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Abstract

Timely characterizations of risks in economic and financial systems play an
essential role in both economic policy and private sector decisions. However, the
informational content of low-frequency variables and the results from conditional
mean models provide only limited evidence to investigate this problem. We pro-
pose a novel mixed-frequency quantile vector autoregression (MF-QVAR) model
to address this issue. Inspired by the univariate Bayesian quantile regression lit-
erature, the multivariate asymmetric Laplace distribution is exploited under the
Bayesian framework to form the likelihood. A data augmentation approach cou-
pled with a precision sampler efficiently estimates the missing low-frequency vari-
ables at higher frequencies under the state-space representation.

The proposed methods allow us to nowcast conditional quantiles for multiple
variables of interest and to derive quantile-related risk measures at high frequency,
thus enabling timely policy interventions. The main application of the model is
to nowcast conditional quantiles of the US GDP, which is strictly related to the
quantification of Value-at-Risk and the Expected Shortfall.
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1 Introduction

Most economic models’ primary object of interest is the conditional mean of a given vari-

able or index, as it summarizes the central response to explanatory variables. However,

following the financial crises and economic shocks that characterized the last decade,

policymakers and researchers have shifted their attention and interest beyond the con-

ditional mean. In particular, the significant effects that exogenous shocks (such as the

COVID-19 pandemic), wars (e.g., the Russian-Ukrainian war), and fluctuations of the

business cycles have on the economy highlight the crucial need to investigate the tail

and shoulders of the response variable’s distribution.

Timely characterizations of risks to the economic outlook play a vital role in both

economic policy and private sector decisions, where central bankers and analysts share

a demand for timely forecasts of economic activity. To encapsulate and reflect the most

recent events, forecasts of macroeconomic or financial variables should blend information

collected from a wide array of sources and observed at different intervals or frequencies.

Moreover, research following the global financial crisis has provided substantial em-

pirical evidence that the relationships among macroeconomic and financial time se-

ries are characterized by nonlinearities and asymmetries (Hubrich and Tetlow, 2015;

Kilian and Vigfusson, 2017; Adrian et al., 2019). Thus, investigating the nonlinear ef-

fects related to cycles is crucial to policymakers for designing policies targeted at spe-

cific phases of the cycles. Researchers in macroeconomics usually base their analysis

on linear regression methods, whereas only recently have nonlinear methods been ap-

plied to investigate economic policies and financial crises (e.g., Caggiano et al., 2022;

Huber and Rossini, 2022). However, using conditional mean regression methods raises

several concerns when modeling data with features such as skewness, fat tails, outliers,

truncation, censoring and heteroscedasticity. This relates to the fact that the impact

of covariates on the response may significantly vary across the range of the latter, thus

highlighting the limitations of methods based on conditional mean only. The issue is ex-
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acerbated by nonlinear relationships and non-Gaussian noises, typical features of many

economic and financial variables.

In detecting economic and financial crises, appropriate risk measures are needed

(Merlo et al., 2021), such as the Value at Risk (VaR) or the Expected Shortfall (ES).

The VaR considers the maximum loss an operator can incur over a defined time horizon

and for a given confidence level. At the same time, the ES coincides with the conditional

expectation of exceedance beyond the VaR. In forecasting, Gneiting and Ranjan (2011)

propose a threshold- and quantile-based decomposition of the continuously ranked prob-

ability score to assess density forecasting over the whole distribution and specific quan-

tiles or regions of a variable of interest (e.g., the tails).

We introduce a novel mixed-frequency quantile vector autoregressive (MF-QVAR)

model to address these issues. Unlike standard linear regression models, quantile re-

gression (QR, see Koenker and Bassett, 1978) provides robust modeling of conditional

quantiles. It allows the covariates to exert different impacts on each quantile level, thus

enabling a comprehensive investigation of the entire conditional distribution. Following

Petrella and Raponi (2019), we rely on the multivariate asymmetric Laplace (MAL) dis-

tribution to form the likelihood and conduct a simultaneous inference under the Bayesian

framework on the marginal conditional quantiles of a multivariate response variable, tak-

ing into account the possible correlation among the marginals. Our framework permits

the investigation of asymmetry in the downside and upside risks by considering different

quantile levels, unlike standard models with symmetric second-moment dynamics. This

quantile regression approach can be more effective, especially when skewness dynamics

accompany the evolution of the distribution.

We build on the mixed frequency literature to exploit the information available at

a higher frequency to nowcast quantiles of low-frequency variables of interest based on

the state-space representation. The nowcasting and forecasting of multivariate quantiles

would enable the policymakers to promptly detect early signals of distress and adopt

corrective measures to counteract the early deterioration of the system. The proposed
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approach automatically allows the forecaster to overcome the differences in data release

dates that cause the available information set to differ over time within the quarter,

so-called the “ragged-edge” problem.

To overcome the computational challenge in the mixed frequency VAR, we follow

Chan et al. (2021), who designed a computationally efficient sampler for state-space

models with missing observations, such as MF-VARs. They exploit the block-banded

structure of the precision matrix of the conditional distribution of the missing obser-

vations to adapt the precision-based sampler of Chan and Jeliazkov (2009) to draw

the missing low-frequency variables (see also Rue, 2001; Rue and Held, 2005). The

importance of the precision sampler to modern econometric models is proven by its

use in a variety of settings, including macro-econometric (Chan et al., 2013), models

with missing observations (Hauber and Schumacher, 2021), and dynamic factor models

(Kaufmann and Schumacher, 2019). An earlier method to make inference on unobserved

variables in state space models is the simulation smoother (Durbin and Koopman, 2002,

2012). Moreover, we impose linear constraints when sampling the missing observations

to ensure that missing high-frequency observations match the observed values of the

low-frequency variables. This results in sampling from a linearly constrained Gaussian

distribution, which is efficiently performed following the methods in Cong et al. (2017).

We apply our novel MF-QVAR model on a real-time nowcasting application for

monthly US growth-at-risk. Specifically, we focus on the out-of-sample evaluation period

between January 2016 and March 2022. During this evaluation period, we encounter

ragged edges at the end of the sample as we respect the release calendar for all the

monthly and quarterly variables included in our MF-QVAR model. In particular, we

focus on generating the monthly nowcasts and forecasts under the three release timings

of the US real GDP.

We found two key insights from our real-time nowcasting application. First, we show

that there has been a downward shift in the monthly nowcasts of US growth-at-risk

since the pandemic. For instance, the monthly nowcasts of US growth-at-risk were, on
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average, about -3%, and this average dropped to about -5% during the pandemic period.

Thus, this result implies that the monthly distribution of US real GDP has become

more skewed to the left since the pandemic. Second, we compare our monthly nowcasts

of US growth-at-risk to their corresponding quarterly nowcasts from the Adrian et al.

(2019) quantile regression model. We found that, on average, the quarterly nowcasts

underestimate US growth-at-risk relative to our monthly nowcasts. Furthermore, our

monthly nowcasts of US growth-at-risk appear to align with the current post-pandemic

economic situation in the US.

We also undertake a counterfactual analysis to investigate whether the Chicago Fed’s

National Financial Condition Index (NFCI) is important for nowcasting monthly US

growth-at-risk. We compare our counterfactual monthly nowcasts to their corresponding

actual monthly nowcasts. We found, on average, that a tightening of the NFCI does

indeed have a negative impact on the monthly nowcast US growth-at-risk. Therefore,

our results reinforce the findings of Adrian et al. (2019) and highlight the importance

of including NFCI in a mixed frequency setting when modeling growth-at-risk.

The remainder of this article is organized as follows: Section 2 presents a novel mixed-

frequency quantile VAR model under the acronym of MF-QVAR and the intertemporal

constraints. In Section 3, the Bayesian approach for inference along with the posterior

algorithm is described. Section 4 shows the results of a real data and a counterfactual

analysis on US real GDP growth-at-risk. Finally, Section 5 draws the conclusions.

2 Mixed Frequency Quantile VAR

2.1 Notation

Let Sk = {X ∈ Rk×k : X = X ′} denote the space of symmetric matrices of size k × k

and Sk
++ = {X ∈ Sk : a′Xa > 0, ∀ a ∈ Rk} be the space of symmetric, positive definite

matrices of size k × k. For a matrix A ∈ Sk
++, A1/2 represents the Cholesky factor of
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A. Let MALn(µ, δ,Σ) indicate a multivariate asymmetric Laplace distribution with

location µ ∈ Rn, skewness parameter δ ∈ Rn, and scale matrix Σ ∈ Sn
++. Let yo

t ∈ Rno

be a vector of variables observed at high frequency and let yu
t ∈ Rnu be a vector of

variables that are unobserved or only partially observed. Finally, let us denote with In

the identity matrix of size n, and use 1n and 0n to represent an n-dimensional vector

with all entries equal to one and zero, respectively. The symbol ⊗ denotes the Kronecker

product.

2.2 Model

We consider a n-dimensional VAR(p) model with p lags for yt = (yo′

t ,y
u′

y )
′, with n =

no + nu, that is

yt = b0 +

p∑

j=1

Bjyt−j + ǫt, ǫt ∼ MALn(0n, Dθτ,1, Dθτ,2Ψθ′

τ,2D
′), (1)

for t = p + 1, . . . , T , where b0 is a n-dimensional vector of intercepts, B1, . . . , Bp are

(n × n) autoregressive coefficient matrices, Ψ is a (n × n) correlation matrix, D =

diag
(
Σ

1/2
11 , . . . ,Σ

1/2
nn

)
, for Σ

1/2
ii ∈ R, and

θτ,1 =

(
1− 2τ1

τ1(1− τ1)
, . . . ,

1− 2τn
τn(1− τn)

)
′

, θτ,2 = diag

(√
2

τ1(1− τ1)
, . . . ,

√
2

τn(1− τn)

)
,

where τ = (τ1, . . . , τn) is the quantile representation, such that τi ∈ (0, 1) for i =

1, . . . , n.

The multivariate asymmetric Laplace distribution, MALn(µ, Dθτ,1, Dθτ,2Ψθ′

τ,2D
′),

has density function

fY (y|µ, Dθτ,1, Dθτ,2Ψθ′

τ,2D
′) =

2 exp
{
(y − µ)′D−1(θτ,2Ψθ′

τ,2)
−1θτ,1

}

(2π)n/2|Dθτ,2Ψθ′

τ,2D|1/2
(

m̃

2 + d̃

)ν

Kν

(√
(2 + d̃)m̃

)
,

where m̃ = (y − µ)′(Dθτ,2Ψθ′

τ,2D
′)−1(y − µ), d̃ = θ′

τ,1θτ,2Ψθ′

τ,2θτ,1 and Kν(·) denotes
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the modified Bessel function of the third kind with index parameter ν = (2−n)/2. The

MAL distribution is closely related to multivariate quantile regression models, as stated

in Proposition 1 from Petrella and Raponi (2019), which we report using our notation.

Proposition 1 (Petrella and Raponi (2019)). Let y ∼ MALn(µ, Dθτ,1, Dθτ,2Ψθ′

τ,2D
′)

and let τ = (τ1, . . . , τn)
′ be a fixed n-dimensional vector, such that τi ∈ (0, 1) for i =

1, . . . , n. Then P(yi ≤ µi) = τi if and only if

θτ,1,i =
1− 2τi
τi(1− τi)

, θ2τ,2,i =
2

τi(1− τi)
.

Moreover, yi ∼ AL(µi,Σ
1/2
ii , τi) follows a univariate asymmetric Laplace distribution

(see Appendix A).

Modern models for investigating macroeconomic and financial time series are in-

herently multivariate, which calls for developing suitable multivariate quantile regres-

sion models. Chavleishvili and Manganelli (2021) provide a structural quantile VAR

(QVAR) model to capture nonlinear relationships among macroeconomic variables, and

propose a quantile impulse response function to perform stress tests. Montes-Rojas

(2019) develop a reduced form QVAR model to provide reliable forecasts and define

a different quantile impulse response function to explore dynamic heterogeneity of the

response variables to exogenous shocks. Recently, Adams et al. (2021) modified the ap-

proach of Adrian et al. (2019) and used quantile regressions to characterize upside and

downside risks around the survey of professional forecasters’ median consensus forecasts

for each indicator.

The above-mentioned studies adopt a frequentist perspective. In contrast, Bernardi et al.

(2015) developed a Bayesian inference for univariate quantile regression models to mea-

sure tail risk interdependence using Tobias and Brunnermeier (2016)’s Conditional VaR

(CoVaR) indicator, defined as a quantile of a conditional distribution calculated at a

given quantile of its conditioning distribution. Recently, Tian et al. (2021) exploited

shrinkage priors to estimate Bayesian multivariate quantile regressions. Despite the
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increasing interest by policymakers in understanding and forecasting the whole distri-

bution of economic and financial indicators, the literature on quantile VAR models is

scant. We aim to fill this gap by proposing a novel fast Bayesian approach to inference

for quantile VAR models.

Following the literature on multivariate time series, we define the nβ-dimensional vec-

tor β = (b′

0, vec(B1)
′, . . . , vec(Bp)

′)′, with nβ = n(1 + np), and the n× nβ-dimensional

matrix Xt = (1n,x
′

t,1, . . . ,x
′

t,p), with xt,j = (yt−j ⊗ In) for each j = 1, . . . , p. Moreover,

let us reparametrize the innovation scale by introducing the positive definite matrix

Σ = DΨD′ ∈ Sn
++, and relabelling with D = D(Σ) = diag

(
Σ

1/2
11 , . . . ,Σ

1/2
nn ). Owing to

the properties of the multivariate asymmetric Laplace distribution, eq. (1) admits a rep-

resentation as a location-scale mixture of Gaussian distributions (Petrella and Raponi,

2019; Kotz et al., 2001), as follows:

yt = b0 +

p∑

j=1

Bjyt−j +Dθτ,1wt +
√
wtDθτ,2Ψ

1/2z̃t, z̃t ∼ Nn(0n, In), (2)

= Xtβ +D(Σ)θτ,1wt + zt, zt ∼ Nn(0n, wtθτ,2Σθτ,2), (3)

where wt is an auxiliary variable satisfying1 wt
i.i.d.∼ Exp(1), and define w = (wp+1, . . . , wT )

′

the vector of latent variables.

2.3 Mixed Frequency and Inter-Temporal Constraints

Mixed frequency VAR (MF-VAR) models in macroeconomics and forecasting have be-

come increasingly popular for producing high-frequency nowcasts of low-frequency vari-

ables. Specifically, MF-VARs are often used to joint model quarterly macroeconomic

variables (low-frequency), such as gross domestic product (GDP), and monthly financial

variables (high-frequency), such as surveys, to produce monthly nowcasts of GDP (e.g.,

see Schorfheide and Song, 2015).

1We use the rate parametrization, such that if x ∼ Exp(1), then kx ∼ Exp(1/k), for k > 0.
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We contribute to this literature by introducing mixed-frequency components in quan-

tile VAR models that allow us to nowcast the conditional mean and the distribution of

the low-frequency variables of interest. This is of paramount importance to timely un-

derstand the status of the economic system by explaining and nowcasting fundamental

indicators, such as GDP and systemic risk indices. Moreover, it allows the researchers

to consider any ragged-edge issues arising from the data release calendar.

A stacked or a state-space approach can be used to handle the mixed-frequency vari-

ables. The first class includes the MIDAS models, initially proposed by Ghysels et al.

(2005, 2006) and Ghysels (2016), which consist of a linear model for the lowest observed

frequency that includes the high-frequency covariates using particular functional forms

for the coefficients. This framework has recently been extended to account for multiple

regimes, dynamic panels, and high-dimensional settings (e.g., see Casarin et al., 2018;

Khalaf et al., 2021; Mogliani and Simoni, 2021). Conversely, the state-space approach

proposed by Schorfheide and Song (2015) treats the high-frequency observations of the

low-frequency variables as missing values and estimates them via Kalman filtering and

smoothing algorithms. This method has been applied to investigate consumption growth

and long-run risks (Schorfheide et al., 2018), the COVID-19 outbreak (Huber et al.,

2020), the output gap (Cimadomo et al., 2021), regional output growth (Koop et al.,

2020), and high-dimensional macroeconomic systems (Berger et al., 2020).

In particular, we adopt the state-space approach and model all variables at the

highest observed frequency to obtain the interpolated estimates of the low-frequency

variables at a higher frequency. The main drawback of this approach is the signif-

icant computational burden mainly due to the estimation of high-dimensional latent

state vectors (i.e., missing observations of the low-frequency variables) via filtering and

smoothing techniques. This cost becomes prohibitive as the dimension of the VAR gets

large, thus representing a major obstacle to using state-space methods on datasets with

medium-high dimensions.

To investigate the joint distribution of the unobserved variables, conditional on the
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observations, let us denote with Y = (y′

p+1, . . . ,y
′

T )
′ and ζ = (z′p+1, . . . , z

′

T )
′ the (T −

p)n-dimensional vectors obtained by stacking all observations and all innovations over

time, respectively. It is now possible to rewrite eq. (2) in matrix form as:

BY = b+ ζ, ζ ∼ N (0(T−p)n,Σ), (4)

where

b = (1T−p ⊗ b0) +w ⊗
(
(1− 2τ1)Σ

1/2
11

τ1(1− τ1)
, . . . ,

(1− 2τn)Σ
1/2
nn

τn(1− τn)

)
′

, Σ = diag(w)⊗ θτ,2Σθτ,2,

and

B =




−B1 −B2 . . . −Bp In 0n . . . 0n 0n 0n

0n −B1 . . . −Bp−1 Bp In . . . 0n 0n 0n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0n 0n . . . 0n 0n 0n . . . −Bp In 0n

0n 0n . . . 0n 0n 0n 0n −Bp−1 −Bp In




as a banded matrix of dimensionality (Tn× (T −p)n). Notice that b, Σ, and B depend

on the model parameters; we drop the notation for exposition purposes.

As stated in Schorfheide and Song (2015), we formulate the mixed frequency VAR

in a state-space structure. To this aim, let us first denote with yo = (yo′

1 , . . . ,y
o′

T )
′

and yu = (yu′

1 , . . . ,y
u′

T )
′ the Tno- and Tnu-dimensional stacked vectors of observed

and unobserved response variables. This allows to represent the vector y as a linear

combination of yo and yu, as follows:

y = Muy
u +Moy

o, (5)

where Mo and Mu are (Tn× Tno) and (Tn× Tnu) selection matrices with full column

rank. Then, by substituting eq. (5) into eq. (4) along the lines of Chan et al. (2021), one
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obtains the joint distribution of the missing observations, conditional on the observed

data and model parameters as the Gaussian distribution:

yu|yo,β,Σ,w ∼ N (µy, K
−1
y ), (6)

where Ky = M ′

uB
′Σ−1BMu and µy = K−1

y (M ′

uB
′Σ−1 (b−BMoy

o)).

In practice, the unobserved data points in yu are constrained to match the value of

the low-frequency variables at those points in time when the latter are observed. One

of the most commonly used restrictions for log-differenced variables is the log-linear

approximation of Mariano and Murasawa (2003, 2010). This approach assumes that

the observed quarterly value of the i-th variable at month t, denoted by ỹui,t, is obtained

as a linear combination of the missing monthly values at the current and previous four

months, denoted by yui,t, . . . , y
u
i,t−4, as follows:

ỹui,t =
1

3
yui,t +

2

3
yui,t−1 + yui,t−2 +

2

3
yui,t−3 +

1

3
yui,t−4. (7)

This is a log-linear approximation to an arithmetic average of the quarterly variable,

where note that ỹui,t is only observed for every third month. Stacking the inter-temporal

constraints over time, one gets

ỹu = May
u, (8)

where Ma is a (k × Tnu) matrix containing the k linear restrictions, and ỹu is a vector

containing the observed values of the low-frequency variables. To account for the inter-

temporal constraints when sampling the unobserved variables, yu, it is sufficient to

draw from the Gaussian distribution in eq. (6) subject to the restrictions in eq. (8).

This is efficiently done following the methods described in Algorithm 2 of Cong et al.

(2017), which postulates first to draw a vector from the unconstrained distribution,
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u ∼ N (µy, K
−1
y ), then compute

yu = u+K−1
y M ′

a(MaK
−1
y M ′

a)
−1(ỹu −Mau). (9)

From a computational perspective, we follow the efficient implementation in Algorithm

1 of Chan et al. (2021).

3 Bayesian inference

In this section, we provide the details of the estimation of our proposed MF-QVAR

model. Initially, we exploit the location-scale mixture representation of the multivariate

asymmetric Laplace in eq. (1) and introduce a set of auxiliary variables wt
i.i.d.∼ Exp(1),

thus the complete-data likelihood is given by:

L((yo
1,y

u
1), . . . , (y

o
T ,y

u
T ),w|β,Σ) =

T∏

t=p+1

P (yt|β,Σ, wt)P (wt|β,Σ)

=

T∏

t=p+1

exp
{
− 1

2

[(
yt −Xtβ −D(Σ)θτ,1

)
′
(
wtθτ,2Σθτ,2

)
−1(

yt −Xtβ −D(Σ)θτ,1

)]}

× (2π)−
n
2 |wtθτ,2Σθτ,2|−

n
2 exp{−wt}. (10)

Before describing the posterior distributions along with the algorithm used, we define

the prior specifications for our parameters. Starting with the coefficient vector β =

(b′

0, vec(B1, . . . , Bp)
′)′, we assume a conjugate multivariate Gaussian prior distribution

β ∼ Nnβ
(µ

β
,Ωβ).

For this vector of coefficients, one may consider using shrinkage priors such as the global-

local shrinkage prior (Polson and Scott, 2010; Bhadra et al., 2016), and the Minnesota

prior (Kadiyala and Karlsson, 1997). In this article, we focus on a simple case by

setting the prior mean of the coefficient associated with each equation at the frequentist
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univariate regression estimate, µ
β
= β̂, and a prior variance Ωβ = 100 · Inβ

, which

results in a relatively flat prior distribution. We leave for further research the use of

more complex shrinkage priors.

The other parameter of interest is the scale matrix, Σ ∈ Sn
++, and in this scenario,

we assume an inverse Wishart prior distribution

Σ ∼ IWn(ν0, Φ0),

where ν0 > n− 1 is the degrees of freedom parameter and Φ0 ∈ Sn
++ is a scale matrix,

such that if ν0 > n+1 then E[Σ] = Φ0/(ν0− n− 1). This is equivalent to assuming the

Wishart prior distribution for Σ−1 ∼ Wn(ν0, Φ−1
0 ), where E[Σ−1] = Φ−1

0 ν0.

Based on these prior specifications and the likelihood function in eq. (10), we can

provide the full conditional distributions for each parameter and latent variable of the

model. We remark that our parametrization differs from Tian et al. (2016), as we work

with the positive definite matrix Σ, instead of the correlation matrix Ψ and the diagonal

matrix D separately. Moreover, we work with multivariate Bayesian analysis of quantile

regression models, while Yu and Moyeed (2001) proposed a Bayesian approach for the

univariate framework.

As the joint posterior distribution is not tractable, we rely on data augmentation

to obtain closed-form full conditional distributions and to design an efficient Markov

chain Monte Carlo (MCMC) algorithm for approximating the posterior distribution.

Specifically, we design an efficient Gibbs sampler based on the precision sampler of

Chan and Jeliazkov (2009) and Chan et al. (2021), which cycles over the following steps:

1. draw yu given yo,β,w and Σ from eq. (6) subject to the restrictions in eq. (8)

using Algorithm 1 of Chan et al. (2021);

2. draw β given yo,yu,w and Σ from the Gaussian distribution Nnβ
(µb,Ωb), with
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ẽt = yt −Dθτ,1wt and parameters

Ωb =
(
Ω−1

b +

T∑

t=p+1

X ′

t(wtθτ,2Σθτ,2)
−1Xt

)
−1

, µb = Ω
−1

b

(
Ω−1

b µ
b
+

T∑

t=p+1

ẽ′t(wtθτ,2Σθτ,2)
−1Xt

)
.

3. draw the auxiliary variables wt, for each t = p + 1, . . . , T , given yo,yu,β and Σ

from the Generalized inverse Gaussian distribution GiG(pw, aw, bw,t), with ut =

yt −Xtβ, and

pw = 1− n

2
, aw = 2 + θ′

τ,1D(θτ,2Σθτ,2)
−1Dθτ,1, bw,t = u′

t(θτ,2Σθτ,2)
−1ut.

4. draw Σ given yo,yu,β and w via the slice sampling algorithm of Neal (2003).

Defining et(Σ) = yt−Xtβ−D(Σ)θτ,1wt, the target density function is proportional

to:

∝ |Σ|−
ν0+n+1

2 exp

{
−1

2
tr
(
Φ0Σ

−1
)}

|Σ|−T
2 exp

{
−1

2

T∑

t=1

e′t(Σ)
(
w−1

t θ−1
τ,2Σ

−1θ−1
τ,2

)
et(Σ)

}
.

The Supplementary Material provides a detailed description of the MCMC algorithm

along with the derivation of the full conditional distributions.

4 Nowcasting Monthly US GDP growth-at-risk

We illustrate the utility of our proposed MF-QVAR model by undertaking a real-time

nowcasting application for the growth-at-risk of US real GDP. To the best of our knowl-

edge, this is the first study in the literature that explicitly nowcasts a monthly growth-

at-risk estimate for US real GDP, whereas all the previous studies only modeled it at

a quarterly frequency. A key advantage of our MF-QVAR model is that it naturally

allows the forecaster to consider any ragged-edge issues arising from the data release

calendar.

We estimate an MF-QVAR model consisting of the quarterly US real GDP and eight
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monthly variables. Seven of the monthly variables included in our model are broadly

similar to the monthly variables chosen in Schorfheide and Song (2015) standard MF-

VAR model, whereas the last one is the NFCI. This choice is motivated by the recent

study of Adrian et al. (2019), which showed that a tightening of the NFCI could lead

to a large increase in the growth-at-risk for US real GDP. Table 1 reports the details of

each data variable and their respective transformations. All data vintages were gathered

from the St. Louis ALFRED database.

We undertake our real-time nowcasting application between January 2016 and March

2022, and we focus on generating the nowcasts and forecasts under three release timings

of the US real GDP. Furthermore, we follow an expanding window approach where our

initial training sample (or hold out) period is from January 1973 to December 2015. As

our application is a real-time exercise, we respect the release calendar for monthly and

quarterly variables; therefore, we face ragged edges at the end of the sample, mainly

due to the release delay of real GDP relative to the monthly indicators.

Description Fred Mnemonic Frequency Transformation

Average Weekly Hours AWHMAN Monthly 0.1× xt

CPI Inflation CPIAUCSL Monthly 100△ lnxt

Industrial Production INDPRO Monthly 100△ lnxt

S&P 500 S&P500 Monthly 100△ lnxt

Federal Funds Rate FEDFUNDS Monthly Level

10 years Government Treasury yield GS10 Monthly Level

Unemployment Rate UNRATE Monthly Level

Chicago Fed National Financial Condition Index NFCI Monthly Level

Real Gross Domestic Product GDPC1 Quarterly 400△ lnxt

Table 1: Data information.

Description Ragged-edge at the end of sample Nowcast Classification

US Real GDP has no release delay No Forecast

US Real GDP has a release delay of one month Yes Nowcast T + 1

US Real GDP has a release delay of two months Yes Nowcast T + 2

Table 2: Classifications of Nowcasts.
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Table 2 describes the three specific types of nowcasts that we produce from our

model according to the release delay of the US real GDP. In particular, exploiting the

proposed quantile regression framework, we focus on the growth-at-risk nowcasts based

on the 10th percentile, τ = 0.1. For completeness, we also generate the nowcasts for

the 50th (τ = 0.5) and 90th (τ = 0.9) percentiles to further investigate the behavior

of the entire distribution of real GDP. The first type of nowcast is a standard forecast

since the US real GDP has no release delay relative to the monthly variables under

this category. In this case, both the monthly and quarterly US GDP variables have a

balanced data structure, and no ragged edge occurs at the end of the sample. Thus, a

growth-at-risk forecast is made for one to three months ahead. The second and third

types of nowcasts are produced from our model when the US real GDP is released with

a one- and two-month delay, respectively. In both cases, the monthly and quarterly US

GDP variables have an unbalanced data structure and a ragged edge at the end of the

sample. Therefore, nowcasts of growth-at-risk are made under both categories.

Figure 1 plots the rolling three-month posterior mean average of the monthly changes

of the growth-at-risk estimates for the three types of nowcasts. It is evident from Figure 1

that the growth-at-risk nowcasts were, on average, about -3% during the pre-pandemic

period, whereas this average has fallen to about -5% since the pandemic. This implies

that COVID-19 has caused US monthly real GDP to be more skewed to the left and

increased the vulnerability of the US to enter a recession. In contrast, considering the

50th and 90th percentile, the monthly nowcast between spring and summer 2020 evolved

in opposite direction compared to the quarterly predictions (see the Supplementary

Material). This further highlights the importance of the proposed nowcasting approach

in providing a timely characterization of risks.

Moreover, for comparison purposes, in Fig. 1 we also plot the corresponding quar-

terly growth-at-risk nowcasts from a U-MIDAS quantile regression (QR) model. This

U-MIDAS QR model extends the quarterly frequency QR model used in Adrian et al.

(2019) and includes a monthly NFCI instead of a quarterly series utilized by Adrian et al.
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Figure 1: Posterior mean of the rolling three-month average growth-at-risk changes for the
10th percentile (τ = 0.1), from MF-QVAR (monthly, solid), and U-MIDAS QR (quarterly,
dashed). Forecasts of T in blue, nowcasts of T + 1 in red, and nowcasts of T + 2 in yellow.

(2019). The resulting quarterly growth-at-risk nowcasts are denoted as the dashed lines

in Fig. 1. Most of these quarterly growth-at-risk nowcasts are positive, except for the ini-

tial year of the COVID-19 pandemic. In contrast, the monthly growth-at-risk nowcasts

from the MF-QVAR model are all negative. These results suggest that the nowcasts

from the U-MIDAS QR model may be underestimating the underlying growth-at-risk

measure for US Real GDP. For instance, the growth-at-risk nowcasts from the U-MIDAS

QR model bounce back to their pre-pandemic level in 2021, which is inconsistent with

recent global events. In fact, since the pandemic period, the US has experienced weaker

growth and high inflation, and intuitively one would expect the US to be more prone to

a recession than an expansion. Conversely, the nowcasting results from our MF-QVAR

model are consistent with this idea.

To further investigate the skewness of the real GDP nowcasts, we also generated

the nowcasts for the 50th (τ = 0.5) and 90th (τ = 0.9) percentiles. Figure 2 plots

all the posterior estimates of the percentiles for the monthly nowcast of T + 2. The

pattern displayed in Fig. 2 indeed confirms our previous finding that the COVID-19

pandemic has caused the real GDP nowcasts to become more negatively skewed. Similar
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conclusions can be drawn from the monthly forecast and monthly nowcast of T +1 (see

the Supplementary Material). Moreover, in Table 3 we report the posterior monthly

nowcasts of all the percentiles for selected pandemic periods. For December 2019, the

nowcast estimate for the 10th percentile was -1.44%, dropping to -5.67% in April 2020

of the first wave of the pandemic. In addition, the uncertainty associated with the real

GDP nowcasts appears to have widened since the pandemic. For example, in Table 3,

the distance between the nowcasts of the 10th and 90th percentile has significantly

increased since December 2019. This result suggests that nowcasting real GDP has

become inherently challenging since the pandemic.

Figure 2: Posterior mean of the rolling three-month average of the Monthly Nowcast T + 2
for the 10th (τ = 0.1, blue), 50th (τ = 0.5, red), and 90th percentile (τ = 0.9, yellow).
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Percentile

Dates τ = 0.1 τ = 0.5 τ = 0.9 Difference between τ = 0.9 and τ = 0.1

December 2019 -1.44 1.17 5.20 6.63

April 2020 -5.67 -0.46 3.44 9.11

September 2020 -2.74 6.99 18.84 21.58

January 2021 -8.48 -2.63 4.75 13.23

December 2021 -2.95 1.01 5.90 8.85

Table 3: Posterior estimates of the 10th, 50th and 90th percentiles for the monthly nowcast
T + 1 across selected periods during the pandemic period.

4.1 Does a tightening of the NFCI have a negative impact on

US growth-at-risk?

In this section, we conduct a counterfactual analysis to investigate the importance of

NFCI in a nowcasting monthly US growth-at-risk. Specifically, we undertake the same

real-time out-of-sample forecasting exercise described in the preceding section. In ad-

dition, for each window of nowcast made, we assume a tightening of the NFCI in the

last three months, holding all other things constant. This will allow us to explicitly

determine whether a tightening of the NFCI does indeed negatively impact monthly

nowcasts of US growth-at-risk.

Figure 3 plots the posterior mean differences of the counterfactual and the actual

real-time nowcasts for the three cases with their associated 68% credible intervals. The

posterior estimates were first calculated by taking the difference between each MCMC

draw of the counterfactual and actual real-time nowcasts. Next, the average was com-

puted across these differences. In general, a tightening of the NFCI appears to have a

statistically significant negative impact on the monthly forecast and nowcast of T + 2.

However, for the monthly nowcast T + 1, a tightening of the NFCI appears to have a
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muted effect. Furthermore, Table 4 reports the averages of these differences over the

evaluation period. A tightening of the NFCI appears to cause a deterioration in the

monthly growth-at-risk forecast and nowcast of T + 2 by about 2-2.6% on average.

These results infer that NFCI significantly impacts forecasts and nowcasts of monthly

US growth-at-risk. In particular, NFCI significantly influences the nowcasts of growth-

at-risk on months when US real GDP has a release delay of two months. Therefore, our

results reinforce the Adrian et al. (2019) findings and further highlight the importance

of including NFCI in a mixed frequency setting when modeling growth-at-risk.

(a) Monthly Forecast

(b) Monthly Nowcast T + 1 (c) Monthly Nowcast T + 2

Figure 3: Posterior mean differences of the counterfactual and the actual real-time nowcasts
(thick line) and the associated 68% credible interval (dotted line), for time T , T +1, and T +2.
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Percentiles Forecast Nowcast T + 1 Nowcast T + 2

10th Percentile -2.63 -0.13 -2.23

50th Percentile -1.82 0.31 -0.68

90th Percentile 1.35 1.32 2.04

Table 4: The average posterior mean differences of the counterfactual and the actual real-time
nowcasts across the out-of-sample evaluation period.

5 Conclusions

Motivated by the limitations of popular VAR models for low-frequency economic vari-

ables, we introduce a novel mixed-frequency quantile vector autoregression (MF-QVAR)

model. The proposed method exploits the informational content of high- and low-

frequency variables to produce forecasts and nowcasts of conditional quantiles for indica-

tors of interest. This permits to derive quantile-related risk measures at high frequency,

thus enabling timely policy interventions.

The MF-QVAR model admits a state-space representation where the measurement

follows a multivariate asymmetric Laplace distribution. Bayesian inference is performed

by means of an efficient MCMC algorithm that exploits a data augmentation scheme

coupled with a precision sampler to estimate the missing low-frequency variables at

higher frequencies.

The proposed method is applied to US macroeconomic data to obtain real-time now-

casts for the growth-at-risk of US real GDP. The results show the ability of MF-QVAR

to produce meaningful monthly nowcasts that outperform the quarterly U-MIDAS QR

benchmark and reveal interesting patterns at the outbreak and during the COVID-19

pandemic. Moreover, a counterfactual analysis reveals that a contraction of NFCI has

a negative and significant impact on the forecasts and nowcasts of monthly US growth-

at-risk.
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A Asymmetric Laplace distribution

Univariate case. A random number y ∈ R follows an asymmetric Laplace distribu-

tion, denoted y ∼ AL(µ, σ, τ), if

f(y|µ, σ, τ) = τ(1− τ)

σ
exp

{
−ρ

(
y − µ

σ

)}
,

where ρ(·) denotes the check loss function, σ > 0, µ ∈ R and τ ∈ (0, 1) are the

scale, location, and skewness parameters, respectively. The asymmetric Laplace distri-

bution admits a representation as a location-scale mixture of Gaussian distributions,

with exponentially-distributed mixing variable (Petrella and Raponi, 2019; Kotz et al.,

2001), as follows:

y = µ+ wσθτ,1 + σθτ,2
√
wz, z ∼ N (0, 1) w ∼ Exp(1),

26



where the rate parametrization of the exponential distribution is used2 and

θτ,1 =
1− 2τ

τ(1 − τ)
, θτ,2 =

√
2

τ(1− τ)
.

Therefore, it holds:

f(y|µ, σ, τ) =

∫
+∞

0

exp{−w}
(
2πσ2θ2τ,2w

)
−

1

2 exp

{
−(y − µ− σθτ,1w)

2σ2θ2τ,2w

}
dw.

Multivariate case. An n-dimensional random vector y ∈ R
n follows a multivariate

asymmetric Laplace distribution, denoted y ∼ MALn(µ, Dθτ,1, Dθτ,2Ψθτ,2D), if

y = µ+ wDθτ,1 +
√
wDθ

1/2
τ,2 Ψ

1/2z, w ∼ Exp(1), z ∼ Nn(0, In),

where Ψ is a correlation matrix, D = diag(δ1, . . . , δn), and

θτ,1 =

(
1− 2τ1

τ1(1− τ1)
, . . . ,

1− 2τn
τn(1− τn)

)
′

, θτ,2 = diag

(√
2

τ1(1− τ1)
, . . . ,

√
2

τn(1− τn)

)
.

This implies that each entry yi is given by

yi = µi + wδiθτ,1,i +
√
wδiθτ,2,izi, w ∼ Exp(1), zi ∼ N (0, 1),

thus providing

yi ∼ AL(µi, δi, τi).

2Using the rate parametrization of the exponential distribution, it holds kExp(σ) d
= Exp(σ/k).
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