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Abstract

It is increasingly common to estimate Bayesian Vector Autoregressions (VARs)
in a structural form involving the Cholesky decomposition of the reduced form error
covariance matrix. The resulting structural form has an error covariance matrix
which is diagonal, allowing for equation by equation estimation of the VAR, leading
to a huge reduction in the computational burden. However, this leads to order de-
pendence. Posterior and predictive results differ depending on the way the variables
are ordered in the VAR. In this paper, we propose the use of spike and slab priors
over different variable orderings and allow the data to select the optimal ordering.
We develop two models and Markov Chain Monte Carlo (MCMC) methods for
posterior sampling over orderings based on the Plackett-Luce and Bradley-Terry
models. In a macroeconomic exercise involving VARs with 20 variables we demon-
state the effectiveness of our two approaches in choosing the optimal ordering and
find substantive forecasting improvements relative to a strategy of subjectively se-
lecting a single ordering.

∗We would like to thank participants at the NBER-NSF SBIES conference 2022 for useful comments.



1 Introduction

Bayesian VARs have traditionally been estimated in reduced form, where the right hand
side of the VAR equation involves an n×1 vector of dependent variables, yt, and the error
covariance matrix for the VAR, Σt, is unrestricted (apart from being positive definite).
However, as VARs have become larger and larger, researchers have increasingly been
estimating VARs in a structural form where the right hand side of the VAR is B0yt

and the error covariance matrix is diagonal. B0 is a lower triangular matrix based on
the Cholesky decomposition of Σt. The fact that the error covariance matrix of the
structural VAR is diagonal means that Bayesian estimation can proceed one equation
at a time. As shown, e.g., in Carriero et al. (2019) the MCMC algorithm based on the
reduced form VAR requires O(n6) elementary operations to take one draw of the VAR
coefficients. This is reduced to O(n4) with the structural VAR. Thus, in larger VARs, it
can be computationally impractical to work in the reduced form in cases where MCMC
analysis is feasible when working in the structural form.1

However, the use of the Cholesky decomposition of the reduced form error covariance
matrix leads to order dependence. That is, posterior and predictive results will vary
depending on the way that the variables are ordered in the VAR. To clarify the precise
nature of this order dependence, we highlight the discussion of sub-section 3.1 of Carriero
et al. (2019) who demonstrate that the posterior of the structural form VAR coefficients,
conditional on Σt is invariant to ordering. The lack of order invariance arises due to the
fact that the implied prior on Σt is not order invariant. Arias et al. (2021) demonstrates
the importance of the ordering issue in VARs both theoretically and empirically. The
authors show that, although point forecasts are not sensitive to the way variables are
ordered, predictive standard deviations can be subtantially affected by the way that the
variables are ordered. The VARs considered in Arias et al. (2021) are all low dimensional.
Chan et al. (2021) consider ordering issues in high dimensional VARs and demonstrate
that the theoretical and empirical findings of Arias et al. (2021) hold with additional
force in higher dimensions. Thus, there is growing theoretical and empirical evidence
that ordering issues are important, particularly in the large VARs that cannot easily be
estimated in reduced form.

These considerations have stimulated interest in order invariant approaches. Reduced
form estimation of VARs is order invariant with commonly-used priors, but is not scaleable
to large VARs. Chan et al. (2021) critiques various order invariant approaches and pro-
poses a new order invariant approach which avoids the use of the Cholesky decomposition
relies on stochastic volatility to identify the model and is scaleable. The present paper
adopts a different strategy to address the ordering issue. We retain the Cholesky decom-

1Numerical instability issues can also plague the Bayesian estimation of reduced form VARs due to
the need to invert and/or take Cholesky dcompositions of enormous posterior covariance matrices for
the VAR coefficients.
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position of the reduced form error covariance but develop methods for finding the optimal
ordering of the variables. An alternative way of viewing what we do is that we treat the
ordering of variables in the VAR as unknown and estimate it using Bayesian methods.

2 Bayesian Inference on Orderings in VARs

In this section, we develop Bayesian methods to carrying out inference on ways of ordering
the variables in VARs. After defining a standard VAR likelihood function, we develop
a spike and slab prior and allow for inference on variable ordering. Subsequently, we
develop MCMC methods which allow for posterior inference and prediction.

2.1 The Likelihood Function

We work with VARs with stochastic volatility (SV) involving yt = (y1,t, . . . , yn,t)
′, an

n× 1 vector, observed over the periods t = 1, . . . , T :

yt = a+A1yt−1 + · · ·+Apyt−p +B−1
0 εt, εt ∼ N (0,Dt) , (1)

where a is an n×1 vector of intercepts, A1, . . . ,Ap are n×n matrices of VAR coefficients,
B0 is an n × n matrix, and Dt = diag

(
eh1,t , . . . , ehn,t

)
is diagonal. Finally, each of the

log-volatility hi,t follows the stationary AR(1) process:

hi,t = φihi,t−1 + uh
i,t, uh

i,t ∼ N
(
0, ω2

i

)
where N (·, ·) denotes the Gaussian distribution.2

B0 has ones on the diagonal. That is, in the likelihood function we model B0 as

B0 =


1 b1,2 . . . b1,n
b2,1 1 b2,n
... . . . ...

bn,1 . . . bn,n−1 1

 . (2)

These assumptions suffice to define a likelihood function which is the same as that used
in Chan et al. (2021) which shows that, although the homoskedastic version of the model
leads to a lack of identification, the presence of stochastic volatility means that the B0

is identified. In this paper, we develop a prior which identifies even the homoskedastic
version of the VAR.

2It is simple to extend our methods to the homoskedastic VAR or to allow for Ai for i = 1, . . . , p to
be time varying. Allowing for B0 to be time varying would be a greater challenge, but could be done by
replacing our spike and slab prior with a dynamic spike and slab prior.
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2.2 Spike and Slab Priors over Variable Orderings

The parameters in our model include VAR coefficients and those in the SV processess as
well as B0. The developments in this paper relate to the latter and, hence, this is what
we discuss in this sub-section. For the other parameters, our prior choices are standard
and, thus, we relegate discussion of them to the appendix.

A common assumption is that B0 is a lower triangular matrix with ones on the diagonal.
It is this which leads to order dependence as shown, e.g., in Chan et al. (2021). But
the lower triangularity assumption has the advantage that it leads to simple and fast
Bayesian computation. Hence, in this paper, we retain the lower triangularity assumption
but express uncertainty over which lower triangular form is appropriate. To be precise,
we use priors which rule out all forms for B0 except those that can be, via permutations
of the columns of the matrix, put into a lower triangular form with ones on the diagonal.
Each valid ordering is defined through a row vector ρl for l = 1 . . . L which are stored in
an L×n matrix P. For instance, in a VAR with 3 variables there are 6 possible orderings
(e.g. 1,2,3; 1,3,2; 2,1,3; etc.) and, thus, L = 6. Each ρl denotes a unique ordering and
is an 1 × n vector ρl =

(
ρl1, . . . , ρ

l
n

)
, where ρl1 is the variable which takes the first place

under ordering l, ρl2 the second, etc.

We stress that the variables in yt are ordered in a particular way (from variable 1 through
variable n) and that they always appear in this order in the model. When we refer to
variable orderings this relates to B0 with the idea being that, through appropriate per-
mutations of its columns, it becomes lower triangular. That is, formally the variables in
yt never change order, nor is B0 itself necessarily lower triangular. However, we consider
a prior which only allows for choices of B0 which can be transformed into lower triangu-
lar form after appropriate switching of its columns. This is equivalent to considering all
possible structural VARs with lower triangular triangular impact matrices for different
variable orderings. When we use phrases below which refer to different orderings of the
variables, they should be interpreted in this context. For each choice of l we restrict B0 to
lower triangular form (after permutations) through a Dirac spike-and-slab prior. Lower
triangularity is obtained if, for i < j, i, j = 1, . . . , n, variable ρli is ordered before variable
ρlj, i 6= j, then is is non-zero, otherwise it is zero. Thus,

p
(
bρli,ρlj | ρ

l
)
= 1(i<j)∆0

(
bρli,ρlj

)
+ 1(i>j)N (ab, Vb) , i 6= j. (3)

This defines the prior for B0 conditional on a specific ordering.

We now need a prior over orderings. When dealing with ordered or ranked data, two
classic models have shown great popularity over the years: the Plackett-Luce model
(Luce, 1959; Plackett, 1975) and the Bradley-Terry model (Bradley and Terry, 1952).
The idea of our approach is to use these models, not for the data itself, but to design
priors for P. The basic idea of the Plackett-Luce model is that it provides a distribution

4



for rank ordered data.3 The Plackett-Luce model is referred to as a multiple comparisons
model. In contrast, the Bradley-Terry model is for pairwise comparisons. For instance, it
is commonly used with sporting data and builds a model for whether player i beats player
j. In our context, it it a model for whether variable i is ordered ahead of variable j in the
VAR. Knowledge of all pairwise orderings like this suffices to order all the variables in the
VAR. We focus on the Plackett-Luce model and provide details about the Bradley-Terry
model in the appendix.

2.2.1 A Plackett-Luce Prior over Orderings

To explain the Plackett-Luce prior over orderings, we first introduce parameters for each
variable, λj > 0 for j = 1 . . . n which represent the so-called skill rating or ability of each
variable (i.e. λj determines the probability that variable yj,t is ordered first in the VAR)
and we denote λ := {λi}ni=1. The Plackett-Luce prior over orderings is given by:

p
(
ρl | λ

)
=

n∏
i=1

λρli∑n
k=i λρlk

. (4)

It is a hierarchical prior in that λ is treated as unknown and estimated.

There is an alternative way of writing the Plackett-Luce model which involves intoducing
a latent variable zi for each variable

zi | λi ∼ E (λi) , i = 1, 2, . . . , n (5)

where E denote the exponential distribution.

If we define

p
(
ρl | z

)
≡ Pr

(
zρl1 < zρl2 < · · · < zρln

)
(6)

and calculate

p
(
ρl | λ

)
=

∫
p
(
ρl | z

)
p (z | λ) dz, (7)

it can be shown to be the same prior as in (4).
3The Plackett-Luce model assumes the ranking is complete, an assumption we maintain for our

variable orderings. However, it is worth noting that Bayesian methods for the extended Plackett-Luce
model are available (Johnson et al., 2021) and could easily be used in our approach. This model allows
for the ranking to be incomplete which, in some cases, could be useful for VAR ordering problems. For
instance, a researcher may wish to know whether a block of macroeconomic variables is ordered before
or after a block of financial variables but does not care about the ordering of variables within each block.
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Another equivalent latent variable representation of the Plackett-Luce model uses the
latent variables in (5) and writes

p (ρ | z) =Pr
(
ρl1 = min{zρl1 , · · · , zρln}

)
× · · · × Pr

(
ρln−1 = min{zρln−1

, zρln}|zρl1 , · · · , zρln−2

)
.

(8)

The equivalence of 8 and 6 arises since z1, . . . , zn are independent exponentially dis-
tributed random variables with rate parameters λ1, . . . , λn. A property of the exponen-
tial distribution is that min {z1, . . . , zn} is also exponentially distributed, with parameter
λ1 + · · ·+ λn which provides us with the following distribution:

Pr
(
min{zρl1 , zρl2 , · · · , zρln}

)
∼ E

(
λρl1

+ λρl2
+ · · ·+ λρln

)
. (9)

This latent variable representation is important in our MCMC algorithm. Intuitively,
this algorithm will first search over all n variables to draw the variable to be ordered
first, then search over the remaining n− 1 variables to find the variable ordered second,
etc.

Finally, we require a prior for λ, which is the vector of abilities for the variables. For
these, we adopt independent gamma prior distributions:

p(λ) =
n∏

i=1

G (λi; aλ,i, bλ,i) .

As explained in Caron and Doucet (2012), the hyperparameters bλ,i are just scaling param-
eters on λi. As the likelihood is invariant to a rescaling of the λi, these hyperparameters
can be fixed without influencing inference. Following Henderson and Kirrane (2018) we
set bλ,i = 1.

Following Caron and Doucet (2012) we estimate the other set of prior hyperparameters,
aλ,i. We begin by setting aλ,i = aλ for i = 1, . . . , n which leads to an exchangeable prior
specification in which we believe that some variables are better than others but we have
no beliefs about which the stronger and the weaker variables are (Henderson and Kirrane,
2018). Thus, we assume λi ∼ G(aλ, 1). To estimate aλ, we use the Metropolis-Hastings
step proposed in Caron and Doucet (2012).

2.3 Posterior of ordering

We propose two steps to sample the ordering. One is the forward step, another is the
backward step. In the forward step, we first decide which variable will take the first place.
After deciding the first place, we next decide the second place. We repeat this process

6



until the last place. Then, in the backward step, we first decide which variable will take
the last place. After deciding the last place, we next decide the second last place. We
repeat this process until the first place. Finally, we will get the optimal ordering ρ∗. This
method is inspired by rewriting Equation (6) as
p (ρ∗ | z) ≡Pr

(
zρ∗1 < zρ∗2 < · · · < zρ∗n

)
=Pr

(
ρ∗1 = min{zρ∗1 , zρ∗2 , · · · , zρ∗n}

)
× Pr

(
ρ∗2 = min{zρ∗2 , · · · , zρ∗n}|ρ

∗
1

)
× · · ·×

Pr
(
ρ∗n−1 = min{zρ∗n−1

, zρ∗n}|zρ∗1 , zρ∗2 , · · · , zρ∗n−2

)
. (10)

This is because: Since z1, . . . , zn are independent exponentially distributed random vari-
ables with rate parameters λ1, . . . , λn. Then min {z1, . . . , zn} is also exponentially dis-
tributed, with parameter λ1 + · · ·+ λn. So:

Pr
(
min{zρ∗1 , zρ∗2 , · · · , zρ∗n}

)
∼ E

(
λρ∗1

+ λρ∗2
+ · · ·+ λρ∗n

)
. (11)

Then the selected variable is distributed according to the categorical distribution

Pr
(
zρ∗1 = min

{
zρ∗1 , zρ∗2 , · · · , zρ∗n

})
=

λρ∗1

λρ∗1
+ · · ·+ λρ∗n

. (12)

So

p (ρ∗ | λ) =
n∏

i=1

λρ∗i∑n
k=i λρ∗k

,

=
λρ∗1

λρ∗1
+ λρ∗2

+ · · ·+ λρ∗n

×
λρ∗2

λρ∗2
+ λρ∗3

+ · · ·+ λρ∗n

× · · · ×
λρ∗n−1

λρ∗n−1
+ λρ∗n

×
λρ∗n

λρ∗n

,

=Pr
(
ρ∗1 = min{zρ∗1 , zρ∗2 , · · · , zρ∗n}

)
× Pr

(
ρ∗2 = min{zρ∗2 , · · · , zρ∗n}|ρ

∗
1

)
× · · ·×

Pr
(
ρ∗n−1 = min{zρ∗n−1

, zρ∗n}|zρ∗1 , zρ∗2 , · · · , zρ∗n−2

)
.

This method can be thought as: we first decide which variable will take the first place.
There are n variables in total, so we compare the n variables. The winner needs to beat
all other n− 1 variables. After deciding the first place, we next decide the second place.
The winner needs to beat all other n− 2 variables. We repeat this process until the last
place.

3 Bayesian Computation

Before discussing the MCMC algorithm, we describe the prior on λ, which is the ability
of variables. Beliefs about the relative abilities of the variables are expressed through
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independent gamma prior distributions:

p(λ) =
n∏

i=1

G (λi; aλ,i, bλ,i) .

As explained in Caron and Doucet (2012), the parameter bλ,i is just a scaling parameter
on λi. As the likelihood is invariant to a rescaling of the λi, this parameter does not have
any influence on inference. Hence, to ensure that the maximum a posteriori estimate
satisfies

∑n
i=1 λi = 1, they set bλ,i = naλ,i − 1. Henderson and Kirrane (2018) suggested

that bλ,i can be set equal to 1, due to the scale invariance of λ. We can follow their choice,
setting bλ,i = 1.

For aλ,i, taking aλ,i = aλ for i = 1, . . . , n leads to an exchangeable prior specification
in which we believe that some variables are better than others but we have no beliefs
about who the stronger and the weaker variables are (Henderson and Kirrane, 2018).
This choice is the same as the choice in Caron and Doucet (2012). We follow their choice,
setting aλ,i = aλ. Then our choice of aλ,i and bλ,i leads to the specification λi ∼ G(aλ, 1).
For aλ, we use the Metropolis-Hastings step proposed in Caron and Doucet (2012) to
sample it.

Next we develop a posterior sampler which allows for Bayesian estimation of the multiple
comparisons and pair comparisons. Below we discuss sampling of:

Step 1: p (B0 | y,A,D,ρ∗, z, λ) = p (B0 | y,A,D,ρ∗);

Step 2: p (ρ∗ | y,A,D,B0, z, λ, aλ) = p (ρ∗ | B0, z, λ);

Step 3: p (z | y,A,D,B0,ρ
∗, λ, aλ) = p (z | ρ∗, λ, aλ);

Step 4: p (λ | y,A,D,B0,ρ
∗, z, aλ) = p (λ | ρ∗, z, aλ).

Step 5: p (aλ | y,A,D,B0,ρ
∗, z, λ) = p (aλ | λ).

The details of the rest of the posterior sampler are the same as Chan et al. (2021).

Step 1: p (B0 | y,A,D,ρ∗, z, λ) = p (B0 | y,A,D,ρ∗).

We first rewrite our model as:
(Y −XA)B′

0 = E

where Y is the T × n matrix of dependent variables, X is the T × k matrix of lagged
dependent variables with k = 1 + np,A = (a,A1, . . . ,An)

′ is the k × n matrix of VAR
coefficients and E is the T × n matrix of errors. Then, for i = 1, . . . , n, we have

(Y −XA)bi = Ei, Ei ∼ N
(
0,Ωhi,

)
where Ei is the i-th column of E and Ωhi,· = diag

(
ehi,1 , . . . , ehi,T

)
.
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The free elements in bi depend on the ordering ρ∗: we first find the ordering of variable
i, those variables whose ordering is before variable i will take the slab N (ab, Vb) as prior,
whiel those variables whose ordering is after variable i will take the Dirac-spike as prior
(that is, they are equal to zero). And for the variable i itself, the associated element in
bi will be one.

Hence, the full conditional distribution of bi is given by

p (bi | y,A,ρ∗,hi,·) ∝ e
− 1

2
b′
i(Y−XA)′Ω−1

hi,
(Y−XA)bi × e

− 1
2
(bi−b0,i)

′V−1
bi

(bi−b0,i)

∝ e
− 1

2

(
bi−b̂i

)′
Kbi

(
bi−b̂i

)

where
Kbi

= V−1
bi

+ (Y −XA)′Ω−1
hi,
(Y −XA), b̂i = K−1

bi
V−1

bi
b0,i.

Step 2: p (ρ∗ | y,A,D,B0, z, λ) = p (ρ∗ | B0, z, λ).

Step 2 consists of two steps: the forward step and the backward step.

The forward step:

1) we first decide which variable will take the first place. There are n variables in total,
so we compare the n variables. The winner needs to beat all other n− 1 variables. The
success of variable i means all other variables will not appear in this equation, that is, the
i-th row in B0 will be zero and the prior will come from the Dirac spike component (Here
we use a small variance c = 0.0001). The success of variable i also means this variable
will appear in all other equations, that is, the i-th column in B0 will be non-zero and the
prior will come from the slab component (except itself, because it always appears in its
own equation. This is not influenced by the ordering).

Let bi· denote the i-th row in B0 and delete the i-th element (which is the variable itself),
b·i denote the i-th column in B0 and delete the i-th element. Let pi denote the success
probability of variable i. Then:

pi = p (i = ρ∗1 | B0) ∝
λi∑n
k=1 λk

φ (bi·; 0, c)φ (b·i; ab, Vb) ,

Hence, after normalization, we obtain

pi =
pi∑n
k=1 pk

.

We can sample from the multinomial distribution as follows:

a) Create an array p containing the cumulative probabilities of pi, i = 1, 2, · · · , n;

b) Generate U , a uniform(0,1) random value;

9



c) Select the first index such that pi > U .

2) conditioning on the first place, we can decide which variable will take the second place.
There are n−1 variables in total, so we compare the n−1 variables. The winner needs to
beat all other n− 2 variables. The success of variable j means all other variables will not
appear in this equation, that is, the j-th row in B0 will be zero and the prior will come
from the Dirac spike component (except the variable which takes the first place). The
success of variable j also means this variable will appear in all other equations, that is,
the j-th column in B0 will be non-zero and the prior will come from the slab component
(also, except the variable which takes the first place).

Let bj· denote the j-th row in B0, delete the j-th element (which is the variable itself)
and delete the ρ∗1-th element (which takes the first place), b·j denote the j-th column
in B0, delete the j-th element and delete the ρ∗1-th element. Let pj denote the success
probability of variable j. Then:

pj = p (j = ρ∗2 | B0) ∝
λj∑n

k=1,k 6=ρ∗1
λk

φ (bj·; 0, c)φ (b·j; ab, Vb) ,

Hence, after normalization, we obtain

pj =
pj∑n

k=1,k 6=ρ∗1
pk

.

...

We can proceed until the (n − 1)-th place. The remaining variable will automatically
take the last place.

The backward step:

This is almost the same as the forward step, except that we first decide which variable
will take the last place, then decide which variable will take the second last place.

To implement Step 3 and Step 4, we follow the sampling approach in Caron and Doucet
(2012):

Step 3: p (z | y,A,D,B0,ρ
∗, λ, aλ) = p (z | ρ∗, λ, aλ).

We get an optimal ordering ρ∗ in Step 2. To sample z, we define a matrix Γ. The matrix
stores the comparison result in the forward and backward step. More specifically, it stores
the ordering of variables in the forward step, followed by the ordering in the backward
step. Then:
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For i = 1, 2 (denoting the forward step and backward step) and j = 1, . . . , n− 1, sample

zij | Γ, λ ∼ E

(
n∑

m=j

λρ∗im

)
.

Step 4: p (λ | y,A,D,B0,ρ
∗, z, aλ) = p (λ | ρ∗, z, aλ).

For i = 1, . . . , n, sample

λi | z, aλ ∼ G

(
aλ + wi, bλ +

2∑
i=1

n∑
j=1

zij

)
.

where wi denotes the total number of wins of variable i. If we let wij denote the number
of comparisons where i beats j, then wi =

∑n
j=1,j 6=i wij. The total number of comparisons

between i and j, Nij, has the relationship that Nij = wij + wji.

Step 5: p (aλ | y,A,D,B0,ρ
∗, z, λ) = p (aλ | λ).

We use a random walk sampler in which candidate draws, denoted log (acλ), is obtained
from N (ln (aλ) , ω

2), where ω2 is a tuning parameter and we set ω2 = 0.12 in our appli-
cation. The acceptance probability for acλ is given by

min

{
1, b

n(acλ−aλ)

λ

(
Γ (aλ)

Γ (acλ)

)n

(λ)a
c
λ−aλ

}
,

where Γ(·) denotes the Gamma function.

4 Application

We use the data in Chan (2021). All definitions and priors are the same, except that
matrix B0 can be (via permutations of the columns of the matrix) put into a lower
triangular form with ones on the diagonal.

4.1 Posterior Ordering

Posterior ordering is calculated as: For each model (BVARSV-FBPL, or BVARSV-
FBBT), we store the ordering in each iteration (after burn-in) (denoted as ρ∗,t. Note
that ρ∗,t is an n× 1 vector. The first element in ρ∗,t is the variable which takes the first
place). Then we will have a matrix P ∗. Each row in P ∗ denotes the ordering in that
iteration. For instance, the t-th row in P ∗ is ρ∗,t. Defined in this way, the first column
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in P ∗ will be the variable which takes the first place. We can compute the frequency of
each variable. This is shown in the first column. Similarly, we compute the frequency for
other columns.
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Figure 1: Posterior Ordering: BVARSV-FBPL (Multiple Comparisons)

4.2 Forecasting Results

The forecasting design adopted is iterative forecasting. We consider an initial estimation
period from 1960Q1 to 1987Q4. The remaining observations (1988Q1 to 2021Q3) are used
as a hold-out period to evaluate our forecasting methods. After obtaining h ∈ {1, 2, 3, 4}-
step-ahead predictive distributions for a given period in the hold-out, we include this
period in the estimation sample and repeat this procedure until we reach the end of
the sample. To assess forecasting accuracy, we use root mean square forecast errors
(RMSFEs) for point forecasts and average log predictive likelihoods (ALPLs) for density
forecasts. To compare each model M against the benchmark B, we therefore consider
the percentage gains in terms of RMSFE, defined as

(1− RMSFEM
i,h/RMSFEB

i,h)× 100

and the percentage gain in terms of ALPL, which is

(ALPLM
i,h − ALPLB

i,h)× 100

Table 1 reports the percentage gains in RMSFE relative to the standard BVARSV model,
and the percentage gains in ALPL relative to the standard BVARSV model. We find that

12



there is not much difference between their RMSFEs, but find substantive forecasting im-
provements relative to a strategy of subjectively selecting a single ordering. Table 2
reports the forecasting result about joint forecasting. It also confirms that our approach
provides substantive forecasting improvements relative to a strategy of subjectively se-
lecting a single ordering.

Table 1: Forecasting Results
% gains in RMSFE % gains in ALPL

h=1 h=4 h=1 h=4

GDPC1 -5.51 -0.49 13.51 51.20
INDPRO 0.34 -0.83 14.70 2.79
UNRATE -9.50 -18.65 97.68 265.95
CPIAUCSL 0.23 1.32 3.15 16.98

Table 2: Joint Forecasting (% gains in ALPL)
h=1 h=4

All 4530.41 7097.65
First 4 946.00 1260.42
Last 4 159.34 490.81
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Appendices

A Data

Table 3: Description of variables used in the forecasting application
Variable Mnemonic Transformation

Real Gross Domestic Product GDPC1 400∆ log
Personal Consumption Expenditures PCECC96 400∆ log
Industrial Production Index INDPRO 400∆ log
Industrial Production: Final Products IPFINAL 400∆ log
All Employees: Total nonfarm PAYEMS 400∆ log
All Employees: Manufacturing MANEMP 400∆ log
Civilian Employment CE16OV 400∆ log
Civilian Labor Force Participation Rate CIVPART no transformation
Civilian Unemployment Rate UNRATE no transformation
Nonfarm Business Section: Hours of All Persons HOANBS 400∆ log
Housing Starts: Total HOUST 400∆ log
New Private Housing Units Authorized by Building Permits PERMIT 400∆ log
Personal Consumption Expenditures: Chain-type Price index PCECTPI 400∆ log
Consumer Price Index for All Urban Consumers: All Items CPIAUCSL 400∆ log
Nonfarm Business Section: Real Output Per Hour of All Persons OPHNFB 400∆ log
Effective Federal Funds Rate FEDFUNDS no transformation
3-Month Treasury Bill: Secondary Market Rate TB3MS no transformation
1-Year Treasury Constant Maturity Rate GS1 no transformation
10-Year Treasury Constant Maturity Rate GS10 no transformation
Moody’s Seasoned Baa Corporate Bond Yield Relative to
Yield on 10-Year Treasury Constant Maturity BAA10YM no transformation

B The Bradley-Terry model

B.1 A Bradley-Terry Prior over Orderings

The Bradley-Terry prior over ordering is

Pr
(
min{zρ∗i , zρ∗j}|z−ρ∗i ,−ρ∗j

)
(13)

This means that the variable that given the remaining (n−2) places, we can compare the
i-th place and (i+ 1)-th place. This is pair comparison and equation (??) is the Bradley
Terry model. The next question is which two places to compare.
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We want to mention that to bring a sequence into order, successively applying adjacent
transpositions, is always possible. Moreover, any reasonable choice for the adjacent trans-
positions will work. In this paper, we consider the choice as: from the first to the last,
then from the last to the first. We denote this method as the forward and backward
Bradley-Terry (hereafter FBBT) model.

Like the FBPL method, it also consists of two steps. One is the forward step, another is
the backward step. In the forward step, we repeatedly step through the sequence (from
the first place to the last place), compares adjacent elements and swaps them if they are
in the wrong order. The pass through the sequence is repeated until there is no swaps
(this procedure is known as Bubble sort). Then, in the backward step, we repeatedly step
through the sequence (from the last place to the first place), compares adjacent elements
and swaps them if they are in the wrong order. The pass through the sequence is repeated
until there is no swaps. Finally, we will get the optimal ordering ρ∗.

Here we describe details in the forward step. For example, we randomly select a ordering
to start as ρ0:

1) the first pass is from i = 1 to i = n: compare ρ0i and ρ0i+1, swap them if they are in
the wrong order. From the first pass, we can get a new ordering say ρ1;

2) the second pass is from i = 1 to i = n: compare ρ1i and ρ1i+1, swap them if they are in
the wrong order. From the second pass, we can get a new ordering say ρ2;

...

repeat this procedure until there is no swap.

To complement the Bayesian estimation, we need a prior on the pair comparisons. There
is a simple form for the prior distribution (4)

Pr
(
min{zρ∗i , zρ∗j}|z−ρ∗i ,−ρ∗j

)
∼ E

(
λρ∗i

+ λρ∗j

)
. (14)

The selected variable is distributed as

Pr
(
zρ∗i = min{zρ∗i , zρ∗j}|z−ρ∗i ,−ρ∗j

)
=

λρ∗i

λρ∗i
+ λρ∗j

. (15)

This is: given any remaining (n−2) places, we can compare the i-th place and j-th place.
This is pair comparison and equation (15) is the Bradley Terry model.

B.2 Bayesian Computation

Step 1 and Step 5 are the same as FBPL. So here we describe Step 2 to Step 4.
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Step 2: p (ρ∗ | y,A,D,B0, z, λ) = p (ρ∗ | B0, z, λ).

Step 2 consists of two steps: the forward step and the backward step.

The forward step:

Suppose that the ordering before updating is ρ0:

We create a matrix W . Matrix W is an n × n matrix. Let wij denote the number of
comparisons where i beats j, wi =

∑n
j=1,j 6=i wij, the total number of wins of element i,

and Nij = wij + wji, the total number of comparisons between i and j.

1) the first pass is from i = 1 to i = n: compare ρ0i and ρ0i+1, swap them if they are in
the wrong order, and update matrix W .

The comparison involves bρ0i ,ρ0i+1
and bρ0i+1,ρ

0
i
. The success probability is to assess whether

the coefficient bρ0i ,ρ0i+1
is generated from the Dirac spike component (Here we use a small

variance c), and the coefficient bρ0i+1,ρ
0
i

is generated from the slab component. Let ps
denote the success probability. Then:

ps = p
(
ρ0i beats ρ0i+1 | bρ0i ,ρ0i+1

, bρ0i+1,ρ
0
i

)
∝

λρ0i

λρ0i
+ λρ0i+1

φ
(
bρi,ρi+1

; 0, c
)
φ
(
bρi+1,ρi ; ab, Vb

)
,

The failure probability is to assess whether the coefficient bρ0i ,ρ0i+1
is generated from the

slab component, and the coefficient bρ0i+1,ρ
0
i

is generated from the spike component. Let
pf denote the success probability. Then:

pf = p
(
ρ0i+1 beats ρ0i | bρ0i ,ρ0i+1

, bρ0i+1,ρ
0
i

)
∝

λρ0i+1

λρ0i
+ λρ0i+1

φ
(
bρi,ρi+1

; ab, Vb

)
φ
(
bρi+1,ρi ; 0, c

)
,

Hence, after normalization, we obtain

ps =
ps

ps + pf
.

From the first pass, we can get a new ordering say ρ1.

2) the second pass is from i = 1 to i = n: compare ρ1i and ρ1i+1, swap them if they are in
the wrong order, and update matrix W . From the second pass, we can get a new ordering
say ρ2;

...

Repeat this procedure until there is no swap. This will be the optimal ordering ρ∗.
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The backward step:

This is almost the same as the forward step, except that the pass is from i = n to i = 1.

To implement Step 3 and Step 4, we follow the sampling approach in Caron and Doucet
(2012):

Step 3: p (z | y,A,D,B0,ρ
∗, λ, aλ) = p (z | ρ∗, λ, aλ).

For 1 6 i < j 6 n, sample

zij | ρ∗, λ ∼ G (Nij, λi + λj) ,

where Nij is the total number of comparisons between variable i and variable j, and
Nij > 0. We can get this from Step 2.

Step 4: p (λ | y,A,D,B0,ρ
∗, z, aλ) = p (λ | ρ∗, z, aλ).

For i = 1, . . . , n, sample

λi | ρ∗, z, aλ ∼ G

(
aλ + wi, bλ +

∑
i<j

zij +
∑
i>j

zji

)
.

where wi denotes the total number of wins of variable i. If we let wij denote the number
of comparisons where i beats j, then wi =

∑n
j=1,j 6=i wij. The total number of comparisons

between i and j, Nij, has the relationship that Nij = wij + wji.
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