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SE-10691 Stockholm, Sweden

2Department of Applied Mathematics, Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands

August 26, 2023

Abstract

In this paper we construct a shrinkage estimator of the global minimum vari-
ance (GMV) portfolio by a combination of two techniques: Tikhonov regularization
and direct shrinkage of portfolio weights. More specifically, we employ a double
shrinkage approach, where the covariance matrix and portfolio weights are shrunk
simultaneously. The ridge parameter controls the stability of the covariance matrix,
while the portfolio shrinkage intensity shrinks the regularized portfolio weights to a
predefined target. Both parameters simultaneously minimize with probability one
the out-of-sample variance as the number of assets p and the sample size n tend to
infinity, while their ratio p/n tends to a constant c > 0. This method can also be
seen as the optimal combination of the well-established linear shrinkage approach
of Ledoit and Wolf (2004) and the shrinkage of the portfolio weights by Bodnar
et al. (2018). No specific distribution is assumed for the asset returns except of the
assumption of finite 4 + ε moments. The performance of the double shrinkage esti-
mator is investigated via extensive simulation and empirical studies. The suggested
method significantly outperforms its predecessor (without regularization) and the
nonlinear shrinkage approach in terms of the out-of-sample variance, Sharpe ratio
and other empirical measures in the majority of scenarios. Moreover, it obeys the
most stable portfolio weights with uniformly smallest turnover.

Keywords: Shrinkage estimator; high-dimensional covariance matrix; random matrix the-
ory; minimum variance portfolio; parameter uncertainty; ridge regularization
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1 Introduction

The global minimum variance (GMV) portfolio is the portfolio with the smallest variance among
all optimal portfolios, which are the solutions to the mean-variance optimization problem sug-
gested in the seminal paper of Harry Markowitz (see, Markowitz (1952)). This portfolio has
become one of the most commonly used in the literature (see, e.g., Golosnoy and Okhrin (2007),
Ledoit and Wolf (2020b) and the references therein). This is due to the fact that if all risk can
be removed then a portfolio has the potential to yield an infinite Sharpe ratio. Furthermore, in
practice, portfolios and their sample counterpart depend on estimates which contain estimation
error. The GMV portfolio is the only optimal portfolio whose weights are solely determined by
the covariance matrix of the asset returns and do not depend on the mean vector. This property
has been recognized to be very important due to the fact that the estimation error in the means
are several times larger than the estimation error in the variances and covariances of the asset
returns (see, Merton (1980), Best and Grauer (1991), Kan et al. (2022)).

In the original optimization problem, the GMV portfolio is obtained as the solution of

minimize
w

w>Σw subject to w>1 = 1 (1.1)

and its weights are given by

wGMV =
Σ−11

1>Σ−11
. (1.2)

Since the covariance matrix Σ is an unknown quantity, the GMV portfolio cannot be constructed
by using (1.2). In Markowitz (1959) the author uses the sample estimator of wGMV instead of
(1.2). He considers

ŵGMV =
S−1
n 1

1>S−1
n 1

, (1.3)

where Sn is the sample estimator of the covariance matrix Σ which is given by

Sn =
1

n

(
Yn − ȳn1

>
)(

Yn − ȳn1
>
)>

with ȳn =
1

n
Yn1, (1.4)

where Yn = [y1, ...,yn] is the p× n observation matrix and yi, i = 1, .., n, is the p-dimensional
vector of asset returns observed at time i. As such, the sample GMV portfolio with weights
(1.3) may be considered as the solution of the optimization problem (1.1) where the unknown
covariance matrix Σ is replaced by Sn, namely,

minimize
w

w>Snw subject to w>1 = 1. (1.5)

There are several other estimates of the GMV portfolio weights in the literature (see, e.g., Ledoit
and Wolf (2004), Frahm and Memmel (2010), Tu and Zhou (2011), DeMiguel et al. (2013), Li
et al. (2016), Ledoit and Wolf (2017), Lai et al. (2018), Bodnar et al. (2018), Lai et al. (2020)
to mention a few). All of these methods either shrink the covariance matrix and use it for the
estimation of GMV portfolio, or they shrink the portfolios weights directly to a certain target.
To the best of our knowledge, none of the known approaches combines both procedures into
one, in an applicable and theoretical framework in the high-dimensional setting.

Using Sn instead of Σ may produce a very noisy estimator of the portfolio weights. There
are many ways to cope with this estimation uncertainty. Our approach relies on two distinct
features. First, the linear shrinkage estimator from Bodnar et al. (2018) has proven to provide
good results in terms of the out-of-sample variance and to be a robust for large dimensional
portfolios. It does not, however, reduce the size of the positions or the variance (as measured
by turnover) of the portfolio weights, (see, e.g., Bodnar et al. (2021b)). This leads us to the
second feature. The single source of uncertainty in the GMV portfolio is Sn. If we can stabilize
or decrease the variance of the sample covariance matrix we may decrease the variance of the
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weights. Our aim is therefore to shrink the sample covariance matrix as well. We apply the
Tikhonov regularization (see, e.g., Tikhonov et al. (1995)) to the optimization problem (1.5),
namely

minimize
w

w>Snw + ηw>w subject to w>1 = 1, (1.6)

where η is the regularization parameter. Similar approaches is used in the regression analysis,
where the ridge regression uses the Tikhonov regularization to stabilize the least-squared esti-
mator of the coefficients of the regression line (cf., Golub et al. (1999)). The solution of (1.6)
is given by

ŵS;λ =
(Sn + ηI)−11

1>(Sn + ηI)−11
. (1.7)

Without loss of generality we set η = 1
λ − 1 where λ ∈ (0, 1]. Using this representation and

Sλ = λSn + (1− λ)I

instead of Σ in (1.2) results in the same solution. However, the corner solutions are more easily
understood as Sλ is a simple convex combination. If λ → 0 then we put all our beliefs in the
diagonal matrix I, whereas if λ→ 1 then all beliefs are placed in Sn.

Finally, combining the linear shrinkage estimator from Bodnar et al. (2018) we shrink the
already regularized GMV portfolio weights as follows

ŵSh;λ,ψ = ψŵS;λ + (1− ψ)b, (1.8)

where ψ is the shrinkage intensity towards the target portfolio b with b>1 = 1. This approach
allows us to shrink the sample covariance matrix to decrease the variance and further decrease
it by shrinking the weights themselves. It also gives a way for an investor to highlight stocks of
he/she likes with the target portfolio b. In many cases a naive portfolio b = 1

p1 is a good choice
but, in general, any deterministic target, which reflects the investment beliefs, is possible.

A common approach to determine shrinkage intensities is to use cross-validation (see, e.g.,
Tong et al. (2018) and Boileau et al. (2021)). That is, one aims to find the parameters λ and
ψ such that some loss (or metric) L(λ, ψ) is minimized (or maximized). There are of course
different loss functions for the out-of-sample performance of optimal portfolios, see Lassance
(2021) or Lassance et al. (2022) for a treatment of the out-of-sample mean-variance utility or
the out-of-sample Sharpe ratio. Since our work concerns the GMV portfolio, the most natural
choice of loss is the out-of-sample variance. It is given by

L(λ, ψ) = ŵ>Sh;λ,ψΣŵSh;λ,ψ. (1.9)

However, since Σ is not known we need to estimate it. Using K-fold cross-validation one
partitions the data into train and validation sets. Using these sets one can perform a grid-search
and use the validation set to estimate Σ. The empirical out-of-sample variance is thereafter
aggregated over fold to determine the best pair of shrinkage coefficients. However, using grid-
search and cross-validation for such a problem introduces several obstacles. We have established
that the sample covariance is a noisy estimate and validation sets are usually smaller than
training sets. That naturally creates a more volatile estimator. Furthermore, it is not clear how
big or small a grid should be. The approach we develop needs neither resampling methods nor
grid search but instead relies on methods from random matrix theory (see, Bai and Silverstein
(2010)). We develop a bona-fide type loss function which consistently estimates the true loss
function in the high dimensional setting. The problem reduces to a simple univariate nonlinear
optimization problem, which are easy to solve numerically. In Figure 1 we illustrate the optimal
values of λ∗ − λtrue where each λ∗ is given by the different methods that are derived in this
paper and a 10-fold cross validation. The true shrinkage coefficient λtrue is given by the solution
of the true loss function (1.9). In this illustration there are less assets p = 150 than data points
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Figure 1: Estimated shrinkage intensities for λ based on the out-of-sample variance
loss. The loss function (1.9) is determined through different methods. These are cross-
validation and two Double shrinkage approaches. The Bona-fide loss is completely deter-
mined by data while the oracle loss depends on the unknown quantity Σ, hence it has
less variance. Each solution for λ is centered by the solution to the true loss (1.9).

n = 300 and Σ has a bounded spectral norm. The returns are simulated from a t-distribution
with 5 degrees of freedom. Since p/n < 1 and Σ is kind (does not exhibit large eigenvalues)
this is a scenario where a practitioner might assume that cross-validation, in particular, should
work well. However, in this simple example cross-validation is clearly biased. The optimal
values from two of the loss functions we derive, denoted as Double (Bona-fide) and Double
(oracle), are centered around zero. Our work contributes to the literature by deriving the high-
dimensional properties of the true loss function (1.9) as well as its Bona-fide counterpart, which
can be easily used by practitioners. Furthermore, since we derive a Bona-fide estimator for
the loss function one can easily extend the optimization problem to cover position restrictions,
moment conditions or potentially other restrictions on the optimization problem.

The rest of the paper is organized as follows. In Section 2 the asymptotic properties of the
out-of-sample variance are investigated in the high dimensional setting, while Section 3 presents
a bona fide estimator of the asymptotic loss, which is the n used to find the optimal values of
the two shrinkage intensities. The results of en extensive simulation study and of empirical
applications are provided in Section 4, while Section 5 summarizes the obtained findings. The
mathematical derivations are moved to the appendix (Section 6).

2 Out-of-sample variance and shrinkage estimation

Let Xn be a matrix of size p × n where its elements {xij}ij are independent and identically
distributed (i.i.d.) real random variables with zero mean, unit variance and finite 4 + ε moment
for some ε > 0. Assume that we observe the matrix Yn according to the stochastic model

Yn
d
= µ1> + Σ

1
2 Xn (2.1)
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where Σ is a positive definite matrix of size p× p with a bounded spectral norm (its minimum
and maximum eigenvalues are uniformly bounded in p from zero and infinity, respectively)1.
The model belongs to the location-scale family but includes many skew or bi-modal families
as well. Our aim is to estimate the shrinkage intensities λ, ψ from the following normalized
optimization problem

min
λ,ψ

ŵ>Sh;λ,ψΣŵSh;λ,ψ

b>Σb
. (2.2)

The normalization is merely a technicality. The out-of-sample variance, or the loss function
L(λ, ψ) = ŵ>Sh;λ,ψΣŵSh;λ,ψ, can be further simplified to

L(λ, ψ) = (ψŵS;λ + (1− ψ)b)>Σ (ψŵS;λ + (1− ψ)b)

= (b− ŵS;λ)>Σ (b− ŵS;λ)

(
ψ −

b>Σ (b− ŵS;λ)

(b− ŵS;λ)>Σ (b− ŵS;λ)

)2

−
(
b>Σ (b− ŵS;λ)

)2
(b− ŵS;λ)>Σ (b− ŵS;λ)

+ b>Σb. (2.3)

For given λ, the out-of-sample variance is minimized with respect to ψ at

ψ∗n(λ) =
b>Σ (b− ŵS;λ)

(b− ŵS;λ)>Σ (b− ŵS;λ)
, (2.4)

while the optimal λ is found by maximizing the normalized second summand in (2.3), i.e.,

Ln;2(λ) =
1

b>Σb

(
b>Σ (b− ŵS;λ)

)2
(b− ŵS;λ)>Σ (b− ŵS;λ)

. (2.5)

In order to find the value λ∗ together with ψ∗(λ), which minimize the loss function, we
proceed in three steps. First, we find the deterministic equivalent to Ln;2(λ), and estimate it
consistently in the second step. Finally, we minimize the obtained consistent estimator in the
last step.

Theorem 2.1. Let Yn possess the stochastic representation as in (2.1). Assume that the
relative loss of the target portfolio expressed as

Lb =
b>Σb− 1

1>Σ−11
1

1>Σ−11

= b>Σb1>Σ−11− 1 (2.6)

is uniformly bounded in p. Then it holds that

(i)
|Ln;2(λ)− L2(λ)| a.s.→ 0 (2.7)

for p/n→ c ∈ (0,∞) as n→∞ with

L2(λ) =

(
1− 1

b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

)2

1− 2
b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

+ 1
b>Σb

(1−v′2(η,0))1>Ω−1
λ ΣΩ−1

λ 1

(1>Ω−1
λ 1)

2

(2.8)

1In fact the obtained results can be generalized to the case with finite number of unbounded largest eigenvalues, which
would make the proofs more lengthy. Moreover, one can show that this assumption is only needed in case of centered
sample covariance matrix, i.e., unknown mean vector. In case µ is known, the boundedness of eigenvalues may be ignored
due to normalization presented further in (2.2). More details could be deduced from the proofs of the main theorems.
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(ii)
|ψ∗n(λ)− ψ∗(λ)| a.s.→ 0 (2.9)

for p/n→ c ∈ (0,∞) as n→∞ with

ψ∗(λ) =
1− 1

b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

1− 2
b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

+ 1
b>Σb

(1−v′2(η,0))1>Ω−1
λ ΣΩ−1

λ 1

(1>Ω−1
λ 1)

2

, (2.10)

where

η =
1

λ
− 1, Ωλ = v (η, 0)λΣ + (1− λ)I, (2.11)

v(η, 0) is the solution of the following equation

v(η, 0) = 1− c
(

1− η

p
tr
(

(v(η, 0)Σ + ηI)−1
))

, (2.12)

and v′2(η, 0) is computed by

v′2(η, 0) = 1− 1

v(η, 0)
+ η

v′1(η, 0)

v(η, 0)2
. (2.13)

with

v′1(η, 0) = v(η, 0)
c1
p tr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

p tr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

p tr ((v(η, 0)Σ + ηI)−1)− cη2 1
p tr ((v(η, 0)Σ + ηI)−2)

. (2.14)

The proof of Theorem 2.1 can be found in the appendix. Theorem 2.1 provides the deter-
ministic equivalents for the loss function Ln;2(λ) and optimal shrinkage intensity ψ∗n(λ). The
solution v(η, 0) to the equation (2.12) is a Stieltjes transform (see Rubio and Mestre (2011))
and inherits all the properties of these functionals. The properties are extremely important for
the consistency of the loss function. However, these deterministic equivalents are not applicable
in practice since they depend on the unknown parameter Σ and v(η, 0). Fortunately, we can
create consistent bona-fide 2 estimators for both deterministic equivalents L2(λ) and ψ∗(λ) in
a high dimensional setting.

3 Bona fide estimation

In this section, we construct bona fide consistent estimators for L2(λ) and ψ∗(λ) in the high-
dimensional asymptotic setting. First, in Theorem 3.1 we derive the consistent estimators for
v(η, 0), v′1(η, 0), and v′2(η, 0). The proof of Theorem 3.1 is given in the appendix.

Theorem 3.1. Let Yn possess the stochastic representation as in (2.1). Then it holds that

|v̂(η, 0)− v(η, 0)| a.s→ 0, (3.1)∣∣v̂′1(η, 0)− v′1(η, 0)
∣∣ a.s→ 0, (3.2)∣∣v̂′2(η, 0)− v′2(η, 0)
∣∣ a.s→ 0, (3.3)

2With “bona-fide” we understand a concept of purely data-driven estimators, which do not depend
on the unknown quantities. Thus, they are ready to be used in practice without any modifications.
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for p/n→ c ∈ (0,∞) as n→∞ with

v̂(η, 0) = 1− c
(

1− η1

p
tr
(

(Sn + ηI)−1
))

,

v̂′1(η, 0) = v̂(η, 0)c

(
1

p
tr
(

(Sn + ηI)−1
)
− η1

p
tr
(

(Sn + ηI)−2
))

,

v̂′2(η, 0) = 1− 1

v̂(η, 0)
+ η

v̂′1(η, 0)

v̂(η, 0)2
.

Theorem 3.2 provides the consistent estimators for the building blocks used in the construc-
tion of the consistent estimators for L2(λ) and ψ∗(λ). The proof of Theorem 3.2 is presented
in the appendix.

Theorem 3.2. Let Yn possess the stochastic representation as in (2.1). Assume that the

relative loss of the target portfolio given in (2.6) is uniformly bounded in p. Let b>Σ−1b
b>Σb

be
uniformly bounded in p. Then it holds that∣∣∣∣ b>Sb

b>Σb
− 1

∣∣∣∣ a.s→ 0, (3.4)∣∣∣∣∣ 1>S−1
λ 1

1>Σ−11
−

1>Ω−1
λ 1

1>Σ−11

∣∣∣∣∣ a.s→ 0, (3.5)∣∣∣∣∣ λ−1

v̂(η, 0)

1− (1− λ)b>S−1
λ 1√

b>Σb1>Σ−11
−

b>ΣΩ−1
λ 1√

b>Σb1>Σ−11

∣∣∣∣∣ a.s→ 0, (3.6)

∣∣∣∣∣ 1

λv̂(η, 0)

1>S−1
λ 1

1>Σ−11
− 1− λ
λv̂(η, 0)

1>S−2
λ 1− λ−1 v̂

′
1(η,0)
v̂(η,0) 1>S−1

λ 1

1>Σ−11
(

1− v̂′1(η,0)
v̂(η,0) ( 1

λ − 1)
) − 1>Ω−1

λ ΣΩ−1
λ 1

1>Σ−11

∣∣∣∣∣ a.s→ 0 (3.7)

for p/n→ c ∈ (0,∞) as n→∞ with η = 1/λ− 1.

Let

d1(η) =
λ−1

v̂(η, 0)

(
1− (1− λ)b>S−1

λ 1
)

(3.8)

and

d2(η) =
1

λv̂(η, 0)
1>S−1

λ 1− 1− λ
λv̂(η, 0)

1>S−2
λ 1− λ−1 v̂

′
1(η,0)
v̂(η,0) 1>S−1

λ 1

1− v̂′1(η,0)
v̂(η,0) ( 1

λ − 1)
. (3.9)

The application of the results derived in Theorems 3.1 and 3.2 leads to a consistent bona fide
estimator for L2(λ) and ψ∗(λ) presented in Theorem 3.3.

Theorem 3.3. Let Yn possess the stochastic representation as in (2.1). Assume that the

relative loss of the target portfolio given in (2.6) is uniformly bounded in p. Let b>Σ−1b
b>Σb

be
uniformly bounded in p.Then it holds that

(i) ∣∣∣L̂n;2(λ)− L2(λ)
∣∣∣ a.s.→ 0 (3.10)

for p/n→ c ∈ (0,∞) as n→∞ with

L̂n;2(λ) =

(
1− 1

b>Sb
d1(η)

1>S−1
λ 1

)2

1− 2
b>Sb

d1(η)

1>S−1
λ 1

+ 1
b>Sb

(1−v̂′2(η,0))d2(η)

(1>S−1
λ 1)

2

, (3.11)
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(ii) ∣∣∣ψ̂∗n(λ)− ψ∗(λ)
∣∣∣ a.s.→ 0 (3.12)

for p/n→ c ∈ (0,∞) as n→∞ with

ψ̂∗n(λ) =
1− 1

b>Sb
d1(η)

1>S−1
λ 1

1− 2
b>Sb

d1(η)

1>S−1
λ 1

+ 1
b>Sb

(1−v̂′2(η,0))d2(η)

(1>S−1
λ 1)

2

, (3.13)

where η = 1/λ− 1, v̂′2(η, 0) is provided in Theorem 3.1, d1(η) and d2(η) are given in (3.8) and
(3.9), respectively.

The three loss functions (bona fide, oracle and true) are illustrated in Figure 2 for two
different values of p. Under oracle loss function we understand the asymptotic equivalent of
Ln;2, namely L2. When p is equal to 150 the differences between the functions look, at least
graphically, very small. The relative difference it at most 20% and the optimal λ’s are extremely
close to each other. We still need to face the fact that the out-of-sample variance is slightly
over-estimated, even though the bona-fide estimator will be asymptotically valid. When p is
equal to 450 and c is greater than one we observe a slightly different picture. For p > n the
bona fide loss function is not necessarily concave. This is due to the fact that as λ approaches
1, and c is greater than one, λSn + (1 − λ)I becomes closer and closer to a singular matrix.
Thus, the eigenvalues of the inverse of the shrunk sample covariance matrix explode. This issue
could be repaired using a different type of ridge regularization mentioned in (Bodnar et al.,
2022, formula (2.33)), where Moore-Penrose inverse for c > 1 can be employed for λ→ 1. This
interesting observation is left for the future investigations.

4 Numerical study

In this section we will conduct a simulation study to assess the finite sample properties of the
suggested double shrinkage estimator and to compare its behaviour with existent approaches.
Due to the asymptotic nature of our procedure we first devote some attention to the finite
sample properties of the suggested estimator under different data-generating processes. We end
this section with an empirical application of the methods on the assets from S&P 500.

4.1 Setup of the simulation study

In the simulation study we will use the following four different stochastic models for the data-
generating process:

Scenario 1: t-distribution The elements of xt are drawn independently from t-distribution
with 5 degrees of freedom, i.e., xtj ∼ t(5) for j = 1, ..., p, while yt is constructed according
to (2.1).

Scenario 2: CAPM The vector of asset returns yt is generated according to the CAPM
(Capital Asset Pricing Model), i.e.,

yt = µ + βzt + Σ1/2xt,

with independently distributed zt ∼ N(0, 1) and xt ∼ Np(0, I). The elements of vector β
are drawn from the uniform distribution, that is βi ∼ U(−1, 1) for i = 1, ..., p.
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(a) p=150, n=300 (b) p=450, n=300

Figure 2: The loss functions from Theorem 2.1-3.3 illustrated over different values of
λ ∈ (0, 1). The data were simulated from a t-distribution with 5 degrees of freedom and
used the equally weighted portfolio as a target.
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Scenario 3: CCC-GARCH model of Bollerslev (1990) The asset returns are simulated
according to

yt|Σt ∼ Np(µ,Σt)

where the conditional covariance matrix is specified by

Σt = D
1/2
t CD

1/2
t with Dt = diag(h1,t, h2,t, ..., hp,t),

where

hj,t = αj,0+αj,1(yj,t−1−µj)2+βj,1hj,t−1, for j = 1, 2, ..., p, and t = 1, 2, ..., ni, i = 1, ..., T.

The coefficients of the CCC model are sampled according to αj,1 ∼ U(0, 0.1) and βj,1 ∼
U(0.6, 0.7) which implies that the stationarity conditions, αj,1 + βj,1 < 1, are always
fulfilled. The constant correlation matrix C is induced by Σ. The intercept αj,0 is chosen
such that the unconditional covariance matrix is equal to Σ.

Scenario 4: VARMA model The vector of asset returns yt is simulated according to

yt = µ + Γ(yt−1 − µ) + Σ1/2xt with xt ∼ Np(0, I)

for t = 1, ..., n + m, where Γ = diag(γ1, γ2, ..., γp) with γi ∼ U(−0.9, 0.9) for i = 1, ..., p.
Note that in the case of the VAR model, the covariance matrix of yt is computed as
vec(Var(y)) = (I− Γ⊗ Γ)−1vec(Σ) where vec denotes the vec operator. This matrix is
thereafter used in the computation of the limiting objects.

We will repeat each scenario 1000 times for a number of configurations where the concen-
tration ratio c will range from 0.25 to 2.7 and n = 100, 200, 300, 400. The portfolios contain
at most 1080 assets which implies that we are estimating close to 600000 parameters as well
as the two shrinkage coefficients. The parameters of the model are simulated in the following
manner. The elements of the mean vector µ are simulated from a uniform distribution with
µi ∼ U(−0.1, 0.1). To simulate the covariance matrix we make use of the function RandCov-
Mat from the HDShOP package (see, Bodnar et al. (2021a)).

4.2 Comparison to benchmark strategies

In this section we will investigate the performance of five different methods. We will consider
the following type of portfolios

1. The portfolio allocation problem obtained from Theorem 3.3, which we will abbreviate
”Double”.

2. The linear shrinkage estimator of the GMV portfolio weights from Bodnar et al. (2018),
which we will abbreviate ”BPS”

3. The linear shrinkage estimator of the GMV portfolio weights from Frahm and Memmel
(2010), which we will abbreviate ”FM”. This portfolio can be constructed only for c < 1
following the approach suggested in Frahm and Memmel (2010).

4. The nonlinear shrinkage estimator of the covariance matrix from Ledoit and Wolf (2020a)
which is used in the GMV portfolio as a replacement for Σ. We will abbreviate this
portfolio strategy as ”LW2020”.

5. The traditional GMV portfolio which we will abbreviate ”Traditional”. Whenever c > 1
we will use the Moore-Penrose inverse of Sn to compute the sample weights of the GMV
portfolio.
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Figure 3: Relative loss Vw/VGMV −1 computed for several estimator of the GMV portfolio
weights under scenario 1. Notice that some methods use different targets but are of the
same type.

Notice that the first three types of portfolios can take many target portfolios. We therefore
include two target portfolios as well as other benchmarks in the forthcoming comparisons. These
are the equally weighted portfolio and an equal correlation target. The first is deterministic
and does not depend on data, which is in line with what Theorem 3.3 assumes. The second
target portfolio depends on data. It assumes that the all assets share the same correlation but
have different volatility. For each scenario we will display the relative loss Vw/VGMV −1, where
Vw = w>Σw. A value close to zero indicates a good estimate of the in-sample loss.

In Figure 3 we can see the results of the simulations under scenario 1. Each color represent
a ”type” of portfolio while the linetype highlights what type of target BPS, Double and FM
use. For small c the loss is not significantly different between the different types. However, as c
becomes larger, the results diverge from each other. Regardless of n the largest loss is provided
by Traditional portfolio. The Traditional estimator is famously bad in higher dimensions, see
e.g. Bodnar et al. (2018). The FM portfolio is only defined for c < 1 so the loss for this
method is not presented thereafter. The third best method is BPS using equal correlation and
equally weighted as target portfolios. The uncertainty from the target portfolio does not seem
to impact the loss a lot. It achieves the same amount of loss as the equally weighted target. The
best performing portfolios are the Double and LW2020. For smaller n the difference is more
pronounced, LW2020 provides the smallest loss. However, as n increases the Double portfolio
with the equally weighted target provides quite similar performance. The LW2020 portfolio is
3% better (lower loss) in comparison to the Double portfolio when n = 400.

In Figure 4 we can see the results of the simulation study conducted under scenario 2.
As with scenario 1, we can see the same type of ordering. However, in scenario 2 there is a
pronounced increase for the loss of LW2020 when n = 100 around c = 1. The Double portfolios
do not seem to suffer from that issue. In all other cases the loss is similar with the smallest
difference between Double and LW2020 equal to 3.1%. The difference is not large since the
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Figure 4: Relative loss Vw/VGMV −1 computed for several estimator of the GMV portfolio
weights under scenario 2. Notice that some methods use different targets but are of the
same type.

inverse covariance matrix for CAPM is a one rank update from scenario 1. It has to be noted
that in this case the largest eigenvalue of Σ is not bounded anymore. There is a little bit more
noise, but there is no more temporal or structural dependence that we do not take care of in
(2.1).

Figure 5 depicts relative loses computed for the considered estimators of the GMV portfolio
under scenario 3. It displays almost exactly the same plots as shown in Figures 3 and 4. The
introduction of temporal dependence is not dramatic in terms of the relative loss. We still
see the same type of ordering where Double and LW2020 are almost equally good when n is
sufficiently large.

In Figure 6 we can see the results obtained under scenario 4. Although the same ordering
seems to hold the scale is not the same. Some methods, namely the Traditional, FM and BPS,
have a much larger loss in comparison to previous scenarios. There is is a very little difference
between the other methods for larger c in contrast to previous scenarios. The difference between
the two best methods, the Double and LW2020 portfolios, is as small as 1% apart when n = 400
and c is large.

All in all, the results of this simulation experiment justify that the proposed method is at
least as good as the nonlinear shrinkage technique, which is already proved to be a state-of-
the-art method for the estimation of large dimensional covariance matrices. Thus, it is of high
importance to test it on a real data set using some other empirical measures of performance
like the out-of-sample variance, return, Sharpe ratio, turnover etc.

4.3 Empirical application

In this section we will apply the different benchmark strategies on empirical data. The data
constitute of daily (log returns) for 431 assets from the S&P500 index. The out-of-sample data
ranges from 2013-01-01 to 2021-11-04. The in-sample data ranges back to early 2011. We will
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Figure 5: Relative loss Vw/VGMV −1 computed for several estimator of the GMV portfolio
weights under scenario 3. Notice that some methods use different targets but are of the
same type.

Figure 6: Relative loss Vw/VGMV −1 computed for several estimator of the GMV portfolio
weights under scenario 4. Notice that some methods use different targets but are of the
same type.
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follow the previous section in that we use the equal correlation (ec) and equally weighted (ew)
portfolios as targets. In this empirical application we fix the window size to n = 250 or n = 500.
We thereafter change the portfolio size p. The three different portfolio sizes we consider are
260, 400 and 431. Thus, the window size n = 250 reflects c ∈ {1.04, 1.6, 1.724} and n = 500
stands for c ∈ {0.52, 0.8, 0.862}.

All portfolios aim to minimize portfolio variance. Since the true portfolio variance is not
available the most natural evaluation method should be which strategy provide the smallest
out-of-sample variance, which will be denoted by σ(k). However, any portfolio is more than its
volatility. A portfolio with small volatility does not necessarily provide a feasible return nor does
it provide a feasible portfolio to invest in. We will therefore use the out-of-sample mean, which

we denote ȳ
(k)
w , as well as the out-of-sample Sharpe Ratio, denoted SR(k), to investigate the

properties of the portfolio return distribution. Moreover, the stability of the portfolio weights
also reflects how risky it is. To investigate the characteristics of the portfolio weights we will
also consider the following performance measures

|w(k)| = 1

Tp

T∑
i=1

p∑
j=1

|w(k)
i,j |, (4.1)

max w(k) =
1

T

T∑
i=1

(
max
j
w

(k)
i,j

)
, (4.2)

min w(k) =
1

T

T∑
i=1

(
min
j
w

(k)
i,j

)
, (4.3)

w
(k)
i 1(w

(k)
i < 0) =

1

T

T∑
i=1

p∑
j=1

w
(k)
i,j 1(w

(k)
i,j < 0), (4.4)

1(w
(k)
i < 0) =

1

Tp

T∑
i=1

p∑
j=1

1(w
(k)
i,j < 0). (4.5)

The first measure shown in equation (4.1) is equal to the average size of the portfolio
positions. A large value of this measure would indicate that the portfolio takes large positions
(both negative and positive). It is a common critique to ordinary mean-variance portfolios
because large positions are risky themselves. The second measure, shown in equation (4.2), is
equal to the average long position. It is similar to the previous measure but only considers long
positions of the portfolio. As with the above, small positions are preferred to large positions.
Equation (4.3) shows the average short position. With this measure we try to showcase how
big short positions are. This is especially important since large short positions have potentially
infinite risk. There is no limit to how much you can loose. Because of the great importance of
how big short positions actually are we also include two further measures, which can be seen
in (4.4) and (4.5). The former can be interpreted as the average size of the negative positions.
The latter is the average proportion of short positions.

Note that for a portfolio with constant portfolio weights (4.1)-(4.5) are constant. For the
equally weighted portfolio we have

|w(k)| = max w(k) = min w(k) =
1

p
, w

(k)
i 1(w

(k)
i < 0) = 1(w

(k)
i < 0) = 0 . (4.6)

In Table 1 we display the results from the first experiment with window size equal to 250
days. Due to (4.6) we choose not to state the results for ew portfolio for (4.1)-(4.5). The FM
strategy has been removed since it has a very similar performance as the Traditional strategy
for c < 1 and it is not defined for c > 1. For a moderately small portfolio p = 260 the double
shrinkage portfolio with equally correlated target provides the smallest out-of-sample variance
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which is denoted boldface. The double shrinkage with equally weighted target comes in second,
indicated by the ∗. There is a small difference between the different Double strategies using
different targets, around 3 %. However, they are all of similar performance except the double
shrinkage with equally weighted target. It provides more stable weights with zero short positions
and smallest turnover. The portfolio using LW2020 is ranked third in terms of volatility but
is dominating other strategies in terms of mean and Sharpe ratio. The portfolio weights of
nonlinear shrinkage, however, are not as stable as double shrinkage with ew target. The second
best Sharpe ratio is provided by the Double with ew as a target. The difference with nonlinear
shrinkage is around 0.002. With the equally weighted target the Double is on par with LW2020.
All others are far worse. The smallest Turnover is consistently provided by the Double shrinkage
approach. The portfolio weights are very stable. Furthermore, the best performing portfolios,
in terms of their characteristics, are given by the Double shrinkage approach with ec or ew as a
target portfolio. It is almost always a trade between them. These two take smaller positions on
average, smaller short positions and less proportion of shorted weights. The natural ordering is
that Traditional is worst and BPS being second to worst in terms of the portfolio characteristics.
The LW2020 method comes in second, while the Double shrinkage portfolio being the best.

When p = 400 the equal correlation portfolio provides the best volatility estimate and
equally weighted comes in second. LW2020 is the third best when it comes to volatility but is
the best in terms of return. This brings it to being the best when it comes to the Sharpe ratio.
Double shrinkage with ec comes in second. In this scenario we can also see that the Traditional
portfolio is the most volatile but not as much as it could be expected. This is probably the
Moore-Penrose inverse, which is still working reasonably well when c is in the neighborhood of
one. The Double shrinkage portfolio provides similar performance to the case p = 260. It is
always among the best performing.

In the large dimensional case p = 431, the most performing portfolio is the Double with
equally correlated target when it comes to volatility. The estimation uncertainty has a large
effect in these dimensions. However, second to best is the nonlinear shrinkage portfolio with
slightly higher Sharpe ratio as double shrinkage. In terms of the mean, however, the best is the
double shrinkage portfolio with equally weighted target. The Double with ew and ec as targets
are always among the best and show very stable behaviour with a tiny turnover.

Next, we perform the same experiment with n = 500. In Table 2 we can see the re-
sults. When p = 260, we are in an intermediate concentration ratio case. It is equal to
c = 260/500 = 0.52. In this scenario the equally weighted portfolio is the best one in terms
of volatility. The Double shrinkage approach with ew as a target is 5% worse. As per usual,
the Traditional estimator is the worst on estimating the volatility although not far behind in
this small dimensional scenario. The portfolio with best average return is given by the Double
shrinkage with ec as a target. Since it is also among the best in estimating volatility it gives
the largest Sharpe ratio. The Double shrinkage with ew as a target is second to best. In terms
of the portfolio characteristics the Double shrinkage approach with ew as a target dominates
everything. It is the best in all scenarios. Similar picture is for p = 400, here the best is the
Double with ec as a target. The Traditional is showing surprisingly the largest return. However,
it does so at a large cost (large variance and turnover).

Table 1: Characteristics of the different strategies using a moving window approach. The
out-of-sample period equals to 2234 days. The window size is held fixed, equal to 250.

BPS Double

name ec ew ec ew ew LW2020 Traditional

p=260

σk 0.03912 0.039 0.01104 0 .01129* 0.01133 0.01165 0.04597

ȳkw −0.000276 −0.00025 0.000397 0.000503 0 .000505* 0.000542 −0.000352

SRk −0.007 −0.006 0.036 0 .045* 0 .045* 0.047 −0.008
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Turnover 33267.6 33703.26 69 .74* 3.36 2301.52 41589.29

|w(k)| 0.0951 0.0961 0 .0066* 0.0038 0.0102 0.1189

maxw(k) 0.4494 0.4496 0 .0393* 0.0046 0.0412 0.5569

minw(k) −0.4209 −0.4292 −0 .0058* 0.0028 −0.03 −0.5327

w
(k)
i 1(w

(k)
i < 0) −0.0929 −0.0945 −0 .0036* −2e− 04 −0.0099 −0.1171

1(w
(k)
i < 0) 0.491 0.488 0.385 0 0 .32* 0.491

p=400

σk 0.01398 0.01392 0.01106 0 .01111* 0.01112 0.01193 0.01524

ȳkw 0.000525 0.000464 0 .00064* 0.000514 0.000509 0.000706 0.000458

SRk 0.038 0.033 0 .058* 0.046 0.046 0.059 0.03
Turnover 3661.98 3678.92 69 .71* 4.81 667.62 4776.77

|w(k)| 0.0192 0.019 0 .0043* 0.0025 0.0107 0.0246

maxw(k) 0.0788 0.0769 0 .0256* 0.0032 0.0481 0.0991

minw(k) −0.0699 −0.07 −0 .0041* 0.0013 −0.0396 −0.0913

w
(k)
i 1(w

(k)
i < 0) −0.018 −0.018 −0 .0024* −6e− 04 −0.0097 −0.0235

1(w
(k)
i < 0) 0.465 0.46 0 .388* 0.004 0.423 0.471

p=431

σk 0.0121 0.01217 0.01088 0.01117 0.01116 0 .01105* 0.01322

ȳkw 0.000437 0.00042 0.000496 0.000516 0.000512 0 .000515* 0.000375

SRk 0.036 0.034 0 .046* 0 .046* 0 .046* 0.047 0.028
Turnover 3165.55 3192.65 69 .99* 5.19 660.56 4254.45

|w(k)| 0.0164 0.0161 0 .004* 0.0023 0.0101 0.0214

maxw(k) 0.0663 0.0645 0 .0254* 0.0031 0.0459 0.0851

minw(k) −0.0589 −0.0591 −0 .0038* 0.0011 −0.0381 −0.0795

w
(k)
i 1(w

(k)
i < 0) −0.0153 −0.0152 −0 .0022* −6e− 04 −0.0093 −0.0204

1(w
(k)
i < 0) 0.46 0.454 0 .39* 0.004 0.423 0.468

* Second to best

In the large dimensional case, where p = 431, we can note that Double with ec as a target
is now the best in terms of volatility whereas the ew portfolio is second to best. However,
the difference is small. The equally weighted is good in general, as seen in previous examples
but another explanation is that the window is to large for our data-driven portfolios to cope
with changes. The BPS portfolio provides the largest mean with equal correlation target. The
best Sharpe ratio is provided by the LW2020 with Double just slightly behind. Traditional still
provides the largest return but in terms of variance, turnover and all other measures it is the
most unstable and risky portfolio.

Table 2: Characteristics of the different strategies using a moving window approach. The
out-of-sample period equals to 2234 days. The window size is held fixed, equal to 500.

BPS Double

name ec ew ec ew ew LW2020 Traditional

p=260

σk 0.01593 0.01596 0.01131 0 .01123* 0.01119 0.01215 0.01821

ȳkw 0.000439 0.000372 0.000621 0.000556 0.000524 0 .000562* 0.00033

SRk 0.028 0.023 0.055 0 .05* 0.047 0.046 0.018
Turnover 1016.3 1039.9 224 .46* 221.3 442.06 1385.55

|w(k)| 0.0259 0.026 0 .0117* 0.0102 0.0172 0.0344

maxw(k) 0.1798 0.1742 0 .0548* 0.0429 0.0766 0.2282

minw(k) −0.1213 −0.1292 −0 .0406* −0.0391 −0.0679 −0.1738

w
(k)
i 1(w

(k)
i < 0) −0.023 −0.0243 −0 .0093* −0.0086 −0.0154 −0.0325

1(w
(k)
i < 0) 0.479 0.454 0 .419* 0.369 0.436 0.47

p=400

σk 0.01547 0.01517 0.01117 0.0113 0 .01119* 0.01176 0.02124

ȳkw 0 .000779* 0.000697 0.000683 0.000627 0.000507 0.000661 0.000879

SRk 0.05 0.046 0.061 0.055 0.045 0 .056* 0.041
Turnover 2506.41 2505.07 283.58 325 .38* 639.2 4605.91

|w(k)| 0.024 0.0235 0.0082 0 .0084* 0.0127 0.0432
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maxw(k) 0.146 0.1387 0 .0409* 0.0383 0.0571 0.2526

minw(k) −0.1129 −0.118 −0.0273 −0 .0317* −0.049 −0.2176

w
(k)
i 1(w

(k)
i < 0) −0.0219 −0.0225 −0.0069 −0 .0073* −0.0115 −0.0418

1(w
(k)
i < 0) 0.49 0.465 0 .415* 0.403 0.443 0.486

p=431

σk 0.01649 0.01626 0.01049 0 .01062* 0.01116 0.01099 0.02591

ȳkw 0 .000677* 0.000627 0.000534 0.000537 0.000512 0.000573 0.000957

SRk 0.041 0.039 0 .051* 0 .051* 0.046 0.052 0.037
Turnover 3202.26 3217.62 292.92 327 .96* 764.9 7195.79

|w(k)| 0.0228 0.0222 0.0077 0 .0078* 0.0113 0.0499

maxw(k) 0.1402 0.1306 0 .0393* 0.036 0.0515 0.2905

minw(k) −0.1076 −0.1131 −0.0263 −0 .0305* −0.0443 −0.2588

w
(k)
i 1(w

(k)
i < 0) −0.0206 −0.0213 −0.0065 −0 .0068* −0.0102 −0.0483

1(w
(k)
i < 0) 0.498 0.466 0 .416* 0.401 0.439 0.492

* Second to best

4.3.1 Tracking the S&P500 index

The last setting in Table 1 and 2, where p = 431 includes almost all of the stocks in the S&P500
index. However, these portfolios are based on the assets in the S&P 500 index today. Since we
sample different assets from the index we may have a survival bias in the experiment above.
That may have a positive effect on the return. A possibly more honest method is to choose the
assets that were present in the index back in 2013. However, the index evolves and includes
more assets today than it did before. This puts the application in another setting entirely.

Table 3: Out-of-sample results based on the moving
window approach for the BPS and Double estimators
with the index-based target, and for the index port-
folio. The out-of-sample period equals to 1695 days.
The portfolio size starts at 406 and is at most 447.

name BPS Double index

n=240

σk 0.00834 0 .00913* 0.01066

ȳkw 0.000622 0 .0006* 0.000456

SRk 0.075 0 .066* 0.043
Turnover 2555.37 185 .93* 7.04

|w(k)| 0.0158 0 .0041* 0.0024

maxw(k) 0.0642 0.0387 0 .0506*

minw(k) −0.0572 −0 .0086* 0

w
(k)
i 1(w

(k)
i < 0) −0.0148 −0 .0056∗ 0

1(w
(k)
i < 0) 0.453 0 .158* 0

n=720

σk 0.00839 0 .00866* 0.01066

ȳkw 0.000231 0 .000403* 0.000456

SRk 0.028 0.047 0 .043*
Turnover 1094.01 143 .85* 7.04

|w(k)| 0.0204 0 .0048* 0.0024

maxw(k) 0.1319 0.039 0 .0506*

minw(k) −0.106 −0 .0131* 0

w
(k)
i 1(w

(k)
i < 0) −0.0193 −0 .0072∗ 0

1(w
(k)
i < 0) 0.465 0 .165* 0

The portfolio size will need to
change over time. We will therefore
switch setting and track the S&P500
index, trying to target the stocks
that are available in the index. We
choose the assets that are part of
the index at the time and based
on their availability (data quality).
This excludes the survivorship bias
in our result. Since we target the
index we choose to reallocate when-
ever we register a change in the mar-
ket capitalization. With p changing
over time, we choose two different
window sizes. These are equal to
n = 240, 720. The market capital-
ization together with daily log re-
turns we have at our disposal cov-
ers 406 assets in 2013 and 447 as-
sets in late 2021. Our aim with this
experiment is to see if we can im-
prove the index volatility while still
taking reasonable positions. We will
therefore exclude all portfolios that
do not use a target portfolio. We
will only consider the BPS and Dou-
ble estimators with the index-based
target, and the index itself. The FM
approach is excluded since c > 1 for one of the scenarios.
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In Table 3 we can see the results. When n = 240, the portfolio will smallest volatility is
BPS. It also provides the largest return. The double shrinkage approach is is the second to
best while the index is the worst in both return and volatility. The same ordering holds for
the Sharpe Ratio. Although the BPS provides the highest return, it does so at an extreme cost
in comparison to the index and Double. If the investor is sensitive to large transitions then
the Double method is a great middle-ground. It provides a very large decrease in the turnover
as well as an decrease in the volatility, increase in mean and therefore an increase in the SR.
The later weight characteristics displays the same behaviour as previously documented. The
index has the smallest turnover. This can be explained by the fact that market cap is fairly
stable and changes slowly over time. Thereafter its the Double being second to best with the
exception of the largest long position. Double decreases volatility and seem to do so by taking
smaller long positions, on average. It also introduces short positions, though relatively small
ones. In comparison to the previous section, the Double with index as a target takes much
smaller proportions of short positions.

When n = 720, the same ordering holds for volatility as when n = 240. The same does
not hold for the mean. Now the index provides the best return with Double being 13% worse.
However, being the second to best in both mean and volatility makes the Double have highest
SR. Increasing the the window size improves the stability in the portfolio weights and therefore
a decrease in the turnover.

5 Summary

In this paper we provide a novel method for investing in the GMV portfolio and a target
portfolio. It uses a double shrinkage approach where the sample covariance matrix is shrunk
with Thikonov regularization together with linear shrinkage of the GMV portfolio weights to a
target portfolio. We construct a bona fide loss function which estimates the true loss function
consistently. From that we estimate the two shrinkage coefficients given in the framework. The
method is shown to be a great improvement over BPS and performs the same as LW2020 in
an extensive simulation study. Furthermore, in the empirical application the method is shown
to be a dominating investment strategy in majority of cases justified by different empirical
performance measures. We also show that it can act as a good portfolio to track an index. In
this scenario it decreases the volatility but can still provide large Sharpe ratios. Our method is
opinionated. That is, it demands the investors opinion on what a target portfolio is. That in
turn implies that it will work best when the target portfolio is informative, in the sense of the
investors aim. However, as our investigation shows, the investor can also use non-informative
target portfolios and still achieve great results.

6 Appendix

For any integer n > 2, we define

Vn =
1

n
Xn

(
In −

1

n
1n1

>
n

)
X>n and Ṽn =

1

n
XnX

>
n , (6.1)

where Xn is given in (2.1). Hence,

Sn = Σ1/2VnΣ
1/2 = Σ1/2ṼnΣ

1/2 −Σ1/2x̄nx̄
>
nΣ1/2 (6.2)

with x̄n = 1
nXn1n.

18



First, we present an important lemma which is a special case of Theorem 1 in Rubio and
Mestre (2011). Moreover, the following result (see, e.g., Theorem 1 on page 176 in Ahlfors
(1953)) will be used in a sequel together with Lemma 6.2 in the proofs of the technical lemmas.

Theorem 6.1 (Weierstrass). Suppose that fn(z) is analytic in the region Ωn, and that the
sequence {fn(z)} converges to a limit function f(z) in a region Ω, uniformly on every compact
subset of Ω. Then f(z) is analytic in Ω. Moreover, f ′(z) converges uniformly to f ′(z) on every
compact subset of Ω.

We will need two interchange the limits and derivatives many times that is why Theorem
6.1 plays a vital role here. More on the application of Weierstrass theorem can be found in the
appendix of Bodnar et al. (2022).

Lemma 6.2. Let a nonrandom p×p-dimensional matrix Θp possess a uniformly bounded trace
norm. Then it holds that

(i) ∣∣∣∣∣tr
(

Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)
− tr

(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1
)∣∣∣∣∣ a.s.−→ 0 (6.3)

for p/n −→ c ∈ (0,+∞) as n→∞ where v(z) solves the following equality

v(η, z) =
1

1 + c1
p tr ((ηΣ−1 + (v(η, z)− z)I)−1)

. (6.4)

(ii) ∣∣∣∣∣tr
(

Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1

Σ−1

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)

− tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1Σ−1(ηΣ−1 + (v(η, z)− z)I)−1
)

− v′1(η, z)tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−2
) ∣∣∣∣∣ a.s.−→ 0 (6.5)

for p/n −→ c ∈ (0,+∞) as n→∞ with

v′1(η, z) =
−1
p tr
(
(ηΣ−1 + (v(η, z)− z)I)−1Σ−1(ηΣ−1 + (v(η, z)− z)I)−1

)
1
p tr ((ηΣ−1 + (v(η, z)− z)I)−2)− c−1v(η, z)−2

. (6.6)

(iii) ∣∣∣∣∣tr
(

Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−2
)

− (1− v′2(η, z))tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−2
) ∣∣∣∣∣ a.s.−→ 0 (6.7)

for p/n −→ c ∈ (0,+∞) as n→∞ with

v′2(η, z) =

1
p tr
(
(ηΣ−1 + (v(η, z)− z)I)−2

)
1
p tr ((ηΣ−1 + (v(η, z)− z)I)−2)− c−1v(η, z)−2

. (6.8)
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Proof of Lemma 6.2: (i) The application of Theorem 1 in Rubio and Mestre (2011) leads to
(6.3) where v(η, z) is a unique solution in C+ of the following equation

1

v(η, z)
− 1 =

c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−1

)
. (6.9)

(ii) For the second result of the lemma we get that

tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1

Σ−1

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)

= − ∂

∂η
tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)
,

which almost surely converges to

− ∂

∂η
tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1
)

= tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1(Σ−1 + v′1(η, z)I)(ηΣ−1 + (v(η, z)− z)I)−1
)

following Theorem 6.1. The first-order partial derivative v′1(η, z) is obtained from (6.9) as

−v
′
1(η, z)

v(η, z)2
= − c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−1Σ−1(ηΣ−1 + (v(η, z)− z)I)−1

)
− v′1(η, z)

c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−2

)
,

from which (6.6) is deduced.

(iii) For the third assertion of the lemma we note that

tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−2
)

=
∂

∂z
tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)
,

which almost surely tends to

∂

∂z
tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1
)

= (1− v′2(η, z))tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−2
)

following Theorem 6.1. Moreover, v′2(η, z) is computed from (6.9) and it is obtained from
the following equation

−v
′
2(η, z)

v(η, z)2
= (1− v′2(η, z))

c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−2

)
.

This completes the proof of the lemma.

Lemma 6.3. Let θ and ξ be universal nonrandom vectors with bounded Euclidean norms. Then
it holds that∣∣∣∣∣ξ′

(
1

n
XnX

′
n + ηΣ−1

)−1

θ − ξ′(ηΣ−1 + v(η, 0)I)−1θ

∣∣∣∣∣ a.s.−→ 0 , (6.10)∣∣∣∣∣ξ′
(

1

n
XnX

′
n + ηΣ−1

)−1

Σ−1

(
1

n
XnX

′
n + ηΣ−1

)−1

θ (6.11)

−ξ′(ηΣ−1 + v(η, 0)I)−1Σ−1(ηΣ−1 + v(η, 0)I)−1θ − v′1(η, 0)ξ′(ηΣ−1 + v(η, 0)I)−2θ

∣∣∣∣∣ a.s.−→ 0∣∣∣∣∣ξ′
(

1

n
XnX

′
n + ηΣ−1

)−2

θ − (1− v′2(η, 0))ξ′(ηΣ−1 + v(η, 0)I)−2θ

∣∣∣∣∣ a.s.−→ 0 (6.12)
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for p/n −→ c ∈ (0,∞) as n→∞ where v(η, 0) is the solution of

v(η, 0) = 1− c
(

1− η

p
tr
(

(v(η, 0)Σ + ηI)−1
))

, (6.13)

and v′1(η, 0) and v′2(η, 0) are computed by

v′1(η, 0) = v(η, 0)
c1
p tr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

p tr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

p tr ((v(η, 0)Σ + ηI)−1)− cη2 1
p tr ((v(η, 0)Σ + ηI)−2)

(6.14)

and

v′2(η, 0) = 1− 1

v(η, 0)
+ η

v′1(η, 0)

v(η, 0)2
. (6.15)

Proof of Lemma 6.3: Since the trace norm of θξ′ is uniformly bounded, i.e.,

||θξ′||tr ≤
√
θ′θ
√
ξ′ξ <∞,

the application of Lemma 6.2 leads to (6.10), (6.11), and (6.12) where v(η, 0) satisfies the
following equality

1

v(η, 0)
− 1 =

c

p
tr
((
ηΣ−1 + v (η, 0) I

)−1
)

=
c

v(η, 0)

(
1− η

p
tr
(

(v(η, 0)Σ + ηI)−1
))

,

which results in (6.13).
The application of (6.6) leads to

v′1(η, 0) =
−1
ptr
(
(ηΣ−1 + v(η, 0)I)−1Σ−1(ηΣ−1 + v(η, 0)I)−1

)
1
ptr ((ηΣ−1 + v(η, 0)I)−2)− c−1v(η, 0)−2

= v(η, 0)
c1
ptr
(
v(η, 0)(ηΣ−1 + v(η, 0)I)−1Σ−1(ηΣ−1 + v(η, 0)I)−1

)
1− c1

ptr (v(η, 0)2(ηΣ−1 + v(η, 0)I)−2)

= v(η, 0)
c1
ptr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

ptr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

.

Finally, using (6.8), we get

v′2(η, 0) =

1
ptr
(
(ηΣ−1 + v(η, 0)I)−2

)
1
ptr ((ηΣ−1 + v(η, 0)I)−2)− c−1v(η, 0)−2

= 1− 1

1− c1
ptr (v(η, 0)2(ηΣ−1 + v(η, 0)I)−2)

= 1− 1

1− c+ 2cη 1
ptr ((v(η, 0)Σ + ηI)−1)− cη2 1

ptr ((v(η, 0)Σ + ηI)−2)

= 1− 1

v(η, 0) + η
(
c1
ptr ((v(η, 0)Σ + ηI)−1)− cη 1

ptr ((v(η, 0)Σ + ηI)−2)
)

= 1− 1

v(η, 0) + η
v(η,0)v′1(η,0)

v(η,0)−ηv′1(η,0)

= 1− 1

v(η, 0)
+ η

v′1(η, 0)

v(η, 0)2
.

21



Lemma 6.4. Let θ and ξ be universal nonrandom vectors such that Σ−1/2θ and Σ−1/2ξ have
bounded Euclidean norms. Then it holds that ∣∣∣ξ>S−1

λ θ − ξ>Ω−1
λ θ

∣∣∣ a.s.−→ 0, (6.16)∣∣∣ξ>S−2
λ θ − ξ>Ω−2

λ θ − v′1(η, 0)ξ>Ω−1
λ ΣΩ−1

λ θ
∣∣∣ a.s.−→ 0, (6.17)∣∣∣ξ>S−1

λ ΣS−1
λ θ − (1− v′2(η, 0))ξ>Ω−1

λ ΣΩ−1
λ θ

∣∣∣ a.s.−→ 0 (6.18)

for p/n −→ c ∈ (0,∞) as n→∞ with η = 1/λ− 1,

Ωλ = v (η, 0)λΣ + (1− λ)I,

and v(η, 0), v′1(η, 0) and v′2(η, 0) given in Lemma 6.3.

Proof of Lemma 6.4: Let S̃n = Σ1/2ṼnΣ
1/2. Using (6.1) and (6.2) and the formula for the

1-rank update of inverse matrix (see, e.g., Horn and Johnsohn (1985)), we get

λξ>S−1
λ θ = ξ>

(
S̃n +

(
1

λ
− 1

)
I−Σ1/2x̄nx̄

>
nΣ1/2

)−1

θ

= ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−1

Σ−1/2θ

+
ξ>
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄nx̄
>
nΣ1/2

(
S̃n +

(
1
λ − 1

)
I
)−1

θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

,

where ∣∣∣∣∣ξ>
(

S̃n +

(
1

λ
− 1

)
I

)−1

Σ1/2x̄n

∣∣∣∣∣ a.s.−→ 0 (6.19)

for λ ∈ (0, 1] by Pan (2014, p. 673). Furthermore, the quantity

1

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

(6.20)

is bounded following Pan (2014, Eq. (2.28)). Hence, the application of Lemma 6.3 leads to the
first statement of Lemma 6.4.

We compute

λ2ξ>S−2λ θ = ξ>
(

S̃n +

(
1

λ
− 1

)
I− Σ̄1/2xnx̄>nΣ1/2

)−2
θ

= ξ>Σ−1/2
(

Ṽn +

(
1

λ
− 1

)
Σ−1

)−1
Σ−1

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−1
Σ−1/2θ

+
ξ>
(
S̃n +

(
1
λ − 1

)
I
)−2

Σ1/2x̄nx̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

+
ξ>
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄nx̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−2

θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

+ x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2
Σ1/2x̄n

×
ξ>
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄nx̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

θ(
1− x̄>nΣ1/2

(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

)2 ,
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where

x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2
Σ1/2x̄n

≤
(

1

λ
− 1

)−1
x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−1
Σ1/2x̄n <∞

and

ξ>
(

S̃n +

(
1

λ
− 1

)
I

)−2
Σ1/2x̄n

≤

√
ξ>
(

S̃n +

(
1

λ
− 1

)
I

)−2
ξ

√
x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2
Σ1/2x̄n <∞

For the third statement of the lemma we consider

λ2ξ>S−1λ ΣS−1λ θ = ξ>Σ−1/2
(

Ṽn +

(
1

λ
− 1

)
Σ−1 − x̄nx̄>n

)−2
Σ−1/2θ

= ξ>Σ−1/2
(

Ṽn +

(
1

λ
− 1

)
Σ−1

)−2
Σ−1/2θ

+
ξ>Σ−1/2

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−2
x̄nx̄>n

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−1
Σ−1/2θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

+
ξ>Σ−1/2

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−1
x̄nx̄>n

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−2
Σ−1/2θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

+ x̄>n

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2
x̄n

×
ξ>Σ−1/2

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−1
x̄nx̄>n

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−1
Σ−1/2θ(

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

)2 .

Next, we prove that x̄>n

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−2
x̄n is bounded for p/n −→ c ∈ (0,∞) as n→∞.

x̄>n

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2
x̄n

= x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−1
Σ

(
S̃n +

(
1

λ
− 1

)
I

)−1
Σ1/2x̄n

≤ λmax(Σ) · x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2
Σ1/2x̄n

≤ λmax(Σ)

(
1

λ
− 1

)−1
x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−1
Σ1/2x̄n <∞ (6.21)

Using (6.21) we get that∣∣∣∣∣ξ>Σ−1/2
(

Ṽn +

(
1

λ
− 1

)
Σ−1

)−2
x̄n

∣∣∣∣∣
≤

√
ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2
Σ−1/2ξ

√
x̄>n

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2
x̄n <∞ .

Hence, the application of (6.19), (6.20), and Lemma 6.3 completes the proof of the lemma.
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Proof of Theorem 2.1: Let VGMV = 1/(1>Σ−11). The application of the results of Lemma 6.4
with ξ = Σb/

√
b>Σb and θ = 1/

√
1>Σ−11 leads to∣∣∣(Lb + 1)−1/2b>ΣS−1

λ 1− (Lb + 1)−1/2b>ΣΩ−1
λ 1

∣∣∣ a.s.−→ 0, (6.22)∣∣∣VGMV 1>S−1
λ 1− λ−1VGMV 1>Ω−1

λ 1
∣∣∣ a.s.−→ 0, (6.23)∣∣∣VGMV 1>S−1

λ ΣS−1
λ 1− VGMV (1− v′2(η, 0))1′Ω−1

λ ΣΩ−1
λ 1

∣∣∣ a.s.−→ 0 (6.24)

Using (6.22)-(6.24) and the equality

Ln;2(λ) =

(
1− 1√

Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

)2

1− 2√
Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

+ 1
Lb+1

VGMV 1>S−1
λ ΣS−1

λ 1

(VGMV 1>S−1
λ 1)

2

we get the statement of part (i) of the theorem, while the application of the equality

ψ∗n(λ) =
1− 1√

Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

1− 2√
Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

+ 1
Lb+1

VGMV 1>S−1
λ ΣS−1

λ 1

(VGMV 1>S−1
λ 1)

2

yields the second statement of the theorem.

Lemma 6.5. Let 1
pΣ
−1 possess a bounded trace norm. Then it holds that∣∣∣∣1p tr

(
(Sn + ηI)−1

)
− 1

p
tr
(

(v(η, 0)Σ + ηI)−1
)∣∣∣∣ a.s→ 0 (6.25)

∣∣∣∣∣
1
p tr
(
(Sn + ηI)−2

) (
1− c+ 2cη 1

p tr
(
(Sn + ηI)−1

))
− c

[
1
p tr
(
(Sn + ηI)−1

)]2

1− c+ cη2 1
p tr ((Sn + ηI)−2)

− 1

p
tr
(

(v(η, 0)Σ + ηI)−2
) ∣∣∣∣∣ a.s→ 0 (6.26)

for p/n→ c ∈ (0,∞) as n→∞.

Proof of Lemma 6.5: From part (i) of Lemma 6.2 with Θp = 1
pΣ
−1 and the proof of Lemma 6.4

we obtain that 1
ptr((Sn + ηI)−1) is consistent for 1

ptr
(

(ηI + v(η, 0)Σ)−1
)

in the high-dimensional

setting.
Furthermore, applying part (ii) of Lemma 6.2 with Θp = 1

pΣ
−1 and following the proof of

Lemma 6.4 we get that

1

p
tr
(
(Sn + ηI)−2

) a.s.→ 1

p
tr
(
Σ−1

(
ηΣ−1 + v(η, 0)I

)−1
Σ−1

(
ηΣ−1 + v(η, 0)I

)−1
)

+ v′1(η, 0)
1

p
tr
(
Σ−1

(
ηΣ−1 + v(η, 0)I

)−2
)

=
1

p
tr
(

(v(η, 0)Σ + ηI)−2
)

+ v′1(η, 0)
1

p
tr
(

(v(η, 0)Σ + ηI)−1 Σ (v(η, 0)Σ + ηI)−1
)

=
v′1(η, 0)

v(η, 0)

1

p
tr
(

(v(η, 0)Σ + ηI)−1
)

+

(
1− v′1(η, 0)

v(η, 0)
η

)
1

p
tr
(

(v(η, 0)Σ + ηI)−2
)
, (6.27)
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where the application of (6.14) leads to

v′1(η, 0)

v(η, 0)
=

c1
ptr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

ptr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

.

Thus, 1
ptr
(
(Sn + ηI)−2

)
converges almost surely to

c1
ptr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

ptr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

× 1

p
tr
(

(v(η, 0)Σ + ηI)−1
)

+
1− c+ cη 1

ptr
(
(v(η, 0)Σ + ηI)−1

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

× 1

p
tr
(

(v(η, 0)Σ + ηI)−2
)

=
c
[

1
ptr
(
(v(η, 0)Σ + ηI)−1

)]2
+ (1− c)1

ptr
(

(v(η, 0)Σ + ηI)−2
)

1− c+ 2cη 1
ptr ((v(η, 0)Σ + ηI)−1)− cη2 1

ptr ((v(η, 0)Σ + ηI)−2)
,

which together with (6.25) leads to the second statement of the lemma.

Proof of Theorem 3.1: The result (3.1) is a direct consequence of (6.13) in Lemma 6.3 and
(6.25) in Lemma 6.5.

Let t1 = 1
ptr
(

(Sn + ηI)−1
)

and t2 = 1
ptr
(

(Sn + ηI)−2
)

. Then, the application of (6.14) in

Lemma 6.3 and the results of Lemma 6.5 leads to a consistent estimator of v′1(η, 0) expressed
as

v̂′1(η, 0) = v̂(η, 0)
ct1 − cη

t2(1−c+2cηt1)−ct21
1−c+cη2t2

1− c+ 2cηt1 − cη2 t2(1−c+2cηt1)−ct21
1−c+cη2t2

= v̂(η, 0)
(1− c)c(t1 − ηt2) + c2ηt1(t1 − ηt2)

(1− c)2 + 2(1− c)cηt1 + c2η2t21
= v̂(η, 0)c

(1− c+ cηt1)(t1 − ηt2)

(1− c+ cηt1)2

= v̂(η, 0)c
t1 − ηt2

(1− c+ cηt1)
= v̂(η, 0)c

t1 − ηt2
v̂(η, 0)

.

Finally, the result (3.3) follows from (3.1) and (3.2) together with (6.15) in Lemma 6.3.

Proof of Theorem 3.2: The result (3.4) is a special case of Theorem 3.2 in Bodnar et al. (2014).
Equation (3.5) follows from Lemma 6.4 with ξ = θ = 1/

√
1>Σ−11. For the derivation of (3.6)

we note that

b>ΣΩ−1
λ 1 =

1

λv(η, 0)

(
1− (1− λ)b>Ω−1

λ 1
)

(6.28)

and apply Lemma 6.4 with ξ = b/
√

b>Σ−1b and θ = 1/
√

1>Σ−11.
Finally, (3.7) is obtained by noting that

1>Ω−1
λ ΣΩ−1

λ 1 =
1

λv(η, 0)
1>Ω−1

λ 1− 1− λ
λv(η, 0)

1>Ω−2
λ 1,

where (3.5) is used for the first summand and (6.17) of Lemma 6.4 with ξ = θ = 1/
√

1>Σ−11
for the second one.
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