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Abstract

In this paper we propose a deep quantile estimator, using neural networks and their

universal approximation property to examine a non-linear association between the con-

ditional quantiles of a dependent variable and predictors. The proposed methodology is

versatile and allows both the use of different penalty functions, as well as high dimen-

sional covariates. We present a Monte Carlo exercise where we examine the finite sample

properties of the proposed estimator and show that our approach delivers good finite

sample performance. We use the deep quantile estimator to forecast Value-at-Risk and find

significant gains over linear quantile regression alternatives and other models, supported

by various testing schemes. We consider also an alternative architecture that allows the

use of mixed frequency data in neural networks. The paper also contributes to the inter-

pretability of neural networks output by making comparisons between the commonly

used SHAP values and an alternative method based on partial derivatives.
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1 Introduction

Since the seminal work of Koenker and Bassett Jr (1978) and Koenker and Hallock (2001),
quantile regression has grown in popularity and has found applications in several disci-
plines both in academia and industry, see e.g. Chernozhukov and Umantsev (2001), Adams,
Adrian, Boyarchenko, and Giannone (2021) and Koenker, Chernozhukov, He, and Peng
(2017). They generalize ordinary sample quantiles to the regression setting, that give more
extensive information on the conditional distribution of a dependent variable, given the
covariates, relative to the classical regression setting; i.e. estimation of the conditional mean.
This extension can be of great importance under extreme events, where the conditional dis-
tribution of variables such as asset returns tends to exhibit skewness, or under the presence
of outliers and/or asymmetries, see e.g. Baur and Schulze (2005).

An assumption made in the early literature, was the linear association between the
conditional quantile of the target variable and predictors. This was predominately an
assumption that allowed for streamlined computation and theoretical inference, but was
clearly restrictive. A more recent strand of the literature, relaxed the linearity assumption
and considered non-parametric estimators for the conditional quantile, that is based on
different methods, see e.g. Belloni, Chernozhukov, Chetverikov, and Fernández-Val (2019)
and references therein. Recent advances in Machine Learning (ML) literature, which is the
focus of this paper, show how modelling frameworks such as neural networks can be used
to estimate general, non-linear and potentially highly complicated associations.

Specifically, a large number of studies have shown that feed-forward neural networks
can approximate arbitrarily well any continuous function of several real variables, see e.g.
Hornik (1991), Hornik, Stinchcombe, and White (1989), Galant and White (1992) and Park
and Sandberg (1991). Recent work by Liang and Srikant (2016) and Yarotsky (2017), extends
this result for feed-forward neural networks with multiple layers, provided sufficiently
many hidden neurons and layers are available. Notice that, besides neural networks, other
non-parametric approaches, e.g. splines, wavelets, the Fourier basis, as well as simple
polynomial approximations, do have the universal approximation property, based on the
Stone-Weierstrass theorem.

There is considerable empirical work identifying non-linearities and asymmetries in
financial variables, see e.g. Gu, Kelly, and Xiu (2020a), Gu, Kelly, and Xiu (2020b), He
and Krishnamurthy (2013) and Pohl, Schmedders, and Wilms (2018), where they illustrate
that ML offers richer functional form specifications that can capture potential non-linearities
between dependent and independent variables. Some examples include Gu, Kelly, and
Xiu (2020b) in which, they evaluate the forecast accuracy of machine learning methods in
measuring equity risk premia, and find that neural networks give substantial forecasting
gains in asset pricing compared to linear models, and Bucci (2020), where a recurrent
neural network is proposed, that approximates realised volatility well and outperforms
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other classic non-linear estimators in forecasting. In a similar fashion, Smalter Hall and Cook
(2017) use several neural network architectures to predict unemployment in the US and find
that neural networks outperform forecasts from a linear benchmark model at short horizons.
In addition, Gu, Kelly, and Xiu (2020a) propose the use of a conditional Autoencoder1, and
illustrate its superior performance relative to linear unsupervised learning methods.

Before we discuss the contributions of this paper, we provide a succinct summary
of the current machine learning literature on non-linear quantile and Value-at-Risk (VaR)
estimation, but we note that the majority of this work, was not available during the writing of
this paper. Keilbar and Wang (2021) use neural networks to estimate a non-linear conditional
VaR model introduced by Tobias and Brunnermeier (2016) and find that, it gives significant
gains in modelling systemic risk. In addition, Tambwekar, Maiya, Dhavala, and Saha (2021)
estimate a non-linear binary quantile regression and develop confidence scores to assess
the reliability of prediction. Padilla, Tansey, and Chen (2020) examine the performance of
a quantile neural network using Rectified Linear Unit (ReLU) as activation function. They
derive a theoretical upper bound for the mean squared error of a ReLU network and show
that their non-linear quantile estimator has strong performance of ReLU neural networks for
quantile regression across a broad range of function classes and error distributions. Chen,
Liu, Ma, and Zhang (2020) propose a unified non-linear framework, based on feed-forward
neural networks, that allows the estimation of treatment effects, for which they establish
consistency and asymptotic normality. Their framework includes the quantile estimator
and allows for high-dimensional covariates. ML based estimators for quantiles have been
proposed in other fields, see e.g. Meinshausen (2006), where quantile random forests are
introduced, and Zhang, Quan, and Srinivasan (2018) that propose a quantile neural network
estimator.

In this paper, we contribute to the expanding literature on the use of ML in Finance
and propose a novel deep quantile estimator that can capture non-linear associations between
asset returns and predictors and that also allows for high dimensional data. We further
consider an alternative architecture that allows the use of mixed frequency data. We also
contribute towards the explainable machine learning literature, by proposing the use of
partial derivatives as a means to "peeking" inside the black box.

We first explore the small sample properties of the proposed estimator via Monte Carlo
experiments, which show that the estimator delivers good finite sample performance. Then
we examine the performance of the proposed estimator, in the context of one of the most
widely examined problems in finance: that of measuring and subsequently forecasting the
risk of a portfolio adequately, via VaR modelling. VaR is a popular model that was first
introduced in the late 80s and since then, has become a standard toolkit in measuring
market risk. It measures how much value a portfolio can lose within a given time period
with some small probability, τ. VaR and quantiles are related in the following manner, let
r = (r1, . . . , rT)

′ denote the returns of a portfolio, then, the τth VaR is equivalent of computing
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the negative value of the τth quantile of r, −qτ(r).

In this paper, we argue, following the non-parametric literature, that the linear relation-
ship between VaR and predictors can be restrictive and propose a quantile neural network
estimator that allows a non-linear association between covariates and VaR. This method
appears particularly suitable for developing sound predictions for the past stock return
losses in the US over the sample period from September 1985 up to August 2020, the
importance of which has been brought to the forefront by the recent COVID-19 pandemic.
Specifically, our aim is to forecast ten-day ahead VaR produced from daily VaR forecasts. We
use daily frequency returns in a fixed forecasting framework that is outlined below. Under
this forecasting framework, mixed frequency models become relevant benchmarks to the
non-linear quantile estimator, see e.g. Ghysels, Plazzi, and Valkanov (2016). Hence, we also
include a linear MIxed DAta Sampling (MIDAS) model as a competitor and also a non-linear
MIDAS model, which is an extension to the deep quantile estimator. Further, we consider ten-
day compounded VaR forecasts that exhibit similar patterns, which we relegate to the Online
Appendix.

We are not the first to use ML methods for VaR forecasting, see e.g. Du, Wang, and Xu
(2019), where they propose a recurrent neural network, as a novel forecasting methodology
for the VaR model and exhibit an improved forecast performance relative to traditional
methods. To the best of our knowledge though, there has been no application that uses a
neural network quantile estimator in finance for forecasting VaR. Note that in this paper we
also consider a large set of neural networks that also allow for mixed frequency estimation.

Our empirical analysis shows that the proposed deep quantile estimator outperforms the
linear , MIDAS and other non-parametric quantile models, in forecasting VaR. We assess the
forecasting accuracy between models based on two statistical tests. The first is the Diebold
and Mariano (1995) test with the Harvey, Leybourne, and Newbold (1997) adjustment, and
the second is the Giacomini and White (2006) test. Results from both tests suggest that our
neural network estimator has higher accuracy in forecasting VaR. We use the linear quantile
method as a benchmark to assess whether our proposed estimator has predictive gains or
not. This measure illustrate gains up to 74% relative to the linear one, for the deep quantile
estimator and up to 76% for the non-linear MIDAS model. Further, we use the quantile score
test that provides further evidence in favour of our neural network estimator.

We further examine whether our proposed estimator nests forecasts produced from
the linear and other non-parametric models, using the encompassing test of Giacomini and
Komunjer (2005). Overall, we find that forecasts from the deep quantile estimator encompass
forecasts from competing models more times than vice versa. There are some cases where the
test is inconclusive, suggesting that a forecast combination from a different pair of models
would provide a better result, which is in line with the result of Bates and Granger (1969).

While ML methods show a great capacity at both approximating highly complicated
non-linear functions and forecasting, they are routinely criticized as they lack interpretability
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and are considered a "black box"; in the sense that they do not offer simple summaries of
relationships in the data. Recently though, there has been a number of studies that try
to make ML output interpretable, see e.g. Athey and Imbens (2017), Wager and Athey
(2018), Belloni, Chernozhukov, and Hansen (2014), Joseph (2019). In this paper we also
try to understand in a semi-structural fashion, which variables impact the forecasting
performance of the deep quantile estimator more. To this end, we first use Shapley Additive
Explanation Values (SHAP) as proposed by Lundberg and Lee (2017) and further developed
in Joseph (2019), that have started to become a standard tool for interpretability in ML
methods. Further we use partial derivatives, as a means of investigating the marginal
contribution/influence of each variable to the output. We compare the partial derivatives
and SHAP values over time, and our results can be summarised as follows. First, partial
derivatives overall are more stable than SHAP values, and are able to produce interpretable
results, at a fraction of the computational time of SHAP. Second, the partial derivatives of the
deep quantile estimator fluctuate around the estimate of the conditional linear quantile and i)
exhibit time variation and ii) can capture stressful events in the U.S. economy for instance
the COVID-19 pandemic and the 2008 financial crisis.

The remainder of the paper is organised as follows. Section 1 introduces the deep quantile
estimator. Section 2 contains the Monte Carlo exercise. Section 3 presents our empirical
application. Section 4 presents the semi-structural analysis. Conclusions are set out in
Section 5. We relegate to the Online Appendix the specifications of the competing models,
empirical results from one-step ahead VaR forecast, ten-day compounded VaR forecasts and
results from the quantile score test and predictive gains.

2 Theory

In this section we start by summarising the underlying theory of a quantile regression
as outlined by Koenker and Bassett Jr (1978) and Koenker (2005) and argue that the
linear relationship of the conditional quantile between a dependent variable given the
covariates, can be restrictive. We illustrate how some fundamental results on the universal
approximation property of neural networks can be used to approximate a non-linear
relationship instead, and propose a deep quantile estimator. We conclude with a discussion
on how different penalisation schemes can be used and further how hyper-parameters can
be selected via Cross Validation (CV).

2.1 Linear Quantile Regression

The standard goal in econometric analysis is to infer a relationship between a dependent
variable and one or more covariates. Let {yt, xt}T

t=1 be a random sample from the following
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linear regression model
yt = x′tβ + ut, (1)

where yt is the dependent variable at time t, β =
(

β1, . . . , βp
)′ is a vector of unobserved slope

parameters, xt =
(
xt1, . . . , xtp

)′ is a vector of known covariates, and ut is the random error
of the regression which satisfies E(ut|xt) = 0. Standard regression analysis tries to come up
with an estimate of the conditional mean of yt given xt, that minimises the expected squared
error loss:

β̂ = arg min
β

1
T

T

∑
t=1

(
yt − x′tβ

)2 . (2)

This can be restrictive though, when i) non-linearities and outliers exist and ii) since it
provides just an aspect of the conditional distribution of yt, given xt by construction. These
potential limitations led to the development of quantile regression. In their seminal work,
Koenker and Bassett Jr (1978) generalise ordinary sample quantiles to the regression setting,
that give more complete information on the conditional distribution of yt given xt, for which
we now provide a succinct description.

The quantile regression model can be defined as

Qy (τ|xt) = x′tβ (τ) , τ ∈ (0, 1), (3)

such that yt satisfies the quantile constraint Pr[yt ≤ x′tβ (τ) |xt] = τ, where β (τ) are regres-
sion coefficients that depend on τ. Quantile regression tries to come up with an estimate for
the τth conditional quantile, Q̂y (τ, xt) := β̂(τ), by minimizing the following function

β̂ (τ) = arg min
β

1
T

T

∑
t=1

ρτ

(
yt − x′tβ (τ)

)
, (4)

where ρτ (·) is the quantile loss function defined as

ρτ (ut) =

τut (τ) , if ut (τ) ≥ 0

(1− τ) ut (τ) , if ut (τ) < 0

and ut (τ) = yt − x′tβ (τ). The quantile estimator in eq. 4, provides i) much richer
information on the whole conditional distribution of yt as function of the xt, and ii) more
robust estimates under the presence of outliers and non-linearities, when compared to the
ordinary least squares estimator.

Notice that the linear association assumption, Qy (τ|xt) = x′tβ (τ), can be generally
restrictive. Instead, we consider the case of the following non-linear association,

Qy (τ|xt) = hτ (xt) ,
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where hτ (·) is some unknown, (potentially highly) non-linear function. In this paper we
propose an estimation strategy to approximate hτ (xt) with neural networks using their
universal approximation property. Specifically, we assume that there exists a neural network
with a function Gτ (xt, w), to be defined below, that can approximate hτ (xt) well. Before we
illustrate how our methodology is implemented, we provide a discussion on how neural
networks can approximate hτ (xt).

2.2 Neural Networks

In this paper, we limit our attention to feed-forward neural networks, to approximate hτ(xt).
This architecture consists of an input layer of covariates, the hidden layer(s) where non-
linear transformations of the covariates occur, and the output layer that gives the final
prediction. Each hidden layer has several interconnected neurons relating it to both the
previous and next ones. Specifically, information flows from one layer to the other, via
neurons only in one direction, and the connections correspond to weights. Optimising a
loss function w.r.t these weights makes neural networks capable of learning.

Throughout our exposition, L denotes the total number of hidden layers, a measure for
the depth of a neural network, and J(l) denotes the total number of neurons at layer l, a
measure for its width. We start by presenting a general definition of a deep (multi-layer)
feed-forward neural network. Let σl(·), l = 0, . . . , L be the activation function used at the lth

layer, that is applied element-wise and induces non-linearity. We use the ReLU activation
function, σl (·) = max (·, 0), for l = 1, . . . , L − 1 and a linear one for the output layer, l = L.
We denote by g(l) the output of the lth layer which is a vector of length equal to the number
of the J(l) neurons in that layer, such that g(0) = xt. Then, the overall structure of the network
is equal to:

Gτ (xt, w) = g(L)
(

g(L−1)
(

. . .
(

g(1) (·)
)))

, (5)

where
g(l) (xt) = σl

(
W (l−1)g(l−1) + b(l)

)
, l = 1, . . . , L, (6)

W (l) is a J(l) × J(l−1) matrix of weights, b(l) is a J(l) × 1 vector of biases giving an

overall vector w =
(

vec(W (0))′, . . . , vec(W (L))′, b(1)′ , . . . , b(L)′
)′

of trainable parameters of

dimensions J(l)(1 + J(l−1)) total number of parameters in each hidden layer l, J(0) = p and
J(L) = 1.

According to various universal approximation theorems (see e.g. the theoretical
results in Hornik (1991), Hornik, Stinchcombe, and White (1989), Galant and White (1992),
Kapetanios and Blake (2010), Liang and Srikant (2016) and Yarotsky (2017)), Gτ(xt, w) can
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approximate arbitrarily well hτ(xt), such that, for any ε > 0,

sup
t
|Gτ (xt, w) − hτ(xt)| < ε. (7)

In this sense, the above (ε)-approximation can be seen as a sieve type non-parametric
estimation bound, where ε can become arbitrarily small by increasing the complexity of
Gτ (xt, w).

The increase in complexity can occur, either by letting L→ ∞, which stands for deep
learning, or by letting J(l) → ∞. While asymptotically, both ways deliver the same results
(see e.g. Farrell, Liang, and Misra (2021) and references therein), the approximation error
has been shown to decline exponentially with L, see e.g. Babii, Chen, Ghysels, and Kumar
(2020) but only polynomially with J(l), providing some evidence for the prevalent use of
deep learning. Notice that there also exists an alternative approximation theory for sparse
deep learning, see e.g. the work of Schmidt-Hieber (2020). As an illustration, in the Online
Appendix we depict a simple feed-forward neural network with two inputs, two hidden
layers, a total of five neurons and one output layer.

2.3 Non-linear Quantile Regression

We assume that the conditional quantile follows a non-linear relationship Qy(τ|xt) = hτ(xt)

and there exists a function Gτ(xt, w), that can (ε)-approximate hτ(xt), see the bound in eq.
7. Using this assumption, we can formally define the conditional quantile function as the
following approximation

Qy (τ|xt) = Gτ (xt, w) + O (ε) ,

where Gτ (xt, w) is the unknown non-linear function we want to estimate in order to
approximate hτ(xt). We obtain the deep neural network conditional quantile estimate from
the solution of the following minimization problem:

Qy (τ|xt) = arg min
w

1
T

T

∑
t=1

ρτ (yt − Gτ(xt, w)) , (8)

where w = (vec(W (0))′, . . . , vec(W (L))′, b(1)′ , . . . , b(L)′)′ contains all model parameters, and
Gτ(xt, w) denotes the overall non-linear mapping, described in eq. 5 and 6. Notice that the
choice of Gτ (xt, w) will govern whether the model is parametric or non-parametric. If the
number of neurons and layers is small, then the model is parametric, if the above number
becomes large, then the model becomes non-parametric, since the number of estimated
parameters increases with the sample size, similar to sieve non-parametric approximations.

To allow the use of mixed frequency data, we can make the following changes to the
structure of the network Gτ(xt, w):
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In the input layer, we implement frequency alignment on each input variable xt

according to the corresponding maximum lag order K. Thus, each high frequency predictor
xt is transformed into a low frequency vector x?t = B(Lϕ; ϑ)xt,

B(Lϕ; ϑ) =
K

∑
k=0

B(k; ϑ)Lk
ϕ, B (k; ϑ) =

exp(ϑ1k + ϑ2k2)

∑K
k=1 exp(ϑ1k + ϑ2k2)

, (9)

where B (k; ϑ) is the normalised Almon polynomial, Lk
ϕ is a lag operator such that Lk

ϕxϕ
t =

xϕ
t−k; the lag coefficients in B(k; ϑ) of the corresponding lag operator Lk are parameterised as

a function of a small dimensional vector of parameters ϑ. We use this weight function on the
frequency alignment vector to reduce the number of parameters and ensure a parsimonious
specification. As a consequence, the low frequency variable x?t which has the same frequency
as the output yt is obtained. The rest of the architecture of the deep MIDAS follows the
architecture of the deep quantile estimator, but instead of using xt in eq. 6, we use x?t .

2.4 Regularized Non-Linear Quantile Regression

Neural networks have a great capacity to estimate non-linear relationships from the data, but
this comes at a cost, since they are prone to over-fitting. This can lead to a severe drop in their
forecasting performance, especially in small samples. There is a variety of commonly used
techniques in ML, see e.g. Gu, Kelly, and Xiu (2020a) for a good summary, that can be used
to ease this impact, originally coming from the high-dimensional statistical literature. The
reader is also referred to Goodfellow, Bengio, and Courville (2016) for an excellent summary
of different topics about the implementation of neural networks, including regularization.

2.4.1 Regularization

A common solution to this caveat is regularization, where a penalty term is imposed on
the weights of the neural network and is appended in the loss function. Regularization,
generally improves the out-of-sample performance of the network by decreasing the in-
sample noise from over-parameterization, utilising the bias-variance trade-off. Further,
another benefit of regularization is that it provides computational gains in the optimization
algorithm. The penalised loss function, for a given quantile τ, can be written as:

L(Gτ(xt, w), yt) =
1
T

T

∑
t=1

ρτ(yt − Ĝτ(xt, w)) + φ(w), (10)

9



where the penalty term is

φ(w) =



λ ‖w‖1, Lasso

λ ‖w‖2
2, Ridge

λ(1− α)‖w‖1 + λα‖w‖2
2, Elastic Net

0, otherwise

,

and λ and α are tuning parameters, for which we discuss their selection below. Generally,
there is a plethora of loss functions, and the choice among them, depends mainly on the
task at hand. In this paper we use the quantile loss function. The different penalisation
schemes on φ(w) work as follows: deep LASSO or l1-norm penalisation, is a regularization
method that shrinks uniformly all the weights to zero, and some at exactly zero. The latter
is referred to as the variable selection property of the deep LASSO. Deep Ridge works in a
similar manner to the deep LASSO, by shrinking the weights, uniformly to zero, but not at
exactly zero. Finally, the deep Elnet2 is a combination of deep LASSO and deep Ridge, that has
been shown to retain good features from both methods, see e.g. Zou and Hastie (2005).

2.4.2 Cross Validation

We use Cross Validation (CV) to calibrate all the different (hyper)-parameters outlined
above, and aim to maximise the out-of-sample (forecasting) performance of the network.

Our CV scheme consists of choices on: i) the total number of layers (L) and neurons
(J), ii) the learning rate (γ) for the Stochastic Gradient Decent (SGD), iii) the batch size,
dropout rate and the level of regularization. Regarding the choice on the activation function,
we use ReLU for the hidden layers and a linear function for the output layer. Overall,
our aim is to build a neural network that has the best pseudo-out-of-sample (POOS)
performance. To achieve this, we need to evaluate the model, select the optimal parameters
and hyper-parameters and test its POOS behaviour. It is clear that tuning all these different
architectures, parameters and hyper-parameters increases the computational cost a lot.

For this reason we tune the learning rate for the optimiser, γ, from five discrete values
in the interval [0.01, 0.001]. For the width and depth of the neural network we tune the
hyper-parameters from the following grids [1, 5, 10] and [10, 30, 50], respectively. The batch
size is selected via the following grid [10, 20].3 Furthermore, we tune the regularization
parameter, λ, from five discrete values in the interval [0.01, 0.001], both for deep LASSO and
deep Ridge, and for the case of the elastic net we choose α from a grid [0.1, 0.5, 0.9]. We also
use dropout regularization, where the dropout probability is up to 20%, see e.g. Gu, Kelly,
and Xiu (2020b).

For the non-linear MIDAS , we also cross validate ϑ1 from eight discrete values in the
interval [−1, 0.5] and for ϑ2, we use six discrete values in [−0.5, 0.5].
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We split the whole sample into three distinct subsamples, the training, validation and
test subsamples. These subsamples are consequential to maintain the time series structure
of the data. The training subsample consists of the first 60% of the sample, the validation is
the next 20% of sample and the test is final 20% of sample. First, we use the training sample
to estimate (i.e. train) the network parameters. Then, the second subsample or validation
is used to tune hyper-parameters by constructing the fitted/forecasted values given the
parameters from the training sample. We proceed with the calculation of the quantile loss
function as in eq. 10 and evaluate the models’ POOS performance on this subset. We repeat
the same process ∆ number of times, where ∆ is the number of all possible combinations
of points across quantiles. We store the quantile loss values and select the parameters
and hyper-parameters that minimise the quantile loss based on the POOS forecasts. In the
validation step we wish to find the optimal parameters and hyper-parameters that capture
complex non-linear relations and produce reliable POOS forecasts.

Finally, in the test subsample we use the optimal parameters and hyper-parameters from
the validation step and evaluate the out-of-sample performance of the network.

2.4.3 Optimisation

The estimation of neural networks is generally a computational cumbersome optimization
problem due to non-linearities and non-convexities. The most commonly used solution
utilises stochastic gradient descent (SGD) to train a neural network. SGD uses a batch of
a specific size, that is, a small subset of the data at each iteration of the optimization to
evaluate the gradient, to alleviate the computation hurdle. The step of the derivative at
each epoch is controlled by the learning rate, γ. We use the adaptive moment estimation
algorithm (ADAM) proposed by Kingma and Ba (2014)4, which is a more efficient version of
SGD.

3 Monte Carlo

3.1 Setup

In this section we present Monte Carlo (MC) experiments, in order to study the finite
sample performance of the deep quantile estimator proposed in Section 2, for the different
penalisation schemes. We generate artificial data {yt} using a single predictor {xt},
according to the following model

yt = hτ(xt) + ut, (11)
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where ut is the realisation of a random variable u distributed as, ut ∼ iidN(−σΦ−1(τ), σ2),
σ = 0.1 and Φ−1 is the quantile function of the standard normal distribution. hτ(·) is the
general non-linear function that we wish to approximate via the deep quantile estimator.

All the experiments are based on the following values: τ ∈ (1%, 2.5%, 5%, 10%, 20%),
T ∈ (100, 300, 500, 1000, 2000, 5000) and the number of MC replications is 100. We consider
the following four data generating mechanisms (DGM) to assess the finite sample properties of
the deep quantile estimator:

Case I: We consider the case of a N(0, 1) simulated single predictor that is generated as

yt = hτ(xt) + ut, hτ(xt) = sin(2πxt), xt ∼ N(0, 1).

This is the simplest design in our Monte Carlo experiments. We use this simple case to
showcase that linear methods, as expected, cannot produce reasonable performance under a
sigmoid type of a non-linear function hτ(·).

Case II: We consider an AR(1) simulated single predictor as follows

yt = hτ(xt) + ut, hτ(xt) = sin(2πxt),

where xt is simulated as

xt = 0.8xt−1 + εt, εt ∼ N(0, 1).

In this design we increase the complexity by introducing a correlated predictor.

Case III: We consider the case of a single predictor generated via a GARCH(1,1) model

yt = hτ(xt) + ut, hτ(xt) = sin(2πxt),

where xt is simulated as:

xt = σtεt, σ2
t = 1 + 0.7x2

t−1 + 0.2σ2
t−1.

In this design, we wish to examine, how the proposed estimator fares, when the regressor
is conditionally heteroskedastic, following a GARCH(1, 1) model. A GARCH type of
assumption on the distribution of asset returns is one commonly used in the literature.

Case IV: We consider the case of a single predictor that is generated as follows:

yt = hτ(xt) + ut, hτ(xt) = Gτ(xt, w), xt ∼ N(0, 1).
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In this case we simulate hτ(xt) to reflect a function composition, commonly used in neural
networks. We simulate it with 3 hidden layers and a specific number of neurons, such as

Gτ(xt, w) =
(

W (3)
(

sin
(

W (2)
(

sin
(

W (1)
(

sin
(

W (0)x′t + b(1)
))

+ b(2)
))

+ b(3)
)))′

,

where w = (vec(W (0))′, . . . , vec(W (3))′, b(1)′ , . . . , b(3)′)′, W (0) is 50× 1, W (1) is 10× 50, W (2)

is 8× 10 and W (3) is 1× 8. Further, we simulate the weights, w, so that, every entry wi,j is
simulated as, wi,j = δi,j 1(δi,j > 0.5), where δi,j ∼ U(0, 1), allowing for some sparsity.

Across all cases, we estimate hτ(xt) using our proposed estimator with different
penalisation schemes. Let ĥτ, pen = Ĝτ ,pen(xt, w) denotes the estimate, where pen corre-
sponds to no regularization, deep LASSO, deep Ridge and deep Elnet. We use the following
metrics in order to evaluate the small sample properties, of our deep quantile estimator
across R = 100, MC replications: i) the average mean squared error of the true residu-
als, AMSEut =

1
R

1
T ∑R

i=1

(
∑T

t=1 u2
t

)
i
, ii) the average mean squared error of the estimated

residuals, AMSEût, pen = 1
R

1
T ∑R

i=1

(
∑T

t=1(yt − ŷt,pen)2
)

i
and finally, iii) the average absolute

bias ABIASĥτ ,pen = 1
R

1
T ∑R

i=1

(
∑T

t=1 |(hτ(xt) − Ĝτ,pen(xt, w))|
)

i
. We report results only for

AMSEût, pen below, since results for the alternative metrics exhibit similar patterns and are
available upon request.

Figures 1 – 4 about here

3.2 Results

We present our Monte Carlo results for Cases I – IV in Figures 1 – 4 respectively. In Figure
1, we can see that the linear quantile estimator, under a non-linear setup doesn’t work as
expected and the MSE remains constant as the sample size increases. Next we present
the asymptotic properties for our proposed estimator across different penalization schemes,
namely deep quantile, deep LASSO, deep Ridge and deep Elastic Net, and find that the proposed
non-linear estimators have good finite sample properties.

When τ = 1% it appear that our estimator works well for sample sizes larger than
T = 300, but in comparison with the linear one it generally works better. In Case II our non-
linear estimators depict fine finite sample properties and their performance is better than the
linear one. In this case the non-regularized estimator performs better than the regularized
ones. Next, similar behaviour appears in Case III. In Case IV, where we allow for some
sparsity in the weights, we find, as expected, that the linear quantile regression estimator,
does not work under non-linearity, while the non-linear one works as expected.

Overall, our Monte Carlo results suggest that the deep quantile estimator has good finite
sample properties, and can approximate non-linear functions. We further find, as expected,
that the linear quantile regression estimator, does not work under non-linearity. Finally, we
find evidence in favour of the penalisation schemes proposed in Section 2. Specifically, the
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penalised deep quantile estimators also have good finite sample properties, and in some cases,
perform better that the non-regularized one; a finding in favour of weight regularization.

4 Empirical Setup

In this section we outline our empirical application setup, where we use the proposed
deep quantile estimator to forecast VaR. We examine the predictive ability of the proposed
estimator and other non-parametric models, relative to the linear one, using the quantile
encompassing test of Giacomini and Komunjer (2005). We further examine the predictive
performance of the different methods by testing their forecasting accuracy, using the Diebold
and Mariano (1995), Giacomini and White (2006) and quantile score tests.

4.1 Deep Quantile VaR forecasting

The data used in our empirical application consist of around 36 years of daily prices on
the S&P500 index (source: Bloomberg), from September 1985 to August 2020 (T = 9,053
observations). We use daily log returns, defined as rt = log (Pt/Pt−1) for our forecasting
analysis. We use four different classes of VaR models and produce forecasts for τ =

(1%, 5%, 10%) empirical conditional quantiles, using the deep quantile estimator.

The first VaR specification we consider is the GARCH(1,1) model that has been proposed
by Bollerslev (1986), in which σ2

1,t = ω0 + ω1σ2
1,t−1 + ω2r2

t−1, see eq. 12. The second VaR
specification we consider, is RiskMetrics, proposed by J.P. Morgan (1996), which assumes
σ2

2,t = λσ2
2,t−1 + (1− λ)r2

t−1, where for daily returns, λ = 0.94, see eq. 13.

The last two specifications we consider follow the Conditional Autoregressive Value-at-
Risk model (CAViaR), proposed by Engle and Manganelli (2004), where a specific quantile
is analysed, rather than the whole distribution. Specifically, the CAViaR model corrects the
past VaRj, t−1 estimates in the following way: it increases VaRj, t when VaRj, t−1 is above the
τth quantile, while, when the VaRj, t−1 is less than the τth quantile, it reduces VaRj, t. Thus,
the third VaR we examine is the Symmetric absolute value (SV) that responds symmetrically
to past returns, see eq. 14 and lastly, we consider the Asymmetric slope value (ASV) as it
offers a different response to positive and negative returns, see eq. 15. For ease of exposition,
we refer to the above specification as VaR1,t, . . . , VaR4,t, respectively. Below we summarise
their specifications:

VaR1,t = β0 + β1σ1,t (12)

VaR2,t = β0 + β1σ2,t (13)

VaR3,t = β0 + β1VaR3,t−1 + β2|rt−1| (14)

VaR4,t = β0 + β1VaR4,t−1 + β2r+t−1 − β3r−t−1, (15)
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where βi, i = 0, . . . , 3 are parameters to be estimated. We use these specifications following
Giacomini and Komunjer (2005). Under the mixed frequency setup, we consider the
following equation

VaR(MIDAS)
i,t = B(Lϕ; ϑ)VaRi,t, (16)

where B(Lϕ; ϑ) is defined in eq. 9 , i= 1, . . . , 4 and ϑ are parameters to be estimated. For a
more detailed summary of MIDAS we refer the reader to Ghysels, Santa-Clara, and Valkanov
(2004). As discussed in Section 2, the linear association between VaR and the covariates
can be restrictive. Instead we assume that the relationship between the response variable,
VaR, and the covariates has an unknown non-linear form for a given τ, that we wish to
approximate with our proposed deep quantile estimator as

VaR1,t = Gτ (σ1,t, w) (17)

VaR2,t = Gτ (σ2,t, w) (18)

VaR3,t = Gτ (VaR3,t−1, |rt−1|, w) (19)

VaR4,t = Gτ

(
VaR4,t−1, r+t−1, r−t−1, w

)
, (20)

where VaRj,t, j = 1, . . . , 4 is indexed at (day) t = 1, . . . , T. The dimension p of covariates that
we use in our analysis depends on the specification chosen for VaR. Specifically, if j = 1, 2
then p = 1, if j = 3, p = 2 and finally if j = 4 then p = 3.

In the Online Appendix, we briefly delineate the model specifications for the quantile
B-splines, quantile polynomial and quantile MIDAS estimators.

4.2 Forecasting Exercise Design

This section presents our forecasting exercise design. First we split our sample in three
distinct parts; the training sample, which is used for the estimation of the weights, the
validation sample which is used for tuning the hyperparamenters of the models and the test
sample which is used for the evaluation of different models. We use a 60%, 20%, 20% split5,
which corresponds to 5, 053 observations in the training sample, 2, 000 in the validation and
2, 000 in the test sample.

This specific split is used because we follow Giacomini and Komunjer (2005) and want
the power of the Conditional Quantile Forecast Encompassing (CQFE) test to be comparable
with her exercise. We use the CV scheme described in Section 2 and tune the width and
depth of the neural network, the batch size, the learning rate, the dropout rate and the
regularization of hyper-parameters. Generally, a forecasting exercise is performed either via
a recursive or rolling window, see e.g. Ghysels, Plazzi, Valkanov, Rubia, and Dossani (2019),
yet in either setting to produce all one step ahead forecasts for the last 2,000 observations
and to tune the hyper-parameters can be computationally challenging. Instead, we follow
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Giacomini and Komunjer (2005) and perform a fixed forecast window exercise, in which we
estimate our models once.

For our forecasting design we use a fixed forecast window exercise and predict the ten-
day-ahead VaR as:

V̂aR1,t+10|Ft = Gτ(σ1,t, w∗), (21)

where Ft denotes the information set up to time t, w∗ denotes the optimal weights obtained
from the CV. Eq. 21 illustrates how forecasts for the first VaR specification were obtained
via the deep quantile estimator. In a similar manner forecasts can be obtained for other VaR
specifications and alternative models, using eq. 12 – 20.

We evaluate the forecasting performance of VaR models with the proposed deep quantile
estimator as in Section 2. Further, we consider ten-day compounded VaR forecasts, which
we relegate to the Online Appendix.

4.3 Forecast Evaluation

In this section we discuss the various tests we have considered, in order to evaluate the
predictive ability of the deep quantile estimator and present the testing results.

4.3.1 Diebold Mariano Test

We perform a quantitative forecast comparison across different methods and test their
statistical significance. To do so, we calculate the Root Mean Squared Forecast error (RMSFE)
for each method and perform the Diebold and Mariano (1995) (DM) test, with the Harvey,
Leybourne, and Newbold (1997) adjustment to gauge the statistical significance of the
forecasts. With the DM test, we assess the forecast accuracy of the deep quantile estimator
relative to the benchmark linear quantile regression model. In this exercise we set τ equal to
1%, 5% and 10%.

In general, RMSFE is used to measure the accuracy of point estimates and is defined as

RMSFE =

√
∑T

t=1(yt+h − Ĝτ (xt+h, w))2

T
,

where h denotes the forecasting horizon and Ĝτ (xt+h, w) is the solution to the eq. 8 after
selecting the optimal w via CV at the τth quantile. Results from the DM test are reported in
Table 1, where asterisks denote the statistical significance of rejecting the null hypothesis of
the test at 1%, 5% and 10% level of significance, for all quantiles and models we consider.
These results suggest that forecasts produced from the non-linear estimator outperform,
for the majority of cases, forecasts obtained from the linear and non-parametric quantile
regression estimators.
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4.3.2 Giacomini White Test

In a similar manner and to complement the DM test, we follow Carriero, Kapetanios,
and Marcellino (2009) and further calculate the Giacomini and White (2006) test of equal
forecasting accuracy, that can handle forecasts based on both nested and non-nested models,
regardless of the estimation procedures used for the derivation of the forecasts, including
our proposed deep quantile estimator. Table 1 illustrates the results for Giacomini and White
(2006) test, where daggers denote the statistical significance of rejecting the null hypothesis
of the test at 1%, 5% and 10% level of significance, for all quantiles and different models we
consider. Similarly to the DM forecasting accuracy test, the Giacomini and White (2006) test
is again significant at 1% in most cases, with the following exceptions.

Quantile polynomial regression forecasts are only significant at the 10% level of
significance for SV model. In quantile splines, forecasts for the GARCH specification at
τ = 5% and RM at τ = 10% are not significant. Forecasts from the linear MIDAS, under
the GARCH specification, at τ = 1% are insignificant and under the ASV specification, at
τ = 5%, are significant at the 5% significance level. Results for the ASV with Deep Ridge
estimator at τ = 1% are significant only for the Giacomini and White (2006) test. For the
ASV deep MIDAS Ridge estimator and at τ = 1%, the forecasts are significant only based
on the DM test. Forecasts from deep Elnet model under SV specification and at τ = 5% are
significant at 5% level of significance. Finally, forecasts from deep Elnet under SV specification
and τ = 5% are significant at the 5% level of significance.

Overall, results from both the DM and Giacomini and White (2006) tests suggest that
the non-linear estimators outperform, for the majority of times, competing linear and non-
parametric estimators in VaR forecasting.

Table 1 about here

4.3.3 Conditional Quantile Forecast Encompassing (CQFE)

We present the implementation of the CQFE test as proposed by Giacomini and Komunjer
(2005) and the Generalized Method of Moments (GMM) estimation as proposed by Hansen
(1982). Let q̂1,t be a vector of the τth quantile forecasts produced from model 1 and q̂2,t be the
competing forecasts produced from model 2. The basic principle of CQFE is to test whether
q̂1,t conditionally encompasses q̂2,t. Encompassing occurs when the second set of forecasts
fails to add new information to the first set of quantile forecasts (or vice versa) in which case
the first (second) quantile forecast is said to encompass the second (first).

The aim of the CQFE test is to test the null hypothesis, that q̂1,t performs better that any
linear combination of q̂1,t and q̂2,t. Under the null hypothesis, it holds

Et (ρτ (yt+1 − q̂1,t)) ≤ Et (ρτ (yt+1 − θ0 − θ1q̂1,t − θ2q̂2,t)) , (22)
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that is satisfied if and only if the weights (θ1, θ2) are equal to (1, 0). The objective function of
the GMM is:

JT = gT (θ)′W T gT (θ) .

The optimal weights are computed as:

θ? = arg min
θ

gT (θ)′W T gT (θ) , gT (θ) =
∑T

t=1
(
τ − 1τ{yt+1 − θ′qt < 0}

)
zT

T
,

where W T is a positive definite matrix, gT(θ) is the sample moment condition, θ =

(θ0, θ1, θ2)
′ is a set of weights, θ? = (θ?0 , θ?1 , θ?2)

′ denotes the optimal weights, q̂t = (1, q̂1,t, q̂2,t)
′

is a vector with the forecasted values based on the pairwise models 1, and 2 in the CQFE test,
m denotes the out-of-sample size and zT is a vector of instruments. Hansen (1982) showed
that by setting W T = S−1

T i.e the inverse of an asymptotic covariance matrix, is optimal as it
estimates θ? with as small as possible asymptotic variance. S is also known as the spectral
density matrix of gT. We follow Newey and West (1987) and use a heteroskedasticity robust
estimate ŜT, of S defined as:

ŜT = Ŝ0 +
m

∑
j=1

(
1− j

m + 1

)(
Ŝj + Ŝ

′
j

)
, where Ŝj =

1
T

T

∑
t=j+1

gt

(
θ̂
)

gt−j

(
θ̂
)

.

Ŝ0 is the estimated spectral density matrix evaluated at frequency zero. The GMM estimation
is performed recursively, i.e. i) minimize JT using an identity weighting matrix to get θ?,
which gives W T via ŜT and ii) minimize JT using W T = Ŝ

−1
T from step i).

Consequently, we consider two separate test H10 : (θ?1 , θ?2) = (1, 0) versus H1a : (θ?1 , θ?2) 6=
(1, 0) and H20 : (θ?1 , θ?2) = (0, 1) versus H2a : (θ?1 , θ?2) 6= (0, 1), which correspond to testing
whether forecast q̂1,t encompasses q̂2,t or q̂2,t encompasses q̂1,t. Then the CQFE statistics are
defined as:

ENC1 = T ((θ?1 , θ?2) − (1, 0)) Ω̂ ((θ?1 , θ?2) − (1, 0))′

ENC2 = T ((θ?1 , θ?2) − (0, 1)) Ω̂ ((θ?1 , θ?2) − (0, 1))′ ,

where Ω̂ = gT(θ)
′S−1gT(θ). The asymptotic distribution of the GMM estimates of θ requires

the moment conditions to be once differentiable. To satisfy this requirement, we follow
Giacomini and Komunjer (2005) and replace the moment condition with the following
smooth approximation:

gτ(θ) =
∑T

t=1
[
τ − (1− exp((yt+1 − θ′q̂t)/η))

]
1{yt+1 − θ′q̂t < 0})zT

T
,

where η is the smoothing parameter. We choose the critical values, ccrit of the test from a
χ2

2 distribution, in which q̂i,t encompasses q̂j,t, if ENCi ≤ ccrit ∀i 6= j = 1, 2. In the empirical
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application, the vector of instruments, zT, is (1, rt, VaRi,t, VaRj,t), ∀ i 6= j = 1, 2 .

We select η to be 0.005, following the CQFE test rejection probabilities in Giacomini and
Komunjer (2005), since our POOS size is 2, 000 observations. We consider the following five
blocks: i) the non-parametric, ii) the non-linear, iii) the non-linear MIDAS, iv) the linear and
v) the linear MIDAS blocks. The non-parametric block consists of the quantile polynomial
and quantile splines estimators, the non-linear block consists of the deep quantile estimators
for the different regularization schemes and the non-linear MIDAS block consists of the
deep MIDAS estimators for the different regularization schemes. Finally, the linear and
linear MIDAS blocks consist of the linear quantile and linear quantile MIDAS estimators,
respectively.

We examine each block of models across different quantiles. Specifically, we consider
how many times the models within a specific block outperform models from other blocks
and present these results in Table 2. Under this setting a win denotes that the prevailing
model encompasses the competing benchmark model, while a loss means that the competing
model encompasses the prevailing one. Precisely, we consider a win when the computed p-
value of the CQFE test fails to reject the null hypothesis, i.e. H10 or H20. On the contrary, in
the case where the CQFE test suggests that there is no encompassing between the forecasts,
we consider this as a loss, i.e. the null hypothesis is rejected. Furthermore, the CQFE test has
a gray zone in which the test can fail to reject both null hypotheses (H10 and H20), hence the
test is inconclusive. Below we summarise the CQFE testing results for the different quantiles
when η = 0.005.

For the 10th quantile, the non-linear block encompasses 660 times the competing blocks,
in comparison to the linear block, which encompasses the competing blocks 165 times and
the non-parametric block that encompasses the others 320 times. The linear block does
not encompass other blocks less than 23 times and the non-linear block for 139 times.
Additionally, the test is inconclusive 643 times for the non-linear block and 149 times for
the linear one. Thus, the non-linear block is ranked first in terms of how many times it
encompasses the other blocks and the non-linear MIDAS block is ranked second.

For the 5th quantile, the non-linear block encompasses 711 times other blocks, 333 times
the non-parametric and the linear 177 times. Further, the linear block does not encompass
the other blocks 11 times and the non-linear 88 times. Finally, for the non-linear block, the
CQFE test is inconclusive 702 times and 167 times for the linear block. The ranking of the
first two blocks is the same as in the 10th quantile.

Finally, we examine the 1st quantile. In this case, the non-linear block encompasses
723 times the other blocks, 341 times the non-parametric and the linear block 171 times.
Furthermore, the linear block does not encompass 17 times the other blocks and the non-
linear 76 times. The test is inconclusive 715 times for the non-linear block and 165 times
for the linear one. The ranking remains the same as above. Results for different smoothing
parameters η suggest similar patterns and are available upon request.
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Table 2 about here

5 Semi-Structural analysis

A general issue in ML is the trade-off between accuracy and interpretability; where the
output of a highly complicated model, e.g. a deep neural network, can have great accuracy
or forecasting performance, but cannot be easily interpreted. In this section we first discuss
the details of two methods that can be used to make ML methods interpretable. The first
one is the Shapley Additive Explanation Values (SHAP), that has received a lot of attention
recently, and the second is partial derivatives. Further we make a formal comparison on the
output of both methods, based on the output of the deep quantile estimator that illustrates,
i) that both methods can be used to make the impact of each covariate in neural networks
interpretable and ii) perhaps surprisingly that the use of partial derivatives, offers more
stable results at a fraction of the computational cost.

5.1 Shapley values

Shapley values (SHAP) are a general class of additive attribution methods, based on the
initial work of Shapley (1953) where the goal was to determine how to fairly split a pay-off
among players in a cooperative game. In the context of ML, the goal of SHAP values is
to explain the prediction of the dependent variable by estimating the contribution of each
covariate to the prediction. SHAP values, following the exposition in Lundberg and Lee
(2017) and Lundberg, Erion, and Lee (2018) can be constructed as follows.

Let f (xt) = Ĝ(xt, w) be the output of the estimated model we wish to interpret, given a
p × 1 vector of covariates xt, and f̂ the explanation model, to be defined below. Further, let
x†

t be the M × 1 subset (vector) of xt that contains simplified covariates. These simplified
covariates, can be mapped to the original through a mapping function hxt(·), such that
xt = hxt(x†

t ). Then under the local accuracy property of Lundberg and Lee (2017), if there
exists a vector, z†

t , with binary inputs, such that z†
t ≈ x†

t , then f̂ (z†
t ) ≈ f (hxt(z

†
t )), where the

explanation model (i.e. the additive attribution function) is

f̂ (z†
t ) = φ0 +

M

∑
i=1

φiz†
t,i, (23)

and f̂ (z†
t ) represents the linear decomposition of the original ML model, where φ0 is the

intercept, φi ∈ R is the effect to each dependent variable z†
t ∈ (0, 1), that provides local and

global inference at the same time. If zt,i = 1 then the covariate is observed, on the contrary,
if zt,i = 0 then the covariate is unknown. Under the following three properties: i) local
accuracy i.e. the explanation function should match the original model, ii) missingness,
which ensures that input variable have no attributed effect and iii) consistency, under which,
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if an input variables is important, then the effect to each dependent variable should not
decline, the SHAP value is

φi = ∑
M⊆p\{i}

|M|! (p − |M| − 1)!
p!

[
fM∪{i}

(
xM∪{i}

)
− fM(xM)

]
, (24)

where p is the set of all predictors, |M| is the number of non-zero elements in x†
t , fM(xM) is

the model’s output using except from the ith covariate, and fM∪{i}

(
xM∪{i}

)
is the output of

the model, when {i} is included in the covariate set.

The calculation of SHAP values can be computationally expensive, as it requires 2N

possible permutations of the predictors.For the case of deep neural networks Lundberg and
Lee (2017), and Shrikumar, Greenside, and Kundaje (2017), have shown that DeepLIFT can
be used as an approximation of the deep SHAP that is computationally feasible 6, preserving
the three properties above. DeepLIFT is a recursive prediction explanation method for
deep learning. The Additive feature attribution methods analogy of DeepLIFT is called the
summation-to-delta property is

p

∑
i=1

C∆xt,i∆o = ∆o. (25)

Then the SHAP values can be obtained as

φi = C∆xt,i∆o,

where C∆xt,i∆o, represents the impact of a covariate to a reference value relative to
the initial value, is assigned to each xt,i covariate, o = f (·) is the output of the model,
∆o = f (x) − f (r), ∆xt,i = f (xt,i) − rt,i and r the reference value. Eq. 25 matches eq. 23, if
in ∆o we set φ0 = f (rt,i) and φi = C∆xt,i∆o.

5.2 Partial Derivatives

The use of partial derivatives for the interpretation of a model is straight forward in
econometrics, with various uses, ranging from the simple linear regression model to impulse
response analysis. In this section we show how partial derivatives can be used even in
highly non-linear deep neural networks. Before we start the analysis, note that while the
deep neural networks are highly non-linear, their solution/output via SGD optimization
methods, can be treated as differentiable function, as the majority of activation functions are
differentiable. Let’s consider the case of ReLU, that is not differentiable at 0, whereas it is in
every other point. From the point of gradient descent, heuristically, it works well enough to
treat it as a differentiable function. Further, Goodfellow, Bengio, and Courville (2016) argue
that this issue is negligible and ML softwares are prone to rounding errors, which make it
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very unlikely to compute the gradient at a singularity point. Note that even in this extreme
case, both SGD and ADAM, will use the right subgradient at 0.

For a general xt ∈ Rp, let

dj, i, t =
∂Ĝj, τ(xt, w)

∂xj, i, t−1
, (26)

denote the partial derivative of covariate xi = xit, for i = 1, . . . , p at time t = 1, . . . , T,
Ĝj, τ(xt, w) is the forecasted VaRj,t, across the j different VaR specifications we consider. We
assess the partial derivative in time, since, following Kapetanios (2007), we expect it to vary
in time, due to the inherent non-linearity of the neural network. Our covariate(s) xt are the
conditional volatility for GARCH and RM, VaR lagged values, the absolute S&P500 daily
return and the positive and negative S&P500 daily returns for SV and ASV, respectively. It is
evident that under the classic linear regression problem, or linear quantile regression model,
the effect of the covariates xt to the dependent variable yt is constant, time invariant, and
corresponds to β̂(τ).

5.3 Results

In this application we use the whole sample size i.e. around 36 years of daily returns on the
S&P500 index to provide an accurate interpretation of our deep quantile estimator. Figures 5
– 8 illustrate the partial derivatives and SHAP values evaluated in time on the output of our
deep quantile7 estimator, for a specific quantile τ. Further, we compare the partial derivatives
of the deep quantile estimator relative to the linear quantile regression partial derivative, i.e.
the β(τ) coefficient. Both partial derivatives and SHAP values seem to identify interesting
patterns that can be linked to some well known events. Below we discuss our results for all
models we have considered in our empirical application.

The results for the first two models, i.e. GARCH and RM can be summarised together,
since in both models there is only one covariate, that is the conditional volatility, but with a
different specification. The results from this model are illustrated in Figures 5. We find that
the partial derivative appears to be more stable over time, fluctuating around the constant
partial derivative, β(τ), of the linear quantile estimator. When there is a crisis or a stressful
event in the financial markets, they increase. As an example, we see significant spikes in
the partial derivatives, both in March 2020 as well as in 2008, which stand for the onset of
the COVID-19 pandemic and the Great Recession respectively. We also find that the biggest
increase occurs in 1987, the year when Black Monday happened, and also significant variation
during the U.S. government shutdown in 2019. The values for the partial derivatives
generally increase, as τ decreases. SHAP values have a similar behaviour with the partial
derivatives, but are more volatile across time. For the first two models, there are some events,
e.g. during the 1991, where the values for both SHAP and partial derivatives do not increase
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a lot. We view this finding as an inability of these two models, to properly account for this
crisis.

In the last two models, the merit of SHAP values and partial derivatives becomes clear,
since in these models we have more than one covariates and both methods can provide an
indication on the effect of each covariate on the final output. Overall, we find that increasing
the number of covariates, allow the models to account for all crises within the sample. For
the case of the SV model, we find that the important covariate is the lagged values of VaR,
rather than the absolute values of S&P500. Similar to the one covariate models, we find that
the partial derivatives are more stable than SHAP values, fluctuating closely around β(τ)

and picking up when there are crisis or distress in the economy or financial markets. The
SHAP values again appear to be more volatile with a wider range. Similar to the findings
of the one covariate models, the higher the values for the partial derivative and SHAP, the
lower the τ quantile.

For the case of the ASV model, we find that again the lagged values of VaR is the
most significant covariate, the negative S&P500 returns have some impact and the positive
S&P500 returns are almost insignificant. Similar to the cases above, we find that the partial
derivative is more stable than SHAP values, fluctuating closely around β(τ) and picking up
when there is a crisis or distress in the economy or financial markets. The SHAP values again
appear to be more volatile with a wider range. Again and same as before, lower quantiles
have higher partial derivatives. The results for these two models are illustrated in Figures 6,
7 and 8.

Different penalization schemes maintain the aforementioned results, with a lower
magnitude. Overall, we observe that the linear quantile regression shows a fixed pattern
across time and is evident that this model does not anticipate shocks in the economy. Our
analysis suggests that it is higher during stressful events. As Engle and Manganelli (2004)
suggest, SV and ASV react more to negative shocks and in stressful events their spike is
larger than the GARCH and RM models. Finally, covariates with the minimum contribution
on the forecasted values, such as the positive S&P500 returns has negligible impact on both
SHAP and partial derivatives values.

Figures 5 – 8 about here

6 Conclusion

In this paper we contribute to the expanding literature on the use of ML in finance and
propose a deep quantile estimator that has the potential to capture the non-linear association
between asset returns and predictors. In Section 2, we lay out the exact workings of our
proposed estimator, and illustrate how it generalises linear quantile regression.

In the Monte Carlo exercise in Section 3, we study the finite sample properties of
the deep quantile estimator, based on a number of data generating processes. We present
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extensive evidence the estimator gives good finite sample performance, that is a function of
T, uniformly across different regularization schemes.

We use the deep quantile estimator, with various penalization schemes, to forecast VaR.
We find that our estimator gives considerable predictive gains, up to 74%, relative to the VaR
forecasts produced by the linear quantile regression. This result is backed by the forecasting
accuracy tests, i.e. the Diebold and Mariano (1995), the Giacomini and White (2006) and
the quantile score tests. Further, results from the CQFE test of Giacomini and Komunjer
(2005) suggest that forecasts obtained from the non-linear estimators encompass forecasts
from the linear and non-parametric models with a higher frequency. These findings are in
support of the non-linear association between the conditional quantile of asset returns and
covariates, hence suggesting a new avenue in forecasting in finance and in macroeconomics
during extreme events.

In addition, we do a semi-structural analysis to examine the contribution of the
predictors in VaR over time. We consider, following the ML literature, SHAP values and
further partial derivatives. Our findings suggests that our non-linear estimator reacts more
in stressful events and exhibits time-variation, while the linear quantile estimator presents,
as expected, a constant time invariant behaviour. We conclude that financial variables are
characterised by non-linearities, that our proposed deep quantile estimator can approximate
quite well.

Finally, we make a formal comparison between SHAP and partial derivatives, and
interestingly find that partial derivatives can be used to make ML methods interpretable,
are less volatile, easier to interpret and can be computed at a fraction of time used in the
calculation of SHAP values.

24



References

ADAMS, P. A., T. ADRIAN, N. BOYARCHENKO, AND D. GIANNONE (2021): “Forecasting
macroeconomic risks,” International Journal of Forecasting.

ATHEY, S., AND G. W. IMBENS (2017): “The state of applied econometrics: Causality and
policy evaluation,” Journal of Economic Perspectives, 31(2), 3–32.

BABII, A., X. CHEN, E. GHYSELS, AND R. KUMAR (2020): “Binary choice with asymmetric
loss in a data-rich environment: Theory and an application to racial justice,” arXiv preprint
arXiv:2010.08463.

BATES, J. M., AND C. W. GRANGER (1969): “The combination of forecasts,” Journal of the
Operational Research Society, 20(4), 451–468.

BAUR, D., AND N. SCHULZE (2005): “Coexceedances in financial markets—a quantile
regression analysis of contagion,” Emerging Markets Review, 6(1), 21–43.

BELLONI, A., V. CHERNOZHUKOV, D. CHETVERIKOV, AND I. FERNÁNDEZ-VAL (2019):
“Conditional quantile processes based on series or many regressors,” Journal of Economet-
rics, 213(1), 4–29.

BELLONI, A., V. CHERNOZHUKOV, AND C. HANSEN (2014): “Inference on treatment effects
after selection among high-dimensional controls,” The Review of Economic Studies, 81(2),
608–650.

BOLLERSLEV, T. (1986): “Generalized autoregressive conditional heteroskedasticity,” Journal
of econometrics, 31(3), 307–327.

BUCCI, A. (2020): “Realized Volatility Forecasting with Neural Networks,” Journal of
Financial Econometrics, 18(3), 502–531.

CARRIERO, A., G. KAPETANIOS, AND M. MARCELLINO (2009): “Forecasting exchange rates
with a large Bayesian VAR,” International Journal of Forecasting, 25(2), 400–417.

CHEN, X., Y. LIU, S. MA, AND Z. ZHANG (2020): “Efficient estimation of general treatment
effects using neural networks with a diverging number of confounders,” arXiv preprint
arXiv:2009.07055.

CHERNOZHUKOV, V., AND L. UMANTSEV (2001): “Conditional value-at-risk: Aspects of
modeling and estimation,” Empirical Economics, 26(1), 271–292.

DIEBOLD, F. X., AND R. S. MARIANO (1995): “Comparing predictive accuracy,” Journal of
Business and Economic Statistics, 13, 253–263, Reprinted in Mills, T. C. (ed.) (1999), Economic
Forecasting. The International Library of Critical Writings in Economics. Cheltenham: Edward
Elgar.

25



DU, Z., M. WANG, AND Z. XU (2019): “On Estimation of Value-at-Risk with Recurrent
Neural Network,” in 2019 Second International Conference on Artificial Intelligence for
Industries (AI4I), pp. 103–106. IEEE.

ENGLE, R. F., AND S. MANGANELLI (2004): “CAViaR: Conditional autoregressive value at
risk by regression quantiles,” Journal of Business & Economic Statistics, 22(4), 367–381.

FARRELL, M. H., T. LIANG, AND S. MISRA (2021): “Deep neural networks for estimation
and inference,” Econometrica, 89(1), 181–213.

GALANT, A., AND H. WHITE (1992): “On learning the derivatives of an unknown mapping
with multilayer feed forward neural network,” Neural networks, 5, 129–138.

GHYSELS, E., A. PLAZZI, AND R. VALKANOV (2016): “Why invest in emerging markets? The
role of conditional return asymmetry,” The Journal of Finance, 71(5), 2145–2192.

GHYSELS, E., A. PLAZZI, R. VALKANOV, A. RUBIA, AND A. DOSSANI (2019): “Direct versus
iterated multiperiod volatility forecasts,” Annual Review of Financial Economics, 11, 173–195.

GHYSELS, E., P. SANTA-CLARA, AND R. VALKANOV (2004): “The MIDAS touch: Mixed data
sampling regression models,” .

GIACOMINI, R., AND I. KOMUNJER (2005): “Evaluation and combination of conditional
quantile forecasts,” Journal of Business & Economic Statistics, 23(4), 416–431.

GIACOMINI, R., AND H. WHITE (2006): “Tests of conditional predictive ability,” Economet-
rica, 74(6), 1545–1578.

GOODFELLOW, I., Y. BENGIO, AND A. COURVILLE (2016): Deep learning. MIT press.

GU, S., B. KELLY, AND D. XIU (2020a): “Autoencoder asset pricing models,” Journal of
Econometrics.

(2020b): “Empirical asset pricing via machine learning,” The Review of Financial
Studies, 33(5), 2223–2273.

HANSEN, L. P. (1982): “Large sample properties of generalized method of moments
estimators,” Econometrica: Journal of the Econometric Society, pp. 1029–1054.

HARVEY, D., S. LEYBOURNE, AND P. NEWBOLD (1997): “Testing the equality of prediction
mean squared errors,” International Journal of forecasting, 13(2), 281–291.

HE, Z., AND A. KRISHNAMURTHY (2013): “Intermediary asset pricing,” American Economic
Review, 103(2), 732–70.

HORNIK, K. (1991): “Approximation capabilities of multilayer feedforward networks,”
Neural networks, 4(2), 251–257.

26



HORNIK, K., M. STINCHCOMBE, AND H. WHITE (1989): “Multi-Layer Feedforward Net-
works and Universal Approximators,” Neural Network, 2, 359–366.

JOSEPH, A. (2019): “Shapley regressions: a framework for statistical inference on machine
learning models,” Discussion paper, Bank of England.

J.P. MORGAN, M. (1996): “Reuters (1996) RiskMetrics-Technical Document,” JP Morgan.

KAPETANIOS, G. (2007): “Measuring conditional persistence in nonlinear time series,”
Oxford Bulletin of Economics and Statistics, 69(3), 363–386.

KAPETANIOS, G., AND A. P. BLAKE (2010): “Tests of the martingale difference hypothesis
using boosting and RBF neural network approximations,” Econometric Theory, 26(5), 1363–
1397.

KEILBAR, G., AND W. WANG (2021): “Modelling systemic risk using neural network quantile
regression,” Empirical Economics, pp. 1–26.

KINGMA, D. P., AND J. BA (2014): “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980.

KOENKER, R. (2005): Quantile Regression, Econometric Society Monographs. Cambridge
University Press.

KOENKER, R., AND G. BASSETT JR (1978): “Regression quantiles,” Econometrica: journal of the
Econometric Society, pp. 33–50.

KOENKER, R., V. CHERNOZHUKOV, X. HE, AND L. PENG (2017): Handbook of quantile
regression. CRC press.

KOENKER, R., AND K. F. HALLOCK (2001): “Quantile regression,” Journal of economic
perspectives, 15(4), 143–156.

LIANG, S., AND R. SRIKANT (2016): “Why deep neural networks for function approxima-
tion?,” arXiv preprint arXiv:1610.04161.

LUNDBERG, S. M., G. G. ERION, AND S.-I. LEE (2018): “Consistent individualized feature
attribution for tree ensembles,” arXiv preprint arXiv:1802.03888.

LUNDBERG, S. M., AND S.-I. LEE (2017): “A unified approach to interpreting model
predictions,” in Advances in neural information processing systems, pp. 4765–4774.

MEINSHAUSEN, N. (2006): “Quantile regression forests,” Journal of Machine Learning
Research, 7(Jun), 983–999.

NEWEY, W. K., AND K. D. WEST (1987): “Hypothesis testing with efficient method of
moments estimation,” International Economic Review, pp. 777–787.

27



PADILLA, O. H. M., W. TANSEY, AND Y. CHEN (2020): “Quantile regression with deep ReLU
Networks: Estimators and minimax rates,” arXiv preprint arXiv:2010.08236.

PARK, J., AND I. W. SANDBERG (1991): “Universal Approximation using Radial-Basis-
Function Networks,” Neural Computation, 3(4), 246–257.

POHL, W., K. SCHMEDDERS, AND O. WILMS (2018): “Higher order effects in asset pricing
models with long-run risks,” The Journal of Finance, 73(3), 1061–1111.

SCHMIDT-HIEBER, J. (2020): “Nonparametric regression using deep neural networks with
ReLU activation function,” The Annals of Statistics, 48(4), 1875–1897.

SHAPLEY, L. S. (1953): “A value for n-person games,” Contributions to the Theory of Games,
2(28), 307–317.

SHRIKUMAR, A., P. GREENSIDE, AND A. KUNDAJE (2017): “Learning important features
through propagating activation differences,” arXiv preprint arXiv:1704.02685.

SMALTER HALL, A., AND T. R. COOK (2017): “Macroeconomic indicator forecasting with
deep neural networks,” Federal Reserve Bank of Kansas City Working Paper, (17-11).

TAMBWEKAR, A., A. MAIYA, S. S. DHAVALA, AND S. SAHA (2021): “Estimation and
Applications of Quantiles in Deep Binary Classification,” IEEE Transactions on Artificial
Intelligence.

TOBIAS, A., AND M. K. BRUNNERMEIER (2016): “CoVaR,” The American Economic Review,
106(7), 1705.

WAGER, S., AND S. ATHEY (2018): “Estimation and inference of heterogeneous treatment
effects using random forests,” Journal of the American Statistical Association, 113(523), 1228–
1242.

YAROTSKY, D. (2017): “Error bounds for approximations with deep ReLU networks,” Neural
Networks, 94, 103–114.

ZHANG, W., H. QUAN, AND D. SRINIVASAN (2018): “An improved quantile regression
neural network for probabilistic load forecasting,” IEEE Transactions on Smart Grid, 10(4),
4425–4434.

ZOU, H., AND T. HASTIE (2005): “Regularization and variable selection via the elastic net,”
Journal of the royal statistical society: series B (statistical methodology), 67(2), 301–320.

28



Notes
1Autoencoders are artificial neural networks that can be used as a dimensionality reduction technique.
2Deep Elastic net
3We have also considered batch normalisation and find that overall, results exhibit similar pattern with and

without it.
4ADAM is using estimates for the first and second moments of the gradient to calculate the learning rate.
5The split is approximately equal to 60%, 20%, 20%. We have examined alternative training, validation and

test splits, which give similar patterns to the presented empirics and are available upon request.
6There are other methods that can be used to achieve this, such as Tree Explainer, Kernel Explainer, Linear

Explainer, Gradient Explainer.
7In this section we limit our attention in the output of the best performing model, in terms of its forecasting

capacity, as reflected by the forecast gains measure in Section 4, for each model, based on the different
penalisation schemes. Results from all the different penalisation schemes suggest similar patterns to the ones
discussed above and are available upon request.
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û t
,p

en
fo

r
th

e
di

ff
er

en
t

pe
na

liz
at

io
n

sc
he

m
es

(M
od

el
),

T
=

10
0,

30
0,

50
0,

10
00

,2
00

0,
50

00
an

d
di

ff
er

en
t

qu
an

ti
le

s,
τ
=

(1
%

,2
.5

%
,5

%
,1

0%
,2

0%
)

31



1
0
0

3
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

0
.6

0
.81

1
.2

1
.4

1
.6

1
0
0

3
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

0
.6

0
.81

1
.2

1
.4

1
0
0

3
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

0
.51

1
.5

1
0
0

3
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

0
.6

0
.81

1
.2

1
.4

1
0
0

3
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

1
.2

1
.4

1
.6

1
.8

Fi
gu

re
3:

M
on

te
C

ar
lo

re
su

lt
s

fo
r

C
as

e
II

I.
M

od
el

:
y t

=
h τ
(x

t)
+

u t
,

h τ
(x

t)
=

si
n(

2π
x t
),

x t
=

σ
tε

t,
σ

2 t
=

1
+

0.
7x

2 t−
1
+

0.
2σ

2 t−
1,

ε t
∼

N
(0

,1
),

u t
∼

iid
N
(−

σ
Φ
−

1 (
τ
),

σ
2 )

,
σ
=

0.
1

an
d

Φ
−

1
is

th
e

qu
an

ti
le

fu
nc

ti
on

of
th

e
st

an
da

rd
no

rm
al

di
st

ri
bu

ti
on

.F
ig

ur
e

pr
es

en
ts

th
e

av
er

ag
e

m
ea

n
sq

ua
re

d
er

ro
r

of
th

e
es

ti
m

at
ed

re
si

du
al

s,
A

M
SE
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Figure 5: Partial Derivative, SHAP and β̂(τ) for GARCH and RM models.

(a) GARCH without penalty (b) GARCH with Elnet penalty

(c) GARCH with Elnet penalty (d) RM without penalty

(e) RM without penalty (f) RM with Ridge penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators
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Figure 6: Partial Derivative, SHAP and β̂(τ) for SV model.

(a) SV without penalty (b) SV without penalty

(c) SV with LASSO penalty (d) VaR lagged values without penalty

(e) VaR lagged values without penalty (f) VaR lagged values with LASSO penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators
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Figure 7: Partial Derivative, SHAP and β̂(τ) for ASV model.

(a) ASV with Ridge penalty (b) ASV with Ridge penalty

(c) ASV without penalty (d) S&P500 positive values with Ridge penalty

(e) S&P500 positive values with Ridge penalty (f) S&P500 positive values without penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators
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Figure 8: Partial Derivative, SHAP and β̂(τ) for ASV model.

(a) S&P500 negative values with Ridge penalty (b) S&P500 negative values with Ridge penalty

(c) S&P500 negative values without penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators
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