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this paper, we propose a non-parametric VAR model which relies on splines to

approximate the unknown function between the response vector and its lags. This

spline-based VAR is highly flexible and potentially overfits the data. To circumvent

issues related to overfitting we introduce a prior which shrinks the non-parametric

model towards a simpler model. This simpler specification, however, is subject to

model uncertainty. We control for this by using a small set of competing linear and

non-linear parametric conditional mean models and infer the appropriate submodel

towards which we shrink from the data. Our approach allows for deciding whether

variable-specific relations are modeled to be completely unknown (and thus a non-

parametric technique is most suitable) or whether they exert a simpler, known

effect on the endogenous variables. In simulations, we show that our approach

accurately detects whether effects are linear or non-linear. We illustrate key model

features by estimating a small-scale non-parametric VAR and consider the effects

of oil price shocks.
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1 Introduction

Economic and financial time series are often subject to substantial structural breaks, changing

volatilities and possibly non-linear relations between the endogenous variables and the predic-

tors. These complex patterns typically arise in times of crises such as during the deep recession

of 2008/2009 or the Covid-19 pandemic. Especially for the latter episode we have observed

outliers far outside the range of past data. Such a situation typically calls for appropriate

modeling techniques since linear models fail to capture outliers adequately. This has adverse

effects on parameter estimates and ultimately distorts forecasts and impulse responses.

Several recent papers propose non-linear and non-parametric models to capture struc-

tural breaks, outliers, heteroskedasticity and possibly changing dynamic relations across vari-

ables. Starting with influential work of Primiceri (2005) and Cogley and Sargent (2005),

researchers have been working with time-varying parameter (TVP) regressions and VARs.

These models are flexible since they allow for changing relationships between the variables in

the VAR as well as in the error variances. However, conditional on a specific point in time,

they assume a linear relationship between the predictors and the endogenous variables. This

is one possible limitation. The second limitation is that these models are tightly parametrized

(and thus prone to overfitting). Solutions addressing overfitting can be found in, e.g., Bel-

monte, Koop, and Korobilis (2014); Bitto and Frühwirth-Schnatter (2019); Huber, Koop, and

Onorante (2021); Lopes, McCulloch, and Tsay (2021); Hauzenberger, et al. (2021). However,

none of these papers deals with the possible issue of non-linearities conditional on a specific

point in time.

Another strand of the literature relies on non-parametric techniques to estimate unknown

functional relations in the conditional mean (Kalli and Griffin, 2018; Huber and Rossini, forth-

coming; Huber, et al., 2020; Clark, et al., 2021). These models are very flexible, work well if

the data features several outliers (for a discussion, see Huber, et al., 2020) and scale well in

high dimensions. However, they are also difficult to interpret and shrinkage is often achieved

through forcing the underlying response surface towards the space of smoothly varying func-

tions. Since it is not clear how that would impact the underlying set of parameters if the data

generating process is linear (as we would expect in tranquil periods) constructing shrinkage

priors which shrink towards pre-specific function spaces might be more appropriate (see Shin,

Bhattacharya, and Johnson, 2020).

In this paper, we propose a non-parametric VAR which uses splines to approximate the
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unknown conditional mean function. Instead of using shrinkage priors that force the basis

parameters associated with the splines to zero we use the subspace shrinkage prior developed

in Shin, Bhattacharya, and Johnson (2020) to shrink the model towards a pre-specified space of

known functions. This prior, instead of pushing coefficients to zero, forces the non-parametric

model towards a simpler, parametric alternative. As opposed to the original subspace shrinkage

prior, we contribute to the literature by addressing one shortcoming: the necessity to select

a single subspace towards which we want to shrink our non-parametric model. Our approach

solves this by introducing a discrete latent variable which selects an appropriate prior model

from a pool of pre-specified models. This is done for each covariate separately. The resulting

shrinkage prior allows for variable-specific functional shrinkage, implying that if a given variable

exerts a linear (or non-linear) effect on the response, our approach is capable of detecting this

accurately.

Another econometric contribution lies in the treatment of the contemporaneous relation-

ships between the shocks to the VAR. Instead of introducing a typical Cholesky-type decom-

position of the covariance matrix, we propose a novel non-linear estimator of the covariance

matrix. Our covariance specification, again, relies on splines and our modified subspace shrink-

age prior to capture non-linearities of an unknown form. Model estimation can be carried out

using straightforward Markov chain Monte Carlo (MCMC) techniques and we also provide

methods to compute dynamic impulse response functions.

We illustrate our techniques using two applications. First, by means of synthetic data

we show that our modified subspace shrinkage prior accurately detects the precise form of non-

linearities. But this strongly depends on key parameters of the data generating process and

we thus investigate how estimation accuracy changes with features of the DGP. In a second

application we use our model to [... complete once the empirical application is clear].

The remainder of this article is organized as follows: Section 2 illustrates the baseline

framework within a single equation context. Then, Section 3 describes a novel VAR model with

stochastic volatility. Section 4.1 introduces a new class of nonparametric prior distribution and

Section 5 presents the Bayesian approach to inference. Section 6 investigates the performance

of our method using simulated data. Section 7 shows results of an application to real data on

US inflation. Section 8 concludes the article.
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2 The univariate model

Our point of departure is a simple non-parametric regression model that posits a unknown

and possibly non-linear relationship between a response yt ∈ R and a covariate xt ∈ R. The

corresponding model is then given by:

yt = f(xt) + ϵt, ϵt ∼ N (0, exp(ht)), (1)

ht = µh + ϕh(ht−1 − µh) + ηt, ηt ∼ N (0, σ2
h), (2)

where f : R→ R denotes an unknown function and ϵt is a Gaussian shock with time-varying

(log) variances ht. We assume that ht evolves according to an AR(1) proces with unconditional

mean µh, persistence ϕh and state innovation variance σ2
h. Conditional on how we estimate f ,

this model provides flexibility in terms of handling non-linearities in the conditional mean as

well as heteroskedasticity in the shocks. The former feature is important of statistical relations

between yt and xt change over time or are subject to non-linearities whereas the latter feature

pays off if interest centers around density and tail forecasting (CITE CCM 2020 paper).

Several options for estimating f are available. For instance, Gaussian processes (CITE

CITE), Bayesian additive regression trees (CITE CITE), neural networks or splines can be

used to approximating the functional relationship between xt and yt. In this paper, we follow

Shin, Bhattacharya, and Johnson (2020) and model the unknown function f as spanned by a

set of pre-specified B-spline basis functions {ϕj}1≤j≤kn as follows:

f(x) =

kn∑
j=1

βjϕj(x). (3)

Let β = (β1, . . . , βkn)
′ denote the vector of basis coefficients and Φ = {ϕj(xt)}1≤t≤T,1≤j≤kn

is a (T × kn) matrix of basis functions evaluated at the observed covariates. Stacking all

observations and defining H = diag(eh1 , . . . , ehT ), one can rewrite the model in (1) to (3) as

y|β ∼ N (Φβ, H). (4)

Allowing for K covariates can be straightforwardly achieved by means of a generalized

additive model (Hasite and Tibshirani, 1986). This framework models the relationship between

a K-dimensional vector of covariates xt = (x1t, . . . , xKt)
′ and a scalar response as the sum of
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K univariate functions, where the kth function only dependent on the kth predictor:

yt =
K∑
k=1

fk(xkt) + ϵt, ϵt ∼ N (0, exp(ht)). (5)

Using B-splines leads to the multivariate generalization of the model described above:

y|β1, . . . ,βK ∼ N
( K∑

k=1

Φkβk, H
)
, (6)

where Φk is a T × kn-dimensional matrix of basis functions that depend on the kth covariate

in xt.

3 Non-parametric VAR models

In macroeconomics and finance, interest often centers around modeling the interaction between

several endogenous variables. This is typically achieved through VARs. In this section, we

generalize the model outlined in the previous section to the VAR case.

Let us define yt = (y1,t, . . . , yn,t)
′ as the vector of n variables available at time t. We

consider the following general VAR model with stochastic volatility (VAR-SV) that assumes a

relationship between yt and its first p lags:

yt = F (yt−1, . . . ,yt−p) + εt, (7)

where F : Rnp → Rn. We assume that the shocks εt follow a non-linear factor model:

εt = G(ft) + ζt, (8)

with G : RQ → Rn denoting a non-linear function that links Q(≪ n) latent factors ft to the

reduced-form shocks of the VAR and ζt ∼ N (0,Σt) is a vector of measurement errors with a

time-varying but diagonal error variance-covariance matrix Σt = diag(eh1t , . . . , ehnt).

The factors are assumed to be Gaussian, centered on zero and feature a time-varying

covariance matrix Vt = diag(ev1t , . . . , evQt). The logarithms of the diagonal elements of Σt and

5



Vt are assumed to follow stationary AR(1) processes:

hit = µhi + ϕhi(hit−1 − µhi) + ηhi,t i = 1, . . . , n,

vqt = ϕvqvqt−1 + ηvq,t q = 1, . . . , Q,

where ηhi,t ∼ N (0, σ2
hi) and ηvq,t ∼ N (0, σ2

vq). This specification implies that conditional on

knowing {G(ft)}Tt=1, the general VAR reduces to a sequence of independent non-parametric

regression models. This speeds up inference enormously. Moreover, assuming that the shocks

are effectively driven by a small number of factors reduces the effective number of parameters.

Since we remain agnostic on the precise form the function G can take, our model allows for

capturing possible non-linearities between shocks in the system and, in addition, controls for

heteroskedasticity.

Notice that if G(ft) = Λft is a linear function of the factors, the reduced form covariance

matrix of εt can be decomposed as follows:

Ωt = ΛVtΛ
′ +Σt. (9)

This equation suggests that any contemporaneous relations across shocks are purely driven by

the latent factors. Our flexible specification allows for capturing non-linear contemporaneous

relations. In macroeconomic and financial applications, this has the advantage that, under

suitable structural identification schemes, the model can generate asymmetries in the impact

responses to structural shocks. This turns out to be a considerable advantage over other

approaches that assume the shocks to be Gaussian with a covariance as in Eq. (9).

The proposed framework nests a wide range of well-known multivariate time series models

commonly applied in the literature. First, by removing the (nonparametric) spline specification

for all the components, the standard VAR with factor SV of Kastner and Huber (2020)is

obtained. Second, if we model only the conditional mean as an unknown function of the

covariates, one gets a nonlinear VAR with linear factor SV. A similar model has been proposed

in Clark, et al. (2021). This model allows to capture potentially nonlinear relations between the

lagged endogenous variables, while retaining linear unobserved heterogeneous effects. Third,

assuming a spline specification only for the covariance component results in a linear VAR

augmented with a nonlinear factor SV. This model essentially assumes that after filtering out

linear effects, the corresponding reduced-form shocks include arbitrary non-linear relations and
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our model captures them through the function G and the inclusion of latent factors. Fourth,

if we set the number of factors Q = n, all models approach specifications without restrictions

on the error covariance matrix.

As will become clear in Section 4.1, as long as the mfHS prior includes the linear speci-

fication among the list of possible subspaces, then all these particular cases can be recovered

from the general model in Eq. (7) in a completely data-driven manner. This effectively controls

for model uncertainty and selection issues.

3.1 Function approximation using B-splines

As discussed in Section 2, we approximate F = (F1, . . . , Fn)
′ and G = (G1, . . . , Gn)

′ using

B-splines. The presence of the factor entails equation-by-equation estimation. The model for

the ith equation can be written in full-data form as follows:

y•i = Fi(X) +Gi(f) + ζ•i, ζ•i ∼ N
(
0, diag(ehi1 , . . . , ehiT )

)
, (10)

with y•i and ζ•i denoting the ith column of Y = (y1, . . . ,yT )
′ and ζ = (ζ1, . . . , ζT )

′, respec-

tively. The T × np matrix X has a typical tth row given by xt = (y′
t−1, . . . ,y

′
t−p)

′. Finally,

the T ×Q matrix f = (f1, . . . ,fT )
′ stores the latent factors.

We approximate Fi(X) and Gi(f) through:

Fi(X) ≈
np∑
j=1

ΦF
ijβ

F
ij , Gi(f) ≈

Q∑
q=1

ΦG
iqβ

(G)
iq . (11)

where ΦF
ij ,Φ

G
iq are (T × kn) matrices and βF

ij ,β
G
iq are (kn × 1) vectors, for each i = 1, . . . , n,

j = 1, . . . , np and q = 1, . . . , Q. This spline-based approximation is highly flexible and allows

for unveiling complex patterns in the data. However, this flexibility comes at a cost since

overfitting issues naturally arise. We solve these using Bayesian shrinkage priors. The next

sub-section discusses our proposed prior setup.

4 The Prior

4.1 Mixture Functional Horseshoe Prior

To set the stage, we first introduce the notation for the functional horseshoe prior (fHS) of

Shin, Bhattacharya, and Johnson (2020). Let Φℓ
ij,0 denote a null regressor matrix of size
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(T ×m), m ≥ 1, and define its rank with dℓij,0 = rank(Φij,0). Denote the projection matrix of

Φℓ
ij,0 by Qℓ

ij,0 = Φℓ
ij,0((Φ

ℓ
ij,0)

′Φℓ
ij,0)

−1(Φℓ
ij,0)

′. Finally, for an m× r matrix A, with m > r and

rank(A) = r, let L(A) = {Aβ : β ∈ Rr} denote the column space of A. The fHS prior allows

for shrinkage toward a null subspace that is fixed in advance, and defined by means of Φℓ
ij,0.

Examples of possible subspaces are the linear (by setting ΦF
ij,0 = X•,j or ΦG

ij,0 = f•,j) or the

quadratic (by setting ΦF
ij,0 = (X•j ,X

2
•j) or ΦG

ij,0 = (f•j ,f
2
•j)) subspace. However, this prior

implies that we have to select the subspace towards which we shrink a priori. In this paper we

will avoid this and assume that the prior subspace is an unknown quantity which we estimate.

This allows us to infer whether the relations encoded by F and G take a linear or non-linear

form or whether a given covariate should be excluded from the model.

This is achieved in the following way. The matrix Φℓ
ij,0 is comprised of multiple null

regressor matrices, Φℓ
ij,0 = (Φℓ

ij,01, . . . ,Φ
ℓ
ij,0L), L ≥ 1. This choice permits shrinkage of the

coefficients towards alternative null subspaces. To decide on the specific subspace, we introduce

a set of latent allocation variables, zℓij ∈ {1, . . . , L}, with prior distribution zℓij |pℓ
ij ∼ Cat(pℓ

ij),

where Cat(•) denotes the categorical distribution and pℓ
ij = (pℓij,1, . . . , p

ℓ
ij,L)

′ ∈ ∆L−1 is a

probability vector, with ∆L−1 denoting the (L− 1)-dimensional simplex.

The mixture functional horseshoe prior (mfHS) is given by the following hierarchical

prior

π(βℓ
ij |τ ℓij , zℓij) ∝ ((τ ℓij)

2)−
kn−dℓij,0z

2 exp
(
− 1

2(τ ℓij)
2
(βℓ

ij)
′(Φℓ

ij)
′Σ

−1/2
i (IT −Qij,0z)Σ

−1/2
i Φℓ

ijβ
ℓ
ij

)
,

π(τ ℓij) ∝
((τ ℓij)

2)b−1/2

(1 + (τ ℓij)
2)a+b

I(0,∞)(τ
ℓ
ij),

π(zℓij |pℓ
ij) ∝

L∏
l=1

(pℓij,l)
I(zℓij=l),

π(pℓ
ij) ∝

L∏
l=1

(pℓij,l)
c̄−1,

(12)

where a, b > 0 are hyperparameters and dℓij,0z and Qij,0z are the rank and the projection

matrix of Φℓ
ij,0,zℓij

. Note that π(τ ℓij) can be obtained as the prior induced by assuming a

Beta(a, b) prior on ωℓ
ij = 1/(1 + (τ ℓij)

2).

This prior allows us to investigate, across equations and for each covariate (which includes

both X and f), whether the effect is of a known non-linear or a linear form. The prior also
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allows for shrinking the regression effect of a specific covariate towards zero (this is achieved

by setting Qij,0z = 0T×T ). In case neither of the subspaces fits the data well, our approach

also allows for more flexibility by setting τ ℓij to a very large value. Intuitively speaking, the

parameter τ ℓij controls the weight placed on the subspace and the allocation variable governs

the subspace towards which we shrink the flexible spline model. For instance, if τ ℓij is large,

the corresponding prior on βℓ
ij will be relatively uninformative and the weight placed on the

subspace piece will be low. By contrast, if τ ℓij is close to zero, substantial prior mass will be

allocated to the subspace component and the corresponding conditional mean function closely

mimics the behavior of the parametric regression specification embodied in the subspace Qij,0z.

Hence, our approach tackles model and specification uncertainty in a very flexible way and

requires little input from the researcher.

To provide more intuition on what our prior does, it proves fruitful to focus on a simplified

case of the model discussed above. In this simple model, we have a single equation and a single

regressor and set p = n = 1 so that Y and X are T−dimensional vectors. This is the

model described in Eq. (1). Hence, we can drop all sub- and superscripts from the quantities

described above. In this simple model, one can show that the conditional posterior mean of

the regression function given (ω, z) is a convex combination of the B-spline estimator QΦY

and the parametric estimator Q0,zY , where QΦ = Φ(Φ′Φ)−1Φ′. Marginalizing over z yields

a convex combination between QΦY and all Q0,ℓY .

Corollary 1. Suppose that L(Φ0,ℓ) ̸⊂ L(Φ) for each ℓ = 1, . . . , L. Then

E[Φβ|Y , ω, z] = (1− ω)QΦY + ωQ0,zY . (13)

E[Φβ|Y , ω,p] =

L∑
ℓ=1

pℓ

[
(1− ω)QΦY + ωQ0,ℓY

]
=

L∑
ℓ=1

p̃1,ℓQΦY + p̃0,ℓQ0,ℓY (14)

=
(
1−

L∑
ℓ=1

p̃0,ℓ

)
QΦY +

L∑
ℓ=1

p̃0,ℓQ0,ℓY , (15)

where p̃0,ℓ = pℓω, p̃1,ℓ = pℓ(1− ω), and
∑

ℓ p̃1,ℓ + p̃0,ℓ =
∑

ℓ pℓ = 1.

This result shows that, conditional on the weights p and ω, the posterior fit of our flexible

model is a convex combination between the fit of a B-spline model and the fitted values implied

by the L different parametric specifications.
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4.2 Priors on the remaining model parameters

We follow Kastner and Frühwirth-Schnatter (2014) and assume the following independent prior

for the hyper-parameters driving the log-volatility processes:

µhi ∼ N (−10, 1),
ϕhi + 1

2
∼ Be(50, 1.5), σ2

hi ∼ Ga(0.5, 0.5),

ϕvi + 1

2
∼ Be(6, 1.5), σ2

vi ∼ Ga(0.5, 0.5).
(16)

The choice of the hyperparameters for the prior of the unconditional mean and variance is

not influential. The log-volatility processes are restricted to be stationary by imposing a prior

distribution on the persistence parameters such that ϕhi, ϕvi ∈ (0, 1). This is done by assuming

a Beta prior for the linear transformation (ϕ + 1)/2. The chosen hyperparameters assure a

prior mean and standard deviation of 0.94 and 0.05 for ϕhi, and a smaller prior mean for ϕvi.

4.3 Selecting the number of factors

Remark 1 (Selection of Q). The proposed mfHS prior allows to make inference on the number

of unobserved factors, Q. This is done by including the zero subspace within the “candidate

set” of subspaces. Then, at each iteration m = 1, . . . ,M of the MCMC algorithm, we count

the number of factors that have been allocated to a non-zero subspace. In fact, the allocation

variable zGiq informs about the inclusion (or not) of the qth factor in the regression for the

ith endogenous variable. Therefore, we can estimate the number of “active” factors for each

endogenous variable as the maximum a posteriori (MAP) of the variable:

NG
i =

Q∑
q=1

I
(
z
G,(m)
iq ̸= 0

)
. (17)

Moreover, for each variable i and factor q we can compute the posterior inclusion probability

(PIP), that is the posterior probability that factor q is relevant to variable i, as:

PIPG
iq =

1

M

M∑
m=1

I
(
z
G,(m)
iq ̸= 0

)
. (18)

5 Posterior sampling

The paths of the log-volatilities and the corresponding parameters are sampled as in Kastner

and Frühwirth-Schnatter (2014) using the R-package stochvol (Kastner, 2016).
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The main steps of the MCMC algorithm are reported below (for i = 1, . . . , n, j = 1, . . . , n,

l = 1, . . . , q, and t = 1, . . . , T ) and we refer to the supplement for further details:

1. sample the spline coefficients and related hyper-parameters (t = 1, . . . , T , i = 1, . . . , n,

and j = 1, . . . , n):

(a) sample βF
ij |Y , τFij , z

F
ij ,hi,β

G,f from the Gaussian full conditional N (βF
ij |β̄F

ij , Σ̄
F
β,ij);

(b) sample τFij |Y ,βF
ij ,hi, z

F
ij from the full conditional p(τFij |Y ,βF

ij ,hi, z
F
ij) using a slice

sampler;

(c) sample zFij |βF
ij ,p

F
ij from the categorical full conditional Cat(zFij |p̄F

ij);

(d) sample pF
ij |zFij from the Dirichlet full conditional Dir(pF

ij |c̄Fij);

2. sample the factors, the spline coefficients, and related hyper-parameters (t = 1, . . . , T ,

i = 1, . . . , n, and q = 1, . . . , Q):

(a) sample the factors ft|yt,β
F ,βG,ht,vt using a Metropolis-Hastings step, with pro-

posal given by the posterior distribution of a linear factor stochastic volatility spec-

ification;

(b) sample βG
iq|Y , τGiq , z

G
iq ,vi,f from the Gaussian full conditional N (βG

iq|β̄G
iq , Σ̄

G
β,iq);

(c) sample τGiq |f ,βG
iq,vi, z

G
iq from the full conditional p(τGiq |F ,βG

iq,vi, z
G
iq) using a slice

sampler;

(d) sample zGiq |βG
iq,p

G
iq from the categorical full conditional Cat(zGiq |p̄G

iq);

(e) sample pG
iq|zGiq from the Dirichlet full conditional Dir(pG

iq|c̄Giq);

3. sample the history of the log-volatilities and related hyper-parameters, given Y ,F ,β,Λ,

using the R-package stochvol (Kastner, 2016).

6 Evidence using Artificial Data

6.1 Univariate model

In this section, we test the ability of the model proposed in Section 3 to XXXXX

To assess the classification performance of the model, Fig. 2 shows the posterior distri-

bution of the allocation variable, zj . We find that, in settings where the type of relationship

between the response and the covariate is included in the collection of subspaces {Φl}, then

our model shrinks towards the correct function. Conversely, when the true relationship is not

represented in the collection of subspaces (e.g., sinusoidal case), then the model assigns higher

weight to the nonparametric spline part (as reported by ω).
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Figure 1: Observed (dots) and fitted values (solid line). Univariate model, with
K = 9 covariates.
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Figure 2: Posterior distribution (histogram) and real value (dashed red line) of
the allocation variable zk, k = 1, . . . ,K.

σ = 0.001 σ = 0.1 σ = 0.5 σ = 1 σ = 3

linear K = 3 0.883 0.914 0.945 0.922 0.827
(0.152) (0.139) (0.120) (0.133) (0.198)

K = 5 0.833 0.822 0.844 0.842 0.711
(0.144) (0.165) (0.151) (0.173) (0.205)

quadratic K = 3 0.690 0.688 0.662 0.715 0.777
(0.201) (0.186) (0.203) (0.232) (0.191)

K = 5 0.630 0.657 0.653 0.690 0.676
(0.176) (0.168) (0.170) (0.171) (0.181)

Table 1: F1 Score computed over different simulated scenario
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6.2 VAR model

Synthetic data have been generated from a nonlinear, homoskedastic, stationary VAR(1) model,

where the relationship between the endogenous variables and their lagged values is one of the

following: (i) linear, (ii) quadratic, (iii) sinusoidal, or (iv) zero (i.e., variable yj,t−1 has no

impact on yi,t). We consider a medium-sized model with n = 20 and fix the noise covariance to

Σ = 0.52In. The proposed VAR model is estimated assuming q = 2 factors and independent,

stationary stochastic volatility processes for the idiosyncratic component of the noise variance.

Overall, this results in the estimation of a miss-specified model.

Figure 3 compares the simulated data and the fitted values, providing evidence of the

ability of our method to correctly recover the observed paths in the data, also in presence of

rapid changes and non-stationary behaviors.
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Figure 3: Observed (dots), fitted values (solid line), and 95% credible intervals (color shade). VAR
with factor SV model, with n = 20 endogenous variables and true variance σ2

y = 0.50In.
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Figure 4: Left: posterior distribution (histogram) and true value (red, dashed line) of some of
the allocation variable zij . Right: posterior distribution (histogram), posterior mean (black, dashed
line), and 0.5 line (blue, solid line) of the parameter ωij . VAR with factor SV model, with n = 20
endogenous variables and true variance σ2

y = 0.50In.

7 Real Data Application to US inflation (univariate)

As common practice in VAR models with factor stochastic volatility, we investigate the prop-

agation of exogenous shocks within the system by considering the effects of a change in the

unobserved factor, ft. Specifically, to obtain an impulse response function we simulate a shock

to the k-th factor, fk,t, and compute the associated change to the other variables. Instanta-

neously, the transmission is driven by the respective factor loadings, whereas the lagged effects

are given by the recursive structure of the system.

8 Conclusions

We have proposed an extension of VAR models that accounts for nonlinear and sparse effects,

idiosyncratic stochastic volatility, and unobserved heterogeneity. The flexibility is achieved by

means of a novel class of nonparametric prior distributions, the mixture functional horseshoe

prior (mfHS), which generalizes the subspace shrinkage priors of Shin, Bhattacharya, and

Johnson (2020) in two directions. First, we go beyond the univariate regression and define

a prior of interest for investigating multivariate time series models. Second, we introduce

a mixture to allow (possibly) different shrinkage for each response-covariate variables pair.

14



Moreover, we capture potentially nonlinear and sparse unobserved heterogeneity effects by

specifying the proposed mfHS prior for the latent factors, thus extending the linear factor

stochastic volatility model.
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A Posterior sampling

The posterior sampling for the extended model samples from the full conditional distributions

below.

Sample the coefficient vector β
(i)
j The spline coefficient vectors, β(i)

j , i = 1, . . . , n and

j = 1, . . . , n, are sampled from the Gaussian full conditional distribution

β
(i)
j |yi, Hi, ωij , zij ∼ N (β̄z,ij , Σ̄z,ij) (19)

where Σ̄z,ij = (Φ′
ijH

−1
i Φij +

ωij

1−ωij
Φ′
ij(I −Q0,zij )Φij)

−1 and β̄z,ij = Σ̄z,ijΦ
′
ijyi.

Sample the auxiliary parameter τij The full conditional distribution of the auxiliary

parameter τij , i = 1, . . . , n and j = 1, . . . , n, is

τij |y,β(i)
j , Hi, zij ∝ (τ2ij)

−(kn−d0,zij )/2+b−1/2(1 + τ2ij)
−(a+b)

· exp
(
− β

(i)′
j Φ′

ijH
−1/2
i (I −Q0,zij )H

−1/2
i Φijβ

(i)
j /2

)
.

We use a slice sampler based on the reparametrization ηij = 1/τ2ij . The conditional posterior

for ηij is

ηij |y,β(i)
j , Hi, zij ∝ η

a+(kn−d0,ij)/2−1
ij (1 + ηij)

−(a+b)

· exp
(
− β

(i)′
j Φ′

ijH
−1/2
i (I −Q0,zij)H

−1/2
i Φijβ

(i)
j /2

)
.

Let TGa(x|a, b, S) ∝ Ga(x|a, b)IS(x) denote the Gamma distribution truncated on S. We

proceed as follows

• set rij = (1 + ηij)
−(a+b). Sample the slice variable

uij |ηij ∼ U(0, rij), (20)

• set r∗ij = u
−(a+b)−1−1
ij and S = (0, r∗ij). Sample ηij from

ηij |y,β(i)
j , Hi, uij , zij ∼ TGa(a0,ij , b0,ij , Sij), (21)

where a0,ij = a + (kn − d0,zij )/2 and b0,ij = β
(i)′
j Φ′

ijH
−1/2
i (I − Q0,zij )H

−1/2
i Φijβ

(i)
j /2.
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Finally, set τ2ij = η−1
ij .

Sample the allocation variable zij

P (zij = ℓ|β(i)
j , Hi, ωij ,pij) ∝ pℓ,ijP (β

(i)
j |ωij , zij = ℓ) (22)

Sample the mixing probability vector pij Let nz,ij = (I{1}(zij), . . . , I{L}(zij))′. The full

conditional distribution of the probability vector pij is the Dirichlet distribution:

pij |zij ∼ Dir(c̄+ nz,ij). (23)

Sample the path of the stochastic volatility of the observations, H, and related

hyperparameters The full history of the individual (log-)stochastic volatilities of the obser-

vations, {hit}t, i = 1, . . . , n, is sampled along with the hyper-parameters driving the dynamics,

(µh,i, ϕh,i, σ
2
h,i), using the R stochvol package.

Sample the latent factors ft Let Σt = diag(e−h1,t/2, . . . , e−hn,t/2), ỹt = Σt(yt − Φβ),

Λ̃t = ΣtΛ, and Vt = diag(e−v1,t/2, . . . , e−vq,t/2). The full conditional distribution of the latent

factors ft, t = 1, . . . , T , is the Gaussian distribution

ft|yt,β, Ht, Vt,Λ ∼ N (µ̄f,t, Σ̄f,t),

where Σ̄f,t = (Λ̃′
tΛ̃t + Vt)

−1 and µ̄f,t = Σ̄f,tΛ
′ỹt.

Sample the factor loadings Λ Let Σi = diag(e−hi,1/2, . . . , e−hi,T /2), ỹi = Σi(yi−
∑n

j=1Φijβ
(i)
j )

and f̃i = ΣiF . The full conditional distribution of each row of the factor loadings Λi,•,

i = 1, . . . , n, is the Gaussian distribution

Λi,•|y,β, H, F ∼ N (µ̄λ,i, Σ̄λ,i),

where Σ̄λ,i = (f̃ ′
i f̃i + Iq)

−1 and µ̄λ,i = Σ̄λ,if̃
′
i ỹi.

Sample the path of the stochastic volatility of the latent factors, V , and related

hyperparameters The full history of the individual (log-)stochastic volatilities of the latent

factors, {vlt}t, l = 1, . . . , 1, is sampled along with the hyper-parameters driving the dynamics,

2



(ϕv,l, σ
2
v,l), using the R stochvol package. We refer to Kastner and Frühwirth-Schnatter

(2014) for further details. In particular, the log-volatilities are joint sampled all without a

loop. The sampler adapts the ancillarity-sufficiency interweaving strategy, which exploits a

reparametrization of the log-volatility process to transfer the level of log-variance µ and/or

its volatility σ2 from the state process to the observation process. These parameters are

sampled twice in each iteration, one in the centered and one in non-centered parametrizations,

and the overall scheme reduces the correlation of MCMC draws. In practice, in the centered

parametrization all the parameters are drawn using a MH step, whereas in the non-centered

one (µ, σ) are jointly sampled from a bivariate normal full conditional and ϕ via a MH step

with normal proposal.

3


	Introduction
	The univariate model
	Non-parametric VAR models
	Function approximation using B-splines

	The Prior
	Mixture Functional Horseshoe Prior
	Priors on the remaining model parameters
	Selecting the number of factors

	Posterior sampling
	Evidence using Artificial Data
	Univariate model
	VAR model

	Real Data Application to US inflation (univariate)
	Conclusions
	References
	Posterior sampling

