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Abstract

We propose a novel time series forecasting method designed to handle vast sets
of predictive signals, many of which are irrelevant or short-lived. The method
transforms heterogeneous scalar-valued signals into candidate density forecasts via
time-varying coefficient models, and subsequently, combines them into a final den-
sity forecast via time-varying subset combination. Our approach is computation-
ally fast, because it uses online prediction and updating. We validate our method
through simulation analyses and apply it to forecast daily aggregate stock returns as
well as quarterly inflation, using over 12,000 and over 400 signals, respectively. We
find superior forecasting performance and lower computation time for our approach
compared to competitive benchmark methods.
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1 Introduction

Handling predictive signals that are locally concentrated in time poses a major challenge

for time series forecasting models in both macroeconomics and finance (see, e.g., Stock

and Watson, 2003; Giacomini and Rossi, 2010; Borup et al., 2023; Farmer et al., 2023).

This applies particularly in the age of big data, in which researchers have myriads of

signals at their disposal. In this paper, we introduce a forecasting method that can

handle both high-dimensional signals and local predictability. Our method does not

rely on a preconceived notion regarding the expected duration of each predictive signal,

enabling to identify signals irrespective of their potential brevity or longevity. As our

forecasting method first generates a suite of different density forecasts, and subsequently

combines them into an aggregate density forecast, it can be classified as an ensemble

learning approach.1

Although off-the-shelf machine learning methods such as Random Forests (Breiman,

2001) or eXtreme Gradient Boosting (Chen and Guestrin, 2016) can process high-dimen-

sional predictive indicators, they are not designed for short-lived signals. The dynamic

variable selection approach of Koop and Korobilis (2023) and the time-varying (point)

forecast combination approach of Chen and Maung (2023) represent different strategies

for dealing with short-lived predictability in high-dimensions. The latter approaches

were applied to over 400 and 100 indicators, respectively. When scaling up to higher

dimensions, however, the approaches of Koop and Korobilis (2023) and Chen and Maung

(2023) encounter computational bottlenecks. Our ensemble learning method, on the

other hand, can accommodate tens of thousands of predictive signals, integrating both

information and forecasts at the same time.2

As a methodological innovation, our forecasting method can map vast numbers of

scalar-valued signals of any type into an aggregate density forecast in a time-varying and

computationally fast manner. The method proceeds in two steps. First, it maps predictive

1We implemented our approach in an R-package, using Rcpp (Eddelbuettel and François, 2011),
RcppArmadillo (Eddelbuettel and Sanderson, 2014), and parallelization for efficiency. The package is
publicly available on CRAN and and GitHub.

2See Huang and Lee (2010) for analytical, simulation-based, and empirical comparisons of both
approaches.
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signals into univariate density forecasts via time-varying coefficient models, where each

model generates, for each signal, a conditionally normal predictive density at each point

in time. The time-varying coefficient models can accommodate predictive signals of any

type, including fluctuations in oil prices, text-based quantities, extracted factors, as well

as lagged values and/or point forecasts of the target variable itself. Point forecasts, in

turn, can be based on surveys, theory-driven models, and statistical or machine learning

models. In cases where the predictive signal is a point forecast, bias can be corrected via

a time-varying intercept.

In the second step, for each period, our approach selects a subset of candidate density

forecasts based on their past predictive likelihoods, emphasizing recent performance by

exponentially discounting predictive likelihoods (Raftery et al., 2010; Koop and Korobilis,

2012; Del Negro et al., 2016; Beckmann et al., 2020; Bernaciak and Griffin, 2022). All can-

didate densities within the selected subset are equally weighted. Any candidate forecast

that is given zero weight at one point in time can re-enter the subset at another point in

time, a crucial feature for capturing short-lived signals. The size of the subset, the choice

of the candidate forecasts, and the exponential discount factor for down-weighting past

performance are all data-driven. The ability of our method to accommodate candidate

density forecasts based on heterogeneous signals facilitates possible diversification gains

from combination (see, e.g., Timmermann, 2006; Grushka-Cockayne et al., 2017; Atiya,

2020; Kang et al., 2022). As our combination scheme allows for fast adaptation, but

avoids estimating combination weights by equally weighting the density forecasts within

the subsets, we follow the advice of Zellner et al. (2002) and Wang et al. (2022) to keep

the combinations “sophisticatedly simple”.3

As an alternative to exponential discounting, other time-varying weighting schemes

have been proposed. For point forecast combination, these include parametric regres-

3Although many sophisticated weighting schemes for combining forecasts have been proposed,
the simple average of forecasts often exhibits empirically superior out-of-sample performance in finite
samples−the so-called “forecast combination puzzle” (Stock and Watson, 2004; Smith and Wallis, 2009;
Claeskens et al., 2016; Chan and Pauwels, 2018). The key issue here is the estimation error of the
combination weights that plagues sophisticated weighting schemes, whereas simple averages avoid any
weight estimation. While the forecast combination puzzle has typically been studied in settings where
point forecasts are combined, similar results have been found for density forecasts (see, e.g., Amisano
and Geweke, 2017).
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sions with regime-switching and smooth transitions (see, e.g., Deutsch et al., 1994; Elliott

and Timmermann, 2005), as well as nonparametric kernel regressions (Chen and Maung,

2023). Such regression-based approaches, however, involve numerical optimization that is

computationally demanding and represents a bottleneck for large sets of candidates. Sim-

ilarly, existing time-varying combination schemes for density forecasts, such as those of

Billio et al. (2013); Del Negro et al. (2016); McAlinn and West (2019) require simulation-

based inference, which becomes a bottleneck when dealing with large sets of candidates.

In contrast, our forecasting method is computationally fast, because in addition to being

trivially parallelizable, online prediction and updating are feasible in both steps by using

exponential discounting. We thereby avoid any expensive computations such as numerical

optimization, large matrix inversion, or simulation-based inference. Another advantage of

our method is that it requires minimal user input, mainly regarding the selection of grids

for the tuning parameter values, which may be selected in a fully data-driven manner, or

on the basis of domain-specific knowledge or recommendations from previous studies.

Although sophisticated forecasting methods should (asymptotically) beat simple fore-

casting methods, they often struggle to do so in finite samples.4 To get the best of

both worlds, our forecasting method accommodates complex dynamics when empirically

needed, but collapses (temporarily) to simple dynamics when complexity is not required.

We let the data itself reveal how many and which predictive signals are useful at each

point in time, without having to decide a priori whether the predictive relationship be-

tween a given signal and the target variable is constant, evolves gradually, or changes

abruptly.

We conduct simulation analyses and forecast (i) daily aggregate stock returns and

(ii) quarterly inflation rates. For daily stock returns, we extend the study of Farmer

et al. (2023) to high dimensions, using over 12,000 predictive signals, most of which are

extracted from textual data. We find that text-based indicators have provided valuable

signals over the last two decades, a period in which predictive signals based on economic

4As examples of simple, yet hard-to-beat benchmarks, consider the prevailing historical mean for
predicting aggregate stock returns (Welch and Goyal, 2008) or autoregressive models for predicting
macroeconomic variables.
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indicators have largely disappeared. To predict inflation, we use a dataset of over 400

predictors compiled by Koop and Korobilis (2023) from various data sources. We also

include point forecasts of inflation as predictive signals generated by the dynamic variable

selection approach of Koop and Korobilis (2023), and by other methods, such as Gaussian

process regressions. In the simulations and both applications, our forecasting approach

is, overall, more accurate and faster than competitive benchmark methods.

The remainder of the paper is organized as follows. Section 2 lays out our method-

ology. Section 3 demonstrates our forecasting method in a simulation study. Section 4

presents and discusses our applications, and Section 5 concludes. Additional analyses

and robustness checks are relegated to an Appendix.

2 Methodology

In this section, we first outline the structure of the candidate forecasting models and then

present our proposed subset combination.

2.1 Candidate density forecasts

We generate each candidate density forecast based on a univariate time-varying coefficient

(TV-C) model that can be written in state-space form:

yt = ztθt + εt, εt
ind∼ N (0, Ht) (1)

θt = θt−1 + ζt, ζt
ind∼ N (0,Wt) . (2)

Equation (1) is the observation equation, and Equation (2) is the system (state)

equation. The target series is y, and zt = [1, st−1] denotes a vector which includes an

intercept and one predictive signal s.5 The predictive signal can be of any type, ranging

from simple predictors such as exchange rate or oil price fluctuations, to extracted factors,

5We specify our methodology for one-step-ahead forecasts without loss of generality. Direct forecasts
could be obtained for alternative forecast horizons h > 1. By including one signal in each TV-C model,
signals with different lengths can be accommodated and the appropriate degree of time variation can be
selected for each signal.
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to point forecasts of yt based on information through t − 1. As the signal itself may be

based on multivariate information (e.g., by extracted factors or point forecasts of y that

are based on multivariate information) and/or non-linear transformations, we do not

sacrifice flexibility. Let θt denote a 2 × 1 vector of coefficients (states). The errors εt

and ζt are assumed to be mutually independent for all leads and lags, and the coefficients

evolve according to a multivariate random walk (see, e.g., Cogley and Sargent, 2005; Dangl

and Halling, 2012; Koop and Korobilis, 2012; Beckmann et al., 2020). For given values

of Ht and Wt, standard Kalman filtering results can be applied to carry out recursive

estimation and forecasting. To specify the time-varying observational variance Ht and

system covariance matrix Wt, we use a discount factor approach (see, inter alia, West and

Harrison, 1997; Raftery et al., 2010; Dangl and Halling, 2012; Koop and Korobilis, 2012;

Hill and Rodrigues, 2022). Kalman filtering consists of iteratively applying a prediction

and an update step. All models are estimated independently from each other, and, for

ease of notation, we suppress model indices in this subsection.

Suppose that θt−1|t−1 ∼ N
(
θ̂t−1,Σt−1

)
. Then, the prediction step involves:

θt|t−1 ∼ N
(
θ̂t−1, Rt

)
, (3)

where

Rt = Σt−1 +Wt. (4)

Instead of estimating the system covariance matrix Wt, we use a discount factor λ

that controls the dynamics of the coefficients:

Rt =
Σt−1

λ
. (5)

This modeling approach involves exponential discounting for which data that is τ

time points old has weight λτ , and the effective window size is (1 − λ)−1. Within each

model, we fix the value of λ from an application-specific grid of possible values Sλ in our

empirical work. A value of λ = 1 corresponds to constant coefficients and is a natural
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upper bound. Lower values of λ are associated with more time variation in the coefficients.

In our simulation and two applications, we choose the lower bound to match an effective

window size of 2.5 years, which corresponds to highly volatile coefficients and is similar

to the choice of lower bounds in previous studies. (see, e.g., Koop and Korobilis, 2012;

Dangl and Halling, 2012). For daily data, we set Sλ = {0.9984, 0.9992, 1.0000}, for

monthly data Sλ = {0.9667, 0.9833, 1.0000}, and for quarterly data Sλ = {0.90, 0.95,

1.00}. Each predictive signal in combination with each value of λ defines a separate TV-C

model that generates a candidate density forecast. Once we have observed yt, we update

the estimates of the coefficients and their covariance:

θt|t ∼ N
(
θ̂t,Σt

)
, (6)

with

θ̂t = θ̂t−1 +Rtz
′
t

(
Ht + ztRtz

′

t

)−1

︸ ︷︷ ︸
Kalman gain

(
yt − ztθ̂t−1

)
︸ ︷︷ ︸

et

, (7)

where et denotes the time-t one-step ahead prediction error, ztRtz
′
t refers to the variance

resulting from estimation uncertainty of θt, and

Σt = Rt −Rtz
′
t

(
Ht + ztRtz

′

t

)−1

︸ ︷︷ ︸ ztRt.

Kalman gain

(8)

Forecasting can be done based on the conditionally normal predictive density:

yt|t−1 ∼ N

ztθ̂t−1︸ ︷︷ ︸
µt

, Ht + ztRtz
′

t︸ ︷︷ ︸
σ2
t

 . (9)

To accommodate time-varying volatility, a stylized fact of financial and macroeco-

nomic time series, we use an Exponentially Weighted Moving Average (EWMA) estimate

of the observational variance Ht:

Ĥt = (1− κ)
t−1∑
τ=1

κτ−1
(
yt−τ − zt−τ θ̂t−τ

)2

. (10)
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We can recursively approximate the EWMA specification in Equation (10) to obtain

volatility forecasts:

Ĥt+1|t = κĤt|t−1 + (1− κ)(yt − ztθ̂t)
2. (11)

Following the recommendation of RiskMetrics (Reuters, 1996), we set the discount

factor to κ = 0.94 for daily data, κ = 0.97 for monthly data, and to κ = 0.98 for quar-

terly data in our applications. We set Ĥ1 = V̂ ar (yinitial), where V̂ ar (yinitial) denotes the

estimate of the variance of y, computed over an initial sample of five years. Note from

Equation (7) that the Kalman gain determines how the model learns from past forecast

errors: the higher the value of the Kalman gain, the higher the adaptiveness to new data.

Although stochastic volatility or (G)ARCH specifications for modeling the dynamics of

Ht are more sophisticated choices, they would increase the computational burden sub-

stantially, since Markov chain Monte Carlo methods or numerical optimization would be

needed.6 The volatility dynamics produced by the simple EWMA are generally similar to

those of more sophisticated alternatives and, empirically, differences between other spec-

ifications of the volatility dynamics are usually not substantial in macroeconomic and

financial time series applications (see, e.g., Koop and Korobilis, 2012; Clark and Ravaz-

zolo, 2015; Cederburg et al., 2023). Note that conditionally normal predictive densities

with time-varying volatility are compatible with unconditionally leptokurtic observations,

a stylized fact of financial time series.

We initialize θ̂0 =

 µ1

µ2

 and Σ0 =

 v21 0

0 v22

. In addition, we follow Raftery

et al. (2010) and set µ1 = µ2 = 0, v21 = β̂2
0+V̂ ar (yinitial) and v22 = V̂ ar (yinitial) /V̂ ar (xinitial),

where β̂0 denotes the estimated intercept of a fitted static linear regression over an initial

sample of five years. If s represents a point forecast of y, we fix the slope coefficient to one

in our applications, but allow for a time-varying intercept, so as to accommodate (possibly

time-varying) biases of the point forecast by setting µ1 = 0, µ2 = 1, v21 = β̂2
0+V̂ ar (yinitial)

6Another alternative is to model the observational variance as an inverse-gamma distribution, which
would result in a conditionally t-distributed target variable. However, this would prohibit logarithmic
combination, because the t-distribution is not a member of the exponential family. We outline the
advantages of the logarithmic combination rule in 2.2 and why we use it in our approach.
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and v22 = 0 in our applications. If researchers, however, assume that the point forecast is

unbiased, they will set v21 = 0.

2.2 Time-varying subset combination

Let M denote the set of candidate density forecasts, which we take as given in the

combination step. We index the TV-C models at our disposal as Mj, j = 1, . . . , J .

To predict the next period’s outcome, we select a subset of TV-C models that have

generated high predictive likelihoods relative to other TV-C models in the (recent) past.

Each period, we rank the TV-C models according to their generated sum of discounted

predictive log-likelihoods (DPLLs) until the given point in time. For a given value of the

discount factor γ, which exponentially down-weights past predictive log-likelihoods, we

compute the DPLL of the j-th TV-C model as:

DPLLj,t|t−1 (γ) =
t−1∑
τ=1

γτ · ln
[
pj

(
yt−τ |t−τ−1

)]
, (12)

where pj
(
yt−τ |t−τ−1

)
denotes its predictive likelihood at time t − τ . We then as-

sign equal weights (that sum to one) to an active subset of the TV-C models with the

highest DPLLs. The tuning parameter ψ controls the size of the active subset. Let

rk(1), rk(2), . . . , rk(ψ) be the TV-C model with the highest, second highest and ψ-th

highest DPLL in the active subset, respectively. The weights of the candidate density

forecasts that are not (temporarily) part of the active subset equal zero.

Let M∗
t ⊆ M denote the time-t active subset of TV-C models. We index the time-t

active TV-C models as M∗
i,t, i = 1, . . . , ψ∗

t , where ψ∗
t denotes the optimized time-t subset

size. Each period we choose the combination of γ and ψ that would have maximized

the sum of discounted predictive log-likelihoods of the combined predictive densities until

t− 1: (
γ∗t|t−1, ψ

∗
t|t−1

)
= argmax

(γt,ψt)|γt∈Sγ ,ψt∈Sψ

t−1∑
τ=1

δτ · ln
[
p
(γt,ψt)
comb

(
yt−τ |t−τ−1

)]
, (13)

where p
(γt,ψt)
comb

(
yt−τ |t−τ−1

)
denotes the predictive likelihood of the combined predictive
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density (using logarithmic combination) at time t − τ , which depends on the choice of

time-dependent tuning parameters γt and ψt. We choose the combination of γt and ψt

in (13) from the two-dimensional grid Sγ × Sψ := {(γt, ψt) |γt ∈ Sγ, ψt ∈ Sψ} in a time-

dependent manner. In our empirical work, we select from a broad range of possible values

in Sγ, covering from rapid model switching to a recursive weighting scheme (γ = 1). In

our applications and the simulation study, we set Sγ = {0.40:0.10:0.90, 0.90:0.01:1.00}.

Similarly, we use a broad range of values for Sψ, covering from pure model selection (ψ =

1) to a combination of many or even all candidate density forecasts. In the simulation

study and application to quarterly inflation forecasting, we choose Sψ = {1:1:100}. In

the application to daily forecasting, we set Sψ = {1:1:10, 10:10:100}, adopting a coarser

grid due to the vast number of predictive signals.

We use logarithmic combination, because the combined predictive distribution retains

the same distribution of its components, whereas linear combination does not (see, e.g.,

Faria and Mubwandarikwa, 2008).7 We emphasize the recent forecasting performance

when optimizing the values of γ and ψ by using a discount factor δ. In our empirical

work, we choose the value of δ such that the effective window size is five years, that is,

we set δ = 0.9992 in case of daily data frequency, δ = 0.9833 in case of monthly data

frequency, and δ = 0.95 in case of quarterly data frequency. Yet we find our results

largely unchanged for alternative choices of δ.

Using the logarithmic combination rule, we obtain a normally distributed time-t den-

sity forecast as:

yt|t−1 ∼ N
(
µt,comb, σ

2
t,comb

)
, (14)

7The candidate density forecasts are of similar shape in our setup, because each of them is specified
with the same value of the tuning parameter κ, which controls the dynamics of the observational variance
Ht in Equation (10). The observational variance, in turn, makes up the lion’s share of the conditional
variance σ2

t . Differences in the conditional means across the candidate forecasting models are dominated
by the conditional variances, which are similar across the candidates. Hence, the shapes of the candidate
predictive densities are similar and the mixture density based on a linear combination will be of similar
shape as well. The mixture density obtained from a linear combination would thus look very similar to a
normal distribution in our setting, but would be more cumbersome to evaluate for large sets of candidate
predictive densities than using the logarithmic combination. See West and Harrison (1997), p. 438, for
an illustration of a mixture density that is similar to the shape of its components. Furthermore, if the
candidate density forecasts are appropriately calibrated, the linearly combined density forecast exhibits
excessive dispersion (see, e.g., Smith and Wallis, 2009). The logarithmic combination rule, in contrast,
does not have this drawback.

9

Electronic copy available at: https://ssrn.com/abstract=4342487



with
µt,comb
σ2
t,comb

= (ψ∗
t )

−1

ψ∗
t∑

k=1

µrk(k),t
σ2
rk(k),t

(15)

and

σ−2
t,comb = (ψ∗

t )
−1

ψ∗
t∑

k=1

σ−2
rk(k),t, (16)

where the mean µrk(k),t and variance σ2
rk(k),t of the k-th-ranked TV-C model are in each

case computed from information until t − 1. The density forecasts are strictly (pseudo)

out-of-sample (OOS), since we use only information that would have been available at a

given point in time.

Our time-varying subset combination can be seen as an alternative to Markov switch-

ing on the model space, but is less prone to estimation error and computationally much

more convenient, since online updating and prediction is computationally feasible with-

out having to specify a transition matrix and re-estimate the model from scratch in each

period.8 We do not implicitly assume that one of the candidate forecasting models rep-

resents the true data-generating process, since the size and composition of the chosen

subset may change over time and does not necessarily converge to one specific candidate,

even asymptotically. This differs, for example, from Bayesian model averaging, where

the combination asymptotically collapses to a particular model whose predictive proba-

bilities dominate all others, which can lead to undesired outcomes in the (realistic) case

of a misspecified model set (Diebold, 1991).

In our applications, we do not exclude any predictive signal (and its associated fore-

cast) a priori based on some pre-selection step (e.g., Lasso-type regressions), because it

may well be that a given predictive signal has no predictive power over a training sam-

ple, but may provide useful signals locally over time. Our time-varying subset selection

allows for local predictability, since candidate predictive densities can be switched off at

particular points in time, but subsequently switched on again.

It is instructive to present our time-varying subset selection from the perspective of a

constrained optimization problem to see more clearly the role of the ranking procedure.

8See Raftery et al. (2010) for a more in-depth connection between Markov switching methods on the
model space and parsimoniously parameterized alternatives for model changes.
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The optimization problem can be stated as follows:

w∗
t = argmax

wt∈W

t−1∑
τ=1

γτ · ln
[
p
(γt,ψt)
comb

(
yt−τ |t−τ−1

)]
(17)

s.t.
J∑
j=1

1(wj,t ̸=0) = ψt, (18)

wj,t ∈
{
0, ψ−1

t

}
,∀j, (19)

where wt = (w1,t, . . . , wJ,t)
′ are the combination weights and 1(•) denotes the indicator

function. The objective (17) with the constraints (18) and (19) is a best subset optimiza-

tion problem, in which all candidate forecasts within the subset are equally weighted

and sum to one. The binary optimization problem falls into the class of computationally

tedious NP-hard problems. As we work with time series data and have to elicit tuning

parameters, we have to solve this optimization problem at each point in time and for

different combinations of values for γ and ψ. As a remedy, we replace the constraints

(18) and (19) by a ranking procedure and assign the weights:

wrk(1),t, . . . , wrk(ψt),t = ψ−1
t , (20)

setting the remaining weights to zero. We thereby avoid any optimization when selecting

the subset for a given combination of of γ and ψ.

Our time-varying subset procedure builds on the findings of Diebold and Shin (2019),

who provide an interesting perspective on best subset averaging. The authors propose

“partially-egalitarian Lasso” for forecast combination, for which, in a first step, they dis-

card a fraction of the candidate forecasts based on Lasso regressions, and in a second

step, shrink the survivors toward equal weights. Shrinking the survivors to exactly equal

weights is found to be superior. Similarly, when exploring regularized mixtures of pre-

dictive densities, Diebold et al. (2022) find simple averaging of subsets to be empirically

successful and that there is little gain from regularization beyond best subset averaging.

Regarding the selection step, Diebold and Shin (2019) find no empirical advantage of
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a portfolio perspective over an individual ranking procedure, despite working with only a

small number of candidate forecasts. The portfolio perspective uses the best-performing

average that takes into account the dependency structure between the candidate fore-

casts, which corresponds to the optimization problem stated in (17) to (19). Hence,

replacing the constraints (18) and (19) with constraint (20) appears empirically reason-

able, especially for large sets of candidate forecasts, which would otherwise result in high

computational burdens.

Although the candidate forecasts that are selected in our ranking procedure are based

on their individual performance, dependencies between the candidates’ forecasting per-

formance are implicitly taken into account, because we elicit the subset size ψ in (13)

in a data-driven and time-varying manner. Hence, the selected subset size in a given

period reflects the empirical performance based on the portfolio of selected candidate

density forecasts. The key here is that selection and weighting are done jointly in one

step for all combinations of ψ and γ from the two-dimensional grid Sγ × Sψ, whereas in

the literature, a two-step procedure prevails. The latter uses elimination procedures as a

pre-screening step before combining the remaining forecasts, where the selection step is

detached from the subsequent weighting step (see, e.g., Aiolfi and Favero, 2005; Samuels

and Sekkel, 2017; Diebold and Shin, 2019; Chen and Maung, 2023).9 In sum, the sec-

ond part of our approach extends best subset averaging to i.) a one-step approach with

the subset size being based on a cross-validated tuning parameter, and ii.) time-varying

weights by exponentially discounting past performance which is based on cross-validated

tuning parameters. Finally, we apply the combination procedure to density rather than

to point forecasts.

We call our forecasting method “signal-transformed subset combination”, hereafter

STSC, and compare it with four state-of-the-art machine learning methods in the sim-

ulation study and our two applications: Random Forests (Breiman, 2001), hereafter

RF, Boosted Regression Trees (Friedman, 2001, 2002), hereafter BRT, eXtreme Gradient

Boosting (Chen and Guestrin, 2016), hereafter XGB, and Relaxed Lasso (Meinshausen,

9A notable exception is Roccazzella et al. (2022), who combine (point) forecasts by using constrained
optimization with penalty in a one-step procedure.
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2007), hereafter RLasso. We choose these benchmarks because they are computationally

feasible for vast numbers of predictive signals, and because of their documented strong

performance in predicting macroeconomic and financial time series in the presence of

high-dimensional predictors. (see, e.g., Gu et al., 2020; Hastie et al., 2020; Bianchi et al.,

2021; Medeiros et al., 2021).10

3 Simulation study

We conduct a simulation study to compare the predictive accuracy and computational

speed of our forecasting method with competitive benchmark methods. To do so, we

consider six data-generating processes (DGPs), generated from TV-C models that differ

with respect to the predictive relationship between y and signal s, spanning constant,

gradually evolving, and abruptly changing relationships. The signals at our disposal are

indexed as i = 1, . . . , k. The stochastic processes are generated as follows:

yt =
k∑
i=1

θi,tsi,t−1 + εt, εt
iid∼ N

(
0, σ2

ϵ

)
,

Evolution of the coefficients in DGP 1:

θ1,t =

{
−0.5, t > 0.

θ1:k,t\θ1,t =
{

−0. 0, t > 0.

10We implemented RF, BRT and XGB in R using LightGBM and xgboost, respectively. RLasso was
implemented using the coordinate descent algorithm from Friedman et al. (2010), implemented in the R
package glmnet. For all methods, we used default choices for the tuning parameters.
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Evolution of the coefficients in DGP 2:

θ2,t =

 −0.4, 200 < t < 450

0.5, otherwise.

θ1:k,t\θ2,t =
{

−0. 0, t > 0.

Evolution of the coefficients in DGP 3:

θ3,t =

 0.8− 0.5 · t/420, t < 420

−0.2 + 0.5 · t/420, otherwise.

θ1:k,t\θ3,t =
{

−0. 0, t > 0.

Evolution of the coefficients in DGP 4:

θ4,t =

 −0. 0, t < 400

0.50, otherwise.

θ1:k,t\θ4,t =
{

−0. 0, t > 0.

Evolution of the coefficients in DGP 5:

θ5,t =

 −2× 10−3 · t, t < 400

−0. 0, otherwise.

θ1:k,t\θ5,t =
{

−0. 0, t > 0.
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Evolution of the coefficients in DGP 6:

θ6,t =


0.6− 0.2 · t/180, 60 < t < 180

0.6 + 0.2 · t/420, 250 < t < 420

−0. 0, otherwise.

θ1:k,t\θ6,t =
{

−0. 0, t > 0.

We simulated t = 1, . . . , 500 data points and set the number of available signals k to

501. Furthermore, we investigated the (relative) performance of our method for different

noise levels σ2
ε ∈ {0.1, 0.5, 1.0}. Given the number of data points, we treat the data as

“monthly” and choose the (grids of) tuning parameters for STSC accordingly.

First, we benchmark our method with respect to predictive accuracy. To do so, data

points t = 1, . . . , 49 were used for training and t = 50, . . . , 500 were used for OOS pre-

dictions. We ran the simulation 100 times and computed the average mean squared

errors (MSEs) across all runs for each method. Table 1 summarizes the results. The

MSE of each method is divided by the MSE of STSC. A value greater than one there-

fore indicates a more accurate prediction by STSC. With few exceptions, STSC prevails

consistently, doing comparatively well at capturing different (time-varying) relationships,

and in discarding signals that are pure noise.
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Table 1: Relative forecast accuracy results.

BRT STSC RF RLasso XGB

σ2
ε = 0.1

DGP 1 1.28 1.00 1.26 0.99 1.35
DGP 2 1.82 1.00 1.99 1.92 2.13
DGP 3 1.37 1.00 1.54 1.18 1.51
DGP 4 1.29 1.00 1.29 1.25 1.43
DGP 5 1.60 1.00 1.52 1.42 1.67
DGP 6 1.69 1.00 1.60 1.45 1.78

σ2
ε = 0.5

DGP 1 1.12 1.00 1.09 0.98 1.24
DGP 2 1.17 1.00 1.23 1.19 1.36
DGP 3 1.12 1.00 1.13 1.02 1.26
DGP 4 1.03 1.00 1.06 1.03 1.20
DGP 5 1.19 1.00 1.17 1.11 1.32
DGP 6 1.19 1.00 1.17 1.09 1.32

σ2
ε = 1.0

DGP 1 1.08 1.00 1.06 0.98 1.20
DGP 2 1.06 1.00 1.10 1.07 1.21
DGP 3 1.07 1.00 1.08 0.99 1.21
DGP 4 1.00 1.00 1.03 1.00 1.14
DGP 5 1.08 1.00 1.08 1.05 1.21
DGP 6 1.10 1.00 1.09 1.04 1.22

The entries correspond to each model’s MSE divided by
the MSE of STSC. The MSEs are computed across 100
simulation runs, each with 451 OOS observations.

Next, we benchmark STSC in terms of computation time. Table 2 summarizes the

relative computation time of each method relative to STSC for different numbers of

observations (n) and signals (p). We show the (relative) computation time for generating

one and five OOS predictions, respectively. The table clearly shows the benefits of our

online updating and prediction approach: while STSC is faster than all benchmarks

except RLasso and RF for a single prediction, STSC’s speed advantage improves vastly

as more subsequent predictions are computed. Note that the benchmarks were run on

a single core (Apple M1). As STSC uses parallel computing, the absolute times in real-

world applications are even lower.
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Table 2: Timing results.

n p BRT STSC RLasso RF XGB

Single Prediction
500 500 1.27 1.00

(0.50)
1.35 0.99 3.45

1,000 1,000 2.90 1.00
(1.14)

1.60 2.47 8.31

5,000 5,000 1.92 1.00
(21.64)

1.00 1.81 10.56

10,000 10,000 1.78 1.00
(93.86)

0.84 1.58 9.60

Five Predictions
500 500 6.64 1.00

(0.45)
6.68 5.13 19.05

1,000 1,000 14.62 1.00
(1.10)

7.85 12.12 42.91

5,000 5,000 9.60 1.00
(21.53)

4.92 9.01 53.39

10,000 10,000 9.12 1.00
(94.00)

4.32 7.95 48.49

The table shows the (relative) time required to generate a single (or five consecutive) OOS
prediction(s). Computation time is shown relative to STSC. The runtime in seconds (each time
averaged over ten repetitions) for STSC is shown in parentheses. The results are based on
σ2
ε = 0.5.

4 Empirical work

4.1 Application I: Forecasting daily aggregate stock returns

In the first application, we predict aggregate US stock returns, a topic that has been cen-

tral to the field of financial economics ever since the inception of stock markets. Although

numerous predictive variables have been proposed, Welch and Goyal (2008) and Goyal

et al. (2023) find most of them useless for producing superior OOS forecasts compared

to the prevailing historical mean. One reason for this result might be that predictors are

useful for short stretches (“pockets”), but do not have predictive power most of the time

(see, e.g., Paye and Timmermann, 2006; Farmer et al., 2023).

The phenomenon of short-lived predictability could arise as a consequence of time-

varying risk premia or market inefficiencies. Based on kernel regressions and four eco-

nomic indicators, Farmer et al. (2023) find that local pockets of predictability are con-

sistent with sticky expectations, for which investors sluggishly update their beliefs about

a persistent component in the cash flow process. Yet the authors “only find limited sup-
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port” for time-varying risk premia. We extend the study of Farmer et al. (2023) to high

dimensions.

4.1.1 Data

We use daily data, since local pockets are probably short-lived and, hence, more hidden

at lower frequencies. The target variable is the value-weighted CRSP US stock market

return minus the one-day return on a short T-bill rate. We use two sets of predictive

signals: Economic and Economic & Text.

Economic

In this set, we initially follow Farmer et al. (2023), using four economic signals that

are available at daily frequency: first, the lagged dividend-price ratio (dp), computed as

dividends over the most recent 12-month period divided by the closing price of a given

day. Second, the yield on a 3-month Treasury bill (tbl). Third, the term spread (tsp),

computed as the difference between yields on a 10-year Treasury bond and a 3-month

Treasury bill. And fourth, a variance measure (vola), computed as the realized variance

over the previous 60 trading days.

Next, we include economic indicators as point forecasts. First, we generate a point

forecast of y using a BRT based on ten volatility lags (measured by the CBOE volatility

index), to capture a non-linear predictive relationship between returns and volatility,

as suggested by investor flight-to-safety (see, e.g., Adrian et al. 2019).11 We call this

predictive signal GBT. Second, we use an equally weighted combination of the forecasts

generated by tbl and dp, motivated by the findings of Tsiakas et al. (2020) that these two

predictors perform well in different states of the economy. We call this signal TBL_DP.

Third, following, inter alia, Pettenuzzo et al. (2014), we include forecasts generated by

principal component regressions, for which the principal components are extracted from

dp, tbl, tsp, and vola. The number of components is dynamically selected by the adjusted

R2. We call this signal PCR. Fourth, we include the prevailing historical mean, PHM, a

competitive estimator of aggregate stock returns (Welch and Goyal, 2008; Goyal et al.,

11Before January 2, 1990, we use a realized volatility estimator as proposed by Mele (2007).
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2023). In the setting Economic, we have 8 × 3 = 24 density forecasts at our disposal in

each period, since the three different values of the discount factor λ in the grid Sλ define

three different candidate forecasts for each signal.

Economic & Text

In addition to the signals contained in Economic, Economic & Text adds a large

number of text-based indicators. Our text corpus comprises 793,013 news articles from

The New York Times and The Washington Post between 1980-06-02 and 2021-12-31. The

data source is the legal database LexisNexis. We have downloaded economically related

newspaper articles that, for example, contain the string econom in the headline or body

of the text.

We only retained English articles and removed stop words (e.g., the, end, for, etc.),

punctuation, numbers and symbols. We then created a document-term matrix (dtm),

where each row i corresponds to a document, and each column j to a stemmed word.

Each cell indicates how often the j-th stemmed word occurred in the i-th document. We

then grouped all documents per day and weighted each word count relative to all counted

words per day, retaining only those rows (days) from the dtm which corresponded to a

trading day. To remove very rare and misspelled words, we required each word to be

included in at least 0.1% of the in-sample documents. Our final dtm consists of 10,487

rows (days) and 12,288 columns (terms), where each column serves as a signal.12 The

training sample for the textual predictors spans 1980-06-02 to 1998-12-31.13

Our decision to use relative word counts as a signal is mainly driven by an effort to

mimic the information set of a real-time forecaster, so as to reduce data mining concerns

in the spirit of Yan and Zheng (2017).14 While more sophisticated methods such as

textual factors (Cong et al., 2019), topic models (see, e.g., Thorsrud, 2020) or sentiment

approaches (see, e.g., Barbaglia et al., 2022) could be used to generate text-based signals,

those techniques would not have been available to a researcher at the start of our sample

12We used the R-package quanteda (Benoit et al., 2018) for pre-processing.
13We exploit the longer data histories of the economic signals by using longer training samples for

them.
14Lima and Godeiro (2023) use (absolute) word counts for predicting stock returns, but with monthly

data.
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and involve a couple of subjective choices for data processing. In addition, estimating

textual factors or topic proportions requires a series of design choices. As a result, word

counts may provide a more objective and conservative assessment of the incremental

value embedded in textual data from a real-time perspective, than more sophisticated

alternatives. In the setting Economic & Text, we have (8+12, 288)×3 = 36, 888 candidate

density forecasts at our disposal in each period.

4.1.2 Evaluation metrics

We evaluate the performance of STSC and the benchmark methods with both statistical

and economic measures. As a measure of statistical forecast accuracy, we report Clark

and West (2007) (CW) test statistics.15

To evaluate the economic significance of the forecasts, we follow Farmer et al. (2023)

and form a managed portfolio with excess returns:

rpt+1 = w∗
t · rmt+1, (21)

where rmt+1 is the realized market excess return. The weight placed on the market is:

w∗
t =

(
1

η

)(
r̂t+1

σ̂2
t+1

)
, (22)

where r̂t+1 denotes the expected excess return and σ̂2
t+1 denotes its expected variance.

The risk aversion parameter η is set to three. We restrict the portfolio weights between

zero and two, ruling out short sales and allowing for a maximum leverage ratio of two.

We then use the excess returns obtained from the managed portfolio (21) to evaluate

the risk-adjusted return α from the regression:

rpt+1 = α + β · rmt+1 + ϵt+1. (23)

15The CW test considers estimation error, which is expected to be higher in the larger model (relative
to the prevailing historical mean forecast). Hence, the test summarizes the true predictive power of the
indicators in the larger model.
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We report the annualized estimated α in percentage points and annualized certainty

equivalent returns (CERs).

4.1.3 Results

Table 3 summarizes the results for STSC and the four benchmark methods, based on the

evaluation sample from 1999-01-04 to 2021-12-31.

Table 3: Application to stock returns: Forecast evaluation.

CW α̂ CER

Economic
STSC 0.14 2.54%∗ 5.04%
BRT 0.46 1.46% −1.83%
RLasso −0.15 0.00% −5.10%
RF 0.90 3.04% 0.04%
XGB −0.28 −4.24% −7.93%

Economic & Text
STSC 1.48∗ 4.23%∗∗ 6.08%
BRT −0.76 −2.66% −6.72%
RLasso −1.09 −0.04% −5.14%
RF −0.49 −8.41% −11.34%
XGB −0.11 −0.32% −3.77%

The table reports the Clark and West (2007) (CW) test statistics for OOS
predictability measured relative to the prevailing historical mean. Fur-
ther, we report the estimated annualized alpha (α̂) and the (annualized)
certainty equivalent return (CER) values. One star indicates significance
at the 10% level; two stars at the 5% level; and three stars at the 1% level
(for one-sided alternatives). The evaluation sample spans 1999-01-04 to
2021-12-31.

For Economic, all methods have insignificant CW test statistics, but STSC generates,

overall, higher economic values in terms of alphas and CERs compared to the benchmark

methods. For Economic & Text, we observe a statistically significant CW test statistic

at the 10% level for our approach, but not for the benchmark methods.16 Also, in terms

of economic performance, the incremental value of the text-based signals is substantial

when using STSC, with considerably higher estimated alphas and CERs. In contrast, the

benchmark methods cannot, overall, successfully exploit the text-based signals.
16In Appendix 6.2, we compare STSC to the kernel regression approach of Farmer et al. (2023) for four

economic signals and an extended evaluation period starting in 1967. Similar to Farmer et al. (2023),
we find that economic signals contained valuable information until the 1980s, but less so afterwards.
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Figure 1 depicts the forecasting performance, the selected signals, and the subset size

over time for Economic (left column) and Economic & Text (right column). The top

panel shows how the cumulative sums of squared error differences (CSSEDs) between

the PHM forecast and STSC have evolved over time.17 Positive values hence indicate

more accurate forecasts of STSC compared to the PHM in a mean squared error sense.

While the CSSEDS are generally negative over the entire evaluation period for the setting

Economic, we observe positive CSSEDs in the setting Economic & Text with an episode

of substantial gains between 2002 and 2005.

The middle panel of Figure 1 depicts the signals that were selected over time. In

Economics, all economic signals were selected at least once over time, of which vola was

selected most often (see Figure 6 in Appendix 6.1, which provides an enlarged version

of the left plot in the middle panel of Figure 1). The subset size ψ fluctuated over time

(see lower left panel of Figure 1), but mostly only one candidate forecast was selected

(out of 24). In Economics & Text, the variation in subset size was more pronounced.

Nevertheless, with few exceptions, the subset size was well below the upper limit of 100

(out of 36,888 candidate forecasts), indicating a sparse structure of text-based signals.

This result is further substantiated, considering that only 121 signals of many thousands

were selected over the entire evaluation period.

Table 5 in the Appendix lists all 121 signals that were selected at least once over

the entire evaluation sample. We observe that only text-based signals (i.e., word stems)

were selected, but no economic signals. This result aligns with our extended analysis

for the economic signals in Appendix 6.2, and previous studies such as Farmer et al.

(2023) and Demetrescu et al. (2022) who find that the predictive power of economic

signals has substantially weakened over the last few decades. Many of the text-based

signals selected were part of an insurance strategy where STSC combined many signals to

produce low-variance forecasts that “replicated” the PHM. These episodes hence coincide

with squared errors that match those of the PHM (that is, plateaus in the CSSEDs). The

“replication” of the PHM also explains why many words without any apparent connection

17We have omitted the CSSEDs of the benchmark methods in the CSSED plots, because they are
substantially negative and hence would distort the scale.
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to economics were selected. Episodes with increasing CSSEDs coincide with the selection

of only a few but strong signals such as “hardwood”, which can be related to the housing

market. Overall, we observe different levels of persistence in the selection of text-based

signals, that is, some signals are selected over longer episodes, and others only over short

stretches—reflecting the flexibility of STSC.
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Figure 1: Forecasting performance, selected predictive signals, and selected subset size
for Economic and Economic & Text. The top panel shows the cumulative sums of squared error
differences between the PHM forecast and STSC. The middle panel depicts which signals were included
in STSC over time. The lower panel depicts the evolution of the subset size ψ.
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Figure 2 depicts the estimated aggregate predictive densities for the setting Economics

& Text generated by STSC on the last trading day for each month in 2020. It can be seen

that STSC picks up changing conditional volatility, showing an increase at the outbreak

of COVID-19 and a subsequent reduction until the end of August. We omit the plots for

the setting Economic since the aggregate predictive densities look very similar. This is

because the observational variance makes up the lion’s share of the conditional variance,

whereas the uncertainty about the coefficients only accounts for a small part of it.

As a robustness check to evaluate whether STSC can eliminate pure noise predictors,

we added 10,000 noise signals generated from the standard normal distribution, leaving

our results virtually unchanged. As a further robustness check, we varied one of our

tuning parameters in each setup and fixed its value, while leaving the remaining (grids

of the) tuning parameters unchanged (see Table 7 in Appendix 6.3). The results are

based on the setting Economic & Text. The main findings can be summarized as follows:

slight deviations from the default value for κ = 0.94 lead to similar results. A value

of κ close to one, however, is detrimental, indicating that (almost) constant volatility

is inappropriate, as one would expect. Pure model selection (ψ =1) leads to favorable

economic performance, but does not generate a significant CW test statistic. Forcing

the subset to high values results in both decreased statistical and economic performance.

In particular, the simple average across all available candidate forecasts (ψ = 36, 888)

performs poorly, bolstering the importance of sorting out irrelevant signals. Adopting

constant coefficients within the TV-C models (λ = 1) leads to superior results, both

in terms of CW test statistics and economic performance. Overall, the results indicate

that the data-driven selection of tuning parameters in STSC works well in the sense that

the performance is never much worse than best ex-post choices of tuning parameters.

That said, the choices of (grids of) tuning parameters may also be guided by domain-

specific knowledge and experiences or recommendations from previous studies (as, for

example, our choice of κ). Similarly, we could have restricted λ to 1, arguing that gradual

coefficient changes might not be useful for extremely noisy text-based signals. However,

to be conservative and to avoid any cherry-picking, we chose the same lower boundary for
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λ (in terms of effective window size) across both applications and the simulation study.
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Figure 2: Estimated aggregate predictive densities for the setting Economic & Text . The
plot depicts the estimated aggregate predictive densities generated by STSC on the last trading day for
each month in 2020.

4.2 Application II: Forecasting quarterly inflation

As one of the key macroeconomic variables, an accurate forecast of price inflation is of

paramount interest to policymakers, firms and households alike. Yet, although the fore-

casting of price inflation has been studied extensively (e.g., Inoue and Kilian, 2008; Faust

and Wright, 2013; Koop and Korobilis, 2023), it is still the case that simple approaches

such as the autoregressive (AR) model and the unobserved component stochastic volatil-

ity model (UC-SV) of Stock and Watson (2007) are hard-to-beat OOS benchmarks in

terms of forecasts. We focus on short-term one-quarter-ahead forecasts in our second

application.
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4.2.1 Data and empirical setup

We consider four measures of US inflation as the target series: GDP deflator (GDPCTPI),

PCE deflator (PCECTPI), Total CPI (CPIAUCSL), and Core CPI (CPILFESL). The

names in parentheses refer to the variables’ codes in the FRED-QD database from Mc-

Cracken and Ng (2020), from which the data are drawn.

As predictive signals, we use a high-dimensional and heterogeneous data set compiled

by Koop and Korobilis (2023), who merge indicators from various macroeconomic and

financial sources. In addition to the indicators compiled by McCracken and Ng (2020),

the data set comprises portfolio data from Jurado et al. (2015), stock market predictors

from Welch and Goyal (2008), survey data from University of Michigan consumer surveys,

commodity prices from the World Bank’s Pink Sheet database, and key macroeconomic

indicators from the Federal Reserve Economic Data for four economies.18 In total, the

data set consists of 441 indicators and can be found here.

We add 16 other predictive signals, which are point forecasts of (the respective mea-

sure of) inflation. These point forecasts are based on forecasting models considered in

Koop and Korobilis (2023), ranging from simple to highly sophisticated ones. For exam-

ple, models that use exogenous predictive variables such as Gaussian process regressions,

combine multivariate information and can capture nonlinear interactions. The new varia-

tional Bayes dynamic variable selection (DVS) approach from Koop and Korobilis (2023)

allows for variable selection in high dimensions, and the UC-SV, as well as Bayesian

structural breaks AR(2), are specialized techniques for modeling time variation.

We use the same evaluation period as in Koop and Korobilis (2023): the data span

the period 1960Q1 to 2021Q4, with OOS evaluations starting in 1991Q2. In sum, with

three possible values for λ, we have 441 + 16 = 457 signals and (441 + 16) × 3 = 1, 371

candidate density forecasts.

18For further details on the data, see Koop and Korobilis (2023) and the references therein.
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4.2.2 Results

Table 4 summarizes the results, where we evaluate STSC and the benchmark methods in

terms of the relative mean squared error to the AR(2) model. Values below one indicate

more accurate performance in a mean squared error sense and stars indicate statistical

significance based on the Diebold and Mariano (1995) test.

Although STSC does not yield the most accurate OOS forecast in each case, it is

the only method that is consistently more accurate than the AR(2) model across the

four measures of inflation. When comparing STSC’s performance with the 16 forecasting

models considered in Koop and Korobilis (2023) (see Tables 2 and 3 in their paper), STSC,

on average, provides the highest forecast accuracy relative to the AR(2) benchmark.

Table 8 in Appendix 6.4 shows that our results are robust to different (grids of) tuning

parameters. However, restricting the subset size ψ either to a small value, or taking

the simple average over all 1,371 models is (on average) detrimental to performance,

again confirming the importance of choosing the subset size flexibly. We find the lowest

MSE ratios for PCE Deflator and Total CPI across all methods, whereas the MSE ratios

for Core CPI are always above one, except when using STSC. In comparison to Total

CPI, Core CPI does not include goods and services from the food and energy sectors.

In (unreported) descriptive results we find that Total CPI is less autocorrelated and

more volatile than Core CPI, which may explain the higher predictability of Total CPI

compared to a simple AR(2) model.

Table 4: Forecast evaluation: Application to inflation.

GDP Deflator PCE Deflator Total CPI Core CPI

STSC 0.95 0.68** 0.94 0.95
BRT 1.09 0.89 0.84 1.31
RF 1.00 0.90 0.80* 1.15
RLasso 0.92 0.72** 0.86 1.03
XGB 0.93 0.93 0.88 1.19

The table reports the mean squared errors of STSC and the benchmark meth-
ods relative to the AR(2) model. Values below one indicate better perfor-
mance. The evaluation period spans 1991Q2 to 2021Q4. One star indicates
significance at the 10% level; two stars significance at the 5% level; and three
stars significance at the 1% level from one-sided Diebold and Mariano (1995)
test statistics.
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The top panels of Figures 3 and 4 show the CSSEDs between the AR(2) forecast and

STSC, and between the AR(2) forecast and the benchmark methods BRT, RF, RLasso,

and XGB. Positive values indicate better performance relative to the AR(2) benchmark.

Forecasting gains, in particular, accrued at the time of the Great Recession and the

COVID-19 pandemic, corroborating that predictive indicators are useful during periods of

crisis, and that the relative predictive accuracy compared to simple benchmarks increases

(see, e.g., Beckmann et al., 2020; Medeiros et al., 2021; Koop and Korobilis, 2023). The

middle panels of Figures 3 and 4 show which predictive signals were selected over time.

In further (unreported) analyses we computed the ten most often selected signals for

each measure of inflation. Across all measures, the expected change in prices over the

next year, as measured by the University of Michigan (mnemonic: INFEXP), appears

consistently in the top ten, corroborating the importance of survey data for predicting

inflation. Interestingly, only one point forecast appears in the top ten, namely Dynamic

Model Averaging with five principal components for GDP Deflator. Nevertheless, we find

that including both the (441) “simple” signals and the (16) point forecasts of inflation as

signals leads to superior results overall than using the sets individually.

The lower panels of Figures 3 and 4 indicate the chosen subset size over time. The

number of signals selected, their identities and the length of the episodes in which they

were selected, vary considerably over time and across measures of inflation—exploiting

the flexibility of the STSC method.
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Figure 3: Forecasting performance, selected signals, and subset size. The top panel shows
the cumulative sums of squared error differences between the AR(2) forecast and STSC, and between
the AR(2) forecast and the benchmark methods BRT, RF, RLasso, and XGB. The middle panel shows
which signals were included in STSC over time. The lower panel depicts the evolution of the subset size
ψ.

29

Electronic copy available at: https://ssrn.com/abstract=4342487



−8e−04

−4e−04

0e+00

4e−04

8e−04

1995 2000 2005 2010 2015 2020

C
S

S
E

D
s

STSC Benchmark Methods

Total CPI

1

50

100

150

200

250

300

350

400

457

1995 2000 2005 2010 2015 2020

P
re

di
ct

iv
e 

S
ig

na
l

1
10
20
30
40
50
60
70
80
90

100

1995 2000 2005 2010 2015 2020
Year

ψ

1995 2000 2005 2010 2015 2020

STSC Benchmark Methods

Core CPI

1995 2000 2005 2010 2015 2020

1995 2000 2005 2010 2015 2020
Year

Figure 4: Forecasting performance, selected signals, and subset size. The top panel shows
the cumulative sums of squared error differences between the AR(2) forecast and STSC, and between
the AR(2) forecast and the benchmark methods BRT, RF, RLasso, and XGB. The middle panel shows
which signals were included in STSC over time. The lower panel depicts the evolution of the subset size
ψ.

The subplots in Figure 5 depict the estimated aggregate predictive densities for the

four measures of inflation between 2020Q1 and 2021Q4. The plots illustrate how the

estimated conditional mean and volatility in STSC evolve over time. In particular, we

can see how the estimated conditional volatility increases in the second half of 2021.
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Figure 5: Estimated aggregate predictive densities. The plots depict the estimated aggregate
predictive densities from 2020Q1 to 2021Q4 for four measures of inflation: GDP Deflator (upper left
corner), PCE Deflator (upper right corner), Total CPI (lower left corner), and Core CPI (lower right
corner).

5 Concluding Remarks

We have introduced an ensemble learning method for time series forecasting that can

handle tens of thousands of predictive signals, many of which are potentially irrelevant

or short-lived. In addition to several conceptual advantages of the proposed method, the

results of the simulation study and the two applications have shown that our approach

provides a versatile tool that has the potential to find its way into the toolbox of applied

researchers in time series forecasting. We provide an R-package that implements our

approach, making it easy for other researchers and practitioners to apply our method to

their forecasting problem at hand.
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6 Appendix

6.1 Addition to Application I: Selection of predictive signals
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Figure 6: This figure is an enlarged version of the left middle panel in Figure 1 and depicts which
signals were included in STSC over time.

Table 5: Selected signals in Economic & Text.
crow hardwood cushman bruno kay yorktown econometr birthday monetarist royc
khartoum privileg wakefield cont crisscross unreport emissari usa banish seneg
seclud ramada savannah kravi excav waterg plantat prerequisit pornographi wisdom
panicki standbi conduit intox hanna wade ralph klerk pessim blow
poetri destabil seeth bonus pragu platform loneli walker twin quash
ontario taper justifi oslo shirley hostess loos soil luggag clinch
nascent ziyang apartheid editori link imprud region bacon honey tutu
burglari repetit lui haul millimet oyster trolley ting op reflex
appel earl buffalo wider tireless south monasteri civil breather heart
wale rohatyn turbin craft mover fireplac donor wood muscovit setback
guatemala warehous perez cruiser tip loudest vulner metropolitan brick canal
hector dakota calib tribe sioux snarl midway alfonso charit furi
novak

The table lists all text-based signals which were selected at least once from Economic & Text (in total: 121). The
signals are arranged in descending frequency (row-wise).

6.2 Addition to Application I: Low-dimensional setting

We investigate the ability of STSC to detect local predictability in a low-dimensional

setting and over an extended evaluation period. To do so, we restrict our set of predic-

tive indicators to four economic signals for which comparatively long data histories are

available: tbl, dp, tsp, vola. This set of predictive signals was also used by Farmer et al.

(2023) to investigate local predictability, but using kernel regression instead. We add the

PHM as the fifth signal.
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The signals are available from several starting dates. As our approach can easily

handle predictive signals of different lengths, we use the earliest possible starting date for

each series. After an initial training sample of five years for the candidate forecasts, based

on the signal with the shortest data series, our OOS evaluation period spans 1967-07-03

to 2021-12-31.

To investigate STSC’s ability to detect local predictability, we compare two setups: in

the first one, we run STSC separately for each of the four signals tbl, dp, tsp, vola, where

STSC can switch between the given signal and the PHM. Similarly, we use STSC with

all signals, called Economic Long hereafter, where STSC can choose between all signals

flexibly. In our second setup, called no-switch hereafter, we compute forecasts without a

switching option, where each time, the density forecast is based solely on one particular

signal.19 For Economic Long, we compute the simple average of all five forecasts for the

no-switch setup.

Table 6 summarizes the results. For all four signals, STSC, which allows for switching,

achieves substantially better evaluation metrics than no-switch, indicating that STSC

successfully captures local predictability. Similarly, STSC outperforms no-switch (i.e.,

the simple average) in the case of Economic Long. As STSC always outperforms no-

switch, the results in Table 6 indicate that STSC successfully captures local predictive

power. We next look at how the performance developed over time.

19We set λ = 1 in no-switch.
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Table 6: Summary of results for the low-dimensional setting.

CW α̂ CER

tbl
STSC 5.03∗∗∗ 5.47%∗∗∗ 10.32%
no-switch 2.96∗∗∗ 3.74%∗∗∗ 8.92%

dp
STSC 4.02∗∗∗ 7.81%∗∗∗ 12.90%
no-switch 0.18 −0.42% 5.28%

tsp
STSC 5.24∗∗∗ 8.10%∗∗∗ 13.12%
no-switch 2.02∗∗ 2.56%∗∗ 7.91%

vola
STSC 2.53∗∗∗ 11.25%∗∗∗ 16.62%
no-switch 0.50 0.55% 6.62%

The table reports the Clark and West (2007) (CW) test
statistics for OOS predictability measured relative to the
PHM. As measures of economic predictability, we report
the estimated annualized alpha (α̂) and the (annualized)
certainty equivalent return (CER) values. One star indi-
cates significance at the 10% level; two stars at the 5%
level; and three stars at the 1% level (for one-sided al-
ternatives). The evaluation sample spans 1967-07-03 to
2021-12-31.

For each of the four signals, Figure 7 shows the evolution of cumulative sums of squared

error differences (CSSEDs) between the PHM and STSC (black lines), and between the

PHM and no-switch (dotted gray lines). Positive CSSEDs indicate outperformance of

STSC against the PHM.

We observe two striking results. First, the outperformance of the setups that allow

for switching are always higher than those which do not, visually demonstrating the

benefit of exploiting local predictability. Second, the outperformance against the PHM

essentially accrued until the 1980s. After then, the CSSEDs of the no-switch strategies

suggest that the economic signals were barely useful anymore. The pattern of decreasing

predictive power of the economic signals aligns with Farmer et al. (2023) (see Figure IA.1

in their paper) and Demetrescu et al. (2022). Both the CW test statistics and the alphas

generated by STSC compare well with those in Farmer et al. (2023) (see Table III in

their paper), based on their nonparametric kernel regressions, further strengthening the
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credibility of STSC to pick up “pockets” of predictability. Also in line with Farmer et al.

(2023), we do not find a higher level of predictability during the NBER recessions in the

unreported results.

dp vola
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−0.002

0.000

0.002

0.004

−0.002

0.000

0.002

0.004

Year

C
S

S
E

D
s

STSC no−switch

Figure 7: Cumulative sums of squared error differences between the PHM and the forecasts
based on one of the economic signals. Each plot depicts the cumulative sum of squared forecast
error differences between between the PHM and STSC, and between the PHM and no-switch.

For Economic Long, the top panel of Figure 8 depicts the CSSEDs between the PHM

and STSC, and between the PHM and no-switch, which equals the simple average of all

forecasts. Again, while we observe strong outperformance of STSC against the simple

average, beating the PHM in terms of point forecast accuracy became more difficult since

the 1980s. The bottom panel of Figure 8 depicts the evolution of the subset size ψ. In

the earlier part of the sample, only one forecast was selected each day, while the middle

panel of Figure 8 reveals that these forecasts were based on changing signals.
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Figure 8: Summary statistics for Economic Long. The top panel shows the CSSEDs between the
PHM and STSC, and between the PHM and no-switch, which equals the simple average of all forecasts.
The middle panel shows which signals were included in STSC. The lower panel depicts the evolution of
the subset size ψ.
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6.3 Robustness checks: Application I

Table 7: Robustness results for Application I.

CW α̂ CER

Varying κ

κ = 1.00 −2.07 1.18% 1.15%
κ = 0.99 −0.90 1.92% 4.15%
κ = 0.98 0.42 3.03% 5.17%
κ = 0.97 0.79 3.16%∗ 5.24%
κ = 0.96 1.06 3.77%∗ 5.75%
κ = 0.95 1.59∗ 4.32%∗∗ 6.19%
κ = 0.94 1.48∗ 4.23%∗∗ 6.08%
κ = 0.93 1.36∗ 4.58%∗∗ 6.42%
κ = 0.92 1.12 4.25%∗∗ 6.09%
κ = 0.91 1.49∗ 4.58%∗∗ 6.39%
κ = 0.90 1.23 4.10%∗∗ 5.89%

Varying δ

δ = 1.0000 1.23 4.70%∗∗ 6.58%
δ = 0.9992 1.48∗ 4.23%∗ 6.08%
δ = 0.9984 1.73∗∗ 4.48%∗∗ 6.33%

Varying ψ

ψ = 1 0.64 5.68%∗∗∗ 7.35%
ψ = 5 1.41∗ 5.30%∗∗∗ 7.03%
ψ = 10 0.89 4.69%∗∗ 6.49%
ψ = 25 0.94 4.11%∗∗ 5.99%
ψ = 50 0.79 3.40%∗ 5.37%
ψ = 75 0.63 3.30%∗ 5.28%
ψ = 100 0.50 3.11%∗ 5.10%
ψ = 36, 888 −0.30 2.17% 4.22%

Varying λ

λ = 1.0000 2.57∗∗∗ 5.61%∗∗∗ 7.77%
λ = 0.9992 1.50∗ 3.95%∗∗ 5.93%
λ = 0.9984 1.29∗ 4.90%∗∗ 6.51%

The table summarizes the robustness results for STSC with
respect to various choices of (grids of) tuning parameters.
In each setup, we varied one of the tuning parameters and
fixed its value, while leaving the remaining (grids of) tuning
parameters unchanged. One star indicates significance at
the 10% level; two stars at the 5% level; and three stars at
the 1% level (for one-sided alternatives).
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6.4 Robustness checks: Application II

Table 8: Robustness results for Application II.

GDP Deflator PCE Deflator Total CPI Core CPI

Varying κ

κ = 1.00 0.91 0.80∗∗ 0.89 0.88
κ = 0.99 1.04 0.75∗∗ 0.89 1.07
κ = 0.98 0.95 0.68∗∗ 0.89 0.95
κ = 0.97 0.96 0.73∗∗ 0.89 0.86
κ = 0.96 0.85 0.75∗∗ 0.89 0.85
κ = 0.95 0.82 0.78∗∗ 0.89 0.87
κ = 0.94 0.84 0.71∗∗∗ 0.89 0.82
κ = 0.93 0.86 0.74∗∗∗ 0.89 0.83
κ = 0.92 0.85 0.75∗∗ 0.89 0.81
κ = 0.91 0.78∗ 0.78∗∗ 0.89 0.82
κ = 0.90 0.79 0.72∗∗∗ 0.89 0.81

Varying δ

δ = 1.00 0.93 0.69∗∗ 0.99 0.83
δ = 0.95 0.95 0.68∗∗ 0.94 0.95
δ = 0.90 0.92 0.71∗∗ 0.91 0.98

Varying ψ

ψ = 1 1.10 0.76∗∗ 1.00 0.99
ψ = 5 1.01 0.73∗∗ 0.92 0.88
ψ = 10 0.93 0.75∗∗ 0.91 0.94
ψ = 25 0.92 0.75∗∗ 0.87 0.86
ψ = 50 0.90 0.76∗∗ 0.86 0.89
ψ = 75 0.88 0.78∗∗ 0.85∗ 0.87
ψ = 100 0.90 0.78∗∗ 0.86 0.89
ψ = 1, 371 1.25 0.89 0.91 0.96

Varying λ

λ = 1.00 0.90∗ 0.87 0.94 1.08
λ = 0.95 0.94 0.79∗∗ 0.93 1.07
λ = 0.90 1.08 0.69∗∗ 1.02 1.01

The table summarizes the robustness results for STSC with respect to various
choices of (grids of) tuning parameters. In each setup, we varied one of the
tuning parameters and fixed its value, while leaving the remaining (grids of)
tuning parameters unchanged. One star indicates significance at the 10% level;
two stars significance at the 5% level; and three stars significance at the 1% level
from one-sided Diebold and Mariano (1995) test statistics.
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