From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks

Philippe Goulet Coulombe Université du Québec à Montréal

Mikael Frenette Université du Québec à Montréal

Karin Klieber Oesterreichische Nationalbank

*The content of these slides reflects the views of the authors and not necessarily those of the OeNB or the Eurosystem.

Context

- Unlike traditional deep learning strongholds like speech recognition and computer vision, applications in social sciences are typically nowhere near perfect prediction accuracy
- In other words, signal-to-noise ratio is low for most economic applications, and in the vicinity of 0 for finance applications.
- Deep learning methods can sometimes do surprising, yet informative, predictions.
- Thus, it is particularly pertinent to predict heterogeneous prediction uncertainty.
- Econometricians know this as conditional heteroscedasticity, via weighted least squares, or in a time series context, GARCH and Stochastic Volatility (SV).
- Then, there is the whole "at-risk" literature focusing on asymmetry.

Traditional Approaches Are Not Well-Suited for Deep Learning

- The many bells and whistles of gradient descent (like the Adam optimizer) can make a sizable difference.
- They are not readily implementable without deviating significantly from the highly optimized software environments that make DNN computations trivial.
 - Current Bayesian offerings often fall short of estimating anything that remotely resembles modern deep learning.
 - SV requires Bayesian computations, which are typically long, even for simple volatility specifications
 - MLE estimation of simple GARCH models is sometimes challenging in itself
- Approaches alternating the fit of the conditional mean and the conditional variance until convergence à la iterated weighted least squares are also highly impractical.
 - DNN residuals are often ~0 throughout the training sample (Belkin et al., 2019), making them an unusable target in a secondary conditional variance regression.
 - Many DGPs one can think of require simultaneous estimation

Reactive and Proactive Approaches

- SV, being essentially a trend-filtering problem for squared residuals, is unequipped to detect future volatility hikes. Similarly so, GARCH only propagates shocks that already occurred.
- Instead, we can be proactive: Adrian et al. (2019), Adams et al. (2021), Caldara et al. (2021), Delle Monache et al. (2021), Guidolin et al. (2021).
- ML offerings: Clark et al. (2022)'s BARTs and Barunik and Hanus (2022)'s DistrNN
- Can we devise a general-purpose NN that
 - 1. delivers good MSEs;
 - provides accurate out-of-the-box uncertainty quantification for its predictions;
 - 3. will be proactive when it can be, and reactive when need be;
 - 4. is preferably simple, malleable, and principled.

Reinvigorate MLE

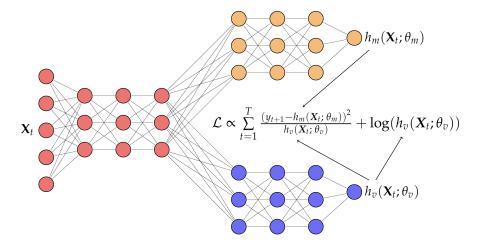
- We replace NN by HNN, as introduced in Goulet Coulombe (2022), where in this application, hemisphere 1 (*h_m*) is the conditional mean and hemisphere 2 (*h_v*) is the conditional variance
- Those hemispheres get their assigned roles from how they enter the loss function, which is now \propto to a good old log-likelihood. We solve

$$\min_{w_m,w_v} \sum_{t=1}^{T} \frac{(y_{t+1} - h_m(\mathbf{X}_t; \theta_m))^2}{h_v(\mathbf{X}_t; \theta_v)} + \log(h_v(\mathbf{X}_t; \theta_v))$$
(1)

where θ_m and θ_v are the network parameters. Gradient Descent will gladly minimize (1).

- The model takes a large X_t as input for h_v and h_m , which are both fully nonlinear nonparametric function of inputs
- The architecture for h_v and h_m will allow for both proactive and reactive volatility.

The Architecture



Ingredient 1 – Weight Sharing

<

A regression model with ARCH(p) errors can be written as

$$\begin{cases} y_t = \mathbf{X}_t \beta + \varepsilon_t \\ \sigma_t^2 = c + \alpha_1 \varepsilon_{t-1}^2 + \ldots + \alpha_p \varepsilon_{t-p}^2 \end{cases}$$

In this model, we have

$$\begin{cases} h_m(\mathbf{X}_t; \boldsymbol{\beta}) = \mathbf{X}_t \boldsymbol{\beta} \\ h_v(\mathbf{X}_t; [\boldsymbol{\alpha} \ \boldsymbol{\beta}]) = c + \alpha_1 \left(y_{t-1} - \mathbf{X}_t \boldsymbol{\beta} \right)^2 + \ldots + \alpha_p \left(y_{t-p} - \mathbf{X}_{t-p} \boldsymbol{\beta} \right)^2 \end{cases}$$

As Gouriéroux (1997) puts it:

Even in the simple case, we cannot estimate separately the parameters of the conditional mean and those appearing in the conditional variance.

- This doesn't mean all volatility model need to be estimated jointly, but
- This suggests that successful models of time series volatility often have some **cross-equation restrictions** between *h*_m and *h*_v

Ingredient 1 – Weight Sharing (cont'd)

- Here, cross-equation restrictions are likely both unfeasible and undesirable
- However, cross-equation *regularization* (in effect, soft constraints) will help discipline h_m and h_v
- This motivates common layers at the entrance of the network, which can be interpreted as hemispheres sharing weights.
- Moreover, this is intuitive from a "latent variables sharing" perspective. Note that $\varepsilon_{t-1}^2 = (y_{t-1} - h_m(X_{t-1}))^2$, a latent feature in h_v , can be seen as the result from a succession of three layers/operations, from top to bottom:
 - 1. Squaring;
 - 2. Differencing between an input (y_{t-1}) and the output of the h_m function on lagged data;
 - 3. The original h_m layer transforming X_{t-1} , a subset of X_t .
- GARCH suggests making *h*_v a recurrent NN (we do so in appendix)
- SV suggests including trends in *X*^{*t*} (we do so).

Ingredient 2 – Volatility Emphasis

- The double descent phenomenon in DNNs. Basically, a mildly deep and large net will give $R_{\text{train}}^2 = 1$, even though the true R^2 is nowhere near that, and yet, this model delivers the best R_{test}^2 .
- Not a problem for plain prediction, but is certainly one for any in-sample analysis or... uncertainty quantification. Remember: MLE's $\hat{\sigma}^2$ is biased.
- More troubling, HNN can overfit the data in-sample with either $h_m(\mathbf{X}_t; \theta_m)$ or $h_v(\mathbf{X}_t; \theta_v)$, giving rise to vastly different models.
- Solution: fix $mean(h_v(X_t; \theta_v)) = v$ during estimation, and let HNN learn deviations from it. Re-calibrate it ex-post using the realized unconditional volatility of OOB residuals (next slide).
- Ex-ante calibration should preferably be close to the ex-post one. We do $\nu = \text{mean}(\hat{\epsilon}_{t,\text{DNN}}^2)$, where $\hat{\epsilon}$ are blocked OOB residuals.

Ingredient 3 – Blocked OOB Reality Check

- Once dual estimation of h_m and h_v has occurred, the initial v guess might be suboptimal. We can calibrate h_v back using HNN's OOB residuals.
- To do so, we run

$$\log\left(\hat{\varepsilon}_{t,\text{HNN}}^{2}\right) = \underbrace{\zeta_{0} + \zeta_{1}\log\left(\hat{h}_{v}(\mathbf{X}_{t};\theta_{v})\right)}_{\hat{\delta}_{t}} + \tilde{\zeta}_{t}$$

and then update volatility such that

$$\hat{h}_{v}(\mathbf{X}_{t};\theta_{v}) \leftarrow \exp(\hat{\delta}_{t}) \times \mathrm{E}[\exp(\xi_{t})].$$

Mechanically, this provides good nominal coverage in-sample.

Ingredient 4 – Blocked Subsampling

- Obviously, it has been implicit throughout from the use of OOB quantities
- There is no guarantee that a single run of (stochastic) gradient descent initiated randomly will deliver the "true parameters". It does not attempt to win where old-fashioned MLE would likely fail.
- Not a problem: as is commonly done for point prediction itself, we ensemble many runs.
- We do 1000 runs, which is a supreme overkill for the out-of-sample, but just fine for OOB "time series" that utilize on average (1 subsampling.rate) × 1000 runs at each t.
- Very interestingly, this fits within the framework of Newton and Raftery (1994)'s Weighted Bayesian Bootstrap, particularly Newton et al. (2021)'s extension of it for generic ML losses. (Randomly-weighted optimization of the loss provides an approximate Bayesian posterior.) Thus, it makes statistical sense.

Deep Dive: Tuning Parameters

- Each layer (common or not) is given neurons = 400
- The common block has ws.layers = 2
- Each hemisphere (mean and volatility) has h.layers = 2
- Activation functions are *ReLu* throughout, for rectified linear unit:

 $\operatorname{ReLU}(x) = \max\{0, x\}$

• Output activation function for *h*_v is

$$Softplus(x) = log(1 + exp(x))$$

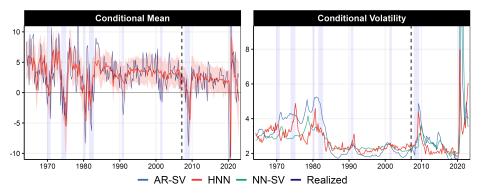
which is, in effect, a soft *ReLu*. This imposes $\hat{h}_v(\mathbf{X}_t; \theta_v) \ge 0 \quad \forall t$.

- Network weights w_m and w_v are initialized using $\mathcal{N}(0, 3/100)$
- max.epochs is 100 with a patience of 15 for early stopping
- learning.rate is 0.001 with Adam Optimizer
- dropout.rate is 0.2
- sampling.rate is 0.8, number of bootstraps B = 1000
- block.size is 8 quarters

We evaluate our proposed model in an empirical application with US data.

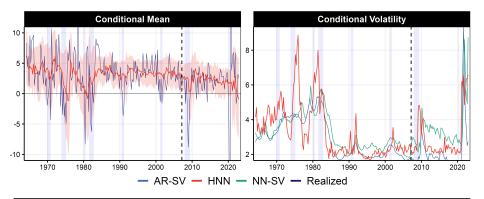
- Quarterly data, predicting s = 1 and s = 4 steps ahead
- $X_t \equiv 2$ lags of FRED-QD + 100 linear trends (for exogenous T-V)
- Target variables are GDP Growth, Δ Unemployment Rate, Headline CPI Inflation, Housing Starts Growth, S&P 500 Returns
- Complete out-of-sample is 2007Q1 to 2022Q4
- NN-based models are re-estimated every two years (with expanding window), others every quarter

GDP Growth (s = 1)



			200)7Q1 - 2019	PQ4				2007	Q1 - 20	22Q4, Excl	uding 2	020	
	HNN	NN _{SV}	NNG	DeepAR	BART	AR _{SV}	BLR	HNN	NN _{SV}	NNG	DeepAR	BART	AR _{SV}	BLR
RMSE	0.83	0.93	0.93	0.92	0.86	1.01	0.89	0.85	0.96	0.96	0.93	0.92	1.00	0.94
\mathcal{L}	-3.93	-3.82	-3.80	-3.18	-3.88	-3.75	-3.69	-3.87	-3.70	-3.63	-3.23	-3.71	-3.69	-3.63
$R^2_{ \varepsilon_t }$	0.30	0.18	0.21	0.04	0.07	-0.23	-1.23	0.18	-1.57	-3.82	0.08	-22.20	-0.68	-1.19

GDP Growth (s = 4)



			200)7Q1 - 2019	PQ4				2007	Q1 - 20	22Q4, Excl	uding 2	020	
	HNN	NN _{SV}	NNG	DeepAR	BART	AR _{SV}	BLR	HNN	NN _{SV}	NNG	DeepAR	BART	AR _{SV}	BLR
RMSE	0.90	0.88	0.88	1.07	0.88	0.99	0.91	0.85	1.46	1.46	0.99	0.81	0.98	0.95
\mathcal{L}	-3.70	-3.54	-3.52	-2.83	-3.70	-3.04	-3.59	-3.61	-3.33	-3.36	1.27	-3.55	-3.05	-3.51
$R^2_{ \varepsilon_t }$	0.28	0.12	0.27	0.09	-0.03	0.07	-0.67	0.06	0.07	-0.08	-0.03	-9.86	0.07	-0.41

S&P 500 Returns (s = 1)

Ĺ.

 $R^2_{|\varepsilon_t|}$

-1.24

0.04

-1.55

0.26

-1.27

0.06

-1.28

0.11

-1.34

0.30

-1.35 -1.25

0.24 -0.13

-1.30

0.04

-1.52

0.07

-1.32

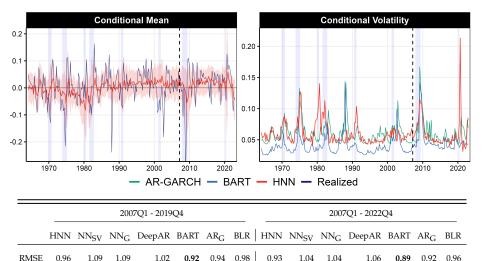
0.05

-1.34

0.12

-1.13

0.22



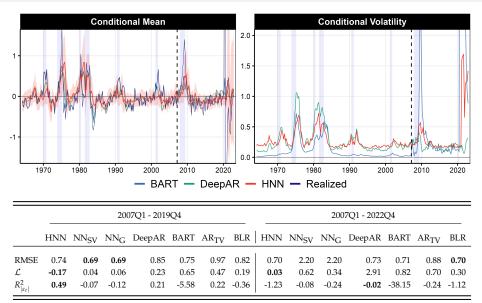
-1.39 -1.29

0.25 -0.14

Some Trouble with DeepAR and BART 68% Coverage, 2007Q1-2019Q4

1									
GDP (s=1) -	86.5	86.5	59.6	92.3	53.8	82.7	80.8	82.7	
GDP (s=4) -	80.8	69.2	73.1	86.5	46.2	82.7	84.6	84.6	
Unemployment (s=1) -	73.1	75.0	44.2	90.4	73.1	69.2	75.0	78.8	
Unemployment (s=4) -	82.7	61.5	53.8	80.8	59.6	80.8	84.6	84.6	Coverage in %
Inflation (s=1) -	84.6	82.7	63.5	88.5	63.5	67.3	67.3	73.1	90
Inflation (s=4) -	92.3	73.1	59.6	84.6	65.4	76.9	76.9	76.9	70 60
S&P 500 (s=1) -	80.8	76.0	67.3	75.0	55.8	75.0	78.8	80.8	50
S&P 500 (s=4) -	78.8	55.3	76.9	76.9	57.7	76.9	80.8	78.8	
Housing Starts (s=1) -	69.2	73.1	61.5	75.0	42.3	65.4	67.3	65.4	
Housing Starts (s=4) -	69.2	53.8	67.3	75.0	40.4	59.6	69.2	69.2	
	AR–G	AR-SV	BART	BLR	DeepAR	HNN	NN-G	NN-SV	I

Some Trouble with DeepAR and BART Δ Unemployment Rate (s = 4)



Neural Phillips Curve with Proactive Volatility

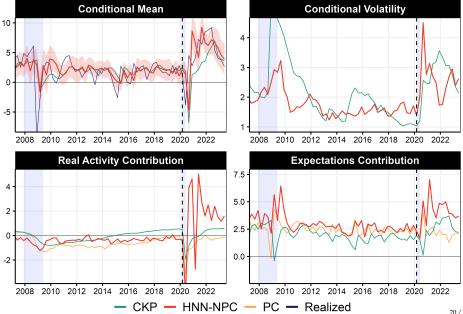
- HNN with 4 additional hemispheres (Goulet Coulombe, 2022):
- long-run, short-run expectations, output gap, commodity prices

 $h_{m}^{\text{NPC}}(\boldsymbol{X}_{t}; [\boldsymbol{\theta}_{\mathcal{E}}^{\text{LR}}, \boldsymbol{\theta}_{\mathcal{E}}^{\text{SR}}, \boldsymbol{\theta}_{g}, \boldsymbol{\theta}_{c}]) = \\ h_{\mathcal{E}}^{\text{LR}}(\boldsymbol{X}_{t}^{\mathcal{E}_{\text{LR}}}; \boldsymbol{\theta}_{\mathcal{E}}^{\text{LR}}) + h_{\mathcal{E}}^{\text{SR}}(\boldsymbol{X}_{t}^{\mathcal{E}_{\text{SR}}}; \boldsymbol{\theta}_{\mathcal{E}}^{\text{SR}}) + h_{g}(\boldsymbol{X}_{t}^{g}; \boldsymbol{\theta}_{g}) + h_{c}(\boldsymbol{X}_{t}^{c}; \boldsymbol{\theta}_{c})$

$$\begin{split} h_{v}^{\text{NPC}}(\boldsymbol{X}_{t}; [\theta_{\mathcal{E}}^{\text{LR}}, \theta_{\mathcal{E}}^{\text{SR}}, \theta_{g}, \theta_{c}, \theta_{v}, \theta_{\bar{v}}]) &= \\ h_{v}\left(\left[h_{\mathcal{E}}^{\text{LR}}(\boldsymbol{X}_{t}^{\mathcal{E}_{\text{LR}}}; \theta_{\mathcal{E}}^{\text{LR}}), h_{\mathcal{E}}^{\text{SR}}(\boldsymbol{X}_{t}^{\mathcal{E}_{\text{SR}}}; \theta_{\mathcal{E}}^{\text{SR}}), h_{g}(\boldsymbol{X}_{t}^{g}; \theta_{g}), h_{c}(\boldsymbol{X}_{t}^{c}; \theta_{c}), h_{\tilde{v}}(\boldsymbol{X}_{t}; \theta_{\bar{v}}) \right]; \theta_{v} \right) \end{split}$$

			2007Q	21 - 2019	Q4			:	2007Q	1 - 2022	Q4	ov68 PIT-pv					
	RMSE	L	$R^2_{ \varepsilon_t }$	CRPS	Cov68	PIT-pv	RMSE	\mathcal{L}	$R^2_{ \varepsilon_t }$	CRPS	Cov68	PIT-pv					
Inflation ($s = 1$)																	
HNN HNN-NPC	0.93 0.88	-3.63 -3.8 7		0.96 0.91	67.3 69.2	0.41 0.74	1.12 1.02	-3.41 -3.60		1.05 0.98	62.5 64.1	0.61 0.69					

Visualizing the Neural Phillips Curve and its Volatility



- We devised a new general-purpose deep learning model for joint mean/variance prediction that exhibits enviable performance for many series at various horizons.
- In the paper, we extend the analysis to a monthly application (FRED-MD), euro area application, LSTM version of the model and show variable importance by hemisphere.
- More generally, this suggest that many macro time series models can be estimated with deep learning techniques via reinvigorated MLE.

Q: What's the *real* use for DNNs in Macro Forecasting?

- Besides handling non-traditional data, we can use them to put basic structure and move beyond extraction of the conditional mean.
- It is not excluded that structure also improves point forecasts themselves. Tailor-made architectures made deep learning work in the first place. CNNs made image recognition work, Attention drives ChatGPT.
- Plain DNNs are intricate nonlinear ridge regressions where regularization comes from early stopping, with its "neural" structure being a prior on how best to capture nonlinear relationships.
- Unclear, *based purely on statistical grounds*, whether that structure is more appropriate than trees or anything econometricians have conceived.
- The core innovation is the ease of optimization through the recursive structure of the NN function (i.e., backprop, learning rates, etc.)
- HNN for volatility prediction does exactly that by tackling a likelihood which Gauss-Newton methods would struggle with

HNN vs HNN-LSTM

		2007Q1	- 2019Q4		2007Q1 - 2022Q4							
	RMSE (s_1)	$\mathcal{L}(s_1)$	RMSE (s_4)	$\mathcal{L}\left(s_{4} ight)$	RMSE (s_1)	$\mathcal{L}(s_1)$	RMSE (s_4)	$\mathcal{L}\left(s_{4} ight)$				
GDP												
HNN	0.83	-3.93	0.90	-3.70	0.85	-3.87	0.85	-3.61				
HNN-LSTM	0.85	-3.95	0.89	-3.70	0.88	-3.88	0.94	-3.61				
Unemployme	ent Rate											
HNN	0.73	-0.37	0.74	-0.17	0.82	-0.24	0.70	0.03				
HNN-LSTM	0.76	-0.31	0.78	-0.08	0.67	-0.17	0.90	0.10				
Inflation												
HNN	0.94	-3.63	0.93	-3.48	1.14	-3.41	0.94	-3.30				
HNN-LSTM	0.93	-3.51	0.88	-3.49	0.93	-3.36	0.92	-3.28				
S&P 500												
HNN	0.96	-1.55	1.00	-1.27	0.93	-1.52	1.00	-1.27				
HNN-LSTM	1.02	-1.49	1.00	-1.28	1.01	-1.43	1.00	-1.27				
Housing Star	ts											
HNN	0.99	-1.14	1.03	-0.88	0.86	-1.07	1.01	-0.66				
HNN-LSTM	1.05	-1.04	1.00	-0.80	0.94	-0.95	0.99	-0.41				

Additional Metrics CRPS, 2007Q1-2019Q4

GDP (s=1) -	0.837	0.825	0.727	0.830	0.809	0.713	1.144	0.787		
GDP (s=4) -	0.917	0.851	0.779	0.872	0.990	0.787	1.037	0.829		
Unemployment (s=1) -	0.508	0.512	0.500	0.459	0.475	0.398	0.758	0.422		
Unemployment (s=4) -	0.726	0.732	0.651	0.662	0.650	0.545	0.774	0.566	rel. CRPS	
Inflation (s=1) -	1.086	1.049	1.246	1.096	1.054	0.982	1.535	0.994	- 1.50 - 1.25	
Inflation (s=4) -	1.142	1.076	1.119	1.012	0.974	0.924	1.349	0.944	1.00	
S&P 500 (s=1) -	0.971	0.962	0.906	1.011	1.065	0.917	1.022	1.059	0.75 0.50	
S&P 500 (s=4) -	1.015	1.057	0.905	1.020	1.058	0.972	1.067	1.202		
Housing Starts (s=1) -	0.998	0.984	0.936	0.947	1.027	0.982	1.060	0.991		
Housing Starts (s=4) -	0.979	0.988	0.969	1.039	1.087	1.057	0.991	1.096		
AR-G AR-SV BART BLR DeepAR HNN NN-G NN-SV										

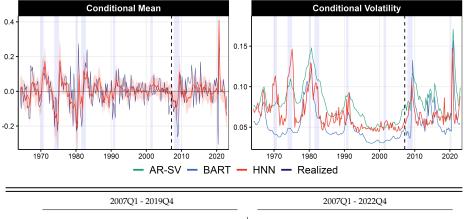
Additional Metrics

PIT test, 2007Q1-2019Q4

									1	
GDP (s=1)	0.104	0.061	0.564	0.034	0.123	0.162	0.031	0.300		
GDP (s=4)	0.189	0.306	0.331	0.257	0.026	0.097	0.067	0.128		
Unemployment (s=1) -	0.571	0.575	0.009	0.090	0.125	0.322	0.464	0.558		
Unemployment (s=4) -	0.232	0.804	0.166	0.106	0.187	0.343	0.649	0.127	p-v	alue 1.00
Inflation (s=1) -	0.172	0.456	0.091	0.156	0.086	0.635	0.071	0.616		0.75
Inflation (s=4) -	0.105	0.482	0.158	0.338	0.026	0.452	0.157	0.448		0.50
S&P 500 (s=1) -	0.400	0.286	0.656	0.347	0.163	0.552	0.680	0.026		0.25 0.00
S&P 500 (s=4) -	0.260	0.376	0.134	0.284	0.304	0.421	0.231	0.068		
Housing Starts (s=1) -	0.547	0.677	0.563	0.098	0.053	0.474	0.638	0.921		
Housing Starts (s=4) -	0.951	0.071	0.287	0.407	0.029	0.672	0.574	0.328		
I	AR–G	AR-SV	BART	BLR	DeepAR	R HNN	NN–G	NN-SV	I	

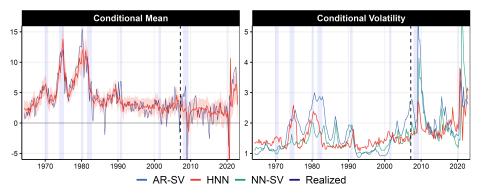
4 / 21

The interesting case of Housing Starts Growth (s = 1)



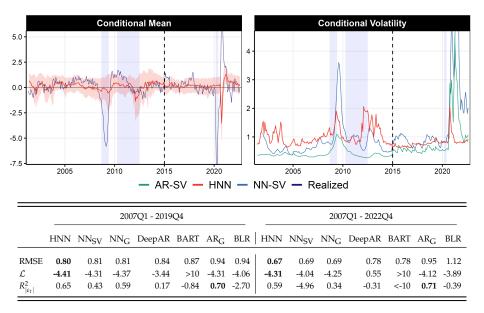
	HNN	NN _{SV}	NN_{G}	DeepAR	BART	AR_{SV}	BLR	HNN	NN _{SV}	NN_{G}	DeepAR	BART	AR_{SV}	BLR
RMSE	0.99	1.01	1.01	1.06	0.96	0.99	0.96	0.86	0.87	0.87	0.97	0.93	1.00	0.99
\mathcal{L}		-1.08							-0.97				-1.15	
$R^2_{ \varepsilon_t }$	0.14	-0.06	-0.01	-0.14	-0.03	0.36	-0.27	0.09	-0.09	-0.12	0.02	0.03	0.15	-0.03

Inflation?



			200)7Q1 - 2019	9Q4					200	7Q1 - 2022	Q4		
	HNN	NN _{SV}	NNG	DeepAR	BART	AR _{SV}	BLR	HNN	NN _{SV}	NNG	DeepAR	BART	AR _{SV}	BLR
RMSE	0.94	0.95	0.95	1.02	1.07	1.11	1.05	1.14	1.17	1.17	0.93	0.96	1.00	1.23
\mathcal{L}	-3.63	-3.74	-3.82	-3.57	-2.91	-3.26	-3.60	-3.41	-2.72	-3.47	-3.52	-1.30	-3.32	-3.33
$R^2_{ \varepsilon_t }$	-0.06	-0.02	-0.03	0.15	-0.48	0.04	-0.32	0.17	-0.02	0.08	0.15	-0.41	0.06	-0.02

Industrial Production in the Euro Area (s = 6)



Stock Market in the Euro Area (s = 1)

