each row. Each Strategy is abbreviated "S.".

size S. 1 S.2 S.3 S. 4 S.5 S. 6 S.7 S. 8
150  -0.0586 -0.0580 -0.1180 -0.1174  -0.1975 -0.2200 -0.2048  -0.1744
200 -0.0469  -0.0442 -0.1226 -0.1190 -0.2701  -0.2266  -0.2482  -0.2009

No portfolio is ever static. Making optimal transitions
are therefore of great interest to any investor. These re-
sults provide a fully data-driven dynamic approaches how
the GMV portfolio can be rebalanced. In many practical
applications the investors might want to have more assets in
their portfolios than the available sample size. This demands
a special attention since the sample covariance matrix is
singular in this case and its inverse does not exist any longer.
This challenging problem has not been treated in the paper
and is left for future research.
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APPENDIX

In this section the proofs of the theoretical results are
given. We first state several lemmas which will be used in
the proofs of the theorems.

For any integer n > 2, we define

n =

1
7anr-1r7
n—1

n—1 n
(V.1)

where X, is given in (II.1) for the special case n = n;.
Hence,

S, = 21/2Vn21/2 _ E1/2{/-n21/2_ n

»'2%,%,) =12

with %, = 1X,,1, = 272y,

The statement of Lemma V.1 is derived as Lemma 5.3 in
Bodnar et al. (2022b)

Lemma V.1. Let € and 6 be two nonrandom vectors with
bounded Euclidean norms. Then it holds that

a.s.

’gTvgle —(1—e)'eTe|u30 (V.2)

€Tve - (1-0*¢To| 50

(V.3)

forp/n— c€(0,1) as n — oco.

Lemma V.2. Let £ and 0 be two nonrandom vectors with
bounded Euclidean norms and let m,n > 1. Then it holds
that

E'VIV0 — dnnim€ 0] 300, (V.4)



for p/n— c € (0,1) as n — oo with
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Proof of Lemma V.2. 1t holds that
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where 876 < co by the assumptlon and by Lemma 5.2 of
Bodnar et al. (2022b) we get £V, 26 “3' (1 —¢) ¢ ¢,

Let Vn+1 nitm TXTH-I n+mX_;Lr+1 .n+m Where
Xpn+1:n+m stands for the submatrix of X, 4., consisting of
its last m columns. Since X,, and X, 41:n+m are indepen-
dent, V,, and V,41.n4+m are also independent. Moreover,
we get

Vn+m = n _’T_Lml_ 1Vn + n :_nm i 1Vn+1:n+m~

Following Theorem 1 in Rubio and Mestre (2011) condi-

tionally on V,,, we get that
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for p/m — é € (0,00) as m — oo where Ky, n4m is found
as the solution of the equation

—1

m
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Using that for a,b € R we have
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For the second summand in (V.8) we get that
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using Lemma 5.1 in Bodnar et al. (2022b) two times. [

Lemma V.3. Let £ and 6 be two nonrandom vectors with
bounded Euclidean norms and let m,n > 1. Then it holds
that

(5 ViV.0 — donimt 6] 250, (V.9)

for p/n — c € (0,1) as n — oo where dp ntm is defined
in (V.5).

Proof of Lemma V.3. The application of the
Sherman—Morrison formula leads to
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fm_1X n+mvn+mxn+m)

T%I VR, ) (1 -

The applications of Lemma 5.2 in Bodnar et al. (2022b)

and Lemma V.2 completes the proof. O
Proof of Theorem I1.1. Rewriting (IL.7) we get
o . ‘R’:S'eriff:S; 1,
wE = SHing— —SHini 1 1580, 1p
" T WS H;n WsHing 1}:5"1'1117 1080, ESh1p
SHin;_q ; 1 1;s;i11p (1;sﬂ11p)2
with
hni - 1;2_11PW:S‘FH;ni,12WSH;ni,1
1,271, 1 1
- oo WsHn,_, 25, 1p
17851, !
and
In; = lgz_llpv‘i’gH;ni_lEWSH;ni,l
Ta-lya-1 Ts—1 2
1,858,381, (1,X7°1,
pE 178:/1,
1,211
- 2= PRIy, .XES M1,
17851, !
»-1/?1,
The application of Lemma V.1 with § =0 = —————
PP ¢ 1,51
leads to
17811, o 1,8,.'%8, 11 ag .
T = (e ™ PR 5 (1)

15! 1,z



(V.10)

for p/n; — ¢; € (0,1) as n; — oo.
Since the variance of the GMV portfolio is equal to
1/(1, £7'1,), we have that

~T ~
WSHin; 4 XWSsHmn; 4
1/1;2*11p

Ts—1 ~ T -
1,3 1, Wshm, XWsHn, _, =

= 1 + r\?vsgmi_l Z 17

where rwg,,.  is the relative loss of the portfolio with
weights Wsm,n, , computed with respect to the variance
of the GMV portfolio. Next, we recursively derive the
asymptotic behaviour of r& gy, . -

For ¢ = 1 the sample estimator of the GMV portfolio
weights Wy, is shrunk to the deterministic target b, i.e.,
WsH;n, = b. In this case the relative loss is given by

Tarsim, =70 =1, 5 '1,b" Zb — 1,

which is bounded uniformly on p following the assumption
of the theorem and

b'xS; 1, as 1 1
*)(1761)
VbTZb,/1]7E-11, VvbTEb,/1]E-11,

1
= (l-a) t—,
G T
zl/2b 271/211;

———and 0 = ————.
VbTsb 1,371,
Combining these results with (V.10) leads to

Yy U1
for p/n1 — c1 € (0,1) as n1 — oo with

’1/1* _ (T‘o+1) -1 _ (1701)7‘0
! (T0+1)+(1—C1)71—2 (1—01)T0+C1.
Moreover, the relative loss of the portfolio Wsg;n, , yields

using Lemma V.1 with £ =

Te -1 * \2. AT -
TWSH;n,l = 1P X 117 <(wn1) wS;nl EWS;nl

_ _ _ 2
S (52 0)

L2, \ 178001,
1,%7'1,

* * Ta—1
2¢p, (1 —15,)1, S, 3b 1;5;111,,

+ o+

L—45 )P (ro+1)—1
1)1 —e) ™t 4 207 (1 — ¢7)
11— (ro+1)—1

Cc1 *\ 2
1— =
1—01+( 1/11) T0 71,

for p/n1 — ¢c1 € (0,1) as n1 — oo.
Using the last result we get for ¢ = 2 that

IS}
o

+ L

Te—1 AT N a.s.
1,3 " 1,Wep.n, X2WsH;n, — 71+ 1.

Since non-overlaping samples Y,, Y,, are used in the
computation of the Wgm,,, and S,,, these two random
objects are independent. The application of Lemma V.1
conditionally on Y, leads to

‘ Wb, BS00 1,
\/ W.;H;nlEWSH;"l V 11—:271117
(1—ec)!

A /W;H;nl EWSH;nl \/ 1;27111,

and, hence,
‘W:S'I—Hnlzs:w,zllp - (1 - 02)71‘
W;—H;nl ES;zl ]'P

‘ A /WgH;nl EWSH;nl \/ 1;2_1117

x\/v*ngmzv*vSH;m \/1;2711,) S (l—e)?

a.s.

0,

since Wgyr.p, EWssin, 1, X '1, = Op(1) The last re-
sults together with (V.10) yields

*a.s. ik (Tl + 1) -1 _ (1 — 02)7‘1
'ébng — wQ = (7‘1 +1)+ (1 _02)—1 —_92 (1 —62)7‘1 + oo

for p/na2 — c2 € (0,1) as na — oo.
Finally, the relative loss of the portfolio Wgp;n, tends to

Te—1 * \2. T -
TWSH;nQ = 11) b 117 ((wng) WS;nQ EWS;TLQ

Jr

2¢;sz (1 - qwb:lg )wg;nz 2‘X/SH;"l

+ (1 - ¢:2)2W.;'FH;n1 EWS’H;'rn) -1

_ _ _ 2

— W )21;sn;zsn;1p 1,271,
- n — —

2 1,311, 1780, 1,

1> 11

* * Ta—1 A~ P
+ 295, (1 = p,)1, 8., EWsnn, ﬁ
+

(1= ) (Pasp,, +1)—1
S (3)2 (1 —c2) 205 (1 —w3) + (1— ) (r +1) — 1

* C *
= W)=+ =)=,

for p/na — c2 € (0,1) as ny — oo.
Repeating the above steps for ¢+ = 3,...,T leads to the
statement of the theorem. O

Proof of Theorem I1.5. We get

&1 1
T = WsHN; 4 ZON; P
WSH;N; _*WSH;N;_; TTs 11 -
ot p SN, tP _ Hpyy
N, = T —1 —lgq—1 -
T . WSH N, >5n; 1p IITSN,;ESNi,lP GN;
HiN;_ 1~ = =
SH;N;_1 i—1 1pTSN21P (1251\];1}7)2
with
Ts—1 ~ T -
Hy, = 1,3 "1,WsuN,  EWsH;N,_,
Ts—1
_o L L Sy
lTS_ll SH;N; 1 N; ~-p
pON; P
and
Ts—1 ~ T ~
Gn, = 1,X lpWSH;Ni,12WSH;Ni—1

2
17SyEs 1, <1;2—11p>

1,x-11, 1Sy,

1,271, + 1
— 227 PR, ZSN1

1;8;,;11) SH;N; _1 N; +p

From Lemma V.1 we have

1;8;\[} 117 a.s.

1'syisstlh
Lo 8 (1_07;)717 P ~N; N;
1,211,

P a.s. -3
1-C;
oy, 1%
(V.11)
for p/N; — C; € (0,1) as N; — oo.



The recursive structure of Wsg;n,

i—1
* A~
= E ﬂNi,l;NjWN]
Jj=0

where By, . ~; are computed recursively by BNoiNg =
* : _ * * _
1, /BNz‘—l?Ni—l - \IINi71 and BNi—liNj - (1 -

qj}(\]i—l)ﬂ}k\f{—%Nj’ j=0,...i — 2. Hence,

implies that

i—1

WSH;Ni,l with WNO = b7

~T —1 * T -1
WSH;NiflESNilP = /BNqifuNob ESNilp

. Sﬁ* 1, Sy =Sy,
Ni—1;N; — TT1q—-11
r AR BT

Let U;_; denote the deterministic asymptotic limit of
Uy, ,» whose recursive computation is discussed below.
We also define 350 = 1,87 1,1 = V1,8 1; =
(1 - 1)Bi—a,7 =0,...i — 2. Then, the application of
Lemma V.3 yields

Wimn, ISy 1, S (1-Ci) K
with K; = B 1,0 + 252} 81Dy for p/N; — Cj €
(0,1) as Nj — o0, j = 1,...,4 — 1, where

2(1—-C
S (1-c)

Moreover, the relative loss of the portfolio with weights
Ws;n,; is asymptotically given by

Rospy, =1, 27'1, <(\I!}kvi)2v‘v;ni2v”vs;m
+ 2‘I/7v,i(1 - wj\li)w:;NiEWSH;N,;_l

+ (1 - @;Vq,)QW;—H:Ni—12W5H?Ni1> -1

2
= (eSS (1,3,
1T2 17831,
1211
+ 22U, (1— W)L, Sy SWsaiN,_, et
’ '1;8401,
+ (1-Ty,)° (resmn, , T1)—1
R = (U))*(1—C) 7 420 (1 - U)K,
+ (1= ‘IJ:()2(RZ'—1+1)71
* CZ *2
= 1— ;)R
( z) CZJF( 7,) 1
+ 2\1/;‘(17\111-)(&—1).

Finally, we get

(Ri-1+1)— K;

Uy, B0, 0 =
N e T R R )+ (- Cy) T — 2K,

i

for p/Nj — Cj S (O, 1) as N — oo, 7 = 1,...,%
As a result, the computation of ¥} is performed in the
following recursive way: (i) first, we compute Ry =
1,2 '1,b"Eb—1and K; = (1-C1)"" which are used
to obtain W7; (ii) second, using Ry and V7 we find Ry and
Ki=(1 7C1)2 used in the computation of W3 and proceed
the recursive procedure for ¢ = 3, ...,T". The boundedness of
Ry ensures that all computed values are finite as well. [

O—QHU—@%+¢(—%Y+M—Q%%
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