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Abstract

We propose a prior for VAR models that exploits the panel structure of macroeco-

nomic time series while also providing shrinkage towards zero to address overfitting

concerns. The prior is flexible as it detects shared dynamics of individual variables

across endogenously determined groups of countries. We demonstrate the useful-

ness of our approach via a Monte Carlo study and use our model to capture the

hidden homo- and heterogeneities of the euro area member states. Combining pair-

wise pooling with zero shrinkage delivers sharper parameter inference that improves

point and density forecasts over only zero shrinkage or only pooling specifications,

and helps with structural analysis by lowering the estimation uncertainty.
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*Jan Prüser gratefully acknowledges the support of the German Research Foundation (DFG,
468814087).

�Corresponding Author: Fakultät Statistik, 44221 Dortmund, Germany, e-mail:
prueser@statistik.tu-dortmund.de

�Hohenzollernstr. 1–3, 45128 Essen, Germany, e-mail: boris.blagov@rwi-essen.de



1 Introduction

The popularity of Bayesian VAR (BVAR) models for forecasting and structural analysis

has risen throughout the past decade. Due to their rich parametrization VARs can fit

the data well. However, macroeconomic time series are rather short leading to the risk

of overfitting and imprecise inference. BVARs using the Minnesota prior have a long and

successful history to address this problem (e.g., Doan et al. (1984), Litterman (1986), Sims

and Zha (1998), Bańbura et al. (2010), Giannone et al. (2015), Koop (2013), Carriero et al.

(2016), Korobilis and Pettenuzzo (2019), Huber and Feldkircher (2019), Chan (2020) and

Cross et al. (2020)). The Minnesota prior shrinks most VAR coefficients towards zero

and provides regularization from a frequentist viewpoint. In this paper we consider com-

bining the popular Minnesota prior with additional cross-country information to improve

parameter inference.

Assume we have data for a set of countries which could be homogeneous or hetero-

geneous. If the countries are heterogeneous, we would estimate individual BVARs with

each dataset. However, short time series are problematic for precise parameter inference,

and shrinkage towards zero is the main strategy to deal with this issue. Alternatively, if

we are confident in the similarity of the countries, we could take a panel VAR route by

imposing similar dynamics across all variables and thus improving estimation inference

by utilizing the cross-country dimension. The more alike countries are, the more increas-

ing their number will compensate for the individual time series’ lengths and the sharper

the parameter inference will be. However, in practice, as the country dimension grows,

heterogeneity naturally increases. It could be that groups of countries share similar char-

acteristics in some way, while others do not. For example, trading partners, nations with

similar legal systems or fiscal rules, or countries with cross-border policies such as the

common monetary policy in the euro area could all give rise to clustering. Importantly,

this clustering does not have to be across all variables for all countries. The euro area is

a perfect example of such data set, where individual member states are highly integrated

across some dimensions, such as the financial markets, while starkly different in others,

such as the labour markets. Furthermore, prices of tradable goods in the common mar-
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ket are expected to share similar dynamics, while at the same time member states that

specialize in particular industries could share production booms and busts not present in

others. The advanced economies, such as the G-7 group, are another example that could

give rise to clustering, while sharing many characteristics. For example, Canada and the

US are expected to be more tightly integrated with each other as they are with Germany,

France, and/or Italy who themselves could build clusters across different dimensions.

At one end of the spectrum, single-country VARs provide a good setup for capturing

individual characteristics and heterogeneity while panel VARs shine when the homogene-

ity is high. In this paper we provide an alternative that profits from both dimensions in

the form of a new prior for BVARs that combines parameter shrinkage towards zero while

also exploiting the cross-country dimensions in a flexible manner. We propose to estimate

BVARs for each country individually using standard tools such as the Minnesota prior

to achieve parsimony while also searching the country space for similar dynamics in the

form of pooling pairwise VAR coefficients of individual variables across countries. Thus,

our proposed algorithm is able to detect the degree of similarity of individual coefficients

across countries and identifies country pairs, and therefore clusters, with similar dynamics

without imposing any structure ex-ante.

Taken together our main contribution is to propose a flexible pooling prior which al-

lows for parameter pooling across both a country dimension (e.g. countries have similar

dynamics across all variables) and/or variable dimension (dynamics of two or more vari-

ables across countries are alike) and at the same time achieves parsimony by providing zero

shrinkage of the parameters using the popular Minnesota prior. Hence, from a frequentist

view point our prior penalizes both deviations from zero as well as deviations between

the coefficients across countries. How much such deviations are penalized is determined

by a set of hyperparameters. They play an important role in our model and their choice

is not straightforward. High hyperparameter values lead to a low degree of penalization

(i.e. to a rather flat prior) which does not offer protection against overfitting. Similarly,

low values lead to a high degree of penalization (i.e. to a highly informative prior), which

suppresses important signals from the data. We address the problem of choosing these

hyperparameters in a hierarchical fashion by providing a two step estimation strategy,
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which leads to a balanced solution between the two extremes. Furthermore, this estima-

tion lets us detect which countries pairs and/or which variables share similar dynamics

without the need to impose any structure ex-ante, making the model highly flexible.

We perform Monte Carlo simulations in order to investigate the frequentist estimation

properties of our approach. In total, we consider three different data generating processes

(DGPs). The first assumes that three countries are dissimilar to each other, the second

assumes that two of the three countries share similar dynamics across all variables and the

last assumes that only some individual’s variables are similar across countries. We show

that our estimation strategy provides sensible estimates for all three different scenarios.

Hence, in contrast to panel specifications, we do not need to make assumptions about the

structure or homogeneity between economies prior to taking our model to the data as our

approach can adapt to different scenarios. Examining the convergence properties of our

model, we find that the parameter estimates are perfectly reasonable in normal sample

sizes and naturally the parameters are more precisely estimated as the sample size grows.

The model should be well suited to capture the homo- and heterogeneities of the euro

area. Our dataset consists of ten of the largest euro area member states that approximate

together close to 95% of euro area GDP. We evaluate the forecasting performance of our

model against single country VARs with different variants of the Minnesota prior and

different panel VARs with pooling priors. The forecasting exercise reveals that combin-

ing zero shrinkage with pooling leads to improvements in forecasting performance both

in terms of point and density forecasting, outperforming single country VARs with Min-

nesota prior as well as different panel VAR specifications. In contrast, approaches which

provide solely pooling perform relatively worse compared to single country VARs with

the Minnesota prior. An exercise with a different dataset of the G-7 advanced economies

reveals that relative forecasting performance of our approach is robust.

Furthermore, we showcase how the hierarchical estimation of the hyperparameters

may be used for the analysis of the similarities and dissimilarities of the lagged structure

of production, prices, and interest rates across the euro area and the G-7 economies. We

uncover distinctive production dynamics in Spain and the United Kingdom.

Finally, we demonstrate the usefulness of the proposed method for structural analysis.
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The improved inference of our pooling prior provides sharper estimation leading to much

narrower probability intervals. For example, a single country setting for the individual

euro area member states shows that contractionary monetary policy shock does not lead

to fall in production in a statistically meaningful way - the average response of production

drops but the uncertainty surrounding the estimates is large and include the zero line,

even with 68% error bands. This is true for both a recursive identification as well as a sign

restriction approach. In contrast, using the pooling prior combined with zero shrinkage

estimates the effects of an interest rate hike more precisely. In this case the probability

intervals of the response of output does not include the zero line in all periods.

On the methodological front this paper contributes to the literature on developing

pooling prior for VARs. For example Zellner and Hong (1989) and Jarocinski (2010)

propose a prior which pools all VAR coefficients towards a common mean. Closely related

to this these papers are a factor approach of Canova and Ciccarelli (2009) and a pooled

mean group estimator of Pesaran et al. (1999). Our prior is more flexible by allowing

that only some subsets of countries share similar dynamics as in Koop and Korobilis

(2015). Koop and Korobilis (2015) provide an algorithm which can construct restricted

PVARs, which imposes homogeneity between all possible pairs of different countries if

empirically warranted. However, their prior cannot account for the case in which only

a subset of VAR coefficients is similar between countries. Our prior allows for this.

Furthermore, these papers propose priors which do not provide shrinkage towards zero.

Korobilis (2016) introduces priors which can shrink the VAR coefficients either towards

zero or towards a common cluster. Our prior is more flexible by allowing for homogeneous

and heterogeneous dynamics simultaneously and for both pooling and shrinkage at the

same time. We find this flexibility to be empirically important. In particular, we show

that it is beneficial to have both pooling and shrinkage at the same time and only pooling

may not be enough to alleviate overfitting concerns.

Last but not least, the likelihood based approach taken in this paper is flexible and

modular. For example, one can extend our approach by allowing for dynamic interactions

from one country to another as in e.g. Koop and Korobilis (2015) or Feldkircher et al.

(2022). Another interesting extension would be to allow for outliers to handle the sequence
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of extreme observations due to Covid-19. These outliers can have quite a big influence

on the parameter estimates. Our model can be combined with approaches from Carriero

et al. (2021) or Prüser (2021) in order to downweigh such observations.

The remainder of this paper is organized as follows. Section 2 lays out and discusses

the econometric framework. Section 3 contains a simulation study. Section 4 applies the

model to a real dataset of the euro area for forecasting and structural analysis. Section 5

concludes.

2 Econometric Framework

In this section, we discuss how we stack many individual country VARs into one large

VAR and, based on this representation, we introduce our prior. Finally, we discuss how to

estimate the parameters which determine the strength of our prior - the hyperparameters

- as to endogenously determine the similarity across countries.

2.1 The VAR model

Let ynt be a G× 1 vector of endogenous variables for country n at time t. Each country

VAR can be written as

ynt =
P∑
p=1

γnpyn,t−p + εnt, εnt ∼ N(0,Σn), (1)

and in more compact form

Y n = xnΓn +Un, (2)

where Y n = (ynt, . . . ,ynT )′, the t-row of xn is given by (y′n,t−1, . . . ,y
′
n,t−p) and Γn =

(γn1, . . . ,γnP )′. We omit the constant for simplicity. In practice this is implemented by

demeaning our data prior to the estimation and adding back the mean afterwards. By

vectorizing equation (2) we get

yn = (IG ⊗ xn)γn + un, un ∼ N(0,Σn ⊗ IT ), (3)
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with yn = vec(Y n) and γn a K × 1 vector containing all VAR coefficients, where

K = G2P . Define ỹ = vec(y1, . . . ,yN) and x̃ = (IG ⊗ x1, . . . , IG ⊗ xN) we can write all

country VARs as one large VAR

ỹ = (IN ⊗ x̃)β + ũ, ũ ∼ N(0, Σ̃⊗ IT ). (4)

We assume a conditional normal prior for β ∼ N(0,V β). Now we can use standard linear

regression results to get the conditional posterior distribution of β. The conditional

posterior of β is N(β̂,K−1β ) with1

β̂ = K−1β ((IN ⊗ x̃)′(Σ̃
−1 ⊗ IT ))ỹ), (5)

Kβ = V −1β + (IN ⊗ x̃)′(Σ̃
−1 ⊗ IT )(IN ⊗ x̃), (6)

Would the prior inverse covariance matrix V −1β be a diagonal matrix then the esti-

mation of the large VAR would be identical to the estimation of many small individual

country VAR models. Instead, we introduce a prior inverse covariance matrix with non-

zero diagonal elements which pool the coefficients across individual country VARs together

to exploit the panel structure of the data.

2.2 A combined shrinkage and pooling prior

Our main contribution is to propose a new prior for a set of country VARs. The new

prior combines the Minnesota prior with a flexible pooling prior. While the Minnesota

prior shrinks the VAR coefficients towards zero, the pooling prior pushes the coefficients

of one country VAR towards the coefficients of the other country VARs. The Minnesota

prior is given by

γnj = N(0, V Min
nj ), (7)

with j = 1, . . . , K and

1We note that draws from the high-dimensional distribution N(β̂,K−1
β ) can be obtained efficiently

without inverting any large matrices; see, e.g., Chan (2021) for computational details.
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V Min
nj =


κ21,n
p2
, for own lags

κ22,n
p2
, for cross-variable lags

. (8)

The hyperparameters κ1,n and κ2,n control the informativeness of the prior. We follow

Giannone et al. (2015) and estimate them by using a hierarchical prior which we introduce

in the next section. Cross et al. (2020) compare the forecasting performance of the

Minnesota prior with a range of other proposed priors in the literature and find that

the Minnesota prior remains a solid choice. In our forecasting exercise, we also consider

another more flexible variant of the Minnesota prior proposed by Chan et al. (2021).

Our prior provides both shrinkage towards zero as well as pooling towards the other

country VARs coefficients:

logp(β) ∝
N∑
n=1

K∑
j=1

γ2nj
V Min
nj

+
K∑
j=1

N−1∑
i=1

N∑
m=i+1

(βj+K(i−1) − βj+K(m−1))
2

λ2i,m,jτ
2
i,m

, (9)

=
N∑
n=1

K∑
j=1

γ2njzj,n + 2
K∑
j=1

N−1∑
i=1

N∑
m=i+1

βj+K(i−1)βj+K(m−1)κi,m,j, (10)

with zj,n =
(

1
VMin
nj

+ 1
λ21,n,jτ

2
1,n

+ · · ·+ 1
λ2n−1,n,jτ

2
n−1,n

+ 1
λ2n+1,n,jτ

2
n+1,n

+ · · ·+ 1
λ2N,n,jτ

2
N,n

)
and

κi,m,j = −1
λ2i,m,jτ

2
i,m

. The two hyperparameters λ2i,m,j and τ 2i,m are crucial as they influence

how much the VAR coefficients of the different countries will be pooled together. If

λ2i,m,jτ
2
i,m goes to 0, the VAR coefficients will become identical across countries. On the

other hand, if λ2i,m,jτ
2
i,m goes to∞ the prior influence vanishes. We discuss the estimation

and further interpretation of these pooling hyperparameters in the next section. Equation

(10) reveals that the prior is normal β ∼ N(0,V β) and V −1β has the following structure
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

z1,1 . . . 0 κ1,2,1 . . . 0

...
. . .

...
...

. . .
...

0 . . . zK,1 0 . . . κ1,2,K

κ1,2,1 . . . 0 z1,2 . . . 0

...
. . .

...
...

. . .
...

0 . . . κ1,2,K 0 . . . zK,2

. . .

κ1,N−1,1 . . . 0 κ1,N,1 . . . 0

...
. . .

...
...

. . .
...

0 . . . κ1,N−1,K 0 . . . κ1,N,K

κ2,N−1,1 . . . 0 κ2,N,1 . . . 0

...
. . .

...
...

. . .
...

0 . . . κ2,N−1,K 0 . . . κ2,N,K
...

. . .
...

κ1,N−1,1 . . . 0 κ2,N−1,1 . . . 0

...
. . .

...
...

. . .
...

0 . . . κ1,N−1,K 0 . . . κ2,N−1,K

κ1,N,1 . . . 0 κ2,N,1 . . . 0

...
. . .

...
...

. . .
...

0 . . . κ1,N,K 0 . . . κ2,N,K

. . .

z1,N−1 . . . 0 κN−1,N,1 . . . 0

...
. . .

...
...

. . .
...

0 . . . zK,N−1 0 . . . κN−1,N,K

κN−1,N,1 . . . 0 z1,N . . . 0

...
. . .

...
...

. . .
...

0 . . . κN−1,N,K 0 . . . zK,N



.

Hence, zj,n are the diagonal elements of V −1β and κi,m,j are the non-zero off diagonal ele-

ments.

2.3 Estimation of hyperparameter

The choice of hyperparameters is not straightforward. While overly high values lead to a

rather flat prior which does not offer protection against overfitting, overly low values will

suppress important signals from the data. The estimation of the hyperparameters of our

prior may lead to a balanced solution between the two extremes. We follow Prüser (2022)

and assume half Cauchy prior for the hyperparameters of the Minnesota prior

κ1,n ∼ C+(0, 1), (11)

κ2,n ∼ C+(0, 1). (12)

In order to obtain conditional posterior distributions for each of the hyperparameters,

we follow Makalic and Schmidt (2016) and exploit the scale mixture representation of

the half-Cauchy distribution. The scalar mixture representation stems from the fact

that, if X and w are random variables such that X2|w ∼ IG(1
2
, 1
w

) and w ∼ IG(1
2
, 1),

then X ∼ C+(0, 1). Since the Gaussian and inverse gamma distributions are conjugate

distributions, it is straightforward to derive the posteriors of the hyperparameters. The
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conditional posterior distributions are given by:

κ21,n ∼ IG

(
PG+ 1

2
,

1

vκ21,n
+ 0.5

P∑
p=1

∑
j∈Io

γ2nj
p2

)
, (13)

κ22,n ∼ IG

(
PG(G− 1) + 1

2
,

1

vκ22,n
+ 0.5

P∑
p=1

∑
j∈Ic

γ2nj
p2

)
, (14)

vκ21,n ∼ IG

(
1, 1 +

1

κ21,n

)
, (15)

vκ22,n ∼ IG

(
1, 1 +

1

κ22,n

)
, (16)

where Io denotes the set of own lags and Ic of cross-variable lags. Gelman (2006) and

Polson and Scott (2012) provide strong theoretical arguments for using the half-Cauchy

distribution over an inverse-Gamma distribution for the scale parameters. Therefore, we

also consider half-Cauchy prior for the hyperparameters of the pooling part of our prior

τi,m ∼ C+(0, 1), (17)

λi,m,j ∼ C+(0, 1). (18)

The hyperparameter τi,m is country specific and shrinks all VAR coefficients of the country

pair to each other. The local hyperparameter λi,m,j is variable specific and can prevent

individual VAR coefficients from being pooled together. We borrow this idea from the

horseshoe prior, proposed by Carvalho et al. (2010), which provides shrinkage towards

zero. The horseshoe prior is free of tuning parameters and has many appealing frequen-

tist properties, see, e.g., Ghosh et al. (2016), Armagan et al. (2013) and van der Pas

et al. (2014). We again follow Makalic and Schmidt (2016) and exploit the scale mixture

representation of the half-Cauchy distribution. The conditional posterior distributions

turn out to be

τ 2i,m ∼ IG

(
K + 1

2
,

1

vτ2i,m
+ 0.5

K∑
j=1

(βj+K(i−1) − βj+Km)2

λ2i,m,j

)
, (19)

9



λ2i,m,j ∼ IG

(
1,

1

vλ2i,m,j

+ 0.5
(βj+K(i−1) − βj+Km)2

τ 2i,m

)
, (20)

vτ2i,m ∼ IG

(
1, 1 +

1

τ 2i,m

)
, (21)

vλ2i,m,j
∼ IG

(
1, 1 +

1

λ2i,m,j

)
. (22)

(23)

We have derived the conditional posterior of all model parameters.2 Hence, we use

a Gibbs sampler to draw all parameters from their joint posterior distribution. With

one exception, we use fixed values for τi,m and λi,m,j. The reason is that the pooling

hyperparameters are highly positively correlated through the VAR coefficients and with

increasing N all the hyperparameters will be estimated to be close to zero. Such an

informative prior is clearly undesirable. We propose a simple practical solution; we es-

timate them independently of each other by sampling from their conditional posterior

distribution using the draws of the unrestricted posterior (i.e. draws from the posterior

from the individual country VARs without pooling prior). This has the advantage that

these hyperparameters will no longer be correlated. We obtain point estimates by using

the median of these draws for τi,mλi,m,j. In a second step, we insert these point estimates

into V −1β and employ the Gibbs sampler to draw the remaining parameter from their

joint posterior distribution. In the next section, we carefully investigate the frequentist

properties of our estimation strategy.

3 Simulation Study

In this section, we perform a Monte Carlo simulation to display the pooling properties

of the priors across different scenarios. Suppose we want to generate a dataset for three

countries and three variables per country, such that N = 3 and G = 3. For ease of

future reference let the countries be named A, B, and C and their corresponding variables

yi, πi, ri where i ∈ {A,B, C}.
2We assume an inverse Wishhart prior for the covariance matrix of the country VAR models and due

to conjugacy its conditional posterior follows an inverse Wishhart distribution.
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Suppose that for a country i we have a stable VAR with two lags of the form:


yit

πit

rit

 =


ai11 ai12 ai13

ai21 ai22 ai23

ai31 ai32 ai33



yit−1

πit−1

rit−1

+


bi11 bi13 bi13

bi21 bi22 bi23

bi31 bi32 bi33



yit−2

πit−2

rit−2

+ eit, eit ∼ N(0,Σi). (24)

With N = 3 equations per DGP we have a total of nine such equations. A concise

way to present all the parameters in the panel VAR is to stack the VAR coefficients for

country i in a vector βi, such that the first GP × 1 block corresponds to the parameters

of the first equation, the next block the coefficients of the second equation and so on. We

then collect the country vectors in a matrix B = [β1, . . . , βN ] of dimensions GPG×N .

We will explore the following cases: (1) when the three countries are dissimilar to

each other; (2) when two countries share similar dynamics across all variables; (3) where

only individual variables or relationships are similar across countries. The corresponding

B matrices for the three DGPs are in Table 1. In DGP 1, we set all parameters across

countries A, B, and C to be distinct from one another. In the DGP 2, the parameters of

country B and C are chosen to be identical, indicated by the shaded areas in the table. In

DGP 3, we set the dynamics of the rt variable to be identical across the three countries,

such that the parameters are equal. Moreover, we set some of the relationships among

the other variables to be similar, for example rt−1 and rt−2 w.r.t. yt. Finally, we add some

cases where the parameters across only two of the three countries are identical. Note that

the parameter values themselves have been chosen with the sole purpose of producing

stable time series and have no other meaning. The covariance matrices Σi are chosen to

be diagonal for simplicity.

First we will examine the convergence properties of our model. To do so we generate

K=200 datasets from each GDP and do so for varying sample sizes, namely T=50, T=120,

and T=500. We calculate the mean absolute error (MAE) between the true coefficients

β, given in Table 1, and the estimated parameters β̂ as βMAE = 1
K

∑K
k=1

(
|β̂k − β|

)
for

each DGP and sample length. The vector βMAE has G ∗ G ∗ P = 54 entries per DGP.

For ease of exposition we calculate the average of βMAE and present it in Table 2. This is

done once for our pooling VAR model with Minnesota prior (pVAR) and for a traditional
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DGP 1 DGP 2 DGP 3
A B C A B C A B C

y t
eq

u
at

io
n

yt−1 0.50 0.80 0.20 0.50 0.80 0.80 0.20 0.70 0.90
πt−1 0.10 -0.20 0.20 0.10 -0.20 -0.20 0.10 -0.20 0.20
rt−1 -0.40 -0.10 0.00 -0.40 -0.10 -0.10 0.00 0.00 0.00
yt−2 -0.25 0.00 -0.30 -0.25 0.00 0.00 -0.05 -0.10 -0.30
πt−2 -0.20 0.20 0.00 -0.20 0.00 0.00 -0.20 0.00 0.00
rt−2 -0.40 0.10 0.40 -0.40 0.10 0.10 0.00 0.00 0.00

π
t

eq
u
at

io
n

yt−1 -0.20 0.00 0.30 -0.20 0.00 0.00 -0.20 0.10 0.00
πt−1 0.90 0.40 0.00 0.90 0.40 0.40 0.30 0.00 0.30
rt−1 -0.10 0.10 0.30 0.10 0.10 0.10 0.00 0.00 0.00
yt−2 0.00 -0.40 0.30 0.00 -0.40 -0.40 0.00 0.20 0.00
πt−2 0.00 -0.30 0.50 0.00 -0.30 -0.30 -0.40 -0.30 0.10
rt−2 -0.20 0.50 -0.50 -0.20 0.50 0.50 0.00 0.00 0.00

r t
eq

u
at

io
n

yt−1 0.20 0.00 0.50 0.20 0.00 0.00 0.00 0.00 0.00
πt−1 0.20 0.00 0.50 0.10 0.00 0.00 0.00 0.00 0.00
rt−1 0.75 0.25 -0.20 0.75 0.25 0.25 0.95 0.95 0.95
yt−2 0.00 0.30 -0.20 0.00 0.30 0.30 0.00 0.00 0.00
πt−2 -0.30 0.20 0.00 -0.30 0.20 0.20 0.00 0.00 0.00
rt−2 -0.25 -0.10 0.20 -0.24 -0.10 -0.10 -0.20 -0.20 -0.20

Table 1: VAR coefficients for the three data generating processes (DGPs). A, B, C denote
the countries. Shaded areas highlight the coefficients that are identical across countries.

Bayesian VAR with Minnesota prior but without pooling (BVAR).

Table 2 shows that the model converges, with the mean absolute errors falling as the

sample size increases. This exercise highlights that the combination of cross-sectional

pooling and Minnesota prior does not produce over-shrinkage. The potential issue is

that as Minnesota prior pulls the model parameters towards zero their similarity across

countries increases and the pooling prior could, by design, further reinforce this notion.

If that were the case, the model would not converge to the true parameters.

Furthermore, we see that even in the case of DGP 1, where all parameters are different

and a single-country BVAR would be more appropriate, our model performs almost as

good in terms of identifying the true parameters. Conversely it performs slightly better

for the more complicated cases, DGP 2 and DGP 3, respectively. In relative terms, in the

most complex scenario, DGP 3, the pooling prior shines in small sample sizes. Naturally,

as the sample length increases, the difference between the models disappears.

One of the main interests of the simulation study is to examine the estimated shrinkage
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DGP 1 DGP 2 DGP 3
T=50 T=120 T=500 T=50 T=120 T=500 T=50 T=120 T=500

pVAR 0.126 0.090 0.064 0.114 0.075 0.046 0.067 0.048 0.029
BVAR 0.117 0.085 0.064 0.113 0.075 0.048 0.073 0.051 0.030
relative 1.054 1.064 1.017 0.985 0.993 0.958 0.749 0.832 0.935

Table 2: Mean absolute errors (MAE), average over all coefficients. Estimated on 200
datasets with varying sample length T. BVAR: Bayesian VAR with Minnesota prior.
pVAR: pooling VAR with Minnesota shrinkage. We calculate the relative MAE for each
individual coefficient and then take the average.

parameters in relation to the true coefficients. We want to see whether they can extract

the country similarities given in the DGPs. With three countries there are three possible

country pairs - (A,B), (A, C), and (B, C), yielding N = 3 hyperparameters τ , as well as

KN = GPGN = 18 ∗ 3 parameters λ that shrink the coefficients across equation pairs.

Let Λ(n,m) denote the product of the two sets of hyperparameters for each country pair

(n,m) such that Λ(n,m) = [τn,mλn,m,1, . . . , τn,mλn,m,K ]′.

We present the estimated Λ pairs in the last three columns of Table 3 along with the

true parameters for DGP 1. The fourth column denotes the estimated shrinkage of the

parameters in columns A and B (say 0.5 and 0.8 for the first row), the second column

A and C (say 0.5 and 0.2 for the first row) and similarly the last column captures the

estimated shrinkage of B and C (say 0.8 and 0.2 for the first row).

In a sense, these numbers indicate the degree of similarity found in the data across

the variable pairs. Values closer to 0 indicate high degree of shrinkage, i.e. high degree

of similarity, while values away from 0 suggest the opposite. Similarly to the shrinkage

parameters in the Minnesota prior, the magnitudes alone are difficult to interpret, i.e.

Λn,m
j = 0.25 does not have a specific meaning. However, the values may be examined

relative to one another as lower magnitudes indicate higher degree of similarity.

The estimated shrinkage pairs in Table 3 appear colorful. We see that most values lie

between 0.10 and 0.30 with few cases of much higher values. The lowest instance of the

shrinkage pairs is 0.03 in the second own lag of the yt equation. The true parameter pair

in that case (yAt−2, y
C
t−2) = (−0.25,−0.30) is indeed close. The largest ΛA,C is 0.83 in the

first own lag of the rt equation, associated with rAt−1 = 0.75 and rCt−1 = −0.20. Overall

there is a clear trend in Table 3 as the true parameters are further apart, the estimated

13



DGP 1 Shrinkage pairs

A B C Λ̂(A,B) Λ̂(A,C) Λ̂(B,C)

yt−1 0.50 0.80 0.20 0.15
(0.04)

0.16
(0.03)

0.41
(0.06)

y t
eq

u
at

io
n

yt−1 0.10 -0.20 0.20 0.15
(0.04)

0.14
(0.06)

0.38
(0.08)

rt−1 -0.40 -0.10 0.00 0.12
(0.03)

0.16
(0.04)

0.04
(0.02)

yt−2 -0.25 0.00 -0.30 0.12
(0.03)

0.03
(0.01)

0.15
(0.04)

πt−2 -0.20 0.20 0.00 0.26
(0.07)

0.14
(0.06)

0.08
(0.04)

rt−2 -0.40 0.10 0.40 0.22
(0.04)

0.67
(0.09)

0.27
(0.06)

yt−1 -0.20 0.00 0.30 0.06
(0.03)

0.14
(0.03)

0.08
(0.03)

π
t

eq
u

at
io

n

πt−1 0.90 0.40 0.00 0.30
(0.05)

0.76
(0.08)

0.24
(0.04)

rt−1 -0.10 0.10 0.30 0.06
(0.02)

0.13
(0.03)

0.06
(0.02)

yt−2 0.00 -0.40 0.30 0.27
(0.05)

0.07
(0.02)

0.42
(0.07)

πt−2 0.00 -0.30 0.50 0.15
(0.04)

0.30
(0.05)

0.62
(0.06)

rt−2 -0.20 0.50 -0.50 0.31
(0.04)

0.11
(0.03)

0.55
(0.06)

yt−1 0.20 0.00 0.50 0.12
(0.05)

0.06
(0.02)

0.20
(0.06)

r t
eq

u
at

io
n

πt−1 0.20 0.00 0.50 0.16
(0.07)

0.25
(0.09)

0.56
(0.08)

rt−1 0.75 0.25 -0.20 0.30
(0.05)

0.83
(0.09)

0.28
(0.05)

yt−2 0.00 0.30 -0.20 0.23
(0.06)

0.06
(0.03)

0.36
(0.07)

πt−2 -0.30 0.20 0.00 0.54
(0.13)

0.31
(0.10)

0.12
(0.04)

rt−2 -0.25 -0.10 0.20 0.07
(0.03)

0.26
(0.05)

0.16
(0.04)

Table 3: True VAR coefficients and estimated shrinkage hyperparameters for each country
pair for DGP1. Standard deviation of the estimated hyperparameters in brackets.

shrinkage pairs are correspondingly high.

When it comes to DGP 1 the usefulness of our approach is not immediately obvious.

To provide better inference the model exploits the cross-sectional dimension. This is

beneficial when there are enough similarities across the units. Given the stark differences

in DGP 1, estimating three single country VARs would probably suffice. However, DGP

2 provides a different view on the performance of the proposed priors.

Table 4 shows the estimated shrinkage pairs from the case where two countries are

exactly identical to each other. The last column shows that the model correctly identifies

the similarities across B and C. The parameter for rt−1 in the second equation is also

identical across the first three countries and this is reflected in the shrinkage parameters.
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The final Λn,m entries in Table 4 which are of similar small magnitude are the πAt−1 values

in the last equation. The identical pairs (πAt−1, π
B
t−1) = (0.10, 0, 00) and (πAt−1, π

C
t−1) =

(0.10, 0, 00) have equal estimated shrinkage of ΛA,B = ΛA,C = 0.05, respectively.

DGP 2 Shrinkage pairs

A B C Λ̂(A,B) Λ̂(A,C) Λ̂(B,C)

yt−1 0.50 0.80 0.80 0.14
(0.04)

0.14
(0.04)

0.02
(0.01)

y t
eq

u
at

io
n

πt−1 0.10 -0.20 -0.20 0.12
(0.03)

0.12
(0.04)

0.01
(0.00)

rt−1 -0.40 -0.10 -0.10 0.13
(0.03)

0.13
(0.03)

0.01
(0.00)

yt−2 -0.25 0.00 0.00 0.12
(0.03)

0.12
(0.03)

0.02
(0.01)

πt−2 -0.20 0.00 0.00 0.09
(0.03)

0.10
(0.03)

0.01
(0.00)

rt−2 -0.40 0.10 0.10 0.21
(0.04)

0.21
(0.04)

0.01
(0.01)

yt−1 -0.20 0.00 0.00 0.07
(0.03)

0.07
(0.03)

0.03
(0.01)

π
t

eq
u

at
io

n

πt−1 0.90 0.40 0.40 0.29
(0.05)

0.29
(0.05)

0.02
(0.01)

rt−1 0.10 0.10 0.10 0.02
(0.01)

0.02
(0.01)

0.02
(0.01)

yt−2 0.00 -0.40 -0.40 0.28
(0.06)

0.29
(0.06)

0.03
(0.02)

πt−2 0.00 -0.30 -0.30 0.16
(0.04)

0.15
(0.04)

0.02
(0.01)

rt−2 -0.20 0.50 0.50 0.33
(0.05)

0.34
(0.05)

0.02
(0.01)

yt−1 0.20 0.00 0.00 0.11
(0.04)

0.10
(0.05)

0.03
(0.02)

r t
eq

u
at

io
n

πt−1 0.10 0.00 0.00 0.05
(0.03)

0.05
(0.03)

0.02
(0.01)

rt−1 0.75 0.25 0.25 0.30
(0.05)

0.30
(0.05)

0.02
(0.01)

yt−2 0.00 0.30 0.30 0.26
(0.06)

0.25
(0.06)

0.03
(0.02)

πt−2 -0.30 0.20 0.20 0.41
(0.08)

0.41
(0.08)

0.02
(0.01)

rt−2 -0.24 -0.10 -0.10 0.06
(0.03)

0.06
(0.03)

0.02
(0.01)

Table 4: True VAR coefficients and estimated shrinkage hyperparameters for each country
pair for DGP 2. Standard deviation of the estimated hyperparameters in brackets.

Table 5 presents the case where the focus is on similar dynamics across countries for

specific variables only, notably the rt equation but also some random lags in the other

equations. Without exception, the model shrunk the identical coefficients correctly and

also did particularly well in the equations with a mix of similar and different dynamics.

Again, in instances where the true values are close to one another (e.g. yt equation,

(πAt−1, π
C
t−1) = (0.10, 0.20)) the estimated shrinkage hyperparameters are low Λ(A,C) = 0.02.

In reality, actual data is probably a mix of all three DGPs. While a case where two
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DGP 3 Shrinkage pairs

A B C Λ̂(A,B) Λ̂(A,C) Λ̂(B,C)

yt−1 0.20 0.70 0.90 0.27
(0.05)

0.44
(0.07)

0.07
(0.03)

y t
eq

u
at

io
n

πt−1 0.10 -0.20 0.20 0.10
(0.03)

0.02
(0.01)

0.10
(0.02)

rt−1 0.00 0.00 0.00 0.02
(0.01)

0.02
(0.01)

0.02
(0.01)

yt−2 -0.05 -0.10 -0.30 0.03
(0.01)

0.08
(0.03)

0.07
(0.02)

πt−2 -0.20 0.00 0.00 0.05
(0.02)

0.05
(0.02)

0.01
(0.00)

rt−2 0.00 0.00 0.00 0.02
(0.01)

0.02
(0.01)

0.02
(0.01)

yt−1 -0.20 0.10 0.00 0.14
(0.03)

0.06
(0.02)

0.05
(0.02)

π
t

eq
u

a
ti

o
n

πt−1 0.30 0.00 0.30 0.11
(0.03)

0.02
(0.01)

0.11
(0.04)

rt−1 0.00 0.00 0.00 0.02
(0.01)

0.02
(0.01)

0.02
(0.01)

yt−2 0.00 0.20 0.00 0.06
(0.02)

0.01
(0.00)

0.05
(0.02)

πt−2 -0.40 -0.30 0.10 0.04
(0.02)

0.25
(0.05)

0.17
(0.04)

rt−2 0.00 0.00 0.00 0.02
(0.01)

0.02
(0.00)

0.02
(0.00)

yt−1 0.00 0.00 0.00 0.01
(0.00)

0.01
(0.00)

0.01
(0.01)

r t
eq

u
at

io
n

πt−1 0.00 0.00 0.00 0.01
(0.01)

0.01
(0.00)

0.01
(0.00)

rt−1 0.95 0.95 0.95 0.02
(0.01)

0.02
(0.01)

0.02
(0.01)

yt−2 0.00 0.00 0.00 0.01
(0.00)

0.01
(0.00)

0.01
(0.00)

πt−2 0.00 0.00 0.00 0.01
(0.00)

0.01
(0.00)

0.01
(0.00)

rt−2 -0.20 -0.20 -0.20 0.02
(0.01)

0.02
(0.01)

0.02
(0.01)

Table 5: True VAR coefficients and estimated shrinkage hyperparameters for each country
pair for DGP 3. Standard deviation of the estimated hyperparameters in brackets.

countries are exactly identical, as in DGP 2, is hard to imagine, the extreme case of DGP

1, where every possible variable combination is completely different, is also unrealistic. It

is realistic to expect that data is a mix of all of the proposed processes - similar, yet not

identical dynamics across some variables and different among others.

Finally, these tables show the hyperparameter estimates for the case of T = 500 as

our goal is to focus on the similarity showcase abstracting from asymptotics. We relegate

the tables for T = 120 to the Appendix. Those results show that smaller sample sizes

lead to the same conclusions. The shrinkage parameter values from the smaller sample

are simply larger in absolute value, however, the relative structure among them remains

unchanged.
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4 Empirical Investigation

The model lends itself best to applications where different units might share common

dynamics across some characteristics but not among others. The euro area member

states follow a common monetary policy driven by the aggregate price dynamics and

the single market allows free movement of goods, capital, services, and persons. At the

same time, the member states have individual fiscal and legal systems which lead to

different rigidities across the different markets, for example the labour market. Moreover

the countries specialize in different industries, for example, the automotive industry is

particularly important in some member states while completely non-existent in others.

Hence, shocks to such industries would have disproportionate effects on production. This

also applies to aggregate shocks, such as the sovereign debt crisis, which affected southern

European nations disproportionately to northern member states.3

These features make the euro area particularly suitable for our model which allows

for a mix of homogeneity and heterogeneity across different macroeconomic variables.

First, we perform a forecasting exercise using euro area data and evaluate the forecasting

performance and then take a close look at the estimated hyperparameters to recover

potential similarities and dissimilarities across the main macroeconomic variables. Finally,

we look at the responses of a contractionary monetary policy shock on the member states

to evaluate the application of our framework for structural analysis.

4.1 Data

We collect a large dataset on 10 European countries: Germany, France, Italy, Spain,

Netherlands, Belgium, Austria, Portugal, Finland, and Greece. Throughout the paper we

will refer to the countries using their 2-digit ISO codes. A table with the abbreviations is

available in the Appendix, Table B.1. For each country we have chosen 7 variables: real

GDP (RGDP), the harmonised index of consumer prices (HICP), EURIBOR, Industrial

production (IP), Unemployment (UNEMP), the Economic Sentiment Index (ESI) and

the price of crude brent (OIL). The brent price and the interest rates are identical across

3The heterogeneity of the euro area member states and their short time series has been a motivation
for the development of the Bayesian panel VAR framework of Jarocinski (2010).
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countries.

The choice of the data is primarily based on our needs for a balanced panel with

identical units. The shrinkage across variables implies that each variable should be present

for each country. The chosen countries represent close to 95% of the euro area output, and

that these variables are frequently used for structural analysis the coverage should suffice.

Notably, we omit Ireland, where the way R&D expenditure was treated in the estimation

of GDP was altered in 2015. This change introduced a structural break and sharply

increased the volatility of the series as profits from licensing of intellectual property of

multinationals now entered investments. We therefore omit Ireland as to avoid issues with

outliers and volatility.4

Apart from the interest rates and the unemployment rate, the data is transformed to

be stationary by taking percentage growth rates. In case the seasonally adjusted data were

not available, seasonal adjustment using the X-13 ARIMA procedure has been performed.

All data has been standardized so that the VAR may be estimated without a constant.

However, we undo this transformation for the calculation of the forecasts and impulse

response functions (IRFs). The data is quarterly and spans a total of 79 observations

per country from 2000Q2 to 2019Q4. We refrain from including the COVID-19 pandemic

as to avoid estimation errors due to the large outliers. Since our model is based on a

standard BVAR with a Minnesota prior, any methods that can deal with the pandemic

outliers in the standard model (e.g Lenza and Primiceri (2020), Carriero et al. (2021) or

Prüser (2021)) are appropriate. The data is from Eurostat and has been obtained through

the Macrobond software.

4.2 Forecasting setup

In the forecasting exercise, we compare the performance of a range of different models.

First we look at three main specifications - a benchmark case and two versions of our

proposed pooling VAR. The benchmark specification is the traditional BVAR with a

Minnesota prior (BVAR). Our pooling VARs have also a Minnesota component along

4Alternatively one could take the growth of GDP from the production approach - gross value added.
However, we wanted to have a balanced panel of identical variables across units.
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with shrinkage across both the country and variable dimensions, i.e. with λn,m,j and τn,m

(pVARλ,τ ), as well as a version with country cross pooling only, namely τn,m (pVARτ ).

We then include a thorough comparison with a multitude of different models, as listed

in Table B.4 in the Appendix. We include a state-of-the art version of the single-country

VAR with a more flexible Minnesota prior as suggested by Chan et al. (2021) (BVAR+). In

addition, we test two specifications that utilize the cross-sectional dimension. A standard

Bayesian Panel VAR that restricts the VAR coefficients to be identical across countries,

as well as the Bayesian Panel VAR model of Jarocinski (2010), which allows for deviations

of the VAR parameters and is arguably one of the most flexible Panel VAR frameworks.5

To highlight the importance of using informative prior distributions in VAR models, we

consider a Bayesian VAR implementation with a flat prior (BVARf). Furthermore, the

combination of the pairwise pooling with a zero shrinkage has, to our knowledge, so

far not been proposed in a cross-sectional context. To evaluate the importance of this

addition we explore the pooling specification without zero shrinkage, i.e. the models

less the Minnesota part (pVARlmτ and pVARlmλ,τ ). Finally, we look at a robustness

specification that uses an inverse Gamma prior for the hyperparameters instead of the

half-Cauchy distributions, which we discuss in the robustness section and in more detail

in the Online Appendix.

All models are estimated with four lags, in order to capture potentially different dy-

namics across the countries and consistent with the quarterly frequency of the data.6

The models are estimated with a Gibbs sampler chain of 11000 draws from the posterior

distribution of which the first 1000 draws are discarded.

Apart from the competing models, we also consider two different variable combina-

tions. A smaller specification with all countries and three variables (N = 10, G = 3),

where we take the commonly used variables Output, Prices and Interest rates, and a

larger specification with all the seven variables (N = 10, G = 7). We mirror this setup in

our application for the G-7 economies (not to be confused with G, the number of variables

in the models), where we test a three and a seven variable specification, N = 7, G = 3

5The model is implemented and described in the BEAR toolbox, see Dieppe et al. (2016).
6Furthermore, we find it to be important to allow for a higher lag length in order to obtain economic

plausible impulse response functions.
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and N = 7, G = 7, respectively.

Our main metric for comparing the models is the root mean squared forecast error

(RMSE) calculated as the squared difference between the forecast and the actual data.

We also look at the density forecasts using continuous rank probability score (CRPS) as

presented in Gneiting and Raftery (2007). We will primarily look at relative RMSE to the

benchmark cases - for the N10G3 models the relative benchmark is the N10G3 BVAR

and for the N10G7, the seven variable one, respectively.

The forecasting setup is the following. With each model and for each of the two

variable specifications we carry out a pseudo-out-of-sample forecasting exercise with an

expanding window over 40 periods. That is, we start with the first 39 observations (up

to T = 2011Q4) to estimate the models and make a one-step ahead forecast for the next

quarter (T + 1 = 2012Q1). Iteratively, we then create recursive forecasts for up to 8

horizons. The dataset is expanded by one quarter to 2011Q1 and we repeat the same

steps. This is iterated on until the end of the sample. We then take the mean of the

respective T + 1, . . . , T + 8 forecasts across the horizon and calculate the total average

RMSFEs and CRPSs.

4.3 Forecasting Results

Figure 1 plots selected models, namely the pooling priors for the N10G3 specification.

The forecasting performance of all model specifications is available in Table 6. The column

plots of Figure 1 show the variables RGDP, HICP, and EURIBOR, while the three rows

are associated with the one-step ahead forecast error (T + 1), the one-year ahead forecast

error (T + 5), and the average over the eight forecast horizons, respectively. The coun-

tries are on the x-axis. Relative RMSE calculated to the BVAR baseline. We showcase

the performance of the pooling prior with shrinkage both across variables and countries

(BVARλ,τ , triangles), as well as only the country-specific case (BVARτ , circles).

We find that incorporating shrinkage across unit pairs improves the forecasts consid-

erably for most countries, especially in France, Italy, Spain, and Belgium and to a lesser

extent Finland. When it comes to GDP growth, Germany, the Netherlands, Portugal and

Greece do not seem to benefit from the pooling priors as much. The findings are similar
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Figure 1: N=10, G=3 setup: RMSFEs relative to the BVAR baseline (y-axis) versus
countries on the (x-axis). Less is better.

with consumer prices. Notably, the Euribor forecasts improve across the board (bar from

Greece). The three month interbank reference rate is identical across countries and due to

the common monetary policy we may expect that their dynamics should be comparable

within the individual countries’ VARs.

Figure 1 shows that the pooling priors improve the forecasts also for horizons beyond

the shortest term. Furthermore, the BVARλ,τ model appears to be slightly better than the

BVARτ case due to some particular outliers, such as GDP and Euribor forecasts in Spain

amd Greece, respectively. When we turn to an analysis of the estimated hyperparmeters

we will see that the dynamics of GDP in Spain and Greece are different from the other

countries, hence the importance of the local component λi,m,j that allows variable-specific

for deviations from country pair shrinkage parameter τi,m.

Table 6 offers a more detailed look of the performance of the other competing models.

We show only the one-step ahead forecast errors in the interest of space. The results for

longer horizons are similar. For a sense of scale, the first row of each table reports the

absolute forecast error, while the rows below report relative values to those numbers. For

each country we highlight in bold the model that yields the lowest relative RMSFE. Sur-

prisingly, the Bayesian VAR extension of Chan et al. (2021) does not seem to outperform

the standard version when it comes to GDP or HICP of the European countries as it

roughly delivers similar results. It does appear to improve the EURIBOR forecast. This
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could be due to the fact that the number of variables in this application is small, so not

that much shrinkage is needed.

The models that can benefit from the cross-sectional dimensions deliver mixed results

for the different variables. As expected in such a large system, the flat prior (BVARf)

yields the worst results. However, the standard Bayesian panel VAR (BPVAR) and

the approach of Jarocinski (2010) (PVARj) work well in some cases and perform worse

in others. The panel VAR works particularly well for many inflation forecasts, while

delivering worse GDP forecasts against a single country specification in all situations.

Similarly, PVARj delivers arguably the best EURIBOR forecast if one takes the austrian

case but does not outperform any model in much of the rest.

In that respect the combination of pooling with shrinkage appears extremely reliable

as its performance is consistent. In most situations it delivers some of the best forecasts

in terms of RMSFE and in others it performs at least as good as the baseline. Both the

pVARλ,τ and pVARλ specifications show some of the best forecasting performances when

it comes to production or the interest rates.

The final two rows of Table 6 emphasize the importance of the combination of zero

shrinkage and pooling. Without it both single country specifications as well as panel

VARs perform much better when it comes to forecasting as pVARlmλ,τ and pVARlmτ

outperform only the flat prior model.

Next, we turn our attention to the larger model with 7 variables per country. With

four lags the number of parameters in each single country VAR grows tremendously. In

such an environment shrinkage priors should excel. This is what we observe both in Figure

2 which plots the results for three of the seven variables as well as in Table 7 that details

the one-step ahead forecast per country and variable. Moreover, we find that the three-

variable BVAR performs in some instances worse than the seven-variable BVAR model

(i.e. the absolute RMSFE of the larger model is lower for some variables).

Note that while Figure 2 is the counterpart to the three-variable model in Figure 1,

the lines are not perfectly comparable because we always use the standard BVAR model

as a reference point. The conclusions are in general similar - we again see gains of the

pooling specifications with respect to the standard BVAR. These gains are smaller than

22



DE FR IT ES NL BE AT PT FI GR
0.8

1

1.2

T
+

1

RGDP

DE FR IT ES NL BE AT PT FI GR
0.8

0.9

1

T
+

5

DE FR IT ES NL BE AT PT FI GR
0.8

0.9

1

A
v
e
ra

g
e

DE FR IT ES NL BE AT PT FI GR
0.95

1

1.05

1.1

T
+

1

HICP

DE FR IT ES NL BE AT PT FI GR
0.95

1

1.05

T
+

5
DE FR IT ES NL BE AT PT FI GR

0.95

1

1.05

A
v
e
ra

g
e

DE FR IT ES NL BE AT PT FI GR

0.6

0.8

1

T
+

1

EURIBOR

DE FR IT ES NL BE AT PT FI GR
0.6

0.8

1

T
+

5

DE FR IT ES NL BE AT PT FI GR
0.6

0.8

1

A
v
e
ra

g
e

Figure 2: N=10, G=7 setup: RMSFEs relative to the BVAR baseline (y-axis) versus
countries on the (x-axis). Less is better.

in Figure 1 for the one-step ahead forecast (T+1, first row of figures) and larger over the

longer and all forecast horizons.

Table 7 shows that in the larger model the more flexible Minnesota specification of

Chan et al. (2021), BVAR+, starts to outperform the three variable case, especially for

HICP and for two countries when it comes to output. The first row shows the absolute

magnitude of the errors and for all variables and, except for Greece, for all countries the

larger model delivers a lower forecast error. While in most cases it is only one to two

decimal points, there are cases such as Spain, where the GDP absolute RMSE falls from

0.34 to 0.28. Naturally, the flat prior works even worse for larger models. The pooling

priors, especially the BVARλ,τ , again perform best in most specifications: Specifically

when it comes to the interest rates they often deliver even better forecasts than in the

N10G3 case.

These findings are similar across the remaining variables from the larger model, which

are plotted on Figure A.2 in the Appendix. The pooling model delivers better forecasting

performance than the single country BVAR on average and excels for variables that share

dynamics across countries, such as unemployment and the oil prices. Overall, including

both λ and τ shrinkage in addition to zero shrinkage works best, while country-wide

shrinkage alone (pVARτ ) produces some outliers such as industrial production for Spain

and Greece.
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Interestingly, the panel specifications also perform worse than in the three variable

case, especially the PVARj approach. These findings suggest that these models are not

flexible enough to capture a mix of homo- and heterogeneity given their worsening per-

formance with the larger dataset.

Finally we examine the density forecast performance using the continuous rank prob-

ability score as a metric. Tables B.2 and B.3 found in the Appendix are for the three-

variable and the seven-variable models, respectively. They follow the structure of the

point forecast tables and present the CRPS for all model and variable combinations. Our

conclusions closely match the narrative of the point forecasts - combining pair-wise pool-

ing with Minnesota improves the forecasting density in a similar fashion as does so for

the point forecasts.

4.4 Analysis of the hyperparameters

Naturally, the model allows for studying the degrees of similarity across countries by

looking at the estimated hyperparameters across the country pairs, i.e. Λn,m = λn,m,jτn,m,

where n,m ∈ {DE,FR,ES, IT,NL,BE,AT, PT, FI,GR}. In the N10G7 case there are

28 parameters for each of the seven equations and GGP = 196 coefficients in total per

country and correspondingly N(N − 1)/2 =
∑N

i (i − 1) = 45 country pairs. However,

many of these are shrunk to zero due to the Minnesota prior. Therefore we choose to

analyse the country pairs of the own lags of GDP, HICP, and EURIBOR as these are

usually most informative regarding the variable dynamics.

Figure 3 displays the estimated hyperparameters for the country pairs. The first row

represents the hyperparameters for the coefficients of the four own lags of GDP in the

GDP equation, the second of the own lags of HICP in the HICP equation, and the third

for EURIBOR, respectively. Each box shows the estimated hyperparameter pairs for

country i and m, i.e. Λi,m = λi,m,jτi,m as coloured squares with darker shades associated

with higher values, i.e. dissimilarity between the coefficients, and lighter shades indicating

resemblance. By design the boxes are symmetric, since Λi,m = Λm,i.

The first box shows the country pairs’ hyperparameters for the first lag of GDP. It is

immediately obvious that the production dynamics in Spain are different than in most
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Figure 3: Estimated hyperparameters for each country pair for GDP (first row), HICP
(second row), and EURIBOR (third row). Hyperparameters for the coefficients of the
four own lags in each respective equation (columns one to four, respectively). Darker
shades indicate dissimilarity between the respective parameters, lighter tones point to the
contrary.

countries. Interestingly this is true even for Italy, Portugal, and Greece, a group with

which Spain is often bundled together. However, the rest of the country pairs also appear

rather colorful. The inertia of GDP in the Netherlands and Portugal is more similar to

France and Italy, than it is to their direct neighbors Germany and Spain.

The remaining lags of GDP also deliver insight. The dynamics in Greece w.r.t. the

second and third lag are particularly different than the other countries, as it is the third

lag for Spain. These findings highlight the need of more lags to capture the heterogeneity

properly which in turn emphasizes the importance of needing zero shrinkage to achieve

parsimony.

Turning to HICP and EURIBOR, the second and third row, respectively, we find much

better integration across the member states. The common monetary policy is driving the

interest rates and the price dynamics, albeit there seems to be more heterogeneity there.

Past lags, especially the third and the fourth do not seem to be important and have most

likely been shrunk to zero, hence the low estimates for the hyperparameters.

Finally, Figure 3 explains the worse forecasting performance of pV ARτ model, com-

pared to the more richly specified pV ARλ,τ when it comes to GDP for Spain. When
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it comes to prices and interest rates, the Spanish dynamics are much more aligned to

their European counterparts, however the differences in the GDP process require the λ

component to be captured properly.

4.5 Impulse Response Functions

Next, we evaluate the inference properties of our model when it comes to structural

identification. We calculate the impulse responses (IRs) following a one standard deviation

shock to the interest rates for each country using the BVAR and the pooling BVARλ,τ .

For identification we rely on the conventional Cholesky decomposition and we use the

N10G3 specification.

We plot the IRs for Germany, France and Italy on Figure 4 and relegate the other

seven countries to the Appendix. On average the median impulse responses are highly

similar. However, the pooling prior appears to provide sharper inference leading to much

narrower probability intervals. This could prove pivotal as it helps differentiate significant

responses. In this example we find that using a small BVAR would imply that RGDP,

while on average declining within one to two quarters, does not do so in a statistically

meaningful way. However, using the pooling prior highlights clearer the effects of contrac-

tionary monetary policy and in all instances the zero line lies outside of the probability

bands.

While the simple structural analysis is aimed at highlighting the estimation uncertainty

reduction and not at addressing an economic question, it is interesting to note that the

price puzzle is not a feature of estimation uncertainty, as even the sharper inference does

not change the shape of the impulse responses. The euro area data suggests that prices

either decline in median or do not respond at all to tightening monetary policy shocks.

4.6 Robustness and alternative specification

We look to an alternative prior specification, an alternative empirical application and

alternative identification strategy to test the limitations of our model and the robustness

of the findings. We relegate these tests and a more in-depth discussion to the Online
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Figure 4: Impulse responses following a one standard deviation shock to the interest rates.
Shaded areas represent one standard deviation probability intervals.

Appendix and summarize our results here.

We have made a choice of the hyperprior on the hyperparameters, namely the half-

Cauchy prior. We explore additional specifications with an inverse Gamma for λ and

τ , which proves to be also extremely effective if a bit more volatile. For many instances

where our main specification (pV ARλ,τ ) outperforms the competition, the inverse Gamma

prior does so even better. At the same time, in the cases where the opposite is true and

the horseshoe is equal or slightly worse than the benchmark, inverse Gamma exhibits a

worse performance than that. Therefore we think that the horseshoe prior is a safer choice

that yields the most optimal gains at no apparent cost.

We also explore a different dataset, namely the G-7 group of advanced economies.

Again we find that our model is as equal or better than the benchmark (BVAR with

Minesota prior), again with the best performance when it relates to the interest rates.

These series are, in contrast to the euro area case, different from one another, especially

for the UK, Japan, and the US. However, overall the differences between the competing

models are lower for the G-7 application. For example, the performance when it comes to

forecasting inflation is almost identical across the board (apart from a flat prior, which is

not a good choice). Notably, the forecast errors for Germany, France and Italy are worse
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when using the G-7 dataset in comparison to the euro area data. This goes to show that

our approach benefits most from using countries that share common characteristics but

can hold on its own even if that is not the case.

Finally, we also test the structural identification results by adopting a different identi-

fication strategy, namely sign restrictions instead of a recursive scheme and again report

that the error bands of our model are narrower than the respective single country coun-

terparts.

5 Conclusion

In this paper we introduce a new prior for VAR models which can exploit the panel struc-

ture of the data to deliver more efficient estimates as well as provides shrinkage towards

zero to alleviate overparameterization concerns. We illustrate our approach by means of

several applications. The first application uses synthetic data to investigate the properties

of the model across different data-generating processes. It turns out that our approach

is highly flexible and can adapt to different scenarios. This frees the researcher from the

need to make assumptions about the structure or homogeneity between economies prior

to taking our model to the data. The second application analyzes the predictive gains

from our prior in a forecasting exercise for actual data. We test our model on a dataset of

ten of the largest euro area member states since they share a lot of characteristics while

also hiding large heterogeneities. Additionally we look at a dataset with the G-7 advanced

economies and find that even in smaller panels there are gains from the cross-sectional

information to be made. We show that pooling across countries alone is not enough to

help the estimation, but also forecasts from single country specifications can be improved

upon. It is the combination of cross-country pooling with Minnesota that achieves the

excellent performance. Finally, we show that our approach provides narrower probability

intervals for structural analysis stemming from the lower estimation uncertainty.
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R
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D
P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.60 0.35 0.37 0.34 0.42 0.32 0.54 0.62 0.78 1.34
BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BVAR+ 1.06 1.07 1.08 1.09 1.02 1.00 0.99 1.03 1.01 1.02
BVARf 1.24 1.27 1.49 1.47 1.41 1.24 1.20 1.09 1.36 1.33
pVARλ,τ 1.00 0.90 0.91 0.94 0.96 0.88 0.94 0.99 0.97 0.97
pVARτ 1.01 0.89 0.91 1.07 0.96 0.84 0.93 0.97 0.98 1.00
BPVAR 1.01 1.07 1.10 1.14 1.09 1.06 0.96 1.00 1.01 1.01
PVARj 1.08 1.15 1.03 1.17 1.13 1.35 0.96 1.01 1.10 0.97

pVARlmλ,τ 1.19 1.23 1.40 1.31 1.28 1.16 1.10 1.01 1.21 1.13
pVARlmτ 1.19 1.24 1.41 1.30 1.28 1.15 1.11 1.01 1.22 1.13

H
IC

P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.33 0.27 0.30 0.49 0.38 0.36 0.29 0.46 0.28 0.53
BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BVAR+ 0.99 1.00 1.02 1.02 1.02 1.01 1.00 1.01 1.08 1.00
BVARf 1.14 1.06 1.13 1.19 1.15 1.16 1.14 1.15 1.32 1.08
pVARλ,τ 1.00 1.01 0.99 0.97 0.97 0.98 1.00 0.98 0.99 1.00
pVARτ 0.99 1.01 1.00 0.96 0.97 0.97 1.00 0.97 1.00 1.01
BPVAR 1.04 1.03 0.96 0.92 0.97 1.01 0.96 0.98 0.95 0.94
PVARj 1.08 1.10 1.07 1.00 0.99 1.03 1.02 1.03 1.07 1.05

pVARlmλ,τ 1.07 1.05 1.07 1.10 1.07 1.09 1.06 1.14 1.18 1.04
pVARlmτ 1.07 1.06 1.07 1.10 1.06 1.09 1.07 1.14 1.11 1.04

E
U

R
IB

O
R

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.19 0.18 0.20 0.17 0.20 0.19 0.21 0.23 0.21 0.17
BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BVAR+ 1.01 0.97 0.93 1.04 0.98 0.94 0.94 0.94 0.97 1.16
BVARf 1.46 1.26 1.61 1.57 1.77 1.06 1.19 1.33 1.31 1.67
pVARλ,τ 0.73 0.83 0.85 0.93 0.92 0.87 0.82 0.93 0.87 1.03
pVARτ 0.75 0.83 0.86 0.98 0.92 0.85 0.80 0.91 0.87 1.07
BPVAR 0.96 0.93 0.76 0.97 0.88 1.04 0.86 0.76 0.89 1.14
PVARj 1.04 0.99 0.94 1.20 0.92 1.09 0.73 1.00 1.00 2.05

pVARlmλ,τ 1.35 1.24 1.46 1.42 1.50 1.02 1.03 1.33 1.20 1.62
pVARlmτ 1.37 1.25 1.49 1.48 1.52 1.02 1.05 1.38 1.27 1.62

Table 6: N=10, G=3 setup: One step ahead root mean squared forecast errors for
different models, relative to the BVAR forecast. The first row is the absolute error of the
BVAR benchmark. Values in bold denote the lowest relative RMSFE for that country.

29



R
G

D
P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.59 0.33 0.38 0.28 0.41 0.29 0.48 0.63 0.75 1.44
BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BVAR+ 0.95 1.05 1.02 1.15 1.07 1.06 1.02 1.03 0.99 0.95
BVARf 2.49 1.91 1.94 2.21 2.77 2.12 2.19 1.79 2.30 2.11
pVARλ,τ 1.02 0.92 1.03 0.97 0.97 0.90 0.98 0.99 1.00 0.92
pVARτ 1.03 0.93 0.98 1.26 0.96 0.88 0.99 0.97 1.01 0.92
BPVAR 0.99 1.35 1.05 1.27 1.08 1.36 1.10 0.98 1.07 0.89
PVARj 1.11 1.56 1.05 1.77 1.42 1.64 1.17 1.09 1.13 0.93

pVARlmλ,τ 1.54 1.65 1.53 1.65 1.71 1.82 1.49 1.16 1.59 1.23
pVARlmτ 1.23 1.54 1.46 1.53 1.55 1.70 1.38 1.15 1.56 1.17

H
IC

P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.33 0.24 0.28 0.47 0.39 0.35 0.29 0.46 0.27 0.51
BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BVAR+ 0.98 0.90 0.98 1.04 1.00 1.02 1.02 1.03 1.07 0.96
BVARf 2.27 1.36 1.46 1.62 1.74 1.60 1.65 1.70 2.16 1.36
pVARλ,τ 1.00 1.11 1.03 0.98 0.96 1.00 1.01 0.97 1.00 1.00
pVARτ 1.00 1.12 1.05 0.97 0.95 0.99 1.02 0.97 1.02 1.01
BPVAR 1.06 1.14 1.01 0.94 0.98 1.06 0.98 1.00 0.98 0.99
PVARj 1.18 1.18 1.12 1.06 1.09 1.13 1.17 1.06 1.23 1.02

pVARlmλ,τ 1.20 1.13 1.11 1.27 1.38 1.25 1.30 1.34 1.53 1.05
pVARlmτ 1.16 1.11 1.07 1.25 1.13 1.23 1.21 1.28 1.26 1.05

E
U

R
IB

O
R

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.15 0.21 0.16 0.15 0.16 0.19 0.24 0.20 0.19 0.20
BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BVAR+ 0.91 0.90 0.97 0.96 1.11 0.87 0.83 1.12 0.93 0.99
BVARf 3.91 2.03 2.73 2.45 3.50 2.32 1.61 2.78 2.12 2.11
pVARλ,τ 0.82 0.68 0.90 1.00 0.78 0.73 0.58 0.86 0.78 0.82
pVARτ 0.80 0.65 0.87 1.09 0.80 0.71 0.54 0.83 0.76 0.83
BPVAR 1.26 0.93 0.99 1.28 0.97 1.09 0.72 0.84 0.98 1.04
PVARj 1.61 1.30 1.30 1.47 1.58 1.29 0.87 1.19 1.26 1.52

pVARlmλ,τ 2.58 1.70 2.63 2.08 2.84 1.57 1.42 2.06 1.86 1.75
pVARlmτ 3.34 1.78 2.63 1.99 2.58 1.63 1.50 2.13 1.93 1.83

Table 7: N=10, G=7 setup: One step ahead root mean squared forecast errors for
different models, relative to the BVAR forecast. The first row is the absolute error of the
BVAR benchmark. Values in bold denote the lowest relative RMSFE for that country.
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Appendix A Additional figures
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Figure A.1: Impulse responses following a one standard deviation shock to the interest
rates.
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Figure A.2: N=10, G=7 setup: RMSFEs relative to the BVAR baseline (y-axis) versus
countries on the (x-axis). Less is better.
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Appendix B Additional tables

Country name 2-digit ISO code

Germany DE

France FR

Italy IT

Spain ES

The Netherlands NL

Belgium BE

Austria AT

Portugal PT

Finland FI

Greece GR

Table B.1: Country abbreviations used in the text.
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R
G

D
P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.36 0.20 0.22 0.20 0.26 0.19 0.31 0.35 0.48 0.71

BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BVAR+ 1.05 1.06 1.07 1.08 1.01 0.99 1.00 1.03 1.00 1.02

BVARf 1.19 1.26 1.41 1.33 1.28 1.19 1.17 1.07 1.17 1.29

pVARλ,τ 0.99 0.92 0.94 0.96 0.97 0.91 0.95 1.00 0.98 1.01

pVARτ 1.00 0.91 0.95 1.06 0.96 0.90 0.94 0.98 0.98 1.04

BPVAR 0.99 1.30 1.22 1.34 1.11 1.31 1.02 1.01 0.91 1.06

PVARj 1.04 1.14 1.02 1.16 1.07 1.26 0.97 1.00 1.04 1.02

pVARlmλ,τ 1.13 1.22 1.33 1.26 1.18 1.11 1.09 1.00 1.11 1.13

pVARlmτ 1.13 1.23 1.34 1.27 1.19 1.11 1.10 1.00 1.13 1.13

H
IC

P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.19 0.15 0.17 0.28 0.21 0.21 0.16 0.26 0.16 0.30

BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BVAR+ 0.99 1.00 1.03 1.02 1.02 1.02 1.00 1.02 1.06 0.99

BVARf 1.14 1.06 1.13 1.19 1.14 1.15 1.14 1.17 1.27 1.08

pVARλ,τ 0.99 1.02 1.00 0.96 0.97 0.98 1.00 0.98 0.99 1.00

pVARτ 0.99 1.01 1.01 0.96 0.97 0.97 0.99 0.97 0.99 1.00

BPVAR 1.03 1.05 0.96 0.92 0.97 1.00 0.99 0.97 0.98 0.92

PVARj 1.09 1.10 1.08 1.01 1.00 1.02 1.02 1.02 1.07 1.06

pVARlmλ,τ 1.08 1.04 1.07 1.11 1.09 1.08 1.06 1.16 1.15 1.05

pVARlmτ 1.07 1.05 1.07 1.12 1.07 1.08 1.06 1.15 1.09 1.04

Table B.2: N=10, G=3 setup: Continuous rank probability scores (CRPS) for the
one step ahead forecast errors for different models, relative to the BVAR. Values in bold
denote the lowest relative CRPS for that country among all models considered.
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E
U

R
IB

O
R

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.14 0.13 0.12

BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BVAR+ 1.02 0.98 0.96 1.03 1.00 0.95 0.96 0.95 0.99 1.06

BVARf 1.34 1.15 1.39 1.41 1.47 1.05 1.15 1.23 1.21 1.35

pVARλ,τ 0.85 0.90 0.90 0.94 0.94 0.90 0.86 0.95 0.92 1.00

pVARτ 0.86 0.90 0.91 0.98 0.95 0.89 0.85 0.93 0.92 1.03

BPVAR 0.96 0.93 0.85 0.95 0.88 1.05 0.91 0.81 0.89 0.97

PVARj 0.98 0.94 0.94 1.07 0.92 1.04 0.79 0.98 0.95 1.56

pVARlmλ,τ 1.24 1.12 1.31 1.27 1.33 1.00 1.02 1.25 1.13 1.32

pVARlmτ 1.26 1.13 1.33 1.33 1.35 1.01 1.04 1.28 1.19 1.33

Continued: N=10, G=3 setup: Continuous rank probability scores (CRPS) for the
one step ahead forecast errors for different models, relative to the BVAR. Values in bold
denote the lowest relative CRPS for that country among all models considered.
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R
G

D
P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.35 0.19 0.23 0.17 0.25 0.18 0.29 0.36 0.47 0.74

BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BVAR+ 0.94 1.04 1.01 1.08 1.03 1.04 1.01 1.03 0.99 0.98

BVARf 2.29 1.91 1.96 1.83 2.36 2.00 2.08 1.81 1.84 1.92

pVARλ,τ 1.03 0.96 1.05 1.01 0.99 0.98 0.99 0.99 1.01 0.96

pVARτ 1.03 0.96 1.01 1.21 0.98 0.99 0.99 0.98 1.01 0.98

BPVAR 0.97 1.46 1.13 1.46 1.09 1.45 1.11 0.96 0.93 0.97

PVARj 1.05 1.52 1.01 1.42 1.22 1.46 1.13 1.05 1.05 0.99

pVARlmλ,τ 1.24 1.60 1.43 1.42 1.41 1.58 1.44 1.13 1.36 1.25

pVARlmτ 1.11 1.50 1.37 1.38 1.35 1.52 1.35 1.13 1.37 1.23

H
IC

P

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.18 0.14 0.16 0.28 0.22 0.20 0.16 0.25 0.15 0.30

BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BVAR+ 0.99 0.90 0.98 1.04 1.01 1.02 1.02 1.03 1.06 0.95

BVARf 1.98 1.46 1.50 1.68 1.78 1.75 1.84 1.72 1.94 1.18

pVARλ,τ 1.00 1.12 1.03 0.98 0.96 1.00 1.01 0.98 0.99 1.00

pVARτ 1.00 1.13 1.05 0.97 0.95 1.00 1.02 0.97 1.01 1.00

BPVAR 1.05 1.16 1.00 0.95 0.98 1.04 1.01 0.99 1.00 0.96

PVARj 1.18 1.16 1.07 1.06 1.09 1.11 1.17 1.05 1.22 1.02

pVARlmλ,τ 1.25 1.06 1.08 1.30 1.35 1.24 1.31 1.35 1.42 1.03

pVARlmτ 1.18 1.05 1.04 1.26 1.15 1.22 1.21 1.30 1.23 1.03

Table B.3: N=10, G=7 setup: Continuous rank probability scores (CRPS) for the
one step ahead forecast errors for different models, relative to the BVAR. Values in bold
denote the lowest relative CRPS for that country among all models considered
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E
U

R
IB

O
R

DE FR IT ES NL BE AT PT FI GR

BVAR (abs) 0.11 0.12 0.11 0.10 0.11 0.11 0.14 0.12 0.12 0.13

BVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BVAR+ 0.96 0.91 0.98 0.99 1.05 0.93 0.86 1.07 0.96 1.00

BVARf 2.69 1.95 2.44 2.36 2.80 1.89 1.64 2.24 1.97 2.00

pVARλ,τ 0.95 0.78 0.94 0.98 0.91 0.86 0.69 0.91 0.88 0.89

pVARτ 0.94 0.77 0.93 1.02 0.91 0.86 0.68 0.89 0.87 0.89

BPVAR 1.03 0.91 0.91 1.06 0.89 1.03 0.76 0.85 0.91 0.94

PVARj 1.24 1.19 1.10 1.17 1.28 1.20 0.87 1.09 1.12 1.25

pVARlmλ,τ 1.68 1.55 1.90 1.61 1.99 1.45 1.41 1.79 1.66 1.53

pVARlmτ 2.05 1.64 1.96 1.61 1.98 1.50 1.49 1.87 1.72 1.58

Continued: N=10, G=7 setup: Continuous rank probability scores (CRPS) for the
one step ahead forecast errors for different models, relative to the BVAR. Values in bold
denote the lowest relative CRPS for that country among all models considered
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BVAR Bayesian VAR with Minnesota prior

BVARf Bayesian VAR with flat prior

BVAR+ BVAR as in Chan et al. (2021)

pVARτ Pooling across country pairs with Minnesota

pVARλ,τ Pooling across country and variable pairs with Minnesota

BPVAR Traditional Bayesian Panel VAR

PVARj Bayesian Panel VAR as in Jarocinski (2010)

pVARlmτ Pooling (τ only) without Minnesota

pVARlmλτ Pooling without Minnesota

Table B.4: Model abbreviations.
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