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TU Dortmund University Sveriges Riksbank TU Dortmund University

October 9, 2023

Abstract

Different proxy variables used in fiscal policy SVARs lead to contradicting conclusions

regarding the size of fiscal multipliers. In this paper, we show that the conflicting

results are due to violations of the exogeneity assumptions, i.e. the commonly used

proxies are endogenously related to the structural shocks. We propose a novel ap-

proach to include proxy variables into a Bayesian non-Gaussian SVAR, tailored to

accommodate potentially endogenous proxy variables. Using our model, we show

that increasing government spending is a more effective tool to stimulate the econ-

omy than reducing taxes. We construct new exogenous proxies that can be used in

the traditional proxy VAR approach resulting in similar estimates compared to our

proposed hybrid SVAR model.
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1 Introduction

There is renewed interest among researchers and policy makers in the effects of fiscal

policy on macroeconomic activity. The main challenge to measuring the aggregate effects

of changes in tax and spending policy, however, is endogeneity of fiscal measures. Most

recently, the so-called proxy VAR approach has become a popular tool for identification

of fiscal policy shocks. The main idea is that there exists an external instrument that is

correlated with the structural shock of interest (relevance condition) while not correlated

with the remaining shocks (exogeneity assumption) (Stock and Watson, 2012; Mertens and

Ravn, 2013).

Two prominent examples in this literature are Mertens and Ravn (2014) who use an ad-

justed version of the narrative Romer and Romer (2010) tax shock proxy and Caldara

and Kamps (2017) who rely on non-fiscal proxy variables like the Fernald (2012) adjusted

TFP series. Notably, both studies use different potentially valid proxy variables and reach

contradicting conclusions regarding the size of fiscal multipliers (Angelini et al., 2023). In

particular, Mertens and Ravn (2014) find that the tax multiplier is larger than the govern-

ment spending multiplier, whereas Caldara and Kamps (2017) provide evidence that the

government spending multiplier exceeds the tax multiplier. One potential explanation for

these divergent results is that the proxy variables do not fulfill the exogeneity assumption,

thereby being related to other structural disturbances. Importantly, within the standard

proxy VAR approach the validity of the instrument cannot be investigated because the

exogeneity assumption is central to achieve identification.

In this paper we propose a hybrid approach that combines proxy variables with statistical

identification through non-Gaussianity. The hybrid approach is able to deal with potentially

invalid proxy variables and allows us to provide an explanation for the contradicting results

of Mertens and Ravn (2014) and Caldara and Kamps (2017). We show that the commonly

used tax proxy is negatively correlated with output shocks and the TFP proxy is negatively

correlated with government spending shocks. Accounting for the endogeneity in the proxy
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variables leads to the robust result of a government spending multiplier being larger than

the tax multiplier.

Our econometric contribution consists of two parts. First, we propose a novel proxy weight-

ing approach in a Bayesian framework. The proxy weighting approach weights the likeli-

hood of the SVAR with a set of moment conditions penalizing deviations from exogenous

proxy variables. Therefore, the approach bears resemblance to the moment-based fre-

quentist proxy approach outlined by Stock and Watson (2012); Mertens and Ravn (2013)

and offers a Bayesian alternative to the augmented proxy VAR proposed by Caldara and

Herbst (2019). Unlike the augmented proxy approach and akin to moment-based frequen-

tist proxy estimators, the proxy weighting approach does not necessitate specifying the

functional form of the proxy. We show that this is an advantage in non-Gaussian SVAR

models, where misspecification of the functional form of the proxy can lead to dependent

shocks and to a failure of non-Gaussian identification approaches assuming independent

shocks.

Second, we combine the proxy weighting approach with independent and non-Gaussian

shocks. Independent and non-Gaussian shocks ensure identification of the SVAR. There-

fore, we do not need to assume exogeneity of the proxy variables, instead, we estimate

the correlation of the proxy variables with non-target shocks. More precisely, we propose

a prior distribution designed to shrink the estimates towards exogenous proxy variables.

However, in the non-Gaussian setup these priors are updated by the data. Therefore, we

propose a non-dogmatic way to benefit from the information provided by proxy variables

and are able to detect endogenous proxy variables.

The proposed estimator builds on a growing literature using stochastic properties to ensure

identification, see, e.g., Rigobon (2003), Lanne et al. (2010), Matteson and Tsay (2017),

Lütkepohl and Netšunajev (2017), Lanne et al. (2017), Keweloh (2021), Lewis (2021), or

Bertsche and Braun (2022). Moreover, our model relates to a recent literature combining

statistical identification with traditional economically motivated restrictions and proxy

variables, see, e.g., Schlaak et al. (2021), Drautzburg and Wright (2023), Braun (2023),
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Keweloh et al. (2023), or Herwartz and Wang (2023). Identification through non-Gaussian

errors is further backed by several studies documenting that the normal distribution does

not provide a good approximation to many macroeconomic variables in OECD countries

(Acemoglu et al., 2017; Cúrdia et al., 2014; Fagiolo et al., 2008).

The combination of statistical identification and proxy variables offers several advantages.

We demonstrate that including a valid proxy increases the performance of the estimator in

terms of bias, MSE, and the length of credible bands compared to an estimator based only

on non-Gaussian shocks. In addition, the presence of non-Gaussian shocks offers insights

into the exogeneity of a proxy, affording an opportunity to mitigate the bias introduced

by endogenous proxies, a crucial departure from conventional methodologies using proxy

variables.

Emphasizing the core intent of our proposed estimator is essential. Our aim extends beyond

a mere test of proxy variable exogeneity. Instead, we endeavor to leverage prior knowledge of

an exogenous proxy to enhance estimation precision. Yet, we remain flexible in disregarding

the proxy should the data furnish evidence contradicting its exogeneity.

We use our non-Gaussian proxy weighting approach to estimate the effects of fiscal policy

shocks and evaluate whether commonly used proxies fulfill the crucial exogeneity assump-

tions. We provide empirical evidence that the shocks identified using the fiscal proxy

SVAR from Mertens and Ravn (2013) and using the non-fiscal proxy SVAR from Caldara

and Kamps (2017) are non-Gaussian. In particular, all shocks show heavy tails and the tax

and output shocks are left skewed. This data feature which is used for identification makes

sense also from an economic point of view because tax reductions are generally larger (in

absolute terms) than tax increases and GDP usually falls stronger during recessions than

it rises during expansions.

We find that the government spending multiplier is larger than the tax multiplier. In the

impact period, the tax multiplier is close to zero and takes on values below unity for the

entire forecast horizon of five years. The government spending multiplier however is above

unity for the first year after the shock and then slowly converges back to its pre-shock level.
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Thus, our findings imply that increasing government spending is a more effective tool to

stimulate the economy than lowering taxes.

Evidently, our result of a large (small) government spending (tax) multiplier stands in some

contrast to previous studies and in particular to the paper by Mertens and Ravn (2014)

which estimate a tax multiplier around three. We show that the large differences between

applying the Mertens and Ravn (2014) approach and our model is due to the tax proxy

not being exogenous. Specifically, we provide evidence that the narrative tax measure is

negatively correlated with structural output shocks. Intuitively, not accounting for this

correlation leads to identified tax cuts that also include exogenous increases in output, and

vice versa, which increases the size of the estimated tax multiplier. While Mertens and

Ravn (2014) have to assume that the tax proxy is exogenous, our model shows that this

assumption is not supported by the data, i.e. shrinking to an exogenous tax proxy leads to

dependent structural shocks. We provide additional historical evidence indicating that the

original tax proxy shows a tendency to indicate an exogenous tax increase during periods of

economic recessions and an exogenous tax decrease during episodes of economic expansions.

Relatedly, we also find some evidence that the TFP proxy used by Caldara and Kamps

(2017) is negatively correlated with exogenous government spending shocks. Therefore,

assuming an exogenous TFP proxy identifies output shocks which include spending shocks

of opposite sign. As a consequence, the estimated spending multiplier is upward biased.

Finally, we use our estimation results to construct new proxies that account for confounding

factors and argue that these proxies may fulfill the exogeneity assumption and can thus

be used in a standard proxy VAR approach. The endogeneity feature of the original tax

and TFP proxies is visualised in Figure 1. The left panel plots the estimated tax shocks

following the Mertens and Ravn (2014) approach against the output shocks when applying

the Caldara and Kamps (2017) strategy. If the proxy variables used in both papers are

valid, one would expect no systematic correlation between the shocks. This is not the

case: there is a negative relationship which indicates that at least one of the proxies is
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Figure 1: Tax shocks vs. output shocks
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Notes: The left side shows estimated tax shocks based on the fiscal tax proxy used by Mertens and Ravn
(2014) vs. the output shocks based on the non-fiscal TFP proxy used by Caldara and Kamps (2017). The
right side compares the shocks estimated using the new fiscal tax and new non-fiscal TFP proxies.

not exogenous thus questioning the validity of the reported estimates.1 In contrast, the

right panel of Figure 1 shows the tax shocks using the Mertens and Ravn (2014) approach

with our new tax proxy against the output shocks using the Caldara and Kamps (2017)

strategy with our new TFP proxy. The correlation vanishes implying that our new proxies

should be preferred over the original proxies. Importantly, we show that while using the

original (endogenous) proxies of the left column leads to substantial differences in the

estimated fiscal multipliers when applying the traditional proxy VAR approach, relying on

the exogenous proxies of the right column results in very similar estimates.

The remainder of the paper is organized as follows: Section 2 explains identification through

proxy variables and non-Gaussianity. Specifically, we describe our novel proxy weighting

approach and the combination of proxy variables with non-Gaussianity. Section 3 studies

the performance of the proposed estimator using Monte Carlo simulations. In Section 4, we

use the proposed model to analyze the effects of fiscal policy shocks. Section 5 concludes.

1The correlation between both shocks is not affected by the zero restrictions which again indicates that
at least one of the identifying proxy exogeneity assumptions is invalid.
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2 SVARs

A standard SVAR with n variables can be written as

yt = ν +A1yt−1 + ...+Apyt−p + ut (1)

ut = B0εt, (2)

with parameter matrices A1, ...,Ap ∈ Rn×n which satisfy det(I −A1c− ...−Apc
p) 6= 0 for

|c| ≤ 1, an intercept ν, an invertible matrix B0 ∈ B := {B ∈ Rn×n|det(B) 6= 0}, an n-

dimensional vector of time series yt = [y1t, ...,ynt]
′, an n-dimensional vector of reduced form

shocks ut = [u1t, ..., unt]
′, and an n-dimensional vector of serially uncorrelated structural

shocks εt = [ε1t, ..., εnt]
′ with mean zero and unit variance.

We define π = vec([v,A′1, ...,A
′
p]
′) and eit(B,π) the ith component of et(B,π) = B−1(yt−

ν −A1yt−1 − ... −Apyt−p). Therefore, et(B,π) represents the shocks given π and B. If

π and B are equal to the corresponding values of the data-generating process, et(B,π) is

equal to the structural shocks εt.

Without additional restrictions the model is not identified, i.e. any orthogonal matrix Q

yields an observationally equivalent model B̃ = BQ. In the following, we discuss different

restrictions imposed on the structural impact matrix B in order to uniquely pin down the

impact effect of the structural shocks and hence to archive identification.

2.1 Proxy SVARs

This section provides a concise overview of the existing methods for incorporating proxy

variables into SVAR models, namely the frequentist proxy approach based on moment

conditions and the Bayesian augmented proxy approach. In addition, we introduce a new

approach to incorporate proxy variables into a Bayesian SVAR using a weighting function.

In the next sections we combine the proxy weighting approach with statistical identification

through independent non-Gaussian errors. The combined approach allows for potentially
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endogenous proxy variables.

A proxy variable zt for a target shock εit is valid if it satisfies the following assumption.

Assumption 1. Let zt be a proxy variable for the target shock εit which satisfies the fol-

lowing moment conditions:

1. Relevance: E[ztεit] 6= 0

2. Exogeneity: E[ztεjt] = 0 for j 6= i

Therefore, a valid proxy variable is correlated with the target shock (relevance) and uncor-

related with all non-target shocks (exogeneity).

2.1.1 Existing proxy approaches

The frequentist proxy SVAR approach estimates the impact of the target shock εit based

on moment conditions derived from the relevance and exogeneity moment conditions in

Assumption 1. In particular, if zt is relevant and exogenous, the impact bij of the target

shock εit on some reduced form shock ujt can be estimated by b̂ij =
∑T

t=1(ztujt)∑T
t=1(ztuit)

, see Stock

and Watson (2012) and Mertens and Ravn (2013).

The augmented proxy SVAR approach, proposed by Caldara and Herbst (2019) and utilized

in both the Bayesian proxy VAR literature (Arias et al. (2021), Braun and Brüggemann

(2022), Bruns (2021), and Giacomini et al. (2022)) and occasionally in the frequentist

literature (Angelini and Fanelli (2019)), involves augmenting the SVAR model with the

proxy variable. The augmented proxy SVAR can be expressed as follows:

yt
zt

 =

ν
νz

+

p∑
i=1

Ai 0

Γ1 Γ2


yt−i
zt−i

+

B0 0

Φ Ση


εt
ηt

 , (3)

with a measurement error ηt uncorrelated with the structural form shocks εt. To simplify,

let νz = 0, Ση = 1, and Γ1 = Γ2 = 0, which implies that the proxy variable is equal to a

linear combination of the structural shocks and the measurement error, i.e. zt = Φεt + ηt.
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Imposing a valid proxy which satisfies Assumption 1 than implies zero restrictions on the

Φ matrix, such that the proxy variable is a linear combination of the target-shock and the

measurement error, i.e. zt = Φiεit + ηt.

The augmented proxy SVAR approach, unlike the frequentist moment-based proxy ap-

proach, requires the specification of the data generating process for the proxy variable.2

Specifically, the proxy variable is assumed to be a linear function of the structural shocks

and the measurement error. However, it is important to note that many proxy variables

do not follow a linear process like in our empirical work. If the proxy process is misspec-

ified, it can lead to dependent shocks, which renders identification approaches based on

independent shocks invalid.

The proxy linearity assumption raises particular concerns when applied to narrative proxy

variables (like the tax proxy we use in our empirical work), which may follow a process like

zt = ψt(Φiεit+ηit), where ψt is a Bernoulli random variable, compare Jentsch and Lunsford

(2019), Bruns and Lütkepohl (2022), or Budnik and Rünstler (2022). Mischaracterizing

this process with linearity leads to an estimated measurement error

η̂t =


(Φi − Φ̂i)εit + ηt , if ψt = 1

−Φ̂iεit , else

. (4)

A proper choice of Φ̂i leads to a measurement error η̂t uncorrelated with εit, however,

there exists no measurement error independent of the structural shock εit, which would be

required to estimate the augmented proxy SVAR based on independent and non-Gaussian

shocks.

2The augmented proxy SVAR approach coherently incorporates all sources of uncertainty in the esti-
mation, see Caldara and Herbst (2019). Therefore, the proxy becomes informative about both the educed
form and the structural parameters of the model.
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2.1.2 A novel proxy weighting approach

We propose a Bayesian proxy approach that avoids the need to specify the functional form

of the proxy variable. Specifically, we propose to use a weighting function based on the

proxy exogeneity moment conditions to re-weight the likelihood of the SVAR. This approach

allows us to overcome the drawbacks of the augmented proxy SVAR, as it does not rely on

a specific functional form assumption for the proxy variable. Instead, it provides a flexible

and robust framework for incorporating proxy variables into the Bayesian analysis.

In the absence of knowledge about the distribution of the structural shocks εt or the distri-

bution and functional form of the proxy variable zt, we can still approximate the distribution

of the scaled sample mean of ztεt using the central limit theorem. The approximation can

be represented as:
√
T (

1

T

T∑
t=1

ztεjt − µj) ∼ N(0, σ2
j ), (5)

where µj = E[ztεjt] and σ2
j = V ar(ztεjt). If we assume that the proxy variable is exogenous,

specifically uncorrelated with the non-target shock εjt, then we have µj = 0. Furthermore,

if the proxy variable and the non-target shock are independent, we can deduce that σ2
j =

V ar(zt). Therefore, we can evaluate the likelihood of a given sample covariance of zt and

εt given the assumption of an exogenous proxy variable.

We can now construct a re-weighting function for the likelihood of proposals B and π

based on Equation (5). Specifically, we impose the following probabilistic proxy exogeneity

moment conditions:

1

T

T∑
t=1

ztejt(B,π) ∼ N

(
0,
V ar(zt)

T

)
, (6)

which is motivated by the assumption of an exogenous proxy variable and the central

limit theorem. For an exogenous proxy variable, define the exogenous proxy re-weighting

function

r(z|y,B,π) =
n∏

j=1,j 6=i

fj

(
1

T

T∑
t=1

ztejt(B,π)

)
, (7)
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where fj denotes the density of a normal distribution with mean zero and variance V ar(zt)/T .

We can use the exogenous proxy re-weighting function to adjust the likelihood of the SVAR,

p(y|B,π), as follows:

p(y|B,π)r(z|y,B,π). (8)

By re-weighting the likelihood using the exogenous proxy re-weighting function, we account

for the probability of satisfying the proxy exogeneity restrictions. This means that the

likelihood of values for B,π that result in innovations ejt(B,π) correlated with the proxy

variable will be down-weighted.3

A Gaussian SVAR likelihood p(y|B,π) is flat with respect to orthogonal rotations of the

structural parameters in B0. However, re-weighting the likelihood using the exogenous

proxy re-weighting function breaks the symmetry. That is, the likelihood of structural

parameters which lead to an endogenous proxy variable get downweight. Consequently,

the re-weighted likelihood exhibits a unique maximum. Asymptotically, this maximum

corresponds to the column of B0. Therefore, by using the exogenous proxy re-weighting,

we can identify the column in B that represents the exogenous relationship, as it yields

the maximum likelihood estimate.

Importantly, if we assume a Gaussian likelihood we need to assume that µ = 0, i.e. the

proxy variables are exogenous, to archive identification. Throughout the paper, we label the

proxy weighting approach using the proxy exogeneity assumption µ = 0 and the assumption

of Gaussian errors the Gaussian proxy weighting approach.

In the following, we show that combining our new proxy weighting approach with statistical

identification allows to estimate µ and thus detect and neglect endogenous proxy variables.

In particular, we apply identification through non-Gaussian independent errors as described

3In this context, our approach bears conceptual similarity to the narrative sign restrictions proposed
by Antoĺın-Dı́az and Rubio-Ramı́rez (2018). Their method can be interpreted as a re-weighting of the
likelihood based on whether the proposed shocks satisfy the narrative sign restrictions. Similarly, in our
approach, we re-weight the likelihood based on whether the proposed shocks are uncorrelated with the
proxy variable.
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next.

2.2 Non-Gaussian SVARs

The purpose of this section is to to explain how the non-Gaussianity of independent struc-

tural shocks can be used to identify and estimate the simultaneous interaction in the SVAR.

Figure 2 provides a visual representation of how the assumption of non-Gaussian and

independent shocks can facilitate the identification of the SVAR. Consider a scenario with

two independent and identically distributed structural shocks, denoted as ε1t and ε2t,

drawn from a uniform distribution. In the top-left panel of the Figure, we can observe

these shocks. Importantly, knowing the value of ε1t does not provide any information or

predictive power for ε2t. In practice, the structural shocks are not directly observed but

manifest as reduced form shocks ut = B0εt, shown in the top-right panel. Assuming

B0 is an orthogonal matrix, any rotation of the reduced form shocks, e(B)t = B−1ut,

using an orthogonal matrix B, will yield uncorrelated innovations e(B)t. The bottom-left

and bottom-right panels illustrate two different innovations, e(B)t. While both sets of

innovations are uncorrelated, the bottom-left panel clearly demonstrates their dependence.

For instance, knowing that e(B)1t is equal to two, conveys the information that e(B)2t

is likely to be negative and close to −1.5. In this case, the innovations are uncorrelated

but not independent.4 The only solution, up to sign and permutation, to disentangle the

reduced form shocks into independent innovations is shown in the bottom-left panel. Here,

the innovations align with the structural shocks, resulting in an identified system.

Technically, we impose the following assumptions used by Lanne et al. (2017):

Assumption 2. 1. The components of the structural shocks εt are a sequence of inde-

pendent and identically distributed random vectors with zero mean and unit variance.

2. The components of the structural shocks εt are mutually independent and at most one

4Consider the analogy of tax and government spending shocks. Does knowing the value of a tax shock
convey information about the government spending shock? If not, merely assuming uncorrelated shocks is
not sufficient to guarantee this property.
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Figure 2: Identification with independent and non-Gaussian shocks

The top left plot shows a sample of independent and identically distributed structural shocks drawn from a
uniform distribution. The top right plot shows the corresponding reduced form shocks equal to a rotation,
ut = B0εt, of the structural shocks. The bottom row shows two different sets of innovations obtained by
using two different rotations e(B1) and e(B2). The bottom-left plot uses a rotation with B2 6= B0. The
bottom-right plot uses the rotation B2 = B0.

component has a Gaussian marginal distribution.

Lanne et al. (2017) show that these assumption are sufficient to identify the SVAR up to

labeling of the shocks. Lanne and Luoto (2020), Anttonen et al. (2021), and Braun (2023)

propose Bayesian non-Gaussian SVAR models based on these assumptions. Anttonen et al.

(2021) assumes that each structural shock follows a generalized skewed t-distribution. We

simplify the approach and assume that each shock follows a skewed t-distribution such that

the density function of the ith shock is given by

fi(εit;λi, qi) =
Γ(0.5 + qi)

v(πqi)0.5Γ(qi)(
|εit+m|2

qiv2(λsign(εit+m)+1)2
)0.5+qi

, (9)

with |λi| < 1, qi > 2 which implies that the fourth moment of the ith structural shock exists,
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and the normalization m =
2vλq0.5i Γ(qi−0.5)

π0.5Γ(qi+.5)
, v = q−0.5

i

[
(3λ2 + 1)( 1

2qi−2
)− 4λ2

π
(Γ(qi−0.5)

Γ(qi)
)2
]−0.5

to mean zero and unit variance. The likelihood of a data set y = (y′1, ...,y
′
T )′ given

y−p+1, ...,y0 follows from Lanne et al. (2017) and is equal to

p(y|π,B,λ, q) = |det(B)|−T
n∏
i=1

T∏
t=1

fi(eit(B,π);λi, qi). (10)

It is worth pointing out that by estimating λ and q our framework is flexible and the data

can inform us over the degree of skewness and excess kurtosis, see Anttonen et al. (2021).

2.3 Combining proxy variables with non-Gaussianity

In this section, we propose a non-Gaussian proxy weighting approach that combines the

proxy re-weighting approach from Section 2.1.2 with the non-Gaussian SVAR from Section

2.2. More precisely, we use the non-Gaussian likelihood from Equation (10) in Equation

(8), which ensures identification under Assumption 2. Therefore, the proxy variable is not

required for the identification of the SVAR. Consequently, in contrast to the existing proxy

approaches, we are able to estimate the parameter µ, which determines the exogeneity of

the proxy variables, directly from the data. Therefore, if the data does not support the

validity of the proxy variable, the model can effectively ignore its information. However, if

the proxy is exogenous and relevant, incorporating it leads to improved estimation accuracy

and reduced estimation uncertainty in the non-Gaussian SVAR framework.

Therefore, we generalize the proxy moment condition in Equation (6) to

1

T

T∑
t=1

ztejt(B,π) ∼ N

(
µj,

V ar(zt)

T

)
, (11)

such that the density function fj in the re-weighting function in Equation (7) is equal to

the density of a normal distribution with mean µj and variance V ar(zt)/T . By doing so,

we estimate the exogeneity of the proxy variable, specifically the expectation E[ztεjt]. This

approach allows us to adapt the re-weighting function based on the estimated values of
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µj. Meaning, if the data provide evidence against exogeneity of the proxy variable, the

estimated value µj will deviate from zero and no longer penalize proposals which lead to

an exogenous proxy.

We propose a prior distribution for µj that reflects the belief in an exogenous proxy variable.

The prior is designed to shrink the solution towards an exogenous proxy variable, i.e. we

shrink µj to zero. We define the prior as follows:

µj ∼ N(0, σ2
µj), σ2

µj ∼ IG(a, b). (12)

In our empirical work and in our simulations we set a = b = 0 which results in a flat prior,

see Tipping (2001). Moreover, we use independent flat priors for all model parameters.5

Hence, the joint posterior is proportional to

p(π,B,λ, q,µ,Σµ|y, z) ∝ p(y|π,B,λ, q)r(z|y,B,π)p(µ|Σµ), (13)

with p(µ|Σµ) = N(µ; 0,Σµ) and Σµ = diag(σ2
µ1
, ...., σ2

µn). The description of the Markov

Chain Monte Carlo (MCMC) algorithm used to sample from the joint posterior distribution

of the model is provided in the Appendix.

By estimating µj we allow for the possibility of both exogenous and endogenous proxies.

Our model can utilize the information from valid proxy variables to improve estimation

precision and lower estimation uncertainty of the non-Gaussian estimator, but also can

alleviate biased estimation due to endogenous proxies. The prior variance σ2
µj is crucial as

it controls how much we shrink µj towards zero (i.e. the case of an exogenous proxy). If

we have strong beliefs in the validity of our proxy variable we would set σ2
µj to be small.

However, such prior beliefs can be controversial and different proxy variables may lead

to different economic conclusions, see our empirical work. In order to avoid fixing σ2
µj

at an inappropriate value we instead will use the data to guide us and estimate σ2
µj in a

5Alternatively, it would be possible to use a Minnesota type prior or a more flexible global local prior
on π, see e.g., Huber and Feldkircher (2019), Cross et al. (2020) and Prüser (2023).
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hierarchical fashion by using an inverse Gamma prior. Hence, by shrinking µj towards

zero the model can benefit from valid proxies but if empirical warranted it can avoid such

shrinkage and µj can take on values different from zero to allow for endogenous proxy

variables.

The estimation of the covariance µj between the shock εjt and the proxy variable zt, allowing

for an endogenous proxy variable, becomes possible due to the fact that the proxy variable

is not used for identification. Instead, the identification of the SVAR model relies on the

assumption of independent and non-Gaussian shocks, as discussed in Section 2.2. However,

the identification approach based on independent and non-Gaussian shocks only identifies

the SVAR up to sign and permutations. This means that any sign-permutation of the

shocks results in the same likelihood. Therefore, a MCMC algorithm may sample from

different sign-permutations, such that posterior draws from the response of one variable to

one shock does not come from a unique shock but rather from a combination of different

shocks resulting in invalid inference, see Anttonen et al. (2021). The introduction of the

proxy prior breaks this symmetry and provides a unique identification of the target shock

associated with the proxy variable. Specifically, if the target shock εit exhibits the highest

correlation, in absolute magnitude, with the proxy variable zt, the sign-permutation that

assigns the ith position to the shock εit will have the highest re-weighted likelihood.6

However, the previous method only labels the target shock of the proxy variable. Alterna-

tively, various methods proposed in the literature can be applied to label the shocks and

restrict the MCMC algorithm to these labeled shocks. Some of these alternative methods

include using sign restrictions in Lanne and Luoto (2020), using knowledge of the distribu-

tion of the shocks in Gouriéroux et al. (2017), using the historical decomposition in Lewis

(2023), using highest impact restrictions in Maxand (2020), or using a labeled first-step

estimator in Keweloh (2023). In our simulations and applications, we utilize the labeling

approach proposed by Keweloh (2023), which generalizes the labeling approach in Lanne

6Note that an endogenous proxy variable still fulfills this condition as long as the correlation of the
proxy variable with the non-target shocks is smaller in absolute value than the correlation with the target
shock.
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et al. (2017). This method, employing a labeled first-step estimator B̃0 ofB0 to restrict the

posterior draws to unique sign-permutation representatives centered around the first-step

estimator. More precisely, we reject each proposal Bprop in the MCMC algorithm which

does not satisfy |ckk| > |ckl| for all k < l with ckl elements of C := B̃−1
0 BpropD, with a

scaling matrix D such that each column has Euclidean norm one.

3 Monte Carlo Simulations

In this section, we demonstrate the ability of our non-Gaussian proxy weighting approach in

handling both exogenous and endogenous proxy variables. In case of a valid proxy variable

our model is able to use the information of the proxy which leads to a better performance

compared to a purely non-Gaussian model. Furthermore, even when the proxy exhibits

weak exogeneity, meaning it is only minimally affected by non-target shocks, we illustrate

that our approach retains the ability to utilize the proxy to enhance efficiency, surpassing

the performance of the non-Gaussian model alone. Moreover, unlike conventional proxy

SVAR estimators, our approach is able to detect if the data provide evidence against

the exogeneity of the proxy and thus, is able to to detect and neglect information from

endogenous proxies.

We simulate a system containing a government spending shock εg,t, an output shock εy,t,

and a tax shock ετ,t with


ug,t

uy,t

uτ,t

 =


1 0 0

0.15 1 −0.5

0 1.5 1



εg,t

εy,t

ετ,t

 . (14)

The structural shocks are independently and identically drawn from a Pearson distribution

with mean zero, variance one, skewness 0.68 and excess kurtosis 2.33 and simulate 1000

data sets of length T = 250 and T = 800.

We construct a variable zt as a proxy for the tax shock ετ,t. To demonstrate the flexibility
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Table 1: Data-generating process of the proxy in different scenarios.

exogenous proxy weakly endogenous proxy endogenous proxy
zτ,t = ετ,t + ηt zτ,t = ετ,t − 0.05εy,t + ηt zτ,t = ετ,t − 0.37εy,t + ηt

of our model we consider three different scenarios summarized in Table 1. In the first

scenario the proxy is exogenous, in the second scenario, the proxy is weakly endogenous,

and in the third scenario the proxy is endogenous. In all three simulations the proxy noise

ηt is independently and identically drawn from the same distribution as the structural form

shocks.

We consider four Bayesian estimation approaches. First, we estimate the SVAR using

the standard augmented proxy SVAR approach, assuming Gaussian shocks and imposing

exogeneity of the proxy. Our second approach involves estimating the model under the

assumption of Gaussian shocks and employing the proxy weighting method, which en-

forces proxy exogeneity but lacks the flexibility to adapt this exogeneity assumption during

estimation. The third estimation method involves estimating the SVAR using the non-

Gaussian from Section 2.2 without the proxy variable. Finally, our fourth approach entails

estimating the SVAR using our proposed non-Gaussian SVAR model in conjunction with

the proxy weighting function described in Section 2.3 with

1

T

T∑
t=1

zteg,t(B,π) ∼ N(µg, 1/T ) and
1

T

T∑
t=1

ztey,t(B,π) ∼ N(µy, 1/T ) (15)

with µg ∼ N(0, σ2
µg) and σ2

µg ∼ IG(0, 0) and µy ∼ N(0, σ2
µy) and σ2

µy ∼ IG(0, 0). Both

non-Gaussian models are restricted to the set of unique sign-permutation representatives

centered at the true impact matrix B0 from the DGP in Equation (14) as described in

Section 2.3.

Table 2 shows the average point estimates as well as the mean squared error (MSE) of the

estimated impact of ετ,t. The non-Gaussian model does not use the proxy variable and its

performance is not affected by the different scenarios. Both Gaussian proxy approaches

lead to very similar results and perform notably better than the non-Gaussian model if
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the proxy variable is exogenous, however, including an endogenous proxy leads to biased

estimates. Combining statistical identification with proxy variables provides a balanced

solution between these two extreme cases. If the proxy variable is exogenous, adding

the proxy to the non-Gaussian estimator leads to an increase of the performance of the

model, i.e. the MSE is twice as small compared to the non-Gaussian model. Therefore,

the estimator is able to utilise the information of a valid proxy. However, in contrast to

the Gaussian proxy estimators, our proposed combination approach is able to deal with

endogenous proxy variables. If the proxy variable is only weakly endogenous our non-

Gaussian proxy weighting approach can still exploit the information of the proxy to deliver

improved estimation accuracy in comparison to the non-Gaussian estimator. Moreover, if

the proxy variable is endogenous, our non-Gaussian proxy weighting approach is less biased

compared to the pure proxy approaches, and with more data and more evidence against

the validity of the proxy variable, the prior gets updated and the bias decreases.

Next we turn our attention to the finite sample properties of the 68% credible bands of

the models. Table 3 shows the coverage rate (defined as the proportion in which the

credible bands contain the true value) and the average length of the credible bands. The

non-Gaussian model ignores the proxy variable, performs similar throughout the three

specifications, and has correct coverage rates (the coverage rate is close to the probability

chosen for the credible bands). If the prior belief of an exogenous proxy is correct, adding

the proxy also leads to correct coverage and more informative credible bands in the sense

that the bands are up to 50% smaller compared to the non-Gaussian model ignoring the

proxy variable. Adding an endogenous proxy using to the non-Gaussian model via our

weighting approach worsens the coverage rates. However, with an increasing sample size

and more information against the prior belief of an exogenous proxy, the coverage rate

improves and the difference of the average error bands length between the model with and

without prior vanishes. Importantly, adding an weakly endogenous proxy also helps in a

small sample size to lower the lengths of the credible bands without distorting the coverage

much.
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Table 2: Average point estimates and MSE for the impact of ετ,t.

exogenous proxy weakly endogenous proxy endogenous proxy
zτ,t = ετ,t + ηt zτ,t = ετ,t − 0.10εy,t + ηt zτ,t = ετ,t − 0.37εy,t + ηt

T = 250

proxy (augmented)
[

0.00
(0.008)

−0.50
(0.009)

1.00
(0.022)

]′ [
0.00

(0.008)
−0.59
(0.018)

0.86
(0.046)

]′ [
0.00

(0.008)
−0.81
(0.106)

0.42
(0.363)

]′
proxy (weighting)

[
0.00

(0.008)
−0.50
(0.009)

1.00
(0.022)

]′ [
0.00

(0.008)
−0.59
(0.017)

0.85
(0.046)

]′ [
0.00

(0.008)
−0.81
(0.106)

0.42
(0.372)

]′
non-Gaussian

[
0.00

(0.017)
−0.49
(0.021)

0.95
(0.051)

]′ [
0.00

(0.018)
−0.48
(0.019)

0.95
(0.045)

]′ [
0.00

(0.018)
−0.48
(0.019)

0.95
(0.046)

]′
non-Gaussian

proxy weighting

[
0.00

(0.008)
−0.50
(0.009)

0.99
(0.022)

]′ [
0.00

(0.008)
−0.54
(0.011)

0.93
(0.028)

]′ [
0.00

(0.009)
−0.59
(0.026)

0.82
(0.081)

]′
T = 800

proxy (augmented)
[

0.00
(0.002)

−0.50
(0.003)

1.00
(0.007)

]′ [
0.00

(0.002)
−0.60
(0.012)

0.84
(0.032)

]′ [
0.00

(0.002)
−0.82
(0.103)

0.41
(0.355)

]′
proxy (weighting)

[
0.00

(0.002)
−0.50
(0.003)

1.00
(0.007)

]′ [
0.00

(0.002)
−0.60
(0.012)

0.85
(0.031)

]′ [
0.00

(0.002)
−0.82
(0.102)

0.41
(0.353)

]′
non-Gaussian

[
0.00

(0.005)
−0.49
(0.005)

0.99
(0.012)

]′ [
0.00

(0.005)
−0.49
(0.005)

0.99
(0.012)

]′ [
0.00

(0.005)
−0.49
(0.005)

0.99
(0.012)

]′
non-Gaussian

proxy weighting

[
0.00

(0.002)
−0.50
(0.003)

1.00
(0.006)

]′ [
0.00

(0.002)
−0.53
(0.005)

0.94
(0.012)

]′ [
0.00

(0.003)
−0.52
(0.006)

0.96
(0.017)

]′
Note: The true impact of the shock ετ,t is

[
0 −0.5 1

]′
. The average and MSE of the Bayesian

estimators are calculated based on the median of the posterior of B in each simulation.

Table 3: Coverage and average length of 68% credible bands of the estimated impact of
ετ,t.

exogenous proxy weakly endogenous proxy endogenous proxy
zτ,t = ετ,t + ηt zτ,t = ετ,t − 0.10εy,t + ηt zτ,t = ετ,t − 0.37εy,t + ηt

T = 250

proxy (augmented)
[

0.68
(0.018)

0.68
(0.019)

0.69
(0.028)

]′ [
0.67
(0.018)

0.46
(0.018)

0.48
(0.030)

]′ [
0.68
(0.017)

0.00
(0.016)

0.01
(0.031)

]′
proxy (weighting)

[
0.68
(0.018)

0.67
(0.019)

0.70
(0.029)

]′ [
0.68
(0.018)

0.47
(0.018)

0.48
(0.030)

]′ [
0.56
(0.017)

0.06
(0.015)

0.07
(0.030)

]′
non-Gaussian

[
0.73
(0.026)

0.68
(0.027)

0.69
(0.041)

]′ [
0.70
(0.026)

0.70
(0.027)

0.71
(0.040)

]′ [
0.69
(0.026)

0.69
(0.027)

0.70
(0.040)

]′
non-Gaussian

proxy weighting

[
0.70
(0.017)

0.68
(0.018)

0.70
(0.028)

]′ [
0.70
(0.017)

0.64
(0.018)

0.64
(0.029)

]′ [
0.71
(0.018)

0.52
(0.024)

0.53
(0.040)

]′
T = 800

proxy (augmented)
[

0.70
(0.010)

0.65
(0.010)

0.66
(0.016)

]′ [
0.70
(0.010)

0.18
(0.010)

0.17
(0.016)

]′ [
0.71
(0.010)

0.00
(0.009)

0.00
(0.017)

]′
proxy (weighting)

[
0.70
(0.010)

0.65
(0.010)

0.66
(0.016)

]′ [
0.70
(0.010)

0.19
(0.010)

0.17
(0.016)

]′ [
0.67
(0.018)

0.01
(0.016)

0.01
(0.031)

]′
non-Gaussian

[
0.66
(0.013)

0.66
(0.013)

0.66
(0.020)

]′ [
0.67
(0.013)

0.66
(0.013)

0.66
(0.020)

]′ [
0.67
(0.013)

0.66
(0.013)

0.66
(0.020)

]′
non-Gaussian

proxy weighting

[
0.68
(0.009)

0.68
(0.010)

0.66
(0.015)

]′ [
0.68
(0.009)

0.54
(0.010)

0.54
(0.017)

]′ [
0.70
(0.010)

0.64
(0.014)

0.63
(0.021)

]′
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In the Online Appendix we present results of additional Monte Carlos simulations. Im-

portantly, we show that if the proxy variables does not follow a linear process (as in our

empirical work) than we can not combine the augmented proxy approach (which uses a

linear proxy specification) with statistically identification to detect exogenous proxy vari-

ables as shown in section 2.1.1. This is the reason why it is essential to use the proxy

weighting approach with a non-Gaussian likelihood. Although both approach lead to the

same results with a Gaussian likelihood.

To further demonstrate the flexibility of our approach we consider a range of different

plausible scenarios an applied researcher may face. In many application the relevance

of the proxy may be weak. In this case we show that pure proxy approaches lead to

biased estimates. In contrast, our combined approach still works and can exploit the

proxy information to improve on the pure statistical identification approach. In addition,

alternative scenarios include a simulation with t-distributed shocks, with Gaussian shocks,

a proxy with missing values, and a simulation with two proxy variables. Finally, we consider

an alternative DGP based on the estimation results from Mertens and Ravn (2014). The

results show that our model is highly flexible and can adapt to different scenarios.

4 Estimating fiscal multipliers

This section applies our proposed non-Gaussian proxy weighting approach to estimate

the effects of exogenous changes in tax revenues and government spending. First, we

describe the data and show that the time series feature a sizeable degree of non-Gaussianity.

Thereafter our main findings are discussed. We find a larger government spending than tax

multiplier and show that our proposed approach leads to different elasticities of tax revenues

and government spending, respectively, compared to Mertens and Ravn (2014) and Caldara

and Kamps (2017). Moreover, we provide evidence indicating that the fiscal and non-fiscal

proxies used by Mertens and Ravn (2014) and Caldara and Kamps (2017), respectively,

do not fulfill the crucial exogeneity assumption which biases the results of Gaussian proxy
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approaches. Finally, we construct new fiscal and non-fiscal proxies that are orthogonal to

the structural shocks of the VAR model and thus can be used in a standard proxy VAR.

The estimated multipliers using the new proxies using a Gaussian proxy approach are very

similar to the ones of our baseline non-Gaussian proxy weighting approach.

4.1 Data and specification

To achieve comparability, we use the same trivariate VAR as adopted by Mertens and Ravn

(2014).7 The three endogenous variables are federal tax revenues τt, federal government

consumption and investment expenditures gt, and output yt, all in log real per capita terms

and for the sample 1950Q2 to 2006Q4. The data are downloaded from Karel Mertens’

website. Additional details can be found in Mertens and Ravn (2014). The VAR has four

lags of the endogenous variables and includes a constant, linear and quadratic trends, and

a dummy for 1975Q2 all contained in Xt. The SVAR is given by


τt

gt

yt

 = γXt +
4∑
i=1

Ai


τt−i

gt−i

yt−i

+


uτ,t

ug,t

uy,t

 and


uτ,t

ug,t

uy,t

 =


b11 b12 b13

b21 b22 b23

b31 b32 b33



ετ,t

εg,t

εy,t

 , (16)

with structural tax shocks ετ,t, structural government spending shocks εg,t, and output

shocks εy,t. For comparison, we also map the estimated simultaneous interaction into the

notation used by Mertens and Ravn (2014)

uτ,t = ΘGσGεg,t + ΘY uy,t + στετ,t (17)

ug,t = γτστετ,t + γY uy,t + σGεg,t (18)

uy,t = ητuτ,t + ηGug,t + σY εy,t. (19)

7Caldara and Kamps (2017) consider a slightly larger VAR consisting of five endogenous variables as
baseline model but also report results for the three variables specification we rely on. We show below that
our main findings are robust to extending the baseline trivariate VAR by inflation and the interest rate as
done by Caldara and Kamps (2017).
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Mertens and Ravn (2014) use a tax proxy zτ,t and an additional zero restriction imposing

that government spending does not respond contemporaneously to changes in economic

activity. The tax proxy relies on a series of possibly unanticipated tax shocks, a subset

of the Romer and Romer (2010) tax shocks identified by studying narrative records of

tax policy decisions.8 As argued, the tax proxy measures changes in the tax system that

are primarily not related to the state of the economy and thereby it should offer a valid

proxy for tax shocks. Therefore, Mertens and Ravn (2014) impose the following exogeneity

assumptions

E[zτ,tεg,t] = 0 and E[zτ,tεy,t] = 0. (20)

Instead of using a fiscal proxy, Caldara and Kamps (2017) rely on the non-fiscal Fernald

(2012) TFP measure as a proxy zy,t for output shocks and additionally assume that govern-

ment spending does not respond contemporaneously to structural tax shocks. The Fernald

(2012) technology series measures total factor productivity adjusted for changes in factor

utilization. Fernald (2012) carefully eliminates these sources of endogenous movements

such that his resulting purified TFP series can be understood as solely reflecting exogenous

technology variations which motivates the two exogeneity assumptions

E[zy,tετ,t] = 0 and E[zy,tεg,t] = 0 (21)

used by Caldara and Kamps (2017). In what follows, we rely on the original TFP measure

used by Caldara and Kamps (2017) which is provided by the replication codes available on

the website of the Review of Economic Studies.

8To achieve exogeneity of the proxy the authors exploit the narrative information in official historical
documents in two ways. First, they verify that the policy documents do not discuss a desire to respond to
current or prospective economic conditions and return growth to normal. Second, within the set of policy
changes not motivated by the near-term economic outlook, they focus on tax changes motivated either by
a desire to reduce the budget deficit or by raising long-run growth. Moreover, Mertens and Ravn (2014)
use only those tax shocks to instrument exogenous policy changes for which potential anticipation effects
are arguably unlikely. More precisely, they omit all tax liability changes that were implemented more than
90 days (one quarter) after becoming law.
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Both approaches start with carefully motivated identifying assumptions, yet both ap-

proaches lead to different conclusions regarding the effects of tax and spending shocks.

In particular, using the fiscal proxy leads to a large tax multiplier while the non-fiscal

proxy leads to a large spending multiplier. This difference indicates that at least one of the

identifying proxy exogeneity assumptions is invalid.9 However, both approaches rely on the

exogeneity assumptions to identify the SVAR and hence, cannot detect or update invalid

proxy exogeneity assumptions. Our proposed model fills this gap since it allows to evalu-

ate the empirical support for the exogeneity assumptions and thus helps in understanding

diverging findings regarding the size of fiscal multipliers between the fiscal and non-fiscal

approach.

In particular, we estimate the SVAR in Equation (16) using the non-Gaussian proxy weight-

ing approach without any zero restrictions on the response of government spending. We

normalize both proxies to mean zero and unit variance and use the following four proxy

weighting moment conditions

1

T

T∑
t=1

zτ,teg,t(B,π) ∼ N(µτg, 1/T ),
1

T

T∑
t=1

zτ,tey,t(B,π) ∼ N(µτy, 1/T ) (22)

1

T

T∑
t=1

zy,teτ,t(B,π) ∼ N(µyτ , 1/T ),
1

T

T∑
t=1

zy,teg,t(B,π) ∼ N(µyg, 1/T ) (23)

with µj ∼ N(0, σ2
µj) and σ2

µj ∼ IG(0, 0) for j ∈ {τg, τy, yτ, yg}. Therefore, we start with

the prior that the fiscal and the non-fiscal proxies are both valid and shrink towards the

exogenous proxy solution. However, the data can update the prior and deviate from a

given exogeneity assumption. Moreover, we use the proxy variables to label the shocks.

Specifically, the shock exhibiting the highest correlation in absolute terms with the TFP

proxy is labeled as the output shock. Among the two remaining shocks, the one displaying

the strongest correlation in absolute terms with the tax proxy is identified as the tax shock,

9Figure 1 shows the estimated tax shocks using the tax proxy in comparison to the estimated output
shocks using the TFP proxy. The correlation between both shocks is not affected by the zero restrictions
and indicates that at least one of the identifying proxy exogeneity assumptions is invalid.
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while the remaining shock is attributed as the government spending shock.10

For comparison, we also estimate the Mertens and Ravn (2014) fiscal proxy SVAR with

the Gaussian proxy weighting approach, the government spending restriction b23 = 0, and

the tax proxy weighting moment conditions in Equation (22) with µτg = µτy = 0 and

the Caldara and Kamps (2017) non-fiscal proxy SVAR with the Gaussian proxy-weighting

approach, the government spending restriction b13 = 0, and the TFP proxy weighting

moment conditions in Equation (23) with µyτ = µyg = 0. Therefore, both Gaussian

models impose the corresponding proxy prior without the ability to update the proxy

prior. Note that the two Gaussian proxy weighting models yield impulse responses akin

to those acquired through the conventional moment-based frequentist proxy estimator, as

outlined in the Appendix.

A necessary requirement for updating the proxy exogeneity by the data is that we work

with non-Gaussian structural shocks. Figure 3 shows the posterior of the skewness and

kurtosis for the estimated structural shocks in the non-Gaussian proxy weighting SVAR

and the two Gaussian proxy weighting SVARs. All three models show a sizeable degree

of non-Gaussianity in the estimated structural shocks. In particular, the skewness of the

tax and output shock is centered around non-zero values and the kurtosis shows positive

values above three. Across all models, the tax and output shocks are left skewed, which

is economically reasonable because tax cuts tend to be larger than tax hikes and output

falls stronger during recessions than it rises during expansions. In addition, there is some

evidence that the government spending shock is right skewed, indicating that spending

stimuli are larger than spending consolidations.

Figure 4 plots results on the relevance of the tax and TFP proxies in our non-Gaussian

proxy weighting model. The left column shows the posterior distribution of the correlation

between the tax proxy and the structural tax shock and the right column presents the

distribution of the correlation between the TFP proxy and the structural output shock.

Both distributions are centered around a positive mean with no support of values close

10An alternative labeling approach relying on a first step estimator is shown in the Appendix and leads
to similar results.
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Figure 3: Evidence for non-Gaussianity
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The figure shows the posterior distributions of the skewness as well as the kurtosis of the structural shocks.
We show results for our non-Gaussian proxy weighting SVAR, the non-fiscal proxy SVAR proposed by
Caldara and Kamps (2017) as well as the fiscal proxy SVAR from Mertens and Ravn (2014).

to zero. Thus, we find that both instruments are strong in the sense that they fulfill the

relevance condition which is very much in line with the evidence provided by Mertens and

Ravn (2014) and Caldara and Kamps (2017).11

4.2 Baseline results

Figure 5 presents the estimated tax and spending multipliers, where the first column reports

the tax multiplier, the second column shows the spending multiplier, and the third column

presents the estimated difference between the tax and spending multiplier. Similar to

Mertens and Ravn (2014), we calculate tax multipliers by dividing the output response of

a tax revenue shock of minus one percent by the average ratio of federal tax revenues to

GDP in the sample of 17.5%. Government spending multipliers are calculated by dividing

11Note that, we plot the correlation between the instrument and the structural shock, whereas Mertens
and Ravn (2014) and Caldara and Kamps (2017) have to focus on the correlation between the instrument
and the reduced form shock.
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Figure 4: Posterior of proxy relevancy moment conditions
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The figure shows that both the tax proxy and the TFP are related to their target shocks.

the output response of a public spending shock of one percent by the average ratio of

federal spending to GDP in the sample of 9.1%. Equivalently, the numbers reflect the

present response to a tax cut (government spending increase) that lowers (increases) tax

revenues (government spending) by one percentage point of GDP.

The tax multiplier as reported in the first column of Figure 5 is estimated to be close to zero

for the impact period. Only around one year after the shock, the multiplier increases. The

multiplier peaks at a value of 0.71 two years after the shock materialized. Thereafter, the

response slowly converges back to its pre-shock level. The estimated government spending

multiplier presented in the second column shows some stark differences. For the impact

period, the spending multiplier is estimated to be different from zero taking on a value

above but close to unity. The peak response is reached three quarters after the shock

with a value of 1.16 and the credible bands around the estimated spending multiplier do

not contain the value of zero for more than two years following the shock. The third

column showing the difference between the government spending and tax multiplier clearly

depicts the divergent dynamics of both multipliers. For the first year after the shock,

the government spending multiplier clearly exceeds the tax multiplier. Over the medium

term, the difference becomes negative implying that the tax multiplier is larger than the

government spending multiplier, although the point estimate for the difference is small.
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Figure 5: Estimated output multipliers for the non-Gaussian proxy weighting SVAR
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The figure shows the posterior median as well as 68% credible bands for the impulse responses of output
to a tax shock and a government spending shock. The right subfigure shows the posterior median as well
as 68% credible bands for the difference of the two output responses.

Thus, our baseline non-Gaussian proxy weighting model suggests that positive shocks to

government spending have a larger stimulating impact on economic activity than exogenous

tax cuts.

Figure 6 compares our baseline estimates of the non-Gaussian model to the fiscal proxy

SVAR from Mertens and Ravn (2014) and to the non-fiscal proxy SVAR from Caldara and

Kamps (2017). Notably, our estimates show strong differences to the fiscal proxy SVAR.

The fiscal proxy SVAR leads to a much larger tax multiplier compared to our baseline

estimates. In particular, the fiscal proxy SVAR delivers an on-impact tax multiplier close

to two and the multiplier further increases in the subsequent periods reaching a peak

value close to three. Given the much larger tax multiplier, the fiscal proxy SVAR implies

that exogenous tax cuts are a more powerful tool to stimulate the economy compared to

exogenous increases in government spending, which is the opposite to our baseline results.

Additionally, the non-fiscal proxy SVAR leads to a larger government spending multiplier

compared to our baseline estimates. In particular, the spending multiplier peaks at a

value above two, whereas our baseline estimate shows a maximum value above but close

to unity. Similar to our non-Gaussian proxy weighting model, applying the the non-fiscal

proxy SVAR also results in a positive difference between the government spending and tax

multiplier.
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Figure 6: Comparison of estimated output multipliers between the different models
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The figure compares the output responses between our non-Gaussian proxy weighting SVAR with 68%
credible bands to the median responses in the non-fiscal proxy SVAR proposed by Caldara and Kamps
(2017) as well as the fiscal proxy SVAR from Mertens and Ravn (2014).

Figure 7 reports the posterior of the cyclical elasticities of tax revenues (Θy) and govern-

ment spending (γy) respectively. As discussed in Caldara and Kamps (2017), these two

parameters crucially determine the size of the estimated multipliers. The tax multiplier in-

creases in the size of the elasticity of tax revenues. In contrast, the smaller the elasticity of

government spending, the larger the spending multiplier. The intuition for this relation can

be summarized as follows. There exists a positive correlation between government spend-

ing and output in the data, which any identification approach decomposes into a fraction

explained by government spending shocks and a fraction explained by the remaining shocks

of the SVAR. The timing assumption imposed by Mertens and Ravn (2014) implies that

government spending does not respond contemporaneously to any other shock. Therefore,

all the positive contemporaneous relations in the data must be explained by the govern-

ment spending shock. This leads to a spending multiplier of about one. If the systematic

response of government spending increases, the remaining shocks explain a larger part of

the positive correlation and the spending multiplier decreases. In contrast, if the systematic

response decreases, that is, turns negative, the multiplier increases. A similar reasoning

applies to the identification of tax shocks.

As shown in Figure 7, the different identification approaches provide different estimates for
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the elasticities of tax revenues and government spending. The fiscal proxy SVAR based on

Mertens and Ravn (2014) leads to a tax revenue elasticity centered around three. The esti-

mated elasticity is considerably smaller for the non-fiscal proxy SVAR and our non-Gaussian

proxy weighting model. While the non-fiscal proxy approach results in an elasticity cen-

tered above two, our proposed non-Gaussian model implies an elasticity centered below

two.12 Given the positive relationship between the tax elasticity and the tax multiplier,

this explains the large differences between the estimated tax multipliers across identifica-

tion strategies. With a larger tax elasticity, the fiscal proxy SVAR produces the largest

tax multiplier, whereas our data driven strategy leads to the smallest tax elasticity and tax

multiplier. The picture is similar for the spending elasticity and the government spend-

ing multiplier. By adopting a zero restriction on the spending elasticity, the fiscal proxy

SVAR results in the largest spending elasticity across identification strategies. In contrast,

the non-fiscal proxy SVAR produces the smallest spending elasticity and thus the largest

spending multiplier. Our non-Gaussian proxy weighting model implies a value in between

the estimates of the two other approaches and thus the estimated government spending

multiplier is larger (smaller) than the one obtained by the fiscal proxy (non-fiscal proxy)

approach.

To summarize, our non-Gaussian proxy weighting model produces a tax multiplier that

is smaller than the one found when relying the on the fiscal proxy SVAR. Furthermore,

we find a considerably smaller government spending multiplier compared to the non-fiscal

proxy SVAR. We will show below that the differences in the estimated multipliers across

models is due to the fact that the proxies used in the fiscal and non-fiscal SVAR do not

fulfil the crucial exogeneity restrictions. When relying on newly constructed exogenous

proxies, the fiscal and non-fiscal SVAR lead to estimated multipliers that are very similar

to the ones of our proposed non-Gaussian proxy weighting SVAR.

Our main finding that the government spending multiplier is larger than the tax multiplier

12The value of the estimated elasticity of our non-Gaussian model is close to the one calculated by
Follette and Lutz (2010) based on institutional details of tax revenues. In particular, Follette and Lutz
(2010) estimate the elasticity of tax revenues with respect to output for the federal government, and obtain
a value of 1.6 for the period 1986–2008 and 1.4 for 1960–85.
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Figure 7: Posterior of tax revenue elasticity Θy and government spending elasticity γy
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The figure compares the Posterior of tax revenue elasticity Θy and government spending elasticity γy
between our proxy shrinkage VAR with the non-fiscal proxy SVAR proposed by Caldara and Kamps
(2017) as well as the fiscal proxy SVAR from Mertens and Ravn (2014).

is actually highly robust to modifications of the baseline empirical specification. We report

a battery of robustness checks in the appendix. We show that our results are robust to

including additional endogenous variables in the VAR, controlling for fiscal foresight, and

splitting the sample. Moreover, the results are not significantly affected when separately

estimating two models that use only one of the proxies compared to the baseline model

that uses both proxies in the estimation.

4.3 Understanding the differences

The key advantage of our non-Gaussian proxy weighting approach is that we can update the

proxy exogeneity priors. That is we shrink towards exogenous proxies, however, if the data

provides evidence against a given exogeneity assumption, our model can update the prior

and stop to shrink towards exogenous proxies. Contrary, when applying the Gaussian fiscal

proxy SVAR from Mertens and Ravn (2014) or the Gaussian non-fiscal proxy SVAR from

Caldara and Kamps (2017), it has to be assumed that the respective proxy is exogenous

and this prior cannot be updated. In the following, we show that the data provides evidence

against the exogeneity of both proxies which further helps in understanding the different

multiplier estimates across identification strategies.
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Figure 8 provides evidence on the exogeneity assumptions obtained from our non-Gaussian

model. The two graphs in the first row show the posterior distributions of the correlation

between the tax proxy and the structural government spending and output shock, respec-

tively. The second row presents the posterior distributions of the correlation between the

TFP proxy and the structural tax and government spending shock, respectively. With ex-

ogenous proxy variable, meaning µj = 0 in Equation (22), the proxy prior shrinks towards

shocks with no systematic correlation with the proxy variables as indicated by the solid lines

in Figure 8. However, this is not the case. Specifically, the data provides evidence against

the exogeneity assumptions and the estimator stops to shrink towards the exogenous proxy

solution. For example, the tax proxy has a clear negative correlation with the output shock.

Put differently, positive (negative) output shocks coincide with negative (positive) values

for the tax instrument. Intuitively, not accounting for this correlation leads to identified

tax cuts that also include exogenous increases in output, and vice versa, which increases

the size of the estimated tax multiplier. Concerning the TFP proxy, we find some evidence

that the instrument is negatively correlated with exogenous government spending shocks.

Therefore, the TFP proxy identifies positive (negative) output shocks that also include

negative (positive) government spending shocks which reduces the fraction of GDP move-

ments explained by the identified output shocks. As a result, the estimated government

spending elasticity is reduced which, as already discussed above, increases the size of the

estimated government spending multiplier.

In summary, our findings reveal that the fiscal proxy used by Mertens and Ravn (2014) and

the non-fiscal proxy used by Caldara and Kamps (2017) do not fulfill the crucial exogeneity

assumption which leads to biased estimates. In particular, the negative correlation between

the tax proxy and the output shock induces an upward bias in the estimated tax multiplier

by Mertens and Ravn (2014). In addition, the negative correlation between the TFP proxy

and the government spending shock leads to an upward bias in the estimated government

spending multiplier by Caldara and Kamps (2017). Our proposed non-Gaussian proxy

weighting model accounts for these correlations between instruments and structural shocks

31



and therefore leads to a smaller tax multiplier compared to Mertens and Ravn (2014) and

a smaller government spending multiplier compared to Caldara and Kamps (2017).

Figure 8: Prior vs. posterior of exogeneity moment conditions
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The figure shows the prior (solid line) for exogenous proxy variables, i.e. with µj = 0, and the posterior of
the exogeneity moments for the tax proxy as well as the TFP proxy.

To further highlight the implied differences across identification strategies, in the Appendix

we show the times series for the estimated structural shocks. While the estimated shocks

share a similar pattern for most periods, there are some discrepancies worth mentioning. In

general, we find that the fiscal proxy VAR approach shows the tendency to interpret positive

output shocks as negative tax shocks, and vice versa. As a consequence, by taking this

shortcoming of the fiscal proxy into account, our non-Gaussian proxy weighting approach

leads to a much smaller tax multiplier compared to the standard fiscal proxy identification

strategy. We explain in detail why we think that the identified shock of our proposed
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non-Gaussian proxy weighting model fits better to the historical narrative.

4.4 Constructing new proxies

Given our result from the previous section that there exists evidence of a clear correlation

between both the fiscal and the non-fiscal proxy, respectively, and the structural shocks,

we can go one step further and construct new proxy measures that are orthogonal to

the disturbances of the model. Thus these new proxies arguably fulfill the exogeneity

assumption and therefore can be used in a standard proxy variable VAR approach. To get

new proxy measures we proceed as follows. For the narrative tax proxy, we regress the

proxy on a constant and the median structural government spending and output shocks

obtained from applying the non-Gaussian proxy weighting approach. Similarly, for the TFP

measure, we regress the proxy on a constant and the median structural tax and government

spending shocks. The estimated residuals of these regressions capture movements in the

original proxy measures that are not related to other disturbances of the model.

Figure 9 presents our new tax proxy measure and compares it with the original series.

For most episodes both measures move in the same direction and show only marginal

differences. However, for some key dates there are sizeable discrepancies. The original tax

proxy shows a tendency to indicate an exogenous tax increase during periods of economic

recessions and an exogenous tax decrease during episodes of economic expansions. For

example, in 1971Q1 the original measure shows a relatively strong tax cut, although the

actual change to the tax code included only modest adjustments to depreciation rules. In

general this period better fits the narrative of an expansionary output shock. In addition,

with the US economy entering a recession in the early 1980s, the original measure shows

two pronounced tax changes, a tax increase in 1980Q2 and a tax cut in 1981Q3. However,

the macroeconomic narrative seems to be more consistent with a series of contractionary

output shocks. Our new measure which accounts for confounding innovations in the tax

proxy measure, indicates a tax increase in the early 1970s economic expansion and almost

no change in the tax code during the early 1980s recession.
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Figure 9: New proxy variables
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The new tax proxy is residual of the regression zτ,t = β0 + β1εg,t + β2εy,t + ut, meaning the variation of
the tax proxy unexplained by the government spending and output shock.The new TFP proxy is residual
of the regression zTFP,t = β0 + β1ετ,t + β2εg,t + ut, meaning the variation of the TFP proxy unexplained
by the tax and government spending shock.

We also calculate a new TFP proxy as shown in Figure 9. The differences between the

original and the new TFP proxy which takes potential endogeneity concerns into account

are relatively small, both measures are highly correlated. However, differences can indeed

be observed for the periods like 1965Q3, 1984Q1, 1984Q2, 2002Q1. In the Appendix, we

discuss in detail why we think our new TFP proxy measure better aligns with the historical

narrative.

Given that our new proxy measures removes endogenous variation in the original tax and

TFP series, we can use them as instruments in a standard proxy VAR setting that rests

on the idea of an available instrument fulfilling the exogeneity assumption. Figure 10

presents the results of the fiscal and non-fiscal model, respectively, when relying on the

newly constructed proxies and compares the obtained estimates to our non-Gaussian proxy

weighting model. Notably, the differences in estimated multipliers across models become

much smaller. As such, the fiscal proxy model now leads to an estimated tax multiplier

that is much smaller compared to the case when using the original (potentially endogenous)

tax proxy as shown in Figure 6. Both the fiscal and non-fiscal model induce estimated tax

multipliers that mainly lie within the credible bands of our non-Gaussian model. The same
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Figure 10: Comparison of estimated output multipliers between the different models with
new proxies
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The figure compares the output responses between our non-Gaussian proxy weighting VAR with 68%
credible bands to the median responses in the non-fiscal proxy SVAR proposed by Caldara and Kamps
(2017) as well as the fiscal proxy SVAR from Mertens and Ravn (2014). But we replace the old proxy
variables with the new proxy variables.

applies to the estimated government spending multiplier which takes on values close to unity

across all models. Importantly, when removing endogenous variations in the instruments,

all models lead to the conclusion that the government spending multiplier is larger than the

tax multiplier. Thus our evidence suggests that endogeneity in the tax and TFP proxies are

responsible for the large differences in estimated multipliers across estimation strategies.

Because the fiscal and non-fiscal approach have to assume that the proxies are indeed

exogenous, this finding can only be obtained by a strategy that evaluates the exogeneity of

the proxies like our proposed non-Gaussian proxy weighting model.

5 Conclusion

This paper discusses the challenge of measuring the effects of fiscal policy and the recent

use of the proxy VAR approach as a tool for identifying fiscal policy shocks. We propose

a new non-Gaussian proxy weighting approach that combines non-Gaussian identification

with proxy variables. The method shrinks towards exogenous proxy variables but allows

for updating the prior and stopping the shrinkage if empirically warranted. We use our
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model to provide evidence that the contradicting results of Mertens and Ravn (2014) and

Caldara and Kamps (2017) may be due to the use of invalid instruments. Furthermore, we

find that increasing government spending is more effective in stimulating the economy than

lowering taxes. Finally, we utilize our estimation results to construct new proxy variables.

These new proxies result in very similar fiscal multipliers estimates and can be used in

traditional proxy SVARs.
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Antoĺın-Dı́az, J. and Rubio-Ramı́rez, J. F. (2018). Narrative sign restrictions for svars. American
Economic Review, 108(10):2802–29.

Anttonen, J., Lanne, M., and Luoto, J. (2021). Statistically Identified SVAR Model with Poten-
tially Skewed and Fat-Tailed Errors. Available at SSRN 3925575.

Arias, J. E., Rubio-Ramı́rez, J. F., and Waggoner, D. F. (2021). Inference in bayesian proxy-svars.
Journal of Econometrics, 225(1):88–106.

Bertsche, D. and Braun, R. (2022). Identification of structural vector autoregressions by stochastic
volatility. Journal of Business & Economic Statistics, 40(1):328–341.

Braun, R. (2023). The importance of supply and demand for oil prices: evidence from non-
gaussianity. Quantitative Economics.
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