A sample coordination method suitable for environmental monitoring

Xin Zhao & Anton Grafström

Department of Forest Resource Management Swedish University of Agriculture Sciences

17 June

	Coordination for spatially balanced samples	References 0
Contont		

- 2 Notations and terminologies
- 3 Coordination for spatially balanced samples

4 An example

Motivation and ideas	Notations and terminologies	Coordination for spatially balanced samples	An example	References
●00		00000	00000	O
Motivation	1			

- High cost in environmental monitoring programs.
- Auxiliary information from remote sensing available.

Motivation and ideas ●00	Coordination for spatially balanced samples	References 0
Motivation		

- High cost in environmental monitoring programs.
- Auxiliary information from remote sensing available.
- Efficient sampling strategies to guide the sample selection.

Motivation and ideas ○●○	Coordination for spatially balanced samples	References 0
Aim		

- Construct a framework for long-term environmental monitoring that has potential to produce superior estimators.
 - (i) Current state.
 - (ii) Change.

General ideas of the new sampling strategy

• A continuous framework and a double sampling approach are employed.

General ideas of the new sampling strategy

- A continuous framework and a double sampling approach are employed.
- Spatially balanced sampling
- Positive coordination of samples over time

References 0

General ideas of the new sampling strategy

- A continuous framework and a double sampling approach are employed.
- Spatially balanced sampling improve the state estimators.
- Positive coordination of samples over time

le Referenc O

General ideas of the new sampling strategy

- A continuous framework and a double sampling approach are employed.
- Spatially balanced sampling improve the state estimators.
- Positive coordination of samples over time improve the change estimators.

	Notations and terminologies •000000	Coordination for spatially balanced samples	References 0
Sampling strategies for	continuous populations		
A continuo	ous population		

A surface with its surface area $\ell(F)$.

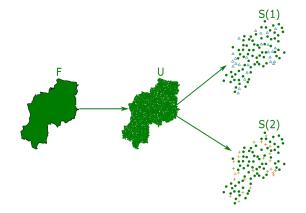
	Notations and terminologies	Coordination for spatially balanced samples	
Sampling strategies for	continuous populations		
A continuo	ous population		

- Response of a target variable for the point x at time t can be denoted as y_t(x).
- Population total at time t: $Y(t) = \int_F y_t(\mathbf{x}) d\mathbf{x}$.
- $\pi_t(\mathbf{x})$: (prescribed) sampling intensity.

$$\int_F \pi_t(\mathbf{x}) d\mathbf{x} = n(t).$$

	Notations and terminologies	Coordination for spatially balanced samples				
Sampling strategies for continuous populations						
New same	ling strategy					

- Select a very large sample of N locations using $\pi(\mathbf{x}) = \frac{N}{\ell(F)}$.
- $U = \{1, ..., i, ..., N\}.$

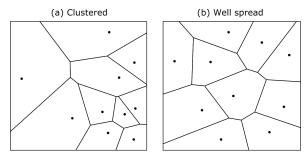

s

ъX

• Derive auxiliary responses for each unit from *U* at different time occasions.

	Notations and terminologies	Coordination for spatially balanced samples	References 0
Sampling strategies for	continuous populations		

New sampling strategy



• Select positively coordinated and well-spread *S*(*t*) from *U* using auxiliary information by spatially correlated Poisson sampling (SCPS).

Xin Zhao

	Notations and terminologies	Coordination for spatially balanced samples	References 0
Sampling strategies for	continuous populations		
Spatial bal	ance		

• Vornoi polytopes (Stevens & Olsen, 2004) to describe the spatial balance.

	Notations and terminologies	Coordination for spatially balanced samples	References 0
Sampling strategies for	continuous populations		
Sample co	ordination		

• Maximize the overlap between samples drawn from overlapping populations.

	Notations and terminologies	Coordination for spatially balanced samples	References 0
Sampling strategies for	continuous populations		
Sample co	ordination		

- Maximize the overlap between samples drawn from overlapping populations.
- Selection of a new sample depend on the samples previously drawn.

	Notations and terminologies 000000●	Coordination for spatially balanced samples	References 0
Sampling strategies for	continuous populations		
Unbiased E	Estimator		

• The unbiased Horvitz-Thompson (HT) estimator of the population total Y(t) is then defined as

$$\widehat{Y}(t) = \sum_{i \in S(t)} \frac{y_t(\mathbf{x}_i)}{\pi_t(\mathbf{x}_i)},$$
(1)

where $\pi_t(\mathbf{x}_i) = \pi(\mathbf{x}_i) \cdot \pi_i(t)$.

	Coordination for spatially balanced samples	References 0
Coordination for SCPS		

• A list-sequential sampling method and a spatial modification of the correlated Poisson sampling (Bondesson & Thorburn, 2008).

	Coordination for spatially balanced samples	References 0
Coordination for SCPS		

- A list-sequential sampling method and a spatial modification of the correlated Poisson sampling (Bondesson & Thorburn, 2008).
- Update inclusion probabilities of units in U by N steps.

	Coordination for spatially balanced samples •••••	References 0
Coordination for SCPS		

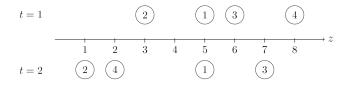
- A list-sequential sampling method and a spatial modification of the correlated Poisson sampling (Bondesson & Thorburn, 2008).
- Update inclusion probabilities of units in U by N steps.
- Assign each unit in the list a permanent random number r_i , with $r_1, r_2, ..., r_N$ i.i.d. U(0, 1).

	Coordination for spatially balanced samples •••••	References 0
Coordination for SCPS		

- A list-sequential sampling method and a spatial modification of the correlated Poisson sampling (Bondesson & Thorburn, 2008).
- Update inclusion probabilities of units in U by N steps.
- Assign each unit in the list a permanent random number r_i , with $r_1, r_2, ..., r_N$ i.i.d. U(0, 1).
- At each step and time, $I_j(t) = 1$, if $r_j < \pi_j^{(j-1)}(t)$.

		Coordination for spatially balanced samples	References 0
Algorithm of positive c	oordination using SCPS		

• The updating can be illustrated as


 Motivation and ideas
 Notations and terminologies
 Coordination for spatially balanced samples
 An example
 References

 000
 00000
 00000
 0
 0
 0
 0

 Algorithm of positive coordination using SCPS
 0
 0
 0
 0
 0

Illustration of the algorithm for two time occasions

• Example: N = 4 and n(t) = 2. The visiting order is 1, 2, 3, 4.

Motivation and ideas Notations and terminol
000 000000

Coordination for spatially balanced samples $\circ \circ \circ \circ \circ \circ$

An example R 00000 C

Algorithm of positive coordination using SCPS

Step 1:

Step 2:

Illustration of the algorithm for two time occasions

Time occasion 1
$\left(\pi^{(0)}(1): \tfrac{3}{4}, \tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{4} \right)$
$r_1 = 0.9821 > \pi_1(1) \Longrightarrow I_1(1) = 0$
$w_3^{(1)}(1) = \frac{2}{3} \Longrightarrow \pi_3^{(1)}(1) = 1$
$\psi_2^{(1)}(1) = \frac{1}{3} \Longrightarrow \pi_2^{(1)}(1) = \frac{3}{4}$
$\psi_{4}^{(1)}(1) = 0 \Longrightarrow \pi_{4}^{(1)}(1) = \frac{1}{4}$
$\stackrel{\checkmark}{\pi^{(1)}(1):0,\frac{3}{4},1,\frac{1}{4}}$
$r_2 = 0.6782 < \pi_2(1) \Longrightarrow I_2(1) = 1$
$w_3^{(2)}(1) = 0 \Longrightarrow \pi_3^{(2)}(1) = 1$
$w_4^{(2)}(1) = 1 \Longrightarrow \pi_4^{(2)}(1) = 0$
$\pi^{(2)}(1):0,1,1,0$
S(1): 2, 3

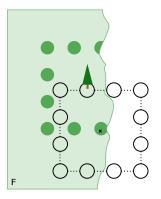
Time occasion 2 $\pi^{(0)}(2): \frac{3}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}$ $r_1 = 0.9821 > \pi_1(2) \Longrightarrow I_1(2) = 0$ $w^{(1)}_3(2) = \tfrac{2}{3} \Longrightarrow \pi^{(1)}_3(2) = 1 \\ \downarrow$ $w_4^{(1)}(2) = \frac{1}{3} \Longrightarrow \pi_4^{(1)}(2) = \frac{1}{2}$ $w_2^{(1)}(2) = 0 \Longrightarrow \pi_2^{(1)}(2) = \frac{1}{2}$ $\pi^{(1)}(2):0,\frac{1}{2},1,\frac{1}{2}$ $r_2 = 0.6782 > \pi_2(2) \Longrightarrow I_2(2) = 0$ $w^{(2)}_4(2) = 1 \Longrightarrow \pi^{(2)}_4(2) = 1 \\ \downarrow$ $w_{2}^{(2)}(2) = 0 \Longrightarrow \pi_{2}^{(2)}(2) = 1$ $\pi^{(2)}(2): 0, 0, 1, 1$ S(2): 3, 4

 Motivation and ideas
 Notations and terminologies
 Coordination for spatially balanced samples
 An example
 References

 000
 000000
 0000
 00000
 0
 0

 Algorithm of positive coordination using SCPS
 0000
 0
 0
 0

Variance estimator for spatially balanced samples


• Grafström & Schelin (2014) derived an approximate variance estimator under spatially balanced sampling. It can be expressed as

$$\widehat{V}(\widehat{Y}_t) = \frac{1}{2} \sum_{i \in S_t} \left[\frac{y_i(t)}{\pi_i(t)} - \frac{y_{i'}(t)}{\pi_{i'}(t)} \right]^2, \tag{2}$$

where i' is the nearest neighbour to i in the random sample with n_t locations selected at time t.

		Coordination for spatially balanced samples	An example ●0000	References 0
National forest invento	ries (NFIs)			
The study	region			

		Coordination for spatially balanced samples	An example 0●000	References 0
National forest invento	ries (NFIs)			
Auxiliary v	ariables			

• Geographic coordinates of the cluster center.

		Coordination for spatially balanced samples	An example 0●000	References 0
National forest invento	ries (NFIs)			
Auxiliary v	ariables			

- Geographic coordinates of the cluster center.
- Mean elevation of the cluster.

		Coordination for spatially balanced samples	An example 0●000	
National forest invento	ries (NFIs)			
Auxiliary v	ariables			

- Geographic coordinates of the cluster center.
- Mean elevation of the cluster.
- Cluster mean tree height and mean basal area.

		Coordination for spatially balanced samples	An example 00●00	References 0
National forest invento	ries (NFIs)			
Five strate	gies			

• Strategy 1: Positive coordination using SCPS.

		Coordination for spatially balanced samples	An example 00●00	References 0
National forest invento	ries (NFIs)			
Five strate	gies			

- Strategy 1: Positive coordination using SCPS.
- Strategy 2: Permanent geographic-spread sample over time.

		Coordination for spatially balanced samples	An example 00●00	References 0
National forest invento	ries (NFIs)			
Five strate	gies			

- Strategy 1: Positive coordination using SCPS.
- Strategy 2: Permanent geographic-spread sample over time.
- Strategy 3: Permanent sample selected by SCPS which is only well spread at the first time occasion.

		Coordination for spatially balanced samples	An example 00●00	References 0
National forest invento	ries (NFIs)			
Five strate	gies			

- Strategy 1: Positive coordination using SCPS.
- Strategy 2: Permanent geographic-spread sample over time.
- Strategy 3: Permanent sample selected by SCPS which is only well spread at the first time occasion.
- Strategy 4: Independent well-spread samples selected by SCPS over time.

		Coordination for spatially balanced samples	An example 00●00	References 0
National forest invento	ries (NFIs)			
Five strate	gies			

- Strategy 1: Positive coordination using SCPS.
- Strategy 2: Permanent geographic-spread sample over time.
- Strategy 3: Permanent sample selected by SCPS which is only well spread at the first time occasion.
- Strategy 4: Independent well-spread samples selected by SCPS over time.
- Strategy 5: Split panel designs to split the sample into two parts (permanent geographic-spread + well-spread), it stands for the current strategy of the Swedish NFI.

	Coordination for spatially balanced samples	An example ○○○●○	
Simulation result			

Strategy	SB	Overlap	$V\left(\widehat{\overline{Z}}_{h}(1)\right)$	$V\left(\widehat{\overline{Z}}_{h}(2)\right)$	$V\left(\widehat{\Delta}_{\overline{Z}_{h}(1,2)}\right)$	$V\left(\widehat{\overline{Z}}_b(1)\right)$	$V\left(\widehat{\overline{Z}}_b(2)\right)$	$V\left(\widehat{\Delta}_{\overline{Z}_{b}(1,2)}\right)$
1	0.127	62	0.809	0.744	0.978	0.017	0.017	0.022
2	0.238	100	10.311	10.165	2.130	0.233	0.242	0.048
3	0.171	100	0.809	2.475	1.969	0.017	0.058	0.043
4	0.128	1	0.809	0.776	1.608	0.017	0.018	0.035
P ₂₈	0.167	20	3.157	1.115	4.169	0.071	0.026	0.094
P ₅₅	0.209	50	4.694	2.122	5.986	0.106	0.050	0.138
P ₇₃	0.228	70	6.486	4.111	7.370	0.148	0.098	0.171
P ₈₂	0.236	80	7.869	6.125	7.411	0.177	0.144	0.170

	Coordination for spatially balanced samples	An example ○○○○●	
Conclusions			

• We can achieve great improvements for the state estimators and some improvements for the estimator of change for the auxiliary variables.

	Coordination for spatially balanced samples	An example ○○○○●	
Conclusions			

- We can achieve great improvements for the state estimators and some improvements for the estimator of change for the auxiliary variables.
- If we use spatially balanced samples without doing positive coordination, we can only improve the state estimators.

	Coordination for spatially balanced samples	An example ○○○○●	
Conclusions			

- We can achieve great improvements for the state estimators and some improvements for the estimator of change for the auxiliary variables.
- If we use spatially balanced samples without doing positive coordination, we can only improve the state estimators.
- Potential to reduce the variance for the target variables related to the auxiliary variables.

	Coordination for spatially balanced samples	An example ○○○○●	
Conclusions			

- We can achieve great improvements for the state estimators and some improvements for the estimator of change for the auxiliary variables.
- If we use spatially balanced samples without doing positive coordination, we can only improve the state estimators.
- Potential to reduce the variance for the target variables related to the auxiliary variables.
- Potential to change the complex strategy of the current Swedish NFI.

		Coordination for spatially balanced samples		References ●
		. (2008). A List Sequential		
Method S	Suitable for Real-T	ime Sampling. <i>Scandinavia</i>	n Journal	of

Statistics, 35, 466-483.

- Deville, J.-C. & Tillé, Y. (1998). Unequal probability sampling without replacement through a splitting method. *Biometrika*, 85, 89-101.
- Grafström, A. (2012). Spatially correlated Poisson sampling. *Journal* of *Statistical Planning and Inference*, 142(1), 139-147.
- Grafström, A. & Schelin, L. (2014). How to Select Representative Samples. *Scandinavian Journal of Statistics*, 41(2), 277-290.
- Stevens, D.L. & Olsen, A.R. (2004). Spatially Balanced Sampling of Natural Resources. *Journal of the American Statistical Association*, 99(465), 262-278.