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Context

• Unlike traditional deep learning strongholds like speech recognition and
computer vision, applications in social sciences are typically nowhere
near perfect prediction accuracy

• In other words, signal-to-noise ratio is low for most economic
applications, and in the vicinity of 0 for finance applications.

• Deep learning methods can sometimes do surprising, yet informative,
predictions.

• Thus, it is particularly pertinent to predict heterogeneous prediction
uncertainty.

• Econometricians know this as conditional heteroscedasticity, via
weighted least squares, or in a time series context, GARCH and
Stochastic Volatility (SV).

• Then, there is the whole "at-risk" literature focusing on asymmetry.
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Traditional Approaches Are Not Well-Suited for Deep Learning

• The many bells and whistles of gradient descent (like the Adam
optimizer) can make a sizable difference.
• They are not readily implementable without deviating significantly from

the highly optimized software environments that make DNN
computations trivial.
• Current Bayesian offerings often fall short of estimating anything that

remotely resembles modern deep learning.
• SV requires Bayesian computations, which are typically long, even for

simple volatility specifications
• MLE estimation of simple GARCH models is sometimes challenging in itself

• Approaches alternating the fit of the conditional mean and the
conditional variance until convergence – à la iterated weighted least
squares – are also highly impractical.
• DNN residuals are often ∼0 throughout the training sample (Belkin et al.,

2019), making them an unusable target in a secondary conditional variance
regression.

• Many DGPs one can think of require simultaneous estimation
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Reactive and Proactive Approaches

• SV, being essentially a trend-filtering problem for squared residuals, is
unequipped to detect future volatility hikes. Similarly so, GARCH only
propagates shocks that already occurred.

• Instead, we can be proactive: Adrian et al. (2019), Adams et al. (2021), Caldara
et al. (2021), Delle Monache et al. (2021), Guidolin et al. (2021).

• ML offerings: Clark et al. (2022)’s BARTs and Barunik and Hanus (2022)’s
DistrNN

• Can we devise a general-purpose NN that
1. delivers good MSEs;
2. provides accurate out-of-the-box uncertainty quantification for its

predictions;
3. will be proactive when it can be, and reactive when need be;
4. is preferably simple, malleable, and principled.
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Reinvigorate MLE

• We replace NN by HNN, as introduced in Goulet Coulombe (2022),
where in this application, hemisphere 1 (hm) is the conditional mean and
hemisphere 2 (hv) is the conditional variance

• Those hemispheres get their assigned roles from how they enter the loss
function, which is now ∝ to a good old log-likelihood. We solve

min
wm,wv

T

∑
t=1

(yt+1 − hm(Xt; θm))
2

hv(Xt; θv)
+ log(hv(Xt; θv)) (1)

where θm and θv are the network parameters. Gradient Descent will
gladly minimize (1).

• The model takes a large Xt as input for hv and hm, which are both fully
nonlinear nonparametric function of inputs

• The architecture for hv and hm will allow for both proactive and reactive
volatility.
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The Architecture
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Ingredient 1 – Weight Sharing

A regression model with ARCH(p) errors can be written as{
yt = Xtβ + εt
σ2

t = c + α1ε2
t−1 + . . . + αpε2

t−p

In this model, we have{
hm(Xt;𝛽) = Xtβ

hv(Xt; [𝛼 𝛽]) = c + α1 (yt−1 − Xtβ)
2 + . . . + αp

(
yt−p − Xt−pβ

)2

As Gouriéroux (1997) puts it:
Even in the simple case, we cannot estimate separately the parameters of the
conditional mean and those appearing in the conditional variance.
• This doesn’t mean all volatility model need to be estimated jointly, but
• This suggests that successful models of time series volatility often have

some cross-equation restrictions between hm and hv
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Ingredient 1 – Weight Sharing (cont’d)

• Here, cross-equation restrictions are likely both unfeasible and
undesirable

• However, cross-equation regularization (in effect, soft constraints) will
help discipline hm and hv

• This motivates common layers at the entrance of the network, which can
be interpreted as hemispheres sharing weights.

• Moreover, this is intuitive from a "latent variables sharing" perspective.
Note that ε2

t−1 = (yt−1 − hm(Xt−1))
2, a latent feature in hv, can be seen as

the result from a succession of three layers/operations, from top to
bottom:

1. Squaring;
2. Differencing between an input (yt−1) and the output of the hm function on

lagged data;
3. The original hm layer transforming Xt−1, a subset of Xt.

• GARCH suggests making hv a recurrent NN (we do so in appendix)
• SV suggests including trends in Xt (we do so).
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Ingredient 2 – Volatility Emphasis

• The double descent phenomenon in DNNs. Basically, a mildly deep and
large net will give R2

train = 1, even though the true R2 is nowhere near
that, and yet, this model delivers the best R2

test.

• Not a problem for plain prediction, but is certainly one for any in-sample
analysis or... uncertainty quantification. Remember: MLE’s σ̂2 is biased.

• More troubling, HNN can overfit the data in-sample with either
hm(Xt; θm) or hv(Xt; θv), giving rise to vastly different models.

• Solution: fix mean(hv(Xt; θv)) = ν during estimation, and let HNN learn
deviations from it. Re-calibrate it ex-post using the realized unconditional
volatility of OOB residuals (next slide).

• Ex-ante calibration should preferably be close to the ex-post one. We do
ν = mean(ε̂2

t,DNN), where ε̂ are blocked OOB residuals.
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Ingredient 3 – Blocked OOB Reality Check

• Once dual estimation of hm and hv has occurred, the initial ν guess might
be suboptimal. We can calibrate hv back using HNN’s OOB residuals.

• To do so, we run

log
(

ε̂2
t,HNN

)
= ζ0 + ζ1 log

(
ĥv(Xt; θv)

)
︸ ︷︷ ︸

δ̂t

+ξt

and then update volatility such that

ĥv(Xt; θv)← exp(δ̂t)× E[exp(ξt)].

• Mechanically, this provides good nominal coverage in-sample.
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Ingredient 4 – Blocked Subsampling

• Obviously, it has been implicit throughout from the use of OOB quantities

• There is no guarantee that a single run of (stochastic) gradient descent
initiated randomly will deliver the "true parameters". It does not attempt
to win where old-fashioned MLE would likely fail.

• Not a problem: as is commonly done for point prediction itself, we
ensemble many runs.

• We do 1000 runs, which is a supreme overkill for the out-of-sample, but
just fine for OOB "time series" that utilize on average
(1− subsampling.rate)× 1000 runs at each t.

• Very interestingly, this fits within the framework of Newton and Raftery
(1994)’s Weighted Bayesian Bootstrap, particularly Newton et al. (2021)’s
extension of it for generic ML losses. (Randomly-weighted optimization
of the loss provides an approximate Bayesian posterior.) Thus, it makes
statistical sense.
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Deep Dive: Tuning Parameters

• Each layer (common or not) is given neurons = 400
• The common block has ws.layers = 2
• Each hemisphere (mean and volatility) has h.layers = 2
• Activation functions are ReLu throughout, for rectified linear unit:

ReLU(x) = max{0, x}

• Output activation function for hv is

Softplus(x) = log (1 + exp (x))

which is, in effect, a soft ReLu. This imposes ĥv(Xt; θv) ≥ 0 ∀t.
• Network weights wm and wv are initialized using N (0, 3/100)
• max.epochs is 100 with a patience of 15 for early stopping
• learning.rate is 0.001 with Adam Optimizer
• dropout.rate is 0.2
• sampling.rate is 0.8, number of bootstraps B = 1000
• block.size is 8 quarters
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The Experiment

We evaluate our proposed model in an empirical application with US data.

• Quarterly data, predicting s = 1 and s = 4 steps ahead
• Xt ≡ 2 lags of FRED-QD + 100 linear trends (for exogenous T-V)
• Target variables are GDP Growth, ∆ Unemployment Rate, Headline CPI

Inflation, Housing Starts Growth, S&P 500 Returns
• Complete out-of-sample is 2007Q1 to 2022Q4
• NN-based models are re-estimated every two years (with expanding

window), others every quarter
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GDP Growth (s = 1)

2007Q1 - 2019Q4 2007Q1 - 2022Q4, Excluding 2020

HNN NNSV NNG DeepAR BART ARSV BLR HNN NNSV NNG DeepAR BART ARSV BLR

RMSE 0.83 0.93 0.93 0.92 0.86 1.01 0.89 0.85 0.96 0.96 0.93 0.92 1.00 0.94
L -3.93 -3.82 -3.80 -3.18 -3.88 -3.75 -3.69 -3.87 -3.70 -3.63 -3.23 -3.71 -3.69 -3.63
R2
|εt | 0.30 0.18 0.21 0.04 0.07 -0.23 -1.23 0.18 -1.57 -3.82 0.08 -22.20 -0.68 -1.19
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GDP Growth (s = 4)

2007Q1 - 2019Q4 2007Q1 - 2022Q4, Excluding 2020

HNN NNSV NNG DeepAR BART ARSV BLR HNN NNSV NNG DeepAR BART ARSV BLR

RMSE 0.90 0.88 0.88 1.07 0.88 0.99 0.91 0.85 1.46 1.46 0.99 0.81 0.98 0.95
L -3.70 -3.54 -3.52 -2.83 -3.70 -3.04 -3.59 -3.61 -3.33 -3.36 1.27 -3.55 -3.05 -3.51
R2
|εt | 0.28 0.12 0.27 0.09 -0.03 0.07 -0.67 0.06 0.07 -0.08 -0.03 -9.86 0.07 -0.41
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S&P 500 Returns (s = 1)

2007Q1 - 2019Q4 2007Q1 - 2022Q4

HNN NNSV NNG DeepAR BART ARG BLR HNN NNSV NNG DeepAR BART ARG BLR

RMSE 0.96 1.09 1.09 1.02 0.92 0.94 0.98 0.93 1.04 1.04 1.06 0.89 0.92 0.96
L -1.55 -1.24 -1.27 -1.34 -1.28 -1.35 -1.25 -1.52 -1.30 -1.32 -1.13 -1.34 -1.39 -1.29
R2
|εt | 0.26 0.04 0.06 0.30 0.11 0.24 -0.13 0.07 0.04 0.05 0.22 0.12 0.25 -0.14
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Some Trouble with DeepAR and BART
68% Coverage, 2007Q1-2019Q4

67.3 67.3 73.184.6 82.7 63.5 63.588.5

76.9 76.9 76.992.3 73.1 59.6 65.484.6

82.7 80.8 82.786.5 86.5 59.6 53.892.3

82.7 84.6 84.680.8 69.2 73.1 46.286.5

65.4 67.3 65.469.2 73.1 61.5 42.375.0

59.6 69.2 69.269.2 53.8 67.3 40.475.0

75.0 78.8 80.880.8 76.0 67.3 55.875.0

76.9 80.8 78.878.8 55.3 76.9 57.776.9

69.2 75.0 78.873.1 75.0 44.2 73.190.4

80.8 84.6 84.682.7 61.5 53.8 59.680.8

Housing Starts (s=4)

Housing Starts (s=1)

S&P 500 (s=4)

S&P 500 (s=1)

Inflation (s=4)

Inflation (s=1)

Unemployment (s=4)

Unemployment (s=1)

GDP (s=4)

GDP (s=1)

AR−G AR−SV BART BLR DeepAR HNN NN−G NN−SV

50
60

70
80

90
100

Coverage 
in %
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Some Trouble with DeepAR and BART
∆ Unemployment Rate (s = 4)

2007Q1 - 2019Q4 2007Q1 - 2022Q4

HNN NNSV NNG DeepAR BART ARTV BLR HNN NNSV NNG DeepAR BART ARTV BLR

RMSE 0.74 0.69 0.69 0.85 0.75 0.97 0.82 0.70 2.20 2.20 0.73 0.71 0.88 0.70
L -0.17 0.04 0.06 0.23 0.65 0.47 0.19 0.03 0.62 0.34 2.91 0.82 0.70 0.30
R2
|εt | 0.49 -0.07 -0.12 0.21 -5.58 0.22 -0.36 -1.23 -0.08 -0.24 -0.02 -38.15 -0.24 -1.12
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Neural Phillips Curve with Proactive Volatility
• HNN with 4 additional hemispheres (Goulet Coulombe, 2022):
• long-run, short-run expectations, output gap, commodity prices

hNPC
m (Xt; [θLR

E , θSR
E , θg, θc]) =

hLR
E (XELR

t ; θLR
E ) + hSR

E (XESR
t ; θSR

E ) + hg(X
g
t ; θg) + hc(Xc

t ; θc)

hNPC
v (Xt; [θLR

E , θSR
E , θg, θc,θv, θṽ]) =

hv

([
hLR
E (XELR

t ; θLR
E ), hSR

E (XESR
t ; θSR

E ), hg(X
g
t ; θg), hc(Xc

t ; θc), hṽ(Xt; θṽ)
]

; θv

)
2007Q1 - 2019Q4 2007Q1 - 2022Q4

RMSE L R2
|εt |

CRPS Cov68 PIT-pv RMSE L R2
|εt |

CRPS Cov68 PIT-pv

Inflation (s = 1)

HNN 0.93 -3.63 -0.06 0.96 67.3 0.41 1.12 -3.41 0.17 1.05 62.5 0.61
HNN-NPC 0.88 -3.87 0.09 0.91 69.2 0.74 1.02 -3.60 0.13 0.98 64.1 0.69
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Visualizing the Neural Phillips Curve and its Volatility
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Conclusion

• We devised a new general-purpose deep learning model for joint
mean/variance prediction that exhibits enviable performance for many
series at various horizons.

• In the paper, we extend the analysis to a monthly application
(FRED-MD), euro area application, LSTM version of the model and show
variable importance by hemisphere.

• More generally, this suggest that many macro time series models can be
estimated with deep learning techniques via reinvigorated MLE.
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Q: What’s the real use for DNNs in Macro Forecasting?

• Besides handling non-traditional data, we can use them to put basic
structure and move beyond extraction of the conditional mean.

• It is not excluded that structure also improves point forecasts themselves.
Tailor-made architectures made deep learning work in the first place.
CNNs made image recognition work, Attention drives ChatGPT.

• Plain DNNs are intricate nonlinear ridge regressions where
regularization comes from early stopping, with its "neural" structure
being a prior on how best to capture nonlinear relationships.

• Unclear, based purely on statistical grounds, whether that structure is more
appropriate than trees or anything econometricians have conceived.

• The core innovation is the ease of optimization through the recursive
structure of the NN function (i.e., backprop, learning rates, etc.)

• HNN for volatility prediction does exactly that by tackling a likelihood
which Gauss-Newton methods would struggle with

1 / 21



HNN vs HNN-LSTM

2007Q1 - 2019Q4 2007Q1 - 2022Q4

RMSE (s1) L (s1) RMSE (s4) L (s4) RMSE (s1) L (s1) RMSE (s4) L (s4)

GDP

HNN 0.83 -3.93 0.90 -3.70 0.85 -3.87 0.85 -3.61
HNN-LSTM 0.85 -3.95 0.89 -3.70 0.88 -3.88 0.94 -3.61

Unemployment Rate

HNN 0.73 -0.37 0.74 -0.17 0.82 -0.24 0.70 0.03
HNN-LSTM 0.76 -0.31 0.78 -0.08 0.67 -0.17 0.90 0.10

Inflation

HNN 0.94 -3.63 0.93 -3.48 1.14 -3.41 0.94 -3.30
HNN-LSTM 0.93 -3.51 0.88 -3.49 0.93 -3.36 0.92 -3.28

S&P 500

HNN 0.96 -1.55 1.00 -1.27 0.93 -1.52 1.00 -1.27
HNN-LSTM 1.02 -1.49 1.00 -1.28 1.01 -1.43 1.00 -1.27

Housing Starts

HNN 0.99 -1.14 1.03 -0.88 0.86 -1.07 1.01 -0.66
HNN-LSTM 1.05 -1.04 1.00 -0.80 0.94 -0.95 0.99 -0.41
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Additional Metrics
CRPS, 2007Q1-2019Q4

1.086 1.049 1.246 1.096 1.054 1.535 0.9940.982

1.142 1.076 1.119 1.012 0.974 1.349 0.9440.924

0.837 0.825 0.727 0.830 0.809 1.144 0.7870.713

0.917 0.851 0.779 0.872 0.990 1.037 0.8290.787

0.998 0.984 0.936 0.947 1.027 1.060 0.9910.982

0.979 0.988 0.969 1.039 1.087 0.991 1.0961.057

0.971 0.962 0.906 1.011 1.065 1.022 1.0590.917

1.015 1.057 0.905 1.020 1.058 1.067 1.2020.972

0.508 0.512 0.500 0.459 0.475 0.758 0.4220.398

0.726 0.732 0.651 0.662 0.650 0.774 0.5660.545

Housing Starts (s=4)

Housing Starts (s=1)

S&P 500 (s=4)

S&P 500 (s=1)

Inflation (s=4)

Inflation (s=1)

Unemployment (s=4)

Unemployment (s=1)

GDP (s=4)

GDP (s=1)

AR−G AR−SV BART BLR DeepAR HNN NN−G NN−SV

0.50

0.75

1.00

1.25

1.50

rel. 
CRPS
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Additional Metrics
PIT test, 2007Q1-2019Q4

0.635 0.071 0.6160.4560.172 0.091 0.0860.156

0.452 0.157 0.4480.4820.105 0.158 0.0260.338

0.162 0.031 0.3000.0610.104 0.564 0.1230.034

0.097 0.067 0.1280.3060.189 0.331 0.0260.257

0.474 0.638 0.9210.6770.547 0.563 0.0530.098

0.672 0.574 0.3280.0710.951 0.287 0.0290.407

0.552 0.680 0.0260.2860.400 0.656 0.1630.347

0.421 0.231 0.0680.3760.260 0.134 0.3040.284

0.322 0.464 0.5580.5750.571 0.009 0.1250.090

0.343 0.649 0.1270.8040.232 0.166 0.1870.106

Housing Starts (s=4)

Housing Starts (s=1)

S&P 500 (s=4)

S&P 500 (s=1)

Inflation (s=4)

Inflation (s=1)

Unemployment (s=4)

Unemployment (s=1)

GDP (s=4)

GDP (s=1)

AR−G AR−SV BART BLR DeepAR HNN NN−G NN−SV

0.00

0.25

0.50

0.75

1.00
p−value
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The interesting case of Housing Starts Growth (s = 1)

2007Q1 - 2019Q4 2007Q1 - 2022Q4

HNN NNSV NNG DeepAR BART ARSV BLR HNN NNSV NNG DeepAR BART ARSV BLR

RMSE 0.99 1.01 1.01 1.06 0.96 0.99 0.96 0.86 0.87 0.87 0.97 0.93 1.00 0.99
L -1.14 -1.08 -1.08 0.07 -0.98 -1.15 -1.16 -1.07 -0.97 -0.93 -0.05 -0.67 -1.15 -0.92
R2
|εt | 0.14 -0.06 -0.01 -0.14 -0.03 0.36 -0.27 0.09 -0.09 -0.12 0.02 0.03 0.15 -0.03
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Inflation?

2007Q1 - 2019Q4 2007Q1 - 2022Q4

HNN NNSV NNG DeepAR BART ARSV BLR HNN NNSV NNG DeepAR BART ARSV BLR

RMSE 0.94 0.95 0.95 1.02 1.07 1.11 1.05 1.14 1.17 1.17 0.93 0.96 1.00 1.23
L -3.63 -3.74 -3.82 -3.57 -2.91 -3.26 -3.60 -3.41 -2.72 -3.47 -3.52 -1.30 -3.32 -3.33
R2
|εt | -0.06 -0.02 -0.03 0.15 -0.48 0.04 -0.32 0.17 -0.02 0.08 0.15 -0.41 0.06 -0.02
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Industrial Production in the Euro Area (s = 6)

2007Q1 - 2019Q4 2007Q1 - 2022Q4

HNN NNSV NNG DeepAR BART ARG BLR HNN NNSV NNG DeepAR BART ARG BLR

RMSE 0.80 0.81 0.81 0.84 0.87 0.94 0.94 0.67 0.69 0.69 0.78 0.78 0.95 1.12
L -4.41 -4.31 -4.37 -3.44 >10 -4.31 -4.06 -4.31 -4.04 -4.25 0.55 >10 -4.12 -3.89
R2
|εt | 0.65 0.43 0.59 0.17 -0.84 0.70 -2.70 0.59 -4.96 0.34 -0.31 <-10 0.71 -0.39
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Stock Market in the Euro Area (s = 1)

2007Q1 - 2019Q4 2007Q1 - 2022Q4

HNN NNSV NNG DeepAR BART ARG BLR HNN NNSV NNG DeepAR BART ARG BLR

RMSE 1.05 1.11 1.11 1.12 1.09 1.02 1.11 1.07 1.31 1.31 0.99 1.03 0.99 1.16
L -1.95 -1.88 -1.89 -1.76 -1.91 -1.99 -1.84 -1.53 -1.45 -1.38 -1.61 -1.23 -1.67 -1.50
R2
|εt | 0.56 0.28 0.36 0.05 -0.05 0.35 -0.81 0.10 0.03 -0.08 0.00 -0.17 0.06 -0.13
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