Response set imbalance and non-response bias: a theoretical study with full use of auxiliary information

Kaur Lumiste

BaNoCoSS 2019

Introduction

In sample surveys we are interested in estimates of unknown parameters of a population, based on a selected sample

Introduction

In sample surveys we are interested in estimates of unknown parameters of a population, based on a selected sample, but often non-response occurs, the full sample cannot be collected.

Introduction

In sample surveys we are interested in estimates of unknown parameters of a population, based on a selected sample, but often non-response occurs, the full sample cannot be collected.

In practice troubles from non-response are treated in the estimation stage, usually with the aid of auxiliary information.

Introduction

In sample surveys we are interested in estimates of unknown parameters of a population, based on a selected sample, but often non-response occurs, the full sample cannot be collected.

In practice troubles from non-response are treated in the estimation stage, usually with the aid of auxiliary information.

Responsive (or adaptive) designs: Action should be taken during the data collection and with the aid of auxiliary information, the goal is to obtain in the end a well balanced set of respondents.

Introduction

In sample surveys we are interested in estimates of unknown parameters of a population, based on a selected sample, but often non-response occurs, the full sample cannot be collected.

In practice troubles from non-response are treated in the estimation stage, usually with the aid of auxiliary information.

Responsive (or adaptive) designs: Action should be taken during the data collection and with the aid of auxiliary information, the goal is to obtain in the end a well balanced set of respondents.

The crucial question: Will better balanced response guarantee better accuracy (lower variance and/or bias) in the estimates?

Notation

Let $U=(1,2, \ldots, N)$ denote a finite population.

Notation

Let $U=(1,2, \ldots, N)$ denote a finite population.

We take a random sample s of size n

Notation

Let $U=(1,2, \ldots, N)$ denote a finite population.

We take a random sample s of size n to estimate the population total $Y=\sum_{U} y_{k}$ of the study variable y.

Notation

Let $U=(1,2, \ldots, N)$ denote a finite population.

We take a random sample s of size n to estimate the population total $Y=\sum_{U} y_{k}$ of the study variable y.

The sampling design, which is used to select sample s, generates for each element $k \in U$ a known inclusion probability $\pi_{k}=\operatorname{Pr}(k \in s)$

Notation

Let $U=(1,2, \ldots, N)$ denote a finite population.

We take a random sample s of size n to estimate the population total $Y=\sum_{U} y_{k}$ of the study variable y.

The sampling design, which is used to select sample s, generates for each element $k \in U$ a known inclusion probability $\pi_{k}=\operatorname{Pr}(k \in s)$
and a design weight $d_{k}=1 / \pi_{k}$.

Notation

Non-response occurs

Notation

Non-response occurs and values y_{k} are only recorded for a subset of units response set, $r \subset s$.

Notation

Non-response occurs and values y_{k} are only recorded for a subset of units response set, $r \subset s$.

It is assumed that we have access to auxiliary variables $\mathbf{x}_{k}=\left(x_{k 1}, x_{k 2}, \ldots, x_{k J}\right)^{\prime}$ that are known $\forall k \in s$ and we know the population totals $\mathbf{X}=\sum_{U} \mathbf{x}_{k}$.

Notation

Non-response occurs and values y_{k} are only recorded for a subset of units response set, $r \subset s$.

It is assumed that we have access to auxiliary variables $\mathbf{x}_{k}=\left(x_{k 1}, x_{k 2}, \ldots, x_{k J}\right)^{\prime}$ that are known $\forall k \in s$ and we know the population totals $\mathbf{X}=\sum_{U} \mathbf{x}_{k}$.

We assume that the auxiliary vector can be constructed as such that

$$
\boldsymbol{\mu}^{\prime} \mathbf{x}_{k}=1, \forall k \in s, \text { for some vector } \boldsymbol{\mu} \text { independent on } k .
$$

Balance and imbalance

The response set is balanced if

$$
\overline{\mathbf{x}}_{r}=\frac{\sum_{r} d_{k} \mathbf{x}_{k}}{\sum_{r} d_{k}}=\frac{\sum_{s} d_{k} \mathbf{x}_{k}}{\sum_{s} d_{k}}=\overline{\mathbf{x}}_{s} .
$$

Balance and imbalance

The response set is balanced if

$$
\overline{\mathbf{x}}_{r}=\frac{\sum_{r} d_{k} \mathbf{x}_{k}}{\sum_{r} d_{k}}=\frac{\sum_{s} d_{k} \mathbf{x}_{k}}{\sum_{s} d_{k}}=\overline{\mathbf{x}}_{s} .
$$

We measure imbalance with

$$
I M B=P^{2}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right)^{\prime} \Sigma_{s}^{-1}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right),
$$

Balance and imbalance

The response set is balanced if

$$
\overline{\mathbf{x}}_{r}=\frac{\sum_{r} d_{k} \mathbf{x}_{k}}{\sum_{r} d_{k}}=\frac{\sum_{s} d_{k} \mathbf{x}_{k}}{\sum_{s} d_{k}}=\overline{\mathbf{x}}_{s} .
$$

We measure imbalance with

$$
I M B=P^{2}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right)^{\prime} \Sigma_{s}^{-1}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right),
$$

where

$$
P=\sum_{r} d_{k} / \sum_{s} d_{k}, \quad \Sigma_{s}=\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime} / \sum_{s} d_{k} .
$$

Balance and imbalance

The response set is balanced if

$$
\overline{\mathbf{x}}_{r}=\frac{\sum_{r} d_{k} \mathbf{x}_{k}}{\sum_{r} d_{k}}=\frac{\sum_{s} d_{k} \mathbf{x}_{k}}{\sum_{s} d_{k}}=\overline{\mathbf{x}}_{s} .
$$

We measure imbalance with

$$
I M B=P^{2}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right)^{\prime} \Sigma_{s}^{-1}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right),
$$

where

$$
P=\sum_{r} d_{k} / \sum_{s} d_{k}, \quad \Sigma_{s}=\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime} / \sum_{s} d_{k} .
$$

$I M B$ takes values between $0 \leq I M B \leq P(1-P)$.

Balance and imbalance

The response set is balanced if

$$
\overline{\mathbf{x}}_{r}=\frac{\sum_{r} d_{k} \mathbf{x}_{k}}{\sum_{r} d_{k}}=\frac{\sum_{s} d_{k} \mathbf{x}_{k}}{\sum_{s} d_{k}}=\overline{\mathbf{x}}_{s} .
$$

We measure imbalance with

$$
I M B=P^{2}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right)^{\prime} \Sigma_{s}^{-1}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right),
$$

where

$$
P=\sum_{r} d_{k} / \sum_{s} d_{k}, \quad \Sigma_{s}=\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime} / \sum_{s} d_{k} .
$$

$I M B$ takes values between $0 \leq I M B \leq P(1-P)$.

Guiding data collection with $I M B$ - monitoring response.

Estimation based on s

Horvitz-Thompson estimator (HT):

$$
\hat{Y}_{F U L}=\sum_{s} d_{k} y_{k}=\hat{N} \bar{y}_{s} .
$$

Estimation based on s

Horvitz-Thompson estimator (HT):

$$
\hat{Y}_{F U L}=\sum_{s} d_{k} y_{k}=\hat{N} \bar{y}_{s} .
$$

Calibration estimator

$$
\hat{Y}_{C A L}^{*}=\sum_{s} d_{k} w_{k} y_{k},
$$

where $w_{k}=\left(\sum_{U} \mathbf{x}_{k}\right)^{\prime}\left(\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \mathbf{x}_{k}$.

Estimation based on s

Horvitz-Thompson estimator (HT):

$$
\hat{Y}_{F U L}=\sum_{s} d_{k} y_{k}=\hat{N} \bar{y}_{s} .
$$

Calibration estimator

$$
\hat{Y}_{C A L}^{*}=\sum_{s} d_{k} w_{k} y_{k},
$$

where $w_{k}=\left(\sum_{U} \mathbf{x}_{k}\right)^{\prime}\left(\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \mathbf{x}_{k}$.

Weights w_{k} satisfy calibration requirements:

$$
\sum_{s} d_{k} w_{k} \mathbf{x}_{k}^{\prime}=\sum_{U} \mathbf{x}_{k}^{\prime}
$$

Estimation under non-response

The expansion estimator:

$$
\hat{Y}_{E X P}=\hat{N} \sum_{r} d_{k} y_{k} / \sum_{r} d_{k}=\hat{N} \bar{y}_{r},
$$

where $\bar{y}_{r}=\sum_{r} d_{k} y_{k} / \sum_{r} d_{k}$.

Estimation under non-response

The expansion estimator:

$$
\hat{Y}_{E X P}=\hat{N} \sum_{r} d_{k} y_{k} / \sum_{r} d_{k}=\hat{N} \bar{y}_{r},
$$

where $\bar{y}_{r}=\sum_{r} d_{k} y_{k} / \sum_{r} d_{k}$.

The calibration estimator under non-response:

$$
\hat{Y}_{C A L}=\sum_{r} d_{k} g_{k} y_{k},
$$

where

$$
g_{k}=\left(\sum_{s} d_{k} \mathbf{x}_{k}\right)^{\prime}\left(\sum_{r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \mathbf{x}_{k}
$$

Imbalance of study variable

The study variable imbalance is characterised by

$$
\bar{y}_{r}-\bar{y}_{s},
$$

where $\bar{y}_{s}=\sum_{s} d_{k} y_{k} / \sum_{s} d_{k}$ and $\bar{y}_{r}=\sum_{r} d_{k} y_{k} / \sum_{r} d_{k}$.

Imbalance of study variable

The study variable imbalance is characterised by

$$
\bar{y}_{r}-\bar{y}_{s},
$$

where $\bar{y}_{s}=\sum_{s} d_{k} y_{k} / \sum_{s} d_{k}$ and $\bar{y}_{r}=\sum_{r} d_{k} y_{k} / \sum_{r} d_{k}$.

If we multiple with \hat{N} we get:

$$
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right)=\hat{Y}_{E X P}-\hat{Y}_{F U L} .
$$

Imbalance of study variable

The study variable imbalance is characterised by

$$
\bar{y}_{r}-\bar{y}_{s},
$$

where $\bar{y}_{s}=\sum_{s} d_{k} y_{k} / \sum_{s} d_{k}$ and $\bar{y}_{r}=\sum_{r} d_{k} y_{k} / \sum_{r} d_{k}$.

If we multiple with \hat{N} we get:

$$
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right)=\hat{Y}_{E X P}-\hat{Y}_{F U L} .
$$

Let us expand the right side by $\pm \hat{Y}_{C A L}$:

$$
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right)=\left(\hat{Y}_{E X P}-\hat{Y}_{C A L}\right)+\left(\hat{Y}_{C A L}-\hat{Y}_{F U L}\right)
$$

Non-response bias

$$
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right)=\left(\hat{Y}_{E X P}-\hat{Y}_{C A L}\right)+\left(\hat{Y}_{C A L}-\hat{Y}_{F U L}\right)
$$

Non-response bias

$$
\begin{aligned}
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right) & =\left(\hat{Y}_{E X P}-\hat{Y}_{C A L}\right)+\left(\hat{Y}_{C A L}-\hat{Y}_{F U L}\right) \\
& =\hat{N}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right)^{\prime} \mathbf{b}_{r}+\hat{N}\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{s} .
\end{aligned}
$$

where $\mathbf{b}_{r}=\left(\sum_{r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \sum_{r} d_{k} \mathbf{x}_{k} y_{k}$ and $\mathbf{b}_{s}=\left(\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \sum_{s} d_{k} \mathbf{x}_{k} y_{k}$.

Non-response bias

$$
\begin{aligned}
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right) & =\left(\hat{Y}_{E X P}-\hat{Y}_{C A L}\right)+\left(\hat{Y}_{C A L}-\hat{Y}_{F U L}\right) \\
& =\hat{N}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{s}\right)^{\prime} \mathbf{b}_{r}+\hat{N}\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{s} .
\end{aligned}
$$

where $\mathbf{b}_{r}=\left(\sum_{r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \sum_{r} d_{k} \mathbf{x}_{k} y_{k}$ and $\mathbf{b}_{s}=\left(\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \sum_{s} d_{k} \mathbf{x}_{k} y_{k}$.

This decompositions highlights two undesirable differences:

- Difference due to imbalance in the response
- Difference due to biased regression

Previous results

Let's denote

$$
\Delta_{r}=\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{s}=\left(\hat{Y}_{C A L}-\hat{Y}_{F U L}\right) / \hat{N}
$$

and investigate the effect of imbalance on Δ_{r}.

Previous results

Let's denote

$$
\Delta_{r}=\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{s}=\left(\hat{Y}_{C A L}-\hat{Y}_{F U L}\right) / \hat{N}
$$

and investigate the effect of imbalance on Δ_{r}.
Särndal et. al (2016) showed that under certain simplifying conditions, the conditional mean $E\left(\Delta_{r} \mid \overline{\mathbf{x}}_{r}, m, s\right)=0$

Previous results

Let's denote

$$
\Delta_{r}=\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{s}=\left(\hat{Y}_{C A L}-\hat{Y}_{F U L}\right) / \hat{N}
$$

and investigate the effect of imbalance on Δ_{r}.
Särndal et. al (2016) showed that under certain simplifying conditions, the conditional mean $E\left(\Delta_{r} \mid \overline{\mathbf{x}}_{r}, m, s\right)=0$ and the conditional variance

$$
V\left(\Delta_{r} \mid \overline{\mathbf{x}}_{r}, m, s\right) \approx \frac{S_{y}^{2}}{m}\left(1-p+\frac{I M B}{p^{2}}\right)
$$

where m is the number of respondents, $p=m / n$ is the response rate, $S_{y}^{2}=\sum_{j=1}^{J} n_{j} / n S_{y j}^{2}$ and $S_{y j}^{2}=\sum_{s_{j}}\left(y_{k}-\bar{y}_{s_{j}}\right)^{2} /\left(n_{j}-1\right), j=1, \ldots, J$.

Further exploration

For simplification let us redefine the calibration estimator under non-response:

$$
\hat{Y}_{C A L 2}=\sum_{r} d_{k} g_{U k} y_{k}
$$

where $g_{U k}=\left(\sum_{U} \mathbf{x}_{k}\right)^{\prime}\left(\sum_{r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \mathbf{x}_{k}$.

Further exploration

For simplification let us redefine the calibration estimator under non-response:

$$
\hat{Y}_{C A L 2}=\sum_{r} d_{k} g_{U k} y_{k}
$$

where $g_{U k}=\left(\sum_{U} \mathbf{x}_{k}\right)^{\prime}\left(\sum_{r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \mathbf{x}_{k}$.
Let us expand the $\left(\bar{y}_{r}-\bar{y}_{s}\right)$ decomposition with $\pm \hat{Y}_{C A L}^{*}$:

$$
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right)=\left(\hat{Y}_{E X P}-\hat{Y}_{C A L 2}\right)+\left(\hat{Y}_{C A L 2}-\hat{Y}_{C A L}^{*}\right)+\left(\hat{Y}_{C A L}^{*}-\hat{Y}_{F U L}\right)
$$

Further exploration

For simplification let us redefine the calibration estimator under non-response:

$$
\hat{Y}_{C A L 2}=\sum_{r} d_{k} g_{U k} y_{k},
$$

where $g_{U k}=\left(\sum_{U} \mathbf{x}_{k}\right)^{\prime}\left(\sum_{r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right)^{-1} \mathbf{x}_{k}$.
Let us expand the $\left(\bar{y}_{r}-\bar{y}_{s}\right)$ decomposition with $\pm \hat{Y}_{C A L}^{*}$:

$$
\begin{aligned}
\hat{N}\left(\bar{y}_{r}-\bar{y}_{s}\right) & =\left(\hat{Y}_{E X P}-\hat{Y}_{C A L 2}\right)+\left(\hat{Y}_{C A L 2}-\hat{Y}_{C A L}^{*}\right)+\left(\hat{Y}_{C A L}^{*}-\hat{Y}_{F U L}\right) \\
& =\hat{N}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{U}\right)^{\prime} \mathbf{b}_{r}+\hat{N}\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{U}+\hat{N}\left(\overline{\mathbf{x}}_{U}-\overline{\mathbf{x}}_{s}\right)^{\prime} \mathbf{b}_{s}
\end{aligned}
$$

where $\overline{\mathbf{x}}_{U}=\sum_{U} \mathbf{x}_{k} / \sum_{s} d_{k}$.

Further exploration

Let the auxiliary vector be a grouping vector, so that $\mathbf{x}_{k}=(0, \ldots, 1, \ldots, 0)^{\prime}$, where the only 1 indicates the unique group (out of J possible) to which k belongs. Then

$$
\hat{N}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{U}\right)^{\prime} \mathbf{b}_{r}=\hat{N} \sum_{j=1}^{J} \bar{y}_{r j}\left(\frac{m_{j}}{m}-\frac{N_{j}}{\hat{N}}\right),
$$

Further exploration

Let the auxiliary vector be a grouping vector, so that $\mathbf{x}_{k}=(0, \ldots, 1, \ldots, 0)^{\prime}$, where the only 1 indicates the unique group (out of J possible) to which k belongs. Then

$$
\begin{aligned}
& \hat{N}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{U}\right)^{\prime} \mathbf{b}_{r}=\hat{N} \sum_{j=1}^{J} \bar{y}_{r j}\left(\frac{m_{j}}{m}-\frac{N_{j}}{\hat{N}}\right), \\
& \hat{N}\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{U}=\sum_{j=1}^{J} N_{j}\left(\bar{y}_{r j}-\bar{y}_{s j}\right),
\end{aligned}
$$

Further exploration

Let the auxiliary vector be a grouping vector, so that $\mathbf{x}_{k}=(0, \ldots, 1, \ldots, 0)^{\prime}$, where the only 1 indicates the unique group (out of J possible) to which k belongs. Then

$$
\begin{aligned}
& \hat{N}\left(\overline{\mathbf{x}}_{r}-\overline{\mathbf{x}}_{U}\right)^{\prime} \mathbf{b}_{r}=\hat{N} \sum_{j=1}^{J} \bar{y}_{r j}\left(\frac{m_{j}}{m}-\frac{N_{j}}{\hat{N}}\right), \\
& \hat{N}\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{U}=\sum_{j=1}^{J} N_{j}\left(\bar{y}_{r j}-\bar{y}_{s j}\right), \\
& \hat{N}\left(\overline{\mathbf{x}}_{U}-\overline{\mathbf{x}}_{s}\right)^{\prime} \mathbf{b}_{s}=\hat{N} \sum_{i=1}^{J} \bar{y}_{s j}\left(\frac{N_{j}}{\hat{N}_{-}}-\frac{n_{j}}{n}\right) .
\end{aligned}
$$

Simulations

A sample of $n=20$ is fixed and all possible response sets are considered where $m=12$. The auxiliary vector is a group vector, $I M B$ and $\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{U}$ is calculated for 56576 response sets.

Simulations

Variance of $\left(\mathbf{b}_{r}-\mathbf{b}_{s}\right)^{\prime} \overline{\mathbf{x}}_{U}$ by IMB value.

References:

- Särndal, C.E., Lumiste, K., and Traat, I. (2016) Reducing the Response Imbalance: Is the Accuracy of the Survey Estimates Improved? Survey Methodology, 42 (2): 219-238.
- Lumiste, K. (2018) Improving accuracy of survey estimators by using auxiliary information in data collection and estimation stages. Dissertation, University of Tartu.

