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Abstract

We suggest a Bayesian mixed-frequency multiple-indicator model with moving-average stochas-
tic volatility that nests 1) U-MIDAS model of Foroni et al. (2015), 2) U-MIDAS model with
MA-component of Foroni et al. (2019); and 3) multiple-indicator model with stochastic volatility
of Carriero et al. (2015). The general models as well as its restricted versions can be efficiently
estimated using the precision-based algorithm of Chan and Jeliazkov (2009) and Chan (2013).
We re-examine the evidence presented in Foroni et al. (2019) on the usefulness of including a
moving-average component in the mixed-frequency forecasting models. Our results are less op-
timistic on the additional value of the MA-component based on out-of-sample model evaluation
using either point or density forecasts.
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1 Introduction

Starting with the seminal contribution of Ghysels et al. (2006) there was a rapid development of
models that are able to cope with data sampled at heterogeneous frequencies. In these models
the frequency mismatch between modelled variables is generally solved by skip-sampling high-
frequency variables to low frequency (e.g. monthly series is converted into three quarterly ones with
the first/second/third quarterly series containing the first/second/third months of each quarter;
cf. Foroni et al. (2015)). As a result, the number of explanatory regressors is a multiple of the
frequency scaling parameter (in the previous example 3). Following Ghysels et al. (2006) the
most popular approach of the mixed-data sampling (MIDAS) models to mitigate the problem
of parameter proliferation are distributed lag polynomials that link low- and skip-sampled high-
frequency variables. In such cases, however, the model parsimony comes at a cost that one has
to rely on non-linear iterative methods for estimation of parameters in MIDAS regressions. The
use of non-linear rather than ordinary least squares estimator typically makes it substantially
more difficult to fit a model with more than one explanatory high-frequency variable. As the
result, MIDAS regressions in which regressors generated by skip-sampling of a single high-frequency
indicator are very common in empirical studies (Claudio et al., 2020).

Fortunately, Foroni et al. (2015) pointed out that when the sampling frequency difference is
small one can dispense with distributed lag polynomials and estimate an unrestricted version of
MIDAS regressions (U-MIDAS), in which a dependent low-frequency variables is directly regressed
on one or several skip-sampled high-frequency variables using OLS estimator. However, because
of potential overfitting problems, one has to be careful not to include too many regressors in this
framework.

Carriero et al. (2015) go one step further and propose a Bayesian multiple-indicator mixed-
frequency model as a direct extension of Foroni et al. (2015). In the former model the potential
caveat of data overfitting is directly addressed by imposed shrinkage on the parameter values by
means of Minnesota prior. Since the model of Carriero et al. (2015) is estimated by Markov Chain
Monte Carlo method its performance can be assessed not only by point but also by density forecast.
The accuracy of density forecasts can be further improved by augmenting the model by stochastic
volatility component, which is straightforward in the Bayesian setting of Carriero et al. (2015).

It is well known that a moving-average (MA) component can be introduced in aggregated data
as a result of temporal aggregation: Specifically, in recent contribution Foroni et al. (2019) pointed
out that models dealing with data sampled at differing frequencies is not an exception. Based
both on the Monte Carlo simulation results and evidence from MIDAS regressions estimated with
actual economic data, they conclude that the incorporation of moving-average components into
otherwise standard (U-)MIDAS regression yields more accurate out-of-sample (point-)forecasts.
This improvement in accuracy for MA-augmented (U-)MIDAS models, however, comes at the cost
of a more complex iterative estimation procedure. Furthermore, it creates a challenge on how to
combine moving-average component suggested in Foroni et al. (2019) with the stochastic volatility
component of Carriero et al. (2015) within a mixed-frequency model.
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The solution to this challenge is provided in Chan (2013). Chan (2013) proposes a model
with moving average stochastic volatility. Estimation of model parameters is carried out by means
of the Bayesian approach that capitalises on recent advances in precision-based algorithms and
banded sparse matrices (Fahrmeir and Kaufmann, 1991). The model is formalized in a state space
form, but instead of relying on Kalman filter iterations, parameters are efficiently estimated by the
direct approach of Chan and Jeliazkov (2009) based on a precision-based algorithm. McCausland
et al. (2011) systemtically investigate performance of the Kalman filter routines and precision-based
algorithms and conclude that the gains of the latter approach can be substantial when dealing with
high-dimensional settings and in cases when state vectors are repetitively drawn for fixed parameter
values.

We suggest a model that bridges these separate developments on the specification and estimation
of mixed-frequency models for nowcasting purposes (Banbura et al., 2011). Borrowing ideas from
Foroni et al. (2019), Foroni et al. (2015), Carriero et al. (2015) and Chan (2013) we suggest an
unifying approach that combines characteristic features of each of these contributions in a single
model. This makes it practical for daily use at institutions that routinely engaged in monitoring
and forecasting economic conditions.

We make the following contributions to the nowcasting literature with mixed-frequency data.
First, we provide additional evidence on the usefulness of the MA component for point forecast
accuracy using a different data set. Our data set was previously analysed in Carriero et al. (2015)
and Siliverstovs (2020) and it comprises real-time vintages of US GDP and twelve national economic
and financial indicators, sampled at the monthly frequency. We investigate the influence of the MA
component on the out-of-sample point forecast accuracy of both single- and multiple-indicator U-
MIDAS regressions. An additional distinctive feature of our analysis is that the significance of
the MA component can be assessed from the Bayesian point of view, e.g. by computing Dickey-
Savage density ratios for models with and without MA component. Second, we extend the results
of Foroni et al. (2019) on the usefulness of the MA-component in mixed-frequency data models
by expanding the focus from point forecasts to entire density forecasts. To this end, it is of
particular interest whether the MA-component on its own may result in better calibrated densities
or only in combination with the stochastic volatility component. Third, Chan (2013) illustrates the
performance of the moving average stochastic volatility models using univariate regressions fitted
to monthly inflation data. Despite the flexibility that the model framework offers, for example,
to include additional explanatory variables, Chan (2013) did not pursue research with additional
predictors. Nonetheless, we shall estimate models that include both single and multiple regressors.
Moreover, we follow Carriero et al. (2015) and introduce Minnesota priors for parameters in the
conditional mean in a mixed-frequency adapted model of Chan (2013). Fourth, given the findings
of Chauvet and Potter (2013) and Siliverstovs (2020) concerning the importance to distinguish
relative forecasting performance during recessionary and expansionary business cycle phases we
will verify whether the usefulness of the MA component also varies with the state of the business
cycle both for point and density forecasts. Finally, we provide evidence on the usefulness of the
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Bayesian approach for density forecasting in mixed-frequency models, which can be viewed as a
viable alternative to the bootstrap based predictive density simulation in this class of models as
suggested in Aastveit et al. (2017).

The remainder of this paper is organised as follows. Section 2 contains description of the model
proposed in Chan (2013) that is adopted to mixed-frequency data. The dataset is described in
Section 3. In Section 4 we evaluate the empirical results based both on the in-sample fit of the
models and out-of-sample forecasting accuracy in terms of point and density forecasts. The final
section concludes.

2 Model

2.1 Specification

Building upon the state space framework, the most general specification of the model specified at
the quarterly frequency is given as follows,

yt = µt + εyt ,

εyt = ut + ψut−1, ut ∼ N (0, exp(ht)), u0 = 0

ht = ht−1 + εht , vt ∼ N (0, ω2
h), h0 ∼ N (a0, b0).

(1)

Depending on the particular form of the conditional mean, the following models emerge:

• a historical mean model (HMM) for
µt = ϕ0

• an AR(2) model for
µt = ϕ0 + ϕ1yt−1 + ϕ2yt−1

• a single-indicator U-MIDAS model for

µt = ϕ0 + ϕ1yt−1 + β1x
(1)
t + β2x

(2)
t + β3x

(3)
t ,

where regressors x(3)
t , x

(2)
t , x

(1)
t denote skip-sampled values of the monthly indicator xt with

the superscript (m) indicating values retained in the m-month of quarter t.

• a multiple-indicator U-MIDAS model

µt = ϕ0 + ϕ1yt−1 + β1x
(1)
1,t + β2x

(2)
1,t + β3x

(3)
1,t + β4x

(1)
2,t + β5x

(2)
2,t + β6x

(3)
2,t + ...

The model in Equation (1) also encompasses previously discussed models. For example, by
setting the MA(1) parameter ψ = 0 and ω2

h = 0 we obtain the U-MIDAS model of Foroni
et al. (2015) with homoskedastic and uncorrelated innovations or, equivalently, the model of
Carriero et al. (2015) without the stochastic volatility component. For ψ ̸= 0 and ω2

h = 0,
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instead, we obtain the moving-average U-MIDAS model of Foroni et al. (2019). By setting
ψ = 0 and ω2

h ̸= 0 we end up with the stochastic volatility U-MIDAS model of Carriero et al.
(2015).

The model in Equation (1) can be compactly written in the matrix form. Denoting y =
(y1, ..., yT )′:

y = µ+ Hψu

Hh = ε

where µ = (µ1, ..., µT )′ and u = (u1, ..., uT )′ ∼ N(0,Sy),Sy = diag(eh1 , ..., ehT ), ε ∼ N(0, ω2
hIT ).

The matrix Hψ is a lower diagonal matrix with one on the main diagonal and the parameter ψ
on the first lower diagonal. The matrix H is the first difference matrix with the one on the main
diagonal and -1 on its first lower diagonal.

2.2 Priors

The following priors are imposed:

• for ARX-MA model type we use the uniform prior ψ ∼ U(−1, 1) and for ARX-MA-SVRW
model type we use the truncated normal prior ψ ∼ N (0, Vψ)1(|ψ| < 1) with Vψ = 1. Both
priors restrict the parameter ψ values to the invertibility region;

• ω2
h ∼ IG(ah, bh) is an inverse Gamma distribution with scale ah = 3 and rate bh = 0.5(ah−1)

parameters;

• for models without stochastic volatility we have u = (u1, ..., uT )′ ∼ N (0, σ2IT ) with σ2
y ∼

IG(ay, by) with ay = 3 and by = 5(ay − 1);

• the initial observation h0 ∼ N (a0, b0) with a0 = 0 and b0 = 5;

For parameters in the conditional mean µ we specify the following priors. For the benchmark
HMM and AR2 models as well as for single-indicator U-MIDAS models we set diffuse normal prior
γ ∼ N(0, 100Iγ) with γ vector dimensions appropriately specified as given below:

• HMM: γ = (ϕ0)

• AR2: γ = (ϕ0, ϕ1, ϕ2)′

• SIM-U-MIDAS: γ = (ϕ0, ϕ1, β1, β2, β3)′.

For parameters in the conditional mean µ of the multiple-indicator U-MIDAS models we follow
Carriero et al. (2015) and specify the Minnesota prior adapted to the mixed frequency case. The
Minnesota prior specified for the vector γ = (ϕ0, ϕ1, β1, β2, β3, ...)′ is the joint distribution with zero
mean and diagonal covariance matrix. The entries of the diagonal covariance matrix are defined as
follows:
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Figure 1: GDP growth, second release

• intercept parameter, σ2
ϕ0

= 100 ∗ σ2
y ;

• parameter for the autoregressive lag, σ2
ϕl

= λ2
1/(lλ3)2 with l = 1;

• parameters for the explanatory variables, σ2
βi

= σ2
y/σ

2
xi

∗ (λ1λ2/l
λ3)2,

where σ2
y and σ2

xi
are variances of residuals from AR(4) models fitted for the variables yt and x(m)

i,t .
The vector of the hyperparameter values are set the same as in Carriero et al. (2015): λ1 = 0.2,
λ2 = 0.2, and λ3 = 1. Recall that the hyperparameter λ1 is responsible for the overall degree of
shrinkage; λ2 determines degree of shrinkage of the parameters βi relative to the shrinkage on the
parameter ϕ1; and λ3 sets the shrinkage rate for the quarterly lags of the regressors.

3 Data

The data set used in the analysis is the same as used in Carriero et al. (2015) and Siliverstovs
(2020). It comprises real-time vintages of quarterly GDP releases as well as releases of twelve
economic and financial indicators available at the monthly frequency. The targeted time series is
shown in Figure 1. The period used for out-of-sample forecast evaluation starts in 1985Q1 and ends
in 2011Q3. Each point in the plot indicates second estimate of annualised quarterly GDP growth
that was historically released. The shaded areas indicate NBER-dated recessions in the sample.
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Table 1: Monthly indicators

Indicator Description Transformation Availability
ISM ISM index (overall) for manufacturing level 1-2-3
EMPLOY Payroll employment log-change 1-2-3
SUPDEL ISM index for supplier delivery times level 1-2-3
ORDERS ISM index for orders level 1-2-3
HOURS Average weekly hours of production workers log-change 1-2-3
SP500 S&P500 index log-change 1-2-3
TBILL 3-month Treasury bill rate level 1-2-3
TBOND 10-year Treasury bond yield level 1-2-3
CLAIMS New claims for unemployment insurance level 1-2
RSALES Real retail sales log-change 1-2
IP Industrial production log-change 1-2
STARTS Housing starts log-level 1-2

Notes:
Entries in column Availability indicate for which months skip-sampled values of the
monthly indicators are available for estimation at the chosen forecast horizon.

The set of the auxiliary indicators represents various aspects of the US economy: soft economic
indicators in the form of business tendency surveys (ISM, SUPDEL, ORDERS), several hard eco-
nomic indicators capturing labour market (EMPLOY, CLAIMS) and production conditions (IP,
HOURS) as well as consumption and housing (RSALES, STARTS) sides of the economy. Senti-
ments in the financial markets are captured by the following variables SP500, TBILL, and TBOND,
see Table 1. In the previous two studies four forecast origins were used: three in the beginning
of either first, second, third months of the targeted quarter and the fourth forecast origins corre-
sponding to backcasting exercise is in the beginning of the first month (during its first week) of
the following quarter. In the current study we produce backcasts since as shown in Carriero et al.
(2015) and Siliverstovs (2020) for this forecast origina maximum gains in forecasting accuracy in
comparison to univariate benchmark models are realised. Observe that the monthly indicators are
characterised by different release timing: some of them are available during the first week of a
month, whereas others are available only during the second week. As shown in column Availability
of Table 1, because of the differences in timing releases for the first group of indicators with earlier
release timing we have all three skip-sampled monthly values whereas for the second group of indi-
cators we have only values for the first two months of the targeted quarter. All monthly indicators
have the same publication lag of one months, i.e. a monthly release during current month contains
the last value for the previous month.

4 Results

The effect of inclusion of moving-average component is evaluated using estimation results of the ψ
parameter in sample as well as evaluation of accuracy of point and density forecasts out of sample.
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As discussed above there are three groups of time series models. The first group entails univariate
benchmark models, historical mean and autoregressive models (HMM and AR2). The second group
is mixed frequency models with a single indicator listed in Table 1 used as expalanatory variable
(single-indicator models, SIM). The third group of models consists of two multiple-indicator models
employed in Carriero et al. (2015). The large model (LRG) that includes all the twelve monthly
indicators and its smaller version (SML) based on five monthly indicators (ISM, EMPLOY, IP,
RSALES, STARTS). The number of regressors in each of these two multiple-indicator models
(MIM) can be directly assessed from column Availability in Table 1. Hence the total number of
regressors in LRG and SML models is equal to 8∗3+4∗2+1+1 = 34 and 2∗2+2∗3+1+1 = 14,
respectively, taking into account one lag of the dependent variable yt−1 and an intercept.

4.1 In-sample estimation

The results of in-sample estimation of the three groups of models are obtained on the full sample of
data spanning 1970Q1-2011Q2 period using the data vintage that was available in the beginning of
October 2011. We use these estimation results in order to make a backcast of US GDP for 2011Q3
- a final quarter in our out-of-sample forecast evaluation sample. The summary of the posterior
distribution of the MA(1) parameter ψ for each model is presented in Figure 2 in the form of
estimated median and 90% credible interval. In the left and rigth panels of the figure the estimates
of the quantiles of the porsterior distribution of the parameter ψ are reported for ARX-MA and
ARX-MA-SVRW model specifications, respectively. The estimates of ψ in general are very similar
in both model specifications in all but one case -, namely, a single-indicator model with CLAIMS
regressor variable.

For the benchmark models (top two models) we have a mixed result. For the AR2 model the
90% credible interval is very large and it included zero, whereas for the historical mean model the
main mass of the posterior distribution is located on the positive half axis of the real line. Clearly,
for the HMM the MA-component makes up for the omitted autoregressive dynamics that is present
in the benchmark AR2 model.

For the SIMs the evidence is rather mixed. For models without stochastic volatility, there
are some explanatory variables for which the main mass of the posterior distribution is located in
the negative part (RSALES, SP500, HOURS, TBILL, IP). For model with the SV-component we
find more models (RSALES, SP500, CLAIMS, HOURS, STARTS, SUPDEL, TBILL, TBOND) for
which the 90% credible interval is mainly located in the negative part. For both model specification
without and with the SV-component the main mass of the posterior distribution for ψ is located
in the positive part. For ISM- and ORDERS-models the ψ posterior distribution is located around
zero value for both specification types.

For the two MIMs the posterior distributions of ψ also are different. For the smaller model
with five indicators the median of the distribution is centered around zero, whereas for the larger
model with twelve indicators the whole distribution is shifted to the negative region with the median
value reported about -0.187 and -0.153 for specification types without and with stochastic volatility
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Figure 2: MA(1) parameter (median and 90% credible interval), vintage October 2011

component. It is interesting to observe that for the model with richer dynamics the evidence in
favour of moving average term is stronger.

It is further instructive to examine how the posterior distribution of ψ evolves over time when
estimated recursively using real-time GDP vintages. For the sake of brevity, the time series plots
of the 5th, 50th, and 95th percentiles are reported for two selected SIMs (EMPLOY and RSALES)
and for the two MIMs (SML and LRG) without stochastiv volatility, see Figure 3. The recursive
plots confirm the findings reported for the full estimation sample. The 90% credible intervals for
EMPLOY- and RSALES-models stay consistently above, respectively, below the zero line. The
90% credible interval for the ψ parameter in the SML-model is centered at zero value and for the
LRG-model it lies in the negative territory with its upper percentile near the zero borderline.

4.2 Out-of-sample forecast accuracy

The results of out-of-sample (OOS) assessment of forecast accuracy are collected in Table 2 for point
forecasts and in Tables 3 and 4 for density forecasts. In line with the literature we evaluate accuracy
of point forecasts in terms of the Root Mean Squared Forecast Error and goodness of density
forecasts in terms of mean logarithmic score (MLOGS) and mean continuous ranked probability
score (MCRPS).

The results for models without moving-average term reported for the full forecast evaluation
sample (1985Q1-2011Q3) are comparable with those in Carriero et al. (2015) and Siliverstovs (2020)
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Figure 3: MA(1) parameter in ARX-MA model (median and 90% credible interval), recursively
estimated using real-time vintages

and for expansion and recession sub-samples in Siliverstovs (2020). This is encouraging, especially,
for models with stochastic volatility for which another estimation approach was applied. These
results indicate that data pooling in one model as done in Carriero et al. (2015) is beneficial
when compared to the forecasting performance of the benchmark as well as single-indicator mixed-
frequency models but these benefits are mainly due to few observations during the recessionary
periods (especially during the Great Recession) when the benchmark models (and to the lesser
extent SIMs) perform substantially worse than during expansionary periods.

This section is sub-divided into two parts. In Section @ref(sec:effe ma) we investigate the
effect on OOS forecast acccuracy of adding moving average component to model without and with
stochastic volatility. In Section @ref(sec:effe lv) we investigate the effect on OOS forecast accuracy
of adding stochastic volatility component to model without and with MA-term. This comparison
helps us identify model’s feature that has the most profound effect on OOS forecast accuracy. Is it
MA- or SV-component or synergy of both?

The information in the tables is summarised in the graphical form in Figures 4-6 and 7-9 for
the effect of MA- and SV-components, respectively. Each plot is sub-divided into six sub-plots.
These sub-plots are grouped by evaluation sample: full sample( top panel), expansion sample
(middle panel), and recession sample (bottom panel). The left panels in Figures 4-6 display the
effect of MA-term in models without stochastic volatility (ARX vs ARX-MA), whereas the right
panels display the effect of MA-term in models with stochastic volatility (ARX-SVRW vs ARX-
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MA-SVRW). Using the same organisational layout, in Figures 7-9 the effect of SV-component is
analised for models without MA-term (ARX vs ARX-SVRW) and with MA-term (ARX-MA vs
ARX-MA-SVRW).

4.2.1 Effect of MA-component

Figure 4 contains cross-plots of RMSFE for models without stochastic volatility (ARX vs ARX-
MA) in the left column and for models with stochastic volatility (ARX-SVRW vs ARX-MA-SVRW)
in the right column. The horizontal and vertical dashed lines indicate RMSFE for the benchmark
AR2 model. Models which lie either above or further to the right to these dashed lines have higher
RMSFE than the corresponding version of the benchmark model.

The red line is a 45-degree line. The position of the models relative to this line is informative
whether model’s version with MA-term produces different RMSFE from that produced by the
model without MA-term. For those models which have similar RMSFE values, i.e. adding the
MA-term has no or negligible effect on point forecast accuracy, the corresponding dots lie close to
this 45-degree line.

These cross-plots are also informative about models’ relative forecasting performance. The best
forecasting models with lowest RMSFE are located in the bottom-left corner whereas the worst
performing models are located in the opposite top-right corner. For example, the two multiple-
indicator models (SML and LRG) are among the best performing models.

When judged for the full sample there are four models (SML, LRG, ISM, CLAIMS) with the
highest forecasting accuracy. However, incorporation of MA-term did not bring any noticable im-
provements in point forecast accuracy for these models. On the contrary, in LRG-model without
stochastic volatility the RMSFE is larger for the MA-augmented version. In fact, for the boom sam-
ple the performance of the multiple-indicator model LRG-MA is worse than that of any benchmark
models that are augmented with the MA-term (AR-MA and HMM-MA), see the middle-left plot
at Figure 4. It is interesting to observe that in model version with stochastic volatiliy (LRG-MA-
SVRW) this negative influence of the MA-component is neutralised, see the middle-right plot. For
the bust sub-sample, there are no discernible effects of the MA-term for the top-performing models.
Among the models for which augmentation with the MA-component resulted in the improved point
forecast accuracy one can mention SIMs with SP500, RSALES, EMPLOY variables.

Figures 5 and 6 compare MLOGS and MCRPS measure of density forecast accuracy respectively.
The two multiple-indicator models are also the best-performing models in terms of these metrics.
In general, we find very little evidence supporting the usefulness of augmenting mixed-frequency
models with MA-terms, especially, for those models that produce most accurate density forecasts.
This conclusion is robust when the effect of adding MA-terms is evaluated by means of MLOGS
and MCRPS and whether the underlying models have SV-component or not. Nevertheless, some
SIMs such as EMPLOY, RSALES, SP500 benefited from adding the MA-term.
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4.2.2 Effect of SV-component

The evaluation results of the effect of enlarging models with the stochastic volatility component on
point and density forecast accuracy are presented in Figures 7 and Figures 8 and 9, respectively.
In terms of point forecasts, the multiple-indicator with MA-component (LRG-MA) model seems
to strongly benefit from the SV-term during expansion period (see middle-right plot). Also for a
number of SIMs ( HOURS, STARTS, RSALES, ORDERS) augmentation with the SV-term results
in improved OOS point forecast accuracy during expansionary phase, but for the recessionary
phase the effect is rather negative for these models. For the MIMs there no discernible effect of the
SV-term during recessions, as both models perform very similarly in terms of RMSFE.

In the previous studies where the same data set was analysed it was already pointed out on
the indispensible effect of stochastic volatility on density forecast accuracy (Carriero et al., 2015;
Siliverstovs, 2020). In this section we provide an additional evidence for models with moving average
component. Essentially, the results shown in Figures 8 and 9 support the earlier conclusions. This
is especially evident during the expansionary business cycle phase, see plots in the middle panel
of these two figures. All dots in these two figures lie below the 45-degree line!!! This clearly
indicates the benefits of augmenting forecasting models of US GDP growth with the stochastic
volatility component when one is interested in accurate density forecasts. Since the expansionary
phase takes the lion share in our forecast evaluation sample, this naturally translates when one
evaluates forecasting performance for the full sample, see the upper panel in Figures 8 and 9. For
the recessionary phase the evidence is not so clear-cut, see the lower panel of the figure. For the
most accurate models (SML and LRG) practically there is no difference in forecasting accuracy
of models without and with stochastic volatility. The single-indicator ISM-model seems to benefit
whereas for such SIMs as EMPLOY-, SP500-, and RSALES-models the forecasting performance
deteriorates during recessions.
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Figure 4: RMSFE for models without and with moving-average component
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Figure 5: MLOGS for models without and with moving-average component
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Figure 6: MCRPS for models without and with moving-average component
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Figure 7: RMSFE for models without and with stochastic-volatility component
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Figure 8: MLOGS for models without and with stochastic-volatility component

16



AR2

CLAIMS

EMPLOY

HMM

HOURS

IP

ISM

LRG

ORDERS

RSALES

SML

SP500

STARTS

SUPDEL

TBILL

TBOND

0.9

1.0

1.1

1.2

1.0 1.1 1.2 1.3

ARX−SVRW vs ARX: full sample

AR2

CLAIMS

EMPLOY HMM

HOURS

IP

ISM

LRG

ORDERS RSALES

SML

SP500

STARTS

SUPDEL TBILL

TBOND

0.9

1.0

1.1

1.0 1.1 1.2 1.3

ARX−MA−SVRW vs ARX−MA: full sample

AR2

CLAIMS

EMPLOY

HMM

HOURS

IP

ISM

LRG

ORDERS

RSALES

SML

SP500

STARTS
SUPDEL

TBILL

TBOND

0.9

1.0

1.1

1.0 1.1 1.2

ARX−SVRW vs ARX: boom sample

AR2
CLAIMS

EMPLOY

HMM

HOURS

IP

ISM

LRG

ORDERS

RSALES

SML

SP500

STARTS

SUPDEL

TBILL

TBOND

0.9

1.0

1.1

1.0 1.1 1.2

ARX−MA−SVRW vs ARX−MA: boom sample

AR2

CLAIMS

EMPLOY

HMM

HOURS

IP

ISM

LRG

ORDERS

RSALES

SML

SP500

STARTS

SUPDEL

TBILL

TBOND

1.0

1.5

2.0

2.5

1.0 1.5 2.0 2.5

ARX−SVRW vs ARX: bust sample

AR2

CLAIMS
EMPLOY

HMM

HOURS

IP

ISM

LRG

ORDERS

RSALES

SML

SP500

STARTS

SUPDEL

TBILL

TBOND

1.2

1.6

2.0

2.4

1.2 1.6 2.0

ARX−MA−SVRW vs ARX−MA: bust sample

Figure 9: MCRPS for models without and with stochastic-volatility component
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5 Conclusions

In this paper we suggest an eclectic model that is based on the fusion of several types of models
already suggested in the forecasting literature. More specifically, our specification of the mixed-
frequency multiple-indicator model with moving-average stochastic volatility nests 1) U-MIDAS
model of Foroni et al. (2015) based either on a single or multiple high-frequency explanatory
variables, 2) U-MIDAS model with MA-component of Foroni et al. (2019); and 3) multiple-indicator
model with stochastic volatility of Carriero et al. (2015). We show how the most general model
specification as well as its restricted versions can be estimated by application of the Bayesian
approach using the precision-based algorithm of Chan (2013). Our model also serves as a viable
alternative to the bootstrap-based density forecasting in mixed-frequency models as suggested in
Aastveit et al. (2017).

In a recent study Foroni et al. (2019) point out that in mixed-frequency models it is natural to
expect moving-average component in the regression residuals. Foroni et al. (2019) argue that by
integrating explicitly the moving-average term into the model specification tends to improve point
forecast accuracy in this class of models. Nevertheless the analysis of Foroni et al. (2019) seems
to be unnecessary restricted as they focus on a) single-indicator mixed-frequency models with b)
homoskedastic innovations and their analysis is centered on c) point forecasts.

Contributing to the forecasting literature with mixed-frequency models our general specification
of the model allows us to re-assess marginal improvements from the moving-average component a)
by employing models both with single- and multiple auxiliary high-frequency indicators, b) by
examining models both with homo- and heteroskedastic innovations, and c) by focusing not only
on point- but also density forecast accuracy. An additional difference of our approach from that in
Foroni et al. (2019) is that instead of relying on the method of Non-linear Least Squares we apply
Bayesian approach for model estimation and generation of out-of-sample forecast densities.

In our analysis we employ real-time vintages of the dependent variable (US GDP growth) and
twelve auxiliary economic and financial indicators collected by Carriero et al. (2015). By focusing
on this data set allows us to compare our estimation results with those of Carriero et al. (2015)
and Siliverstovs (2020) obtained using different estimator of stochastic volatility.

We find a rather week evidence of the usefulness of incorporating the moving-average component
in the mixed-frequency forecasting regressions. We find no systematic evidence that the inclusion
of the MA-term significantly boosts forecast accuracy. In fact, for the most accurate models the
difference in the forecasting performance between models without and with MA-term is negligi-
ble. This holds both for point and density forecasts and irrespective whether stochastic volatility
component is absent or present in the model.

Our analysis further confirms findings of Chauvet and Potter (2013) and Siliverstovs (2020)
on differences in the forecasting performance during expansions and recessions. Furthermore, our
findings strongly suggest to incorporate stochastic volatility in the models when assessing the
goodness of a forecasting model of US GDP growth in terms of density forecasts.

18



Table 2: RMSFE

Full sample Boom sample Bust sample
MODEL ARX ARX

MA
ARX

SVRW
ARX

MA
SVRW

ARX ARX
MA

ARX
SVRW

ARX
MA

SVRW

ARX ARX
MA

ARX
SVRW

ARX
MA

SVRW
Benchmark

AR2 2.03 2.02 2.04 2.07 1.67 1.66 1.72 1.73 3.60 3.59 3.49 3.59
HMM 2.24 2.10 2.24 2.11 1.65 1.66 1.63 1.63 4.51 3.92 4.56 4.03

SIM
TBOND 2.10 2.08 2.09 2.07 1.76 1.75 1.86 1.85 3.60 3.57 3.20 3.18
EMPLOY 2.11 2.03 2.10 2.02 2.12 2.00 2.10 1.99 2.03 2.26 2.06 2.22
HOURS 2.03 2.07 2.01 2.02 1.74 1.83 1.69 1.72 3.39 3.26 3.46 3.40
SUPDEL 1.96 1.98 1.98 2.01 1.60 1.59 1.63 1.63 3.54 3.63 3.50 3.64
IP 2.06 2.04 2.00 1.99 1.74 1.72 1.70 1.70 3.53 3.48 3.40 3.34
SP500 2.07 1.91 2.09 1.99 1.87 1.87 1.86 1.87 3.10 2.13 3.21 2.63
STARTS 2.03 2.05 1.93 1.97 1.89 1.90 1.72 1.73 2.80 2.88 2.96 3.11
TBILL 2.08 2.08 1.99 1.97 1.67 1.69 1.68 1.67 3.80 3.73 3.38 3.32
RSALES 2.13 2.05 2.08 1.93 1.92 1.95 1.87 1.72 3.19 2.64 3.13 2.97
ORDERS 1.98 1.97 1.89 1.89 1.97 1.96 1.87 1.86 2.03 2.04 2.00 2.06
CLAIMS 1.79 1.79 1.82 1.87 1.68 1.66 1.68 1.75 2.39 2.45 2.58 2.55
ISM 1.80 1.77 1.75 1.73 1.75 1.71 1.71 1.69 2.05 2.09 1.98 2.00

MIM
SML 1.59 1.59 1.56 1.56 1.55 1.55 1.51 1.51 1.84 1.83 1.84 1.83
LRG 1.62 1.72 1.56 1.59 1.63 1.74 1.56 1.60 1.54 1.61 1.57 1.55
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Table 3: MLOGS

Full sample Boom sample Bust sample
MODEL ARX ARX

MA
ARX

SVRW
ARX

MA
SVRW

ARX ARX
MA

ARX
SVRW

ARX
MA

SVRW

ARX ARX
MA

ARX
SVRW

ARX
MA

SVRW
Benchmark

AR2 2.39 2.39 2.15 2.16 2.34 2.34 2.05 2.06 2.73 2.72 2.80 2.83
HMM 2.45 2.41 2.20 2.16 2.37 2.35 2.06 2.05 3.01 2.80 3.10 2.95

SIM
TBOND 2.36 2.36 2.18 2.18 2.31 2.31 2.11 2.11 2.72 2.71 2.67 2.69
SP500 2.40 2.36 2.18 2.16 2.37 2.36 2.10 2.12 2.58 2.39 2.68 2.46
HOURS 2.39 2.40 2.15 2.16 2.35 2.36 2.05 2.06 2.65 2.64 2.82 2.80
ORDERS 2.20 2.20 2.17 2.16 2.19 2.20 2.17 2.15 2.21 2.22 2.16 2.18
EMPLOY 2.21 2.18 2.18 2.15 2.22 2.17 2.16 2.12 2.19 2.25 2.30 2.34
SUPDEL 2.34 2.34 2.14 2.15 2.29 2.28 2.04 2.04 2.70 2.76 2.84 2.90
TBILL 2.35 2.34 2.14 2.14 2.29 2.28 2.05 2.05 2.79 2.78 2.71 2.69
RSALES 2.35 2.32 2.15 2.12 2.31 2.29 2.07 2.04 2.60 2.45 2.74 2.67
STARTS 2.34 2.34 2.11 2.12 2.32 2.32 2.03 2.02 2.47 2.49 2.69 2.78
CLAIMS 2.31 2.31 2.09 2.12 2.30 2.29 2.03 2.08 2.40 2.42 2.48 2.44
IP 2.13 2.12 2.08 2.06 2.10 2.09 2.03 2.02 2.40 2.38 2.40 2.33
ISM 2.22 2.21 2.05 2.04 2.21 2.20 2.04 2.03 2.26 2.27 2.10 2.12

MIM
SML 2.09 2.09 1.90 1.90 2.08 2.08 1.86 1.87 2.14 2.14 2.11 2.10
LRG 2.04 2.06 1.94 1.97 2.05 2.07 1.94 1.96 2.02 2.05 1.97 1.98
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Table 4: MCRPS

Full sample Boom sample Bust sample
MODEL ARX ARX

MA
ARX

SVRW
ARX

MA
SVRW

ARX ARX
MA

ARX
SVRW

ARX
MA

SVRW

ARX ARX
MA

ARX
SVRW

ARX
MA

SVRW
Benchmark

AR2 1.27 1.27 1.13 1.14 1.15 1.15 0.99 1.00 2.03 2.03 2.02 2.08
HMM 1.36 1.30 1.20 1.15 1.17 1.16 0.98 0.97 2.60 2.23 2.68 2.36

SIM
TBOND 1.28 1.27 1.17 1.16 1.16 1.15 1.07 1.06 2.07 2.06 1.83 1.83
EMPLOY 1.18 1.15 1.16 1.14 1.18 1.13 1.16 1.11 1.17 1.27 1.21 1.30
HOURS 1.28 1.29 1.13 1.13 1.18 1.21 0.99 1.00 1.91 1.84 2.03 1.99
SP500 1.30 1.23 1.16 1.13 1.22 1.22 1.06 1.06 1.80 1.32 1.89 1.54
SUPDEL 1.22 1.22 1.11 1.12 1.10 1.09 0.96 0.97 2.03 2.10 2.06 2.17
TBILL 1.25 1.25 1.11 1.10 1.12 1.12 0.99 0.99 2.13 2.08 1.91 1.87
ORDERS 1.15 1.15 1.11 1.10 1.15 1.15 1.10 1.09 1.19 1.20 1.16 1.18
STARTS 1.25 1.25 1.08 1.10 1.19 1.19 0.98 0.98 1.62 1.66 1.77 1.89
RSALES 1.27 1.23 1.15 1.10 1.19 1.18 1.04 0.99 1.83 1.54 1.87 1.78
CLAIMS 1.16 1.16 1.04 1.07 1.13 1.11 0.97 1.01 1.41 1.44 1.51 1.47
IP 1.11 1.09 1.07 1.05 1.03 1.02 0.98 0.97 1.64 1.61 1.62 1.58
ISM 1.11 1.10 1.00 1.00 1.09 1.08 0.99 0.98 1.21 1.23 1.11 1.12

MIM
SML 0.97 0.97 0.87 0.87 0.95 0.95 0.84 0.84 1.07 1.07 1.05 1.05
LRG 0.96 1.00 0.89 0.91 0.96 1.01 0.89 0.91 0.93 0.96 0.91 0.91
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