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Survey variable, sample and L-statistics
I A survey variable x with real values X = {x1, . . . , xN} in the

population U = {1, . . . , N}.

I Let X = {X1, . . . , Xn} be the measurements of the simple
random sample units {1, . . . , n}, n < N , drawn without
replacement from U .

I The L-statistic

L = Ln(X) = 1
n

n∑
j=1

cj,nXj:n

is a combination of the order statistics X1:n 6 · · · 6 Xn:n of
X with real coefficients

cj,n = J

(
j

n+ 1

)
, J : (0, 1)→ R,

called weights.
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Examples of L-statistics
1. J ≡ 1 means the sample mean.

2. J(s) = 4s− 2 is used to define Gini’s mean difference
statistic.

3. J(s) = 6s(1− s).

4. The trimmed mean

Mn;a;b(X) = 1
[bn]− [an]

[bn]∑
j=[an]+1

Xj:n

is represented asymptotically by

J(s) = (b− a)−1I{a < s < b}

with the fixed trimming proportions 0 6 a < b 6 1, where [·]
and I{·} are the greatest integer and the indicator functions.
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Estimation of quality of L-statistic
I One can calculate the jackknife estimator

σ̂2
J = σ̂2

J(X) = (1−f)n− 1
n

n∑
k=1

(
L(k)−L

)2
, L = 1

n

n∑
k=1

L(k),

of the variance σ2 = VarL. Here f = n/N is the sampling
fraction, and L(k) = Ln−1(X\{Xk}) are L-statistics with
weights cj,n−1 = J(j/n), 1 6 j 6 n− 1.

I To make further inferences about the quality of the statistic,
the distribution function

FS(y) = P
{
σ̂−1

J (L− EL) 6 y
}

of the Studentized L-statistic is estimated.

Question: how to approximate FS(y) if the sample size n is not
large enough to apply the normal approximation Φ(y)?
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Empirical one-term Edgeworth expansions

The Edgeworth approximation to FS(y) is (Bloznelis, 2003)

ĜS(y) = G(y; α̂, κ̂)

= Φ(y) + (1− 2f + (2− f)y2)α̂+ 3(y2 + 1)κ̂
6
√

(1− f)n
Φ′(y),

where Φ′(y) is the derivative of Φ(y), and α̂ and κ̂ are estimators
of population parameters α = α(J,X ) and κ = κ(J,X ).

The examples of sample X based estimators of α and κ are:
I jackknife estimators α̂J = α̂J(J,X) and κ̂J = κ̂J(J,X)

(Bloznelis, 2001);
I bootstrap estimators α̂B = α̂B(J,X) and κ̂B = κ̂B(J,X)

(Čiginas, 2013).
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Nonparametric bootstrap approximations

The Monte–Carlo approximation to one of bootstraps proposed by
Booth et al. (1994) is

F̂SB(y) = 1
BR

B∑
b=1

R∑
r=1

I
{
σ̂−1

J (X̃(b,r))(Ln(X̃(b,r))− µ(X̃ (b))) 6 y
}
,

where X̃ (b), 1 6 b 6 B, are empirical (bootstrap) populations of
size N reconstructed from X, and X̃(b,r) = {X̃(b,r)

1 , . . . , X̃
(b,r)
n },

1 6 r 6 R, are the samples without replacement from X̃ (b). Here
µ(X̃ (b)) is the expectation of L under the fixed population X̃ (b).
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Saddlepoint approximations
The idea is to apply saddlepoint approximations to the distribution
function of a suitably Studentized linear part of the L-statistic
(Easton and Ronchetti, 1986).

We use Hoeffding’s decomposition (Bloznelis and Götze, 2001)

L− EL = H +R, where H = Hn(X) = 1
n

n∑
j=1

h(Xj)

is a linear statistic, and R = Rn(X) is a remainder term.

The jackknife estimator of the variance σ2
H = VarH of H reduces

from σ̂2
J to

σ̂2
HJ = σ̂2

HJ(X) = 1− f
n(n− 1)

n∑
j=1

(
h(Xj)−H

)2
.
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First, we approximate the distribution function of interest,

FS(y) ≈ F̃S(y) = P
{
σ̂−1

HJH 6 y
}
.

Second, for F̃S(y), we apply the saddlepoint approximation results
for the Studentized mean by Dai and Robinson (2001).

The formula of “true” saddlepoint approximation depends on
unknown values h(xk), 1 6 k 6 N , of the function h(·). We
obtain the sample X based empirical saddlepoint approximation by
replacing these values by their bootstrap (Booth et al., 1994)
estimators.
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Auxiliary information and naive approximation

Denote by z the variable with known real values Z = {z1, . . . , zN}
in the population U . Let Z = {Z1, . . . , Zn} be the corresponding
values of the sample units.

If the variables x and z are well-correlated, calibration techniques
(Deville and Särndal, 1992) can be applied to derive efficient
approximations to FS(y).

One can apply the approximation

FSz(y) = P
{
σ̂−1

J (Z)(Ln(Z)− ELn(Z)) 6 y
}
,

which is very efficient if the shapes of distributions of the variables
x and z are similar. However, it yields misleading results in
practical situations (Čiginas and Pumputis, 2019a).
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Calibrating Edgeworth and saddlepoint

Using ideas of Deville and Särndal (1992):
I Pumputis and Čiginas (2013) calibrated the bootstrap

estimators α̂B and κ̂B of α and κ. The constructed estimators

α̂Bw = α̂Bw(J,X,Z) and κ̂Bw = κ̂Bw(J,X,Z)

are plugged into the one-term Edgeworth expansion;
I Čiginas and Pumputis (2019b) calibrated the bootstrap

estimators of the values (population parameters) h(xk),
1 6 k 6 N , to obtain the sample X and the auxiliary data Z
based empirical saddlepoint approximation.
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Calibrating nonparametric bootstrap
Using the Monte–Carlo representation F̂SB(y), we define the
calibrated nonparametric bootstrap approximation

F̂SBw(y) = 1
BR

B∑
b=1

R∑
r=1

wbrI
{
σ̂−1

J (X̃(b,r))(Ln(X̃(b,r))−µ(X̃ (b))) 6 y
}
,

where the weights W = (wbr) ∈ RB×R minimize the function

d(W) = 1
BR

B∑
b=1

R∑
r=1

(wbr − 1)2

and, for chosen points y1, . . . , yT , satisfy the calibration equations

1
BR

B∑
b=1

R∑
r=1

wbrI
{
Zb,r 6 yi

}
= FSz(yi), 1 6 i 6 T,

where Zb,r = σ̂−1
J (Z̃(b,r))(Ln(Z̃(b,r))− µ(Z̃(b))). Here the sets Z̃(b)

and Z̃(b,r), constructed from Z, represent exactly the same sample
units as the sets X̃ (b) and X̃(b,r) selected from the given X.
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Proposition
Let y1 < · · · < yT , and there is at least one value from the set
{Zb,r, 1 6 b 6 B, 1 6 r 6 R} between each pair of these points.
Then the weights W minimizing the distance function d(W) and
satisfying the calibration equations are unique and expressed by

wbr = 1 + 1
2

T∑
j=1

λjI
{
Zb,r 6 yj

}
, 1 6 b 6 B, 1 6 r 6 R,

where the vector λ = (λ1, . . . , λT )ᵀ = A−1b is defined by
A = (aij) ∈ RT×T and b = (b1, . . . , bT )ᵀ that have the values

aij = 1
2BR

B∑
b=1

R∑
r=1

I
{
Zb,r 6 yi

}
I
{
Zb,r 6 yj

}
and

bi = FSz(yi)−
1
BR

B∑
b=1

R∑
r=1

I
{
Zb,r 6 yi

}
.
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Remark
The arbitrarily chosen points y1 < · · · < yT−1 are, for example,
uniformly spaced quantiles of the distribution function of values
{Zb,r, 1 6 b 6 B, 1 6 r 6 R}, and the last point yT = 103.
In our practice, the choice T = 102 is better than T = 10, but
T = 103 gives no significant further improvement.

Remark
Replacing the minimization of distance d(W) by the maximization
of function

g(W) =
B∑

b=1

R∑
r=1

log(wbr),

the calibrated estimation becomes a finite population version of
the empirical likelihood (EL) method from Chen and Qin (1993).
The calibration and EL yield very similar results, but the weights of
EL method cannot be written explicitly.
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Simulation (A)

The variables x and z in the population U1 (N = 120 and n = 40),
and the approximations for the trimmed mean (two largest
observations are trimmed).
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Simulation (B)

The variables x and z in the population U2 (N = 120 and n = 40),
and the approximations for the Gini mean difference statistic.
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Several conclusions

I If good auxiliary information is available, then the calibrated
approximations improve the respective approximations based
only on the sample data.

I The calibrated bootstrap and saddlepoint approximations
adapt better to estimate extreme quantiles and are less biased
than the calibrated Edgeworth.

I The calibrated saddlepoint approximation is slightly worse
than the calibrated bootstrap. To get better saddlepoint
approximations, use higher-order terms of the Hoeffding
decomposition!
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