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1 Introduction

Policymakers and academics are interested in combinations of density forecasts. Interest in

combining density predictions comes from the recognition that individual models often provide a

partial understanding of the economy due to different underlying datasets or modelling assump-

tions. As a result, practitioners consult a wide variety of models and experts to form the basis

of their decision-making (Coletti and Murchison, 2002). Furthermore, density forecasts and their

combinations are useful because they fully characterize the uncertainty around a prediction. A

density prediction can be very useful to decisionmakers (Chernis and Webley, 2022) since it can

show the uncertainty around a prediction, the balance of risks, or the severity of tail risks. However,

decision makers often consider large sets of models, commonly seen in nowcasting applications or

expert surveys such as the Survey of Professional Forecasters. Combining these large numbers of

forecasts can be difficult and requires specialized techniques. A common solution to the problem

of processing large amounts of data in economics is shrinkage and factor modelling techniques.

In this paper, I compare global-local shrinkage priors and factor models when combining fore-

casts within the framework of Bayesian Predictive Synthesis (BPS). Global-local shrinkage priors

and factor models naturally lend themselves to large dimensional problems and BPS is an intuitive

approach to combining densities. BPS frames the issue of combining predictions as a decision

theory problem - a decisionmaker rationally synthesizing some set of information to inform her

choice of action. The theoretical underpinnings are provided by West (1992) and West and Crosse

(1992) who shows how a decisionmaker would combine a set of forecast distributions (or partial

summaries) in a fully Bayesian manner. Recently, this has been codified by McAlinn and West

(2019) who introduce Bayesian Predictive Synthesis for time series. Apart from the strong theo-

retical motivation for using BPS, it is very flexible. A researcher can specify the function form, or

synthesis function, of the density combination with very few restrictions. This makes it very easy

to compare and experiment with different ways of combining forecasts.

So far, comparisons of synthesis functions have not been addressed in a BPS framework. Most

applications of BPS have used a dynamic linear model as a synthesis function (Prado and West,

2010, Sect. 4.5). Instead, BPS has been extended to a multivariate forecast setting in McAlinn

et al. (2020). Takanashi and McAlinn (2021) establish additional theoretical properties such as
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the BPS combined predictions being minimax. McAlinn (2021) uses BPS in a mixed-frequency

nowcasting exercise, and Aastveit et al. (2022) use it to forecast oil prices.

Comparing global-local shrinkage priors and factor model based synthesis functions is inter-

esting for several reasons. These approaches naturally allow for combining forecasts with a large

number of experts. This is significant since many applications feature large numbers of experts

such as nowcasting with ensembles and survey forecasts. This can be challenging due to the re-

quirement of estimating a large numbers of parameters with small datasets. From a frequentist

perspective the approach has been to employ regularization while estimating an optimal combi-

nation (Conflitti et al., 2015; Diebold et al., 2021). Bayesian approaches can also face difficulties

in large dimensions. For example, Bayesian Model Averaging requires calculation of the marginal

likelihood for each model which is computationally expensive. Researchers have addressed this

issues using approximations (Jore et al., 2010) or reducing the number of marginal likelihoods to

be calculated (Onorante and Raftery, 2016). Another solution is to estimate clusters of weights

instead of weights for each individual model such as in Billio et al. (2013) and Casarin et al. (2019).

Additionally, global-local shrinkage priors and factor models have very different properties.

Shrinkage priors will tend to place weight on a smaller subset of experts (sparsity) while factor

models will look for co-movement and the weights will be more egalitarian (or dense). To the

best of my knowledge this contrast has not been examined in the density forecast combination

literature. This is in contrast to studies which have examined whether a dense representation of

the data is appropriate (Giannone et al., 2021; Cross et al., 2020) or an artifact of prior choice (Fava

and Lopes, 2021). In the context of density combinations, this is equivalent to asking; ‘should a

decision maker pick winners or follow the herd?’ when provided with views on the economy.

Specifically, I use the triple gamma prior (Cadonna et al., 2019) as a baseline global-local

shrinkage prior since it nests many commonly used priors such as the horseshoe (Carvalho et al.,

2010) and the Bayesian Lasso (Belmonte et al., 2014). Because of this feature I also compare the

performance of various hierarchical priors. Additionally, I develop a Bayesian Factor Model (Lopes,

2014) to combine forecasts. To the best of my knowledge, this is a novel method of combining

density predictions. The closest approach I am aware of is Casarin et al. (2019) who models the

weights as correlated with a factor structure which is in contrast to this paper where the forecasts

are modelled as correlated and have a factor structure.
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This paper is part of a long history of research on forecast combinations in macroeconomics,

econometrics, and statistics. Over the past twenty years a lot of progress has been made in the

study density combinations in economics1. Several authors have shown that combining densities

can make predictions more robust and improve their accuracy (Jore et al., 2010; Del Negro et al.,

2016), while others have worked on specifying optimal combination strategies from both frequen-

tist, (Conflitti et al., 2015) and Bayesian perspectives (Geweke and Amisano, 2011). More recent

academic work focuses on modelling the dependence and correlation across forecasts, and time vari-

ation in weights2. Furthermore, Knotek and Zaman (2020) and Chernis and Webley (2022) show

how density combinations can have non-gaussian and time-varying features which improves the

predictions and are useful for characterizing uncertainty. Similar to point forecast combinations,

density combinations have also proven useful in central banks (Bjørnland et al., 2012; Aastveit

et al., 2011). For a thorough review of the evolution of density predictions in economics and its

advantages, see Aastveit et al. (2018).

Summarizing the previous discussion, the main contribution of this paper is to compare the

performance of global-local shrinkage priors and factor models as synthesis functions within the

BPS framework. This is interesting because comparisons of BPS synthesis functions have not been

studied and the functions considered in this paper address the problem of combining large numbers

of forecasts. More broadly, I contribute to the literature on density combinations by documenting

empirical regularities in two common applications macroeconomic forecasting. In particular, I

consider nowcasting Canadian GDP with model based forecasts and combining survey forecasts of

Euro-Area GDP from the European Survey of Professional Forecasters.

I find that global-local shrinkage priors generally outperform factor models as measured by the

Continuous Rank Probability Score (CRPS) of Gneiting and Raftery (2007). Since shrinkage priors

induce sparsity this finding suggests that focusing on a smaller set of accurate experts is preferable

to following the herd. Another important finding is on the specification of the synthesis functions:

I find that constant parameter models are a more reliable choice. The extra flexibility from

allowing time varying weights can cause the accuracy of the forecasts to deteriorate significantly.

In some cases, time-varying parameter specifications can reduce to a time-varying mean model

1For example, Wallis (2005); Hall and Mitchell (2007); Mitchell and Hall (2005); Bache et al. (2009)
2Del Negro et al. (2016); Billio et al. (2013); Aastveit et al. (2016); McAlinn and West (2019)
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which overfits the model resulting in poor out-of-sample performance.

The remainder of the paper proceeds as follows: section 2 describes Bayesian predictive synthe-

sis along with an outline of the MCMC approach. This is followed by a description of the forecast

combination techniques - the synthesis functions. In addition, I will provide a brief overview of

global-local shrinkage priors and Bayesian factor models. Section 3 the details the prediction

exercises before section 4 discusses the results. Section 5 concludes.

2 Econometric Framework

This section describes the econometric framework used in this paper. Since BPS is a framework

for combining density predictions, I will start with describing BPS and move into descriptions of the

synthesis functions. Appendix A has details on the global-local shrinkage priors, implementation

of the factor model combination, sampling of xt, and the an overview of the MCMC algorithm to

estimate the density combinations.

2.1 Bayesian Predictive Synthesis

The basic idea and implementation of BPS is straightforward3. Given a set of forecast den-

sities, hj(x) ∈ H, we want to find a distribution of the target variable (y) conditional on these

densities: p(y|H). In other words, given a set of forecasts, for say GDP, we want to find the distri-

bution of GDP conditional on those forecasts. Applying Bayes Theorem implies a straightforward

MCMC routine with two steps. First, estimate a ‘synthesis’ function to combine the forecasts -

α(y|x). This synthesis function is estimated on (conditional) draws from the forecast distributions

(x). The second step is to draw iterates from the forecast distributions conditional on the target

variable (GDP). Key to understanding BPS is the interpretation of xt. McAlinn and West (2019)

describe xt as a factor, but as Aastveit et al. (2022) point out x can be thought of as a generated

regressor. This means BPS can be thought of as a multivariate regression model with generated

regressors as predictors.

More formally, the decisionmaker D is presented with hj(x) ∈ H, where hj(x) is the set of

3A general description can be found in McAlinn and West (2019) and specific details related to this application
can be found in the technical appendix
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density functions that are elements of the information set H. The agent opinion analysis theory

(West (1992) and West and Crosse (1992)) extended to a time series context by McAlinn and West

(2019) shows that the posterior has the form:

p(yt|Φt,Ht) =

∫
α(yt|xt,Φt)

∏
j=1:J

htj(xtj)dxtj (1)

where xt = xt,1:J = (xt,1, . . . , xt,J)′ is a J-dimensional vector and α(yt|xt) is a conditional

probability distribution function for yt given xt. Where Φt are the synthesis function parameters.

This equation shows how to relate a set of agent forecast distributions to the decisionmakers

combined forecast or, in more simple terms, how to combine forecast distributions in a Bayesian

fashion. With equation 1 in hand we can write out a Gibbs Sampler with two blocks:

1. Estimate the synthesis function α(yt|xt) by sampling from p(Φ1:t|y1:t, x1:t)

2. Then draw x1:t from p(x1:t|Φ1:t, y1:t,H1:t)

As an illustrative example of the MCMC routine, consider the following synthesis function used

in McAlinn and West (2019):

yt = xtβt + εt βt = βt−1 + ut εt ∼ N (0, σ2
t ) ut ∼ N (0, θ) (2)

Where yt is the target variable, xt are draws from the forecast distributions (including a vector

of ones for intercept), βt are combination weights that vary over time following a random walk

with variance θ, and εt an error term exhibiting stochastic volatility with volatility σ2
t .

The first step in BPS would be to estimate equation 2 which is a textbook state-space model and

can be estimated with standard techniques (Prado and West (2010), Sect 4.5). This is a very flexible

specification that can account for biases in the expert’s predictions, recalibrate the predictions, and

allow for model incompleteness. Applying BPS to different synthesis functions, such as global-local

shrinkage priors and factor model combinations is straightforward. The researcher simply has to

specify the function and estimate during the appropriate Gibbs step.

The second step of the MCMC is to draw new forecasts from p(x1:t|Φ1:t, y1:t,H1:t) conditional

on the values of the synthesis function parameters (Φt). These xt are conditionally independent

over time with the following conditionals

p(xt|Φt, yt,Ht) ∝ N(yt|X ′tβt, εt)
∏
j=1:J

htj(xtj) with Xt = (1, xt1, . . . , xtJ)′ (3)
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If the individual expert densities are normal, this yields a multivariate normal for xt. However,

the applications in this paper do not have analytical distributions. For example, the European

SPF elicits histograms from survey respondents. Since there is no analytic representation of the

densities, we cannot derive a conditional density to sample from. Instead, I use a block Metropolis-

Hastings step to sample the xt using the aforementioned multivariate normal as a proposal distri-

bution. Details are provided in the appendix.

2.2 Global-Local Shrinkage Priors

This section discusses the implementation of global-local shrinkage priors in BPS. Global-local

shrinkage priors are a common way of introducing shrinkage to Bayesian statistical models. This

class of prior includes many commonly used shrinkage priors and gets its name from the two

parameters in the prior: one governs shrinkage over all parameters and another governs component

specific shrinkage. More precisely the prior has the following form:

βj ∼ N (0, κψj)

Where κ is a global shrinkage parameter and ψj is a component specific parameter. The

prior distribution on these individual components determines the shrinkage properties. There are

a wide variety of possible choices. In general, a desirable shrinkage profile is horseshoe shaped

which means there are two modes in the shrinkage density such that coefficients are shrunk to

zero or are scarcely changed. For this paper I use the triple gamma prior (Cadonna et al. (2019))

since it is has the desirable horseshoe shaped shrinkage profile and is very flexible encompassing

many other commonly used priors. Since the triple gamma prior encompasses many priors as

special cases I also consider the horseshoe prior (Carvalho et al. (2010)), double gamma (Bitto

and Frühwirth-Schnatter (2019)), and Bayesian Lasso (Belmonte et al. (2014)). All these priors

have fully hierarchical representations, so no tuning of hyperparameters is required. Details are

provided in the technical appendix.

It is possible to impose shrinkage on time-varying parameter models such as equation 2 by
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rewriting it in the non-centered parameterization (Frühwirth-Schnatter and Wagner, 2010).

yt = xtβ + xtDiag(
√
θ1, ...,

√
θd)β̃t + εt, εt ∼ N (0, σ2

t )

β̃t = β̃t−1 + ũt, ũt ∼ NJ(0, IJ)
(4)

The non-centered parameterization allows shrinkage on θ, which is the variance of βt, and β,

which is the constant component. This means the coefficients can be constant, time-varying, or

time-varying with an intercept. In addition, alternating between the centered and non-centered

parameterization in the MCMC routine can improve the estimation efficiency (Yu and Meng (2011),

Kastner and Frühwirth-Schnatter (2017), Kastner et al. (2017)). The model in equation 4 is

estimated by the MCMC described in Cadonna et al. (2019) and Bitto and Frühwirth-Schnatter

(2019) and a sketch of the algorithm is presented in the appendix.

2.3 Factor Model Based Combination

The next section discusses how a factor model can be used as a synthesis function in BPS. There

are many options for specifying a factor model (Lopes, 2014), but in this paper we follow the classic

example from Lopes and West (2004). The Bayesian factor model is a natural choice for synthesis

function since macroeconomic forecasts can be highly correlated and it has been successful in many

applications with large numbers of predictors.

To see how a factor model can be used as a synthesis function consider equation 2. Simply

replace xt with ft in the observation equation, which is a factor estimated on the draws xt. This

results in equation 5.

yt = f
′

tβt + εt βt = βt−1 + ut xt = Λft + νt (5)

εt ∼ N (0, σ2
t ) ut ∼ N (0, θ) νt ∼ N (0, R) (6)

Where ft is a K × 1 vector of factors, Λ is a J × k vector of loadings, and R is a diagonal

covariance matrix with elements σ2
νJ . In order to derive combination weights we need to identify

the factors. This is done by using the following restriction f ′tft = IJ and restricting the first k
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elements of the loadings matrix to be positive block lower diagonal. This is a common identification

scheme used to fix indeterminacy in the estimation of the factors.

MCMC estimation is straightforward since the loadings can be estimated by linear regression,

and the factors can be drawn from a conditional normal distribution. The xt are standardized

using the mean and standard deviation estimated from the marginal distribution of each agent.

There is a small complication introduced by the factor model when drawing xt. This is because

we need to evaluate p(yt|xtβt, εt) during the MH step but equation 5 is specified in terms of ft.

However, the model can be reparametrized in terms of xt and xt|yt,Φt and sampled using the

standard technique.

3 Forecasting Environment

This section describes the two environments in which the synthesis functions will be assessed. The

first exercise is nowcasting Canadian real GDP in pseudo real-time using a large set of models,

while the second exercise is forecasting Euro Area real GDP using the Survey of Professional

Forecasters. These two environments are very different: not only are they in different regions, but

the types of forecasts provided are different. The nowcasting exercise uses model based predictions

from four different model classes. While the forecasting exercise features mostly judgemental

forecasts (Bank (2019)) that are provided as histograms. Since these two applications cover two

regions, have different forecast horizons, include model based and survey based predictions, and

have an evaluation sample that covers the Great Financial Crisis, Euro Area Crisis, and COVID-19

pandemic, they should allow a comprehensive assessment of the various synthesis functions.

3.1 Details on the Model-based Nowcasting Exercise

The first application uses density predictions produced in Chernis and Webley (2022) ,which builds

on Chernis and Sekkel (2018), as inputs into BPS. The reader can consult these papers and

references within for detailed results and descriptions of the models. In short, Chernis and Webley

(2022) produces density nowcasts for Canadian GDP using four commonly used model classes

(see figure 1) totalling 98 models. Pseudo-real-time forecasts are produced from 2000 to 2021 and

real-time predictions from 2013 to 2019. In this paper we use the pseudo real-time forecasts with a
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5 year expanding estimation window, the training sample goes from 2000-2005 with an evaluation

window from 2005Q1 to 2021Q1.

In a nowcasting exercise the timing of the forecast cycle can be quite important. Figure 2

illustrates the timing of releases throughout the six-month forecast cycle starting in December

after the release of the Q3 National Accounts data targeting the Q1 figures for the upcoming year.

Forecasts are produced 12 times over the six months, representing a prediction roughly every two

weeks, and is designed to replicate the forecast cycle faced by a practitioner. The cycle starts

in December, when the analyst is forecasting the Q1 figures. Throughout Q1, the analyst is in

the nowcast phase, and from the April to May National Accounts data release, the analyst is

backcasting the Q1 figures while awaiting publication of the official figures.

A peculiarity of Canadian nowcasting is that there is a monthly GDP figure available 2 months

after the reference period. This data is different from the National Accounts figures since monthly

GDP is at a by-industry basis compared to the expenditure approach of the National Accounts.

There can be differences between the figures by as much as a percentage point. This means monthly

GDP is an important predictor for quarterly GDP, but not a perfect predictor. The consequences

of including this predictor in the dataset is that once it is available, there is a large improvement

in the accuracy of the prediction and other variables become less important (Chernis and Sekkel

(2017)).

3.2 Details on the Survey of Professional Forecasters

The survey forecast application uses density forecasts from the European Central Bank’s Survey

of Professional Forecasters. A full description is available in Garca (2003). The quarterly survey

began in 1999 and is the longest running Euro area survey of macroeconomic expectations. The

survey elicits probability and point forecast on inflation and GDP growth at various horizons (we

use the one year ahead expectation for year-over-year GDP growth). On average there are 50

responses a quarter from a panel of over 100 participants. Because of the time series length and

panel characteristics, the survey is often used to study density forecast combinations as seen in

Diebold et al. (2021) and Conflitti et al. (2015).

There are several attributes of the survey that merit discussion. Survey respondents are pro-

vided with fixed ranges for which they provide probabilities. For example, in 1999Q1 they were
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provided with 10 bins, the first starting with less than 0% and increasing by 50 basis point intervals

to 4% growth or above. A few issues arise here, first, the bins change over time to address unex-

pected developments (such as the COVID-19 shock) and the open intervals. The bins changing

over time are not an issue for the model since I convert the forecasts to pdfs over a fine grid of

750 points. This results in a pdf resembling a histogram, and adding more bins just adds more

rectangles to the pdf. For the open bins, I distribute the assigned probability, if any, from the

start of the bin plus or minus two standard deviations of GDP growth estimated using the vintage

available at the time of the forecast.

Another issue is that forecasters can join and leave the panel any time. This means there are

often missing forecasts, and the panel size can change over time. This paper takes two approaches

to deal with this issue.

First, I construct a ‘wide’ dataset with the goal of including as many forecasters as possible

corresponding to the approach taken in Conflitti et al. (2015). Since there is a large amount of

missing forecasts, I drop forecasters with less than 5 forecasts in a 5 year period. This 5 year

period is also the rolling estimation window we use for the model. After dropping forecasters

for each five year period we are left with an unbalanced panel that has about 35 respondents

each quarter. One consequence of the changing panel composition is that examining the online

weights is not meaningful because there will be different forecasters at each point in time. Next,

missing observations in the panel are imputed. Deviating from Conflitti et al. (2015), these missing

distributions are filled in with a normal distribution corresponding to the marginal distribution of

GDP estimated in real-time4. Overall, this is a very challenging prediction exercise since there are

large amounts of missing data, a wide panel, and a short time series to train the algorithm.

Second, I construct a ‘tall’ dataset that aims to build the longest consistent panel possible.

Following Diebold et al. (2021), I drop forecasters who have not responded for five consecutive

quarters. This results in a panel of 14 forecasters with minimal missing data. Any missing data

is imputed with a normal distribution corresponding to the unconditional distribution of GDP

estimated in real-time. Despite having half as many experts as the ‘wide’ dataset relative to the

length of the panel this is still a wide dataset. However, the prediction exercise is easier than the

4Replacing missing forecast distributions with a uniform distribution, as in Conflitti et al. (2015), does not
qualitatively change the results
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‘wide’ dataset since there is much less missing data being imputed and a longer timeseries to train

the algorithm.

Once the data set has been assembled the first estimation window is 1999Q3 to 2004Q2, and

the evaluation window is 2005Q2 to 2020Q4. The forecast combination is estimated with a 5-year

rolling window for the ‘wide’ dataset and an expanding window for the ‘tall’ dataset. This is a

full real-time exercise with the models estimated on the vintage available to the forecasters and

evaluated against the most recently available vintage of GDP.

4 Results

4.1 Predictive Accuracy: Global-local Shrinkage Priors and Factor

Model Combinations

I begin assessing the different synthesis function by examining the average CRPS for all variants

of the shrinkage and the factor-based combination approaches in both the nowcasting and survey

forecast combination applications. Figure 3 shows the results for the nowcasting exercise and

figure 4 for the survey forecast application. The heatmaps are shaded such that lighter shading

corresponds to lower CRPS and darker shading to higher CRPS. There are very similar results

across both exercises. Comparing the shrinkage approaches to the factor model based combination,

one can see that, in general, shrinkage priors have lower CRPS. There are some exceptions; notably,

the LASSO performs poorly, shrinkage performs worse at the forecast horizons (24 to 22 before the

National Accounts), and in the ‘tall’ dataset, shrinkage and factor models with constant parameters

are competitive. However, these latter two exceptions can be explained by the COVID-19 pandemic

and idiosyncratic factors.

Examining the cumulative CRPS difference will help us to understand differences in relative

forecasting performance by showing how relative forecast accuracy changes over time. This is

particularly useful for highlighting episodes that may have undue influence on average forecast

accuracy. For brevity, I will focus my analysis on comparing the best performing models from

each class of synthesis function: the constant parameter triple gamma prior and the factor model

combination with 2 factors.
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Figure 5 shows results for the nowcasting application and figure 6 for the survey forecast

exercise. Despite being for different countries and different forecast horizons, there are some

commonalities that will become apparent as we analyse the results. In both applications, the

triple gamma prior performs slightly worse at the beginning of the sample, but as the GFC arrives,

the triple gamma prior begins to perform better signified by positive values in the figures. For

most of the post-GFC period, the triple gamma prior continues to improve upon the factor model

combination. There is an exception to this in figure 6. During the Euro Area crisis, the factor

model improves over the triple gamma approach. It turns out that this is because one of the

forecasters drops out from the sample for three quarters, and it so happens they had a large

proportion of the weight. The factor approach has more egalitarian weights, so this is less of a

problem. This serves as a practical lesson that placing significant weight on an individual expert

has risks. The next important event is the COVID-19 pandemic, which has a significant impact

on the relative model performance and is behind the sometimes competitive performance of the

factor model combination. For the nowcasting application, this is most apparent at the forecast

horizon (and to a lesser extent when backcasting) - the triple gamma captures the declines in 20Q1

and 20Q2 more accurately, but it misses the sharp and immediate rebound in 20Q3, and the blue

line approaches the y-axis signifying that on average the two methods perform similarly. There

is a similar result for the survey forecast application, the factor model is relatively more accurate

than the triple gamma prior. This is not so much due to the factor model providing a significantly

better forecast, since it missed by a large margin, rather the variance of the forecast distribution

is slightly higher such that those combinations were punished less for inaccurate predictions.

4.2 Predictive Accuracy: Time-varying and Constant Parameter Com-

binations

Another key finding is that constant parameter combinations generally have a lower CRPS than

their time-varying counterparts. Comparing the columns in figures 3 and 4 for time-varying pa-

rameter combinations with their constant parameter counterparts shows there can be significant

gains for choosing a more parsimonious specification. In the nowcasting application there are gains

up to 20 percent between constant and time-varying factor model combination specifications. In
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the survey forecasting exercise, performance gains can be up to 25 percent for both shrinkage

and factor model combinations, and improvements are seen on both datasets for both classes of

synthesis functions.

The most dramatic performance increases, seen in the survey forecast application, are explained

by the time-varying parameter combinations reducing to a time-varying mean model with little

weight on the individual experts. Figure 7 shows the in-sample time-varying intercept for the

triple-gamma prior and the one-factor combination approach overlaid with the 4-quarter lagged

Euro Area GDP figures. It is apparent that the intercept matches the GDP figures very closely

suggesting that it may be overfitting. Additionally, if we inspect the weights for each of the time-

varying combination methods we can see that the weight put on individual experts is quite small

(lower panel in figure 8). In contrast, the upper panel of figure 8 shows that the sum of weights

from constant parameter specifications is much closer to 1. Taken together, we can see that the

poor performance of the time-varying parameter models is that the forecast is driven by the time-

varying intercept while ignoring useful information contained in the expert densities. On the other

hand, the constant parameter specifications, which lack the flexibility of a time-varying intercept,

place more weight on the experts. This finding is in contrast to other studies (Aastveit et al.

(2022)) which have found that a time-varying intercept in BPS can be extremely useful. This is

likely due to differences in the applications - the aforementioned paper forecasts oil prices, which

has large and persistent movements in the price that makes a time-varying intercept useful. In

contrast, Euro Area real GDP has much smaller movements in its growth rates over the 20 year

period in question.

4.3 Examining the Combination Weights

It is instructive to examine the weights in figure 8 to gain some intuition on the implications of

synthesis function choice. Let us start with the weights from the triple gamma prior in the top

left panel.

First, we can see that the combination method puts significant weight on a single expert, a

handful of other forecasts, and close to zero weight on the rest5. This prior implies the decision

5The triple gamma appears to be good at picking up weak signals in the data and not shrinking experts to zero
weight. Sparsifying the weights using signal adaptive variable selector (Ray and Bhattacharya (2018)) results in
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maker should mostly listen to a few trusted experts but not completely ignore the herd. Addition-

ally, a few of the experts have negative weights. This reflects the very flexible specification which

allows the weights to adjust for biases. This is similar to portfolio optimization where the optimal

portfolio involves short selling an asset as a hedge. Put in terms of BPS, the decisionmaker hedges

against the high weight on a given expert by ‘short-selling’ a similar correlated forecast.

Second, if we examine the right panel we can see that BFM-1 has weights that are spread more

evenly over experts (but not equally) meaning the combination is closer to consensus weights6. I

use the term consensus weights since a factor model extracts the common variance across experts

or, in some sense, what the experts can agree upon. There is an important difference between

this weighting scheme and equal weights since the former removes idiosyncratic differences across

experts and the latter includes all the experts equally. This synthesis function implies the decision

maker should follows a consensus based approach to processing forecasts, and the approach is quite

different from shrinkage priors where the decisionmaker focuses on a small subset of experts. The

results above suggest that sparse weights are preferable to consensus weights - a decisionmaker

should not follow the herd, but instead focus on a smaller set of experts.

In the appendix we assess the absolute accuracy of the combination methods by testing if they

are correctly calibrated over the forecast evaluation period using the test of Knüppel (2015). The

results suggests that forecasts from both synthesis functions are well calibrated and provide a good

approximation of the data distribution.

5 Conclusion

In this paper, I investigated different approaches to combining large numbers of density predic-

tions within the framework of Bayesian Predictive Synthesis. This is an important issue since

many practical applications can involve large numbers of forecasts, such as nowcasting systems or

combining survey forecast, and combining large numbers of forecasts requires specialized modelling

techniques. I used two common approaches in economics to deal with large datasets: global-local

shrinkage priors and factor modelling. In particular, I used the newly developed triple gamma

worse forecasting performance suggesting the non-zeros weights are not numerical artifacts.
6Adding more factors allows experts to have more weight but does not change the pattern of dense weights or

the interpretation of consensus based weights
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prior, and the priors it encompasses, along with a novel approach to forecast combinations: a

Bayesian Factor Model. The approaches are tested in two very different applications: a model-

based nowcasting exercise on Canadian real GDP,and forecasting Euro Area real GDP growth

using distributions from the Survey of Professional Forecasters. These two applications cover

two regions, have different forecast horizons, include model based and survey based predictions,

and the evaluation sample covers the Great Financial Crisis, Euro Area Crisis, and COVID-19

pandemic which allows a comprehensive assessment of the various synthesis functions. First, I

find that constant parameter specifications tend to perform better than their time-varying coun-

terparts. This is an important finding as recently developed combination schemes tend to utilize

time-varying parameter specifications. Second, and more importantly, I find that in general shrink-

age approaches outperform factor model based combinations. With the exception of the Bayesian

lasso, the shrinkage priors all perform well in terms of a low average CRPS. This is interesting as

the two synthesis functions imply very different weighting structures. The sparse weighting scheme

of shrinkage priors implies that decisionmakers should give considerable weight to a smaller set

of experts. In contrast, the factor model based scheme extracts the co-movement between the

predictions. Therefore, my results suggests that focusing on a smaller set of accurate experts is

preferable to following a crowd.
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6 Figures

Figure 1: Model List

 National Accounts released for Q3 

                     Dec               Jan            Feb             Mar             Apr             May                   

National Accounts released for Q4 

Nowcast Backcast 

National Accounts released for Q1 

Forecast 

Figure 2: Overview of forecast cycle
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Figure 3: CRPS in Nowcasting Exercise

The rows show prediction horizons in weeks until the release of the National Accounts (NA). Periods 24 and 22
weeks until the National Accounts are the forecast periods, while 20 to 10 weeks is the nowcast period, and 8 until 2
weeks is the backcast period. Lighter shading corresponds to lower CRPS in that row and darker shading to higher
CRPS

Figure 4: Continuous Rank Probability Score for SPF forecasts
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Figure 5: Nowcasting Cumulative CRPS difference: Factor Model 2 (constant) - Triple Gamma
(constant)
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Figure 6: SPF Cumulative CRPS difference: Factor Model 2 (constant) - Triple Gamma (constant)
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Figure 7: Time-varying predictive of mean of BPS intercepts
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Figure 8: Sequentially estimated mean combination weights

Figure 9: Knüpple test for probabilistic calibration: Nowcasting Application

Results from the Knüpple test for probabilistic calibration. Null hypothesis is for calibration and values in the table
correspond to p-values. Red shading corresponds to rejection of calibration at 5 per cent level and yellow at 10 per
cent level.
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Figure 10: Knüpple test for probabilistic calibration: Survey Forecast Application

Results from the Knüpple test for probabilistic calibration. Null hypothesis is for calibration and values in the table
correspond to p-values. Red shading corresponds to rejection of calibration at 5 per cent level and yellow at 10 per
cent level.
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A Technical Appendix

A.1 MCMC algorithm

This section describes the Markov Chain Monte Carlo algorithm used to estimate the forecast

combinations. It largely follows McAlinn and West (2019) for the BPS steps, Cadonna et al. (2019)

for the global-local shrinkage priors combinations and Lopes and West (2004) for the factor model

combinations. The MCMC follows a two component block Gibbs sampler: one component samples

the synthesis function parameters, and the second samples from the expert forecast distributions

or the agent states. As such, I will discuss estimation of each synthesis function separately followed

by details on sampling the agent states.

A.2 Global-Local Shrinkage Combinations

This section describes the estimation of the global-local shrinkage synthesis functions. Knaus et al.

(2021) provides an R package and the vignette is an excellent overview of the estimation and priors

of these models. More details are available in Cadonna et al. (2019) and Bitto and Frühwirth-

Schnatter (2019). First, I will describe the model, followed by the priors, and then describe the

MCMC algorithm.

Starting with the centered parameterization of the synthesis function. For t = 1, . . . , T , we

have that

yt = xtβt + εt βt = βt−1 + ut εt ∼ N (0, σ2
t ) ut ∼ N (0, Q) (7)

where yt is a univariate response variable and xt = (xt1, xt2, . . . , xtd) is a d-dimensional row

vector containing the regressors at time t, with xt1 corresponding to the intercept.

For simplicity, we assume here that Q = Diag(θ1, . . . , θd) is a diagonal matrix, implying that

the state innovations are conditionally independent. Moreover, we assume the initial value follows

a normal distribution, i.e., β0 ∼ Nd(β,Q) , with initial mean β = (β1, . . . , βd). Model (7) can be

rewritten equivalently in the non-centered parametrization as,

yt = xtβ + xtDiag(
√
θ1, ...,

√
θd)β̃t + εt, εt ∼ N (0, σ2

t )

β̃t = β̃t−1 + ũt, ũt ∼ NJ(0, IJ)
(8)
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with β̃0 ∼ Nd(0, Id), where Id is the d-dimensional identity matrix. Furthermore, the model

can accommodate stochastic volatility or constant volatility. In the former case, the log-volatility

ht = log σ2
t follows a random-walk model. More specifically,

ht|ht−1, σ2
η ∼ N

(
ht−1, σ

2
η

)
, (9)

with initial state h0 ∼ N (a0, b0)).

A.2.1 Shrinkage priors on variances and model parameters

This section describes the priors used in the previously discussed synthesis function. The triple

gamma prior can be represented as a conditionally normal distribution, where the component spe-

cific variance is itself a compound probability distribution resulting from two gamma distributions.

This results in independent normal-gamma-gamma (NGG) priors (Cadonna et al., 2019), both on

the standard deviations of the innovations, that is the
√
θj’s, and on the means of the initial value

βj, for j = 1, . . . , d. Note that, in the case of the standard deviations, this can equivalently be

seen as a triple gamma prior on the innovation variances θj, for j = 1, . . . , d. In the constant

parameterizations we place a NGG prior on the βj using the centered parameterization.

√
θj|ξ2j ∼ N (0, ξ2j ), ξ2j |aξ, κ2j ∼ G(aξ,

aξκ2j
2

), κ2j |cξ, κ2B ∼ G(cξ,
cξ

κ2B
) (10)

βj|τ 2j ∼ N (0, τ 2j ), τ 2j |aτ , λ2j ∼ N (aτ ,
aτλ2j

2
) λ2j |cτ , λ2B ∼ N (cτ ,

cτ

λ2B
). (11)

Letting cξ and cτ go to infinity results in a normal-gamma (NG) prior (Brown and Griffin,

2010) on the
√
θj’s and βj’s. It also has a representation as a conditionally normal distribution,

with the component specific variance following a gamma distribution, that is
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√
θj|ξ2j ∼ N (0, ξ2j ), ξ2j |aξ, κ2B ∼ G(aξ,

aξκ2B
2

), (12)

βj|τ 2j ∼ N (0, τ 2j ), τ 2j |aτ , λ2B ∼ G(aτ ,
aτλ2B

2
). (13)

The parameters aξ, aτ , cξ, cτ , κ2B and λ2B can be learned from the data through appropriate

prior distributions. Results from Cadonna et al. (2019) motivate the use of different distributions

for these parameters under the NGG and NG prior. In the NGG case, the scaled global shrink-

age parameters conditionally follow F distributions, depending on their respective pole and tail

parameters:

κ2B
2
|aξ, cξ ∼ F (2aξ, 2cξ),

λ2B
2
|aτ , cτ ∼ F (2aτ , 2cτ ). (14)

The scaled tail and pole parameters, in turn, follow beta distributions:

2aξ ∼ B (αaξ , βaξ) , 2cξ ∼ B (αcξ , βcξ) , (15)

2aτ ∼ B (αaτ , βaτ ) , 2cτ ∼ B (αcτ , βcτ ) . (16)

These priors are chosen as they imply a uniform prior on a suitably defined model size, see

Cadonna et al. (2019) for details. In the NG case the global shrinkage parameters follow indepen-

dent gamma distributions:

κ2B ∼ G(d1, d2), λ2B ∼ G(e1, e2). (17)

In order to learn the pole parameters in the NG case, we generalize the approach taken in Bitto

and Frühwirth-Schnatter (2019) and place the following gamma distributions as priors:
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aξ ∼ G(αaξ , αaξβaξ), aτ ∼ G(αaτ , αaτβaτ ), (18)

which correspond to the exponential priors used in Bitto and Frühwirth-Schnatter (2019) when

αaξ = 1 and αaτ = 1. The parameters αaξ and αaτ act as degrees of freedom and allow the prior

to be bounded away from zero.

In the constant parameter case we employ a hierarchical prior, where the scale of an inverse

gamma prior for σ2 follows a gamma distribution, that is,

σ2|C0 ∼ G−1(c0, C0), C0 ∼ G(c0 + g0, (G0 + σ−2)−1), (19)

with hyperparameters c0, g0, and G0.

In the case of stochastic volatility, the priors on the parameters σ2
η in Equation 9 are,

σ2
η ∼ G−1(ν, Sh), h0 ∼ N (a0, b0) (20)

with hyperparameters ν, Sh, a0 and b0.

A.2.2 MCMC sampling algorithm

This next section describes the MCMC Gibbs sampling algorithm with Metropolis-Hastings steps

to obtain draws from the posterior distribution of the global-local shrinkage prior synthesis function

parameters. This is meant to be an overview of the algorithm and for more details please refer to

Cadonna et al. (2019) and Bitto and Frühwirth-Schnatter (2019) for further details.
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Algorithm 1: Gibbs Sampling Algorithm

1. If in TVP specification, sample the latent states β̃ = (β̃0, . . . , β̃T ) in the non-centered

parametrization from a multivariate normal distribution. Otherwise skip;

2. If in TVP specification, sample jointly β1, . . . , βd, and
√
θ1, . . . ,

√
θd in the non-centered

parametrization from a multivariate normal distribution. Otherwise, sample β1, . . . , βd, in

the centered parameterization from a multivariate normal distribution;

3. If in TVP specification, perform an ancillarity-sufficiency interweaving step and redraw each

β1, . . . , βd from a normal distribution and each θ1, . . . , θd from a generalized inverse Gaus-

sian distribution using the MATLAB implementation (Hartkopf (2022)) of (Hörmann and

Leydold, 2014). Otherwise skip;

4. Sample (where required) the prior variances ξ21 , . . . ξ
2
d and τ 21 , . . . τ

2
d and the component specific

hyper-parameters. Sample the pole, tail and global shrinkage parameters. In the NGG case,

this is done by employing steps (c) - (f) from Algorithm 1 in Cadonna et al. (2019). In the

NG case steps (d) and (e) from Algorithm 1 in Bitto and Frühwirth-Schnatter (2019) are

used.

5. Sample the error variance σ2 from an inverse gamma distribution in the homoscedastic case

or, in the SV case, sample the volatility of the volatility σ2
η and the log-volatilities h =

(h0, . . . , hT )

Step 4 presents a fork in the algorithm, as different parameterizations are used in the NGG and

NG case, to improve mixing. For details on the exact parameterization used in the NGG case, see

Cadonna et al. (2019). One key feature of the algorithm is the joint sampling of the time-varying

parameters β̃t, for t = 0, . . . , T in step 1 of Algorithm 1. We employ the procedure described in

Chan and Jeliazkov (2009) and McCausland et al. (2011) from Rue and Held (2005) which exploits

the sparse, block tri-diagonal structure of the precision matrix of the full conditional distribution

of β̃ = (β̃0, . . . , β̃T ), to speed up computations.

Step 3, as described in Bitto and Frühwirth-Schnatter (2019), makes use of the ancillarity-

sufficiency interweaving strategy (ASIS) introduced by Yu and Meng (2011). ASIS is well known

to improve mixing by sampling certain parameters both in the centered and non-centered param-

eterization.
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A.3 Factor Model Combinations

The second synthesis function considered in this paper is a Bayesian Factor Model similar to that

of Lopes and West (2004), and Lopes (2014) provides an overview of Modern Bayesian Factor

Analysis. The reader is referred to those references for detailed discussion on the methods. Here

we provide a brief overview of the model and estimation technique.

yt = f
′

tβt + εt βt = βt−1 + ut xt = Λft + νt (21)

εt ∼ N (0, σ2
t ) ut ∼ N (0, θ) νt ∼ N (0, R) (22)

Where, ft is a K × 1 vector of factors and define F = (f1, . . . , ft)
′ with Fi as the T × i matrix

containing the first i columns of F , βt is K × 1 vector of coefficients, Λ is a J × k vector of

loadings, and R is a diagonal covariance matrix with elements σ2
νJ . In order to derive combination

weights we need to identify the factors. This is done by the following restriction f ′tft = IJ and by

restricting the first k elements of the loadings matrix to be positive block lower diagonal. This is

a common identification scheme used to fix indeterminacy in the estimation of the factors.

To complete model specifications we need priors for Λ, R, σ2
t , and θ. The factor loadings

have independent priors Λij ∼ N (0, C0) when i 6= j and Λij ∼ N (0, C0)1(Λii > 0) for the upper-

diagonal elements of positive loadings i = 1, . . . , k. Each of the variances are independent and

modelled as σ2
νJ ∼ IG(ν/2, νs2/2), similarly θ ∼ IG(νθ/2, νθs

2
θ/2). Initial conditions for the βt are

β0 ∼ N (0, P0) where P0 ∼ IG(νP , (νP − 1) ∗ cP ).

With the model specified the next section provides a sketch of the MCMC routine. Interested

readers can refer to Lopes and West (2004).

Algorithm 2: Gibbs Sampling Algorithm

1. Sample ft from independent normal distributions for every t, namely,

ft ∼ N ((Ik + Λ′R−1Λ)−1Λ′R−1xt, (Ik + Λ′R−1Λ)−1)

2. Sample Λ for i = 1, . . . , k Λi ∼ N (mi, Ci)1(Λii > 0) where mi = Ci(C
−1
0 µ01i + σ2

νiFixi) and

C−1i = C−10 Ii + σ2
νiF

′
iFi;

3. Sample Λ for i = k + 1, . . . , J Λi ∼ N (mi, Ci)1(Λii > 0) where mi = Ci(C
−1
0 µ01k + σ2

νiF
′xi)
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and C−1i = C−10 Ik + σ2
νiF

′F .

4. Sample σ2
νi ∼ IG((ν + T )/2, (νs2 + di)/2) where di = (xi − FΛ′)′(xi − FΛ′)

5. If in TVP specification, sample the latent states β = (β0, . . . , βT ) from a multivariate normal

distribution. Otherwise, sample jointly β1, . . . , βd, in from a multivariate normal distribution

using the precision sampler of Chan and Jeliazkov (2009).

6. Sample the error variance σ2 from an inverse gamma distribution in the homoscedastic case

or, in the SV case, sample the volatility of the volatility σ2
η and the log-volatilities h =

(h0, . . . , hT )

A.4 Sampling the Agent States

After estimating the synthesis function parameters the next step in BPS is to draw x1:t from

p(x1:t|Φ1:t, y1:t,H1:t) where Φ is the model parameters, yt is the target variable, and H1:t is the set

of agent densities. As shown in McAlinn and West (2019) the xt, draws from agent densities, are

conditionally independent over t with time t conditionals:

p(xt|Φt, yt,Ht) ∝ N(yt|X ′tβt, εt)
∏
j=1:J

htj(xtj) with Xt = (1, xt1, . . . , xtJ)′ (23)

If the agents provide normal forecast densities then 23 yields a multivariate normal distribution

for xt. The posterior distribution for each xt is:

p(xt|Φt, yt,Ht) = N (ht + btct, Ht − btb′tgt) (24)

Where ct = yt − βt0− h′tβt,1:J , gt = σ2
t + β′t,1:JHtβt,1:J and bt = Htβt,1:J/gt. Unfortunately, the

applications in this paper do not have analytical forms instead we have histograms representing

the agent densities. With no analytical form we use a Block Metropolis-Hastings step with 24 as

a proposal distribution. Since the number of agent densities can be large we break the MH step

into blocks of 5 experts which are sampled at a time.

There are a few details for Bayesian Factor Model combinations which warrant explanation.

First, is that the model has to re-parameterized in terms of the xt so that we can use the proposal

distribution from 24 in the MH step. The model is straightforward to re-parameterize with the

following steps:
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xt = Λft + νt (25)

ft = (Λ′Λ)−1Λ′xt − (Λ′Λ)−1Λ′νt where, Ω = (Λ′Λ)−1Λ′ (26)

yt = x′tΩ
′βt − ν ′tΩ′βt + εt → yt = x′tβ

∗
t + ε∗t (27)

where, ε∗t = −ν ′tΩ′βt + εt and β∗t = Ω′βt (28)

Now that the model has been re-parameterized we can use the equation 24 in the MH step by

substituting in βt = β∗t , and error variance ε∗t ∼ N (0, β′tΩRΩ′βt + σ2
t ).

The second issue that the data (xt) used to estimate Bayesian Factor Models is standardized

to be mean 0 and variance 1. Since the agents provide forecast distributions mean and variance

used to standardized draws from the agent densities is calculated using the marginal density of

each expert over all T (h(x)1:T ). Each xt draw is standardized during each MCMC iteration.
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B Calibration Appendix

In this section we assess the calibration of the BPS predictions. Calibration (also referred to as

absolute accuracy) is achieved when a predictive density properly characterizes the probability of

the events that it is predicting. For example, events predicted to occur with a 20 per cent proba-

bility should be observed in the data roughly 20 per cent of the time. More formally, calibration

refers to the statistical consistency between the predictive distributions and the observations of the

data they are predicting (Gneiting and Raftery, 2007). We assess calibration with test based off

the probability integral transforms (PITs) (Diebold et al., 1998) as proposed in Knüppel (2015).

In general I find little evidence to suggest that the predictions from any of the synthesis functions

are not calibrated.

Figures 9 and 10 show results from the nowcasting application and the SPF forecasting ap-

plication. For the most part in the nowcasting applications the factor model combinations show

little evidence of being uncalibrated. However, the shrinkage approaches has slightly different

results. The LASSO synthesis function does not appear to produce calibrated predictions, and

the test rejects calibration for the time-varying double gamma specification at most horizons. In

contrast, the constant parameter specifications produce calibrated predictions at most horizons,

the exception being the shortest horizons which calibration is rejected at the 10 per cent level.

The SPF application has more straightforward results - there is little evidence to suggest the BPS

predictions are uncalibrated from any synthesis function. In only two cases is the null hypothesis

rejected at the 10 per cent level.

38


	Introduction
	Econometric Framework
	Bayesian Predictive Synthesis
	Global-Local Shrinkage Priors
	Factor Model Based Combination

	Forecasting Environment
	Details on the Model-based Nowcasting Exercise
	Details on the Survey of Professional Forecasters

	Results
	Predictive Accuracy: Global-local Shrinkage Priors and Factor Model Combinations
	Predictive Accuracy: Time-varying and Constant Parameter Combinations
	Examining the Combination Weights

	Conclusion
	Figures
	Technical Appendix
	MCMC algorithm
	Global-Local Shrinkage Combinations
	Shrinkage priors on variances and model parameters
	MCMC sampling algorithm

	Factor Model Combinations
	Sampling the Agent States

	Calibration Appendix

