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Example

A coin is tossed 10 times and 7 heads occur. Is the coin regular?

Frequentist approach

Let A = {a head occur after one toss},

p = P (A), n = 10, m = 7

p̂ = m/n = 0.7,

p̂ ∼Normal under a very large number of identical repeated
experiments

CI0.95(p) = p̂± z0.025
√
p̂(1− p̂)/n = (0.43; 0.97),

p = 0.5 ∈ (0.43; 0.97) ⇒ with probability 0.95 it is no
contradiction that the coin is regular.

P10(m > 5) ≈ 0.377.



Bayesian approach
Assume π = P (A) ∈ {π1, π2, π3} = (0.4; 0.5; 0.6)

Hi = {π = πi}, i = 1, 2, 3.
P (H1) = 0.2; P (H2) = 0.6; P (H3) = 0.2.

B = {7 heads occur after 10 tosses}

P (B|Hi) = C7
10π

7
i (1− πi)3, i = 1, 2, 3

P (B) =
∑3

i=1 P (B|Hi)P (Hi) = 0.218
Bayes theorem:

P (Hi|B) = P (B|Hi)P (Hi)
P (B) , (1)

i = 1, 2, 3. P (Hi|B) ∈ (0.07; 0.577; 0.353)
P (π > 0.5|B) = P (H3|B) = 0.353

π ∈ (0.4; 0.5; 0.6) prior distribution
P (B|Hi), i = 1, 2, 3 likelihood
P (Hi|B), i = 1, 2, 3 posterior distribution



Classical/frequentist approach to parameter
estimation

Let Y be a random variable with the distribution F (y, θ),
θ be a vector of the distribution parameters.

Y1, Y2, ..., Yn ∼ i. i. d. (iid) Y (sample)

The aim is to estimate the parameter θ.

Population parameter θ is fixed but unknown constant,
no distribution associated to it.

The sample is random. The only probability distribution is
distribution of the random sample of size n given the parameter θ
⇒ θ̂ is random



Bayesian approach

The data y1, y2, ..., yn (iid sample realization) is available
and it is fixed.
It can be obtained under various values of the parameter θ, θ ∈ Θ.
Therefore parameter θ is random.

The aim: to find distribution of θ given data y = (y1, y2, ..., yn)

Let f distribution of data; g distribution of parameter
Let f(y|θ) be a density/probability of a distribution F . Then

f(θ, y) = f(y|θ)g(θ) = g(θ|y)f(y)

g(θ|y) = f(y|θ)g(θ)
f(y) = f(y|θ)g(θ)∫

Θ f(y|θ)g(θ)dθ (2)

f(y|θ) =
∏n

i=1 f(yi|θ) – likelihood of the data
g(θ) – prior (subjective!) distribution of θ
g(θ|y) – posterior distribution of θ given data y.



Bayesian inference
A proportional form of (2)

g(θ|y) ∝ f(y|θ)g(θ)

Marginal / prior predictive distribution of the data:

f(y) =
∫
f(y, θ)dθ =

∫
f(y|θ)g(θ)dθ

We can predict unknown observable ỹ from the same process

f(ỹ|y) =
∫
f(ỹ, θ|y)dθ =

∫
f(ỹ|y, θ)g(θ|y)dθ =

∫
f(ỹ|θ)g(θ|y)dθ

due to conditional independence of y and ỹ given θ.
This is the posterior predictive distribution
If we are interested in the function Q = Q(y), it is based on its
posterior predictive distribution given the data:

f(Q(y)|y) = f(Q(y)|y1, y2, ..., yn) =
∫
f(Q(y)|θ)g(θ|y)dθ



Bayesian inference – grafical representation
Posterior ∝ prior × likelihood



Frequentist and Bayesian approach: comparison

Frequentist and Bayesian point of view is different in
� point estimation;
� confidence interval/credibility interval (high probability region
estimation);
� hypothesis testing

Frequentist inference about the parameter requires probabilities
calculated from the sampling distribution of the data given fixed
but unknown parameter.

These probabilities are based on all possible unknown samples that
could have occur.

The Bayesian inference use probabilities calculated from the
posterior distribution.
That makes them conditional on the samples that actually did
occur.



Conjugate distributions
Proportional form of the Bayesian inference

g(θ|y) ∝ f(y|θ)g(θ)

If the data y : y1, y2, ..., yn is obtained observing the iid random
variables then the likelihood can be expressed

f(y|θ) =
n∏

i=1
f(yi|θ)

Definition
If for a distribution f(y|θ) ∈ F (family of the distributions)
can be chosen a distribution g(θ) ∈ P (family of the distributions)
so that g(θ|y) = f(y|θ)g(θ) ∈ P
then P is said to be conjugate to F .
The classes of the conjugate distributions are known.



Example. Left-handed students

ni Students 20 15 9 8 5 25 18 24 3
mi Left-handed 2 1 3 2 1 2 3 3 0

What is a proportion λ of left-handed?
Frequentist: λ̂ =

∑
mi∑
ni

= 0.1338, sd =
√
λ(1− λ)/n = 0.1135

Bayesian. Left-handed ∼ Pois(λ).
Likelihood f(y|λ) =

∏n
i=1 f(yi|λ) ∝ gamma(r′, v′),

r′ =
∑
yi + 1 = 17, v′ = n = 127.

Conjugate priors.

g(λ) g(λ|y) λ̂ sd(λ̂) q0.975 − q0.025
Frequentist 0.1339 0.1135 0.3562

gamma(9, 60) gamma(26, 187) 0.1390 0.0330 0.1065
g(λ) = 1/

√
λ gamma(17.5; 127) 0.1378 0.0323 0.1284



Example. Bayesian analysis



Problems

I The conjugate posterior distribution g(θ|y) can be found
easily and used further. But even in this case the values of the
distribution g(θ|y) can be simulated many times, and
empirical characteristics of this distribution can be used for
inference.

I Conjugate distribution for the likelihood is not available ⇒
The only way to make inference about the posterior
distribution g(θ|y) is simulation from the posterior.

I "...easy in theory hard in practice" (Bolstadt). Approximate
calculation of the integrals
• Complicated hierarchical models can be used for data
• Likelihood includes many parameters, main and additional

(nuisance).
• Checking how the model estimated fits the data.



Approaches to Survey Inference

I Design-based (randomization) inference
I Superpopulation modeling

H Frequentist
� Superpopulation model with fixed parameters is specified
� Frequentist estimators of parameters are based on the
repeated samples from the superpopulation and finite
population

H Bayesian modeling
� Full probability model of the data and parameters (including
prior distribution on the parameters) is specified
� Bayesian inference is based on the posterior distributions of
the finite population quantities



Bayesian analysis for finite population statistics
Main principles of Bayesian statistics: sufficiency and likelihood

Definition
The likelihood principle asserts that given
• a fixed model (including the prior distribution for underlying
data),
• fixed observed values of the data

Bayesian inference is determined regardless of the sampling design.

Method of the data collection is important in Bayesian analysis.
The information of a sampling design should be included in a
model and conclusions should be made conditional on the variable
describing sampling design.

As more explanatory variables are included into the model, the
inferential conclusions become more valid conditionally but
possibly more sensitive to the model specifications.



Notations

y = (y1, y2, ..., yN ) – matrix of potential data,
each yi may be a vector yij , j = 1, 2, ..., J .
I = (I1, I2, ..., IN ) – matrix of the same dimension as y of
indicators for observations y:

Iij =
{

= 1, yij is observed,
= 0, otherwise.

(3)

obs = inc = {(i, j) : Iij = 1},
exc = {(i, j) : Iij = 0}
Assumption 1: no y measurement errors,

no missing y values



Modelling sample selection mechanism

The joined probability model for y and I is broken into two parts:
• the model for complete data y, observed and unobserved

components,
• the model for inclusion indicator I:

f(y, I|θ, φ)) = f(y|θ)f(I|y, φ).

By θ, φ are denoted parameters of the distributions of the
complete data y and the inclusion matrix I, respectively.

The actual information available is yinc and I, so appropriate
likelihood for Bayesian inference is

f(yinc, I|θ, φ) =
∫
f(y, I|θ, φ)dyexc (4)



Complete data likelihood
Let z means the variables that are fully observed (auxiliary).
If they are available, all the previous expressions are conditional on
z. The complete data likelihood:

f(y, I|z, θ, φ) = f(y|z, θ)f(I|z, y, φ)

The joint posterior of the model parameters θ and φ given the
observed information (z, yinc, I) is

g(θ, φ|z, yinc, I) ∝ g(θ, φ|z)f(yinc, I|z, θ, φ)

= g(θ, φ|z)
∫
f(y, I|z, θ, φ)dyexc

= g(θ, φ|z)
∫
f(y|z, θ)f(I|z, y, φ)dyexc

Evaluating integrals is avoiding by drawing posterior simulations of
the joint vector of unknowns (yexc, θ, φ) and processing on the
estimands of interest.



Finite population and superpopulation inference

There are two kinds of estimands:
g(θ, φ|z, yinc, I) – superpopulation quantities

f(yexc|z, yinc, I, θ, φ) – finite population quantities (non-observed),
descriptive statistics.

The parameters φ are characteristics of data collection and are not
of scientific interest. Quite often they are absent at all.

yexc are obtained by first drawing (θ, φ) from the joint posterior
distribution and then drawing yexc from the conditional
distribution given (θ, φ).



Ignorability

Definition
Sampling design is called ignorable if

g(θ|z, yinc, I) = g(θ|z, yinc)

If the data collection process is ignored then the posterior
distribution of θ can be computed by conditioning only on yinc,
but not on I:

g(θ|z, yinc) ∝ g(θ|z)g(yinc|z, θ)) = g(θ|z)
∫
f(y|z, θ))dyexc. (5)

Example. Sampling design is ignorable and known:
SRS without covariates,
stratified SRS with stratification covariates given.



Exchangeability
de Finetti (1991) introduced exchangeability as a weaker condition
than independency.

Definition
Observations are exchangeable if the conditional density of the
sample y1, y2, ..., yn is unchanged for any permutation of the
subscripts.

He proved: exchangeable observations can be treated as
independent, given θ.

Likelihood of the exchangeable observations is expressed:

f(y|θ) =
n∏

i=1
f(yi|θ)

Ignorability, exchangeability ⇒ likelihood principle ⇒ Bayesian
inference is valid



Simple random sampling
We consider finite population of N units with a study variable
y = (y1, ..., yN ) (for example, weight of cargo carried by the cargo
vehicles last month in the country). Parameter of interest is the
finite population average ȳ.
n-size simple random sampling is defined as

f(I|y, φ) = f(I) =


(
Cn

N

)−1
if
∑N

i=1 Ii = n,

0 otherwise.

It is ignorable because does not depend on y or unknown
parameters ⇒ straightforward to deal with inferentiality.
Inference for superpopulation. The posterior density from (5):

g(θ|yinc) ∝ g(θ)f(yinc|θ)

The finite population average

ȳ = n

N
ȳinc + N − n

N
ȳexc, (6)

ȳinc and ȳexc – averages for included and excluded yis.



Simulation from the posterior

ȳ can be determined using simulations of ȳexc from its posterior
predictive distribution as follows.
1. Simulate θ: θs, s = 1, 2, ..., S, from the posterior
2. For each θs draw the vector ys

exc from

f(yexc|θs, yinc) = f(yexc|θs) =
∏

i:Ii=0
f(yi|θs).

3. Average ys
exc over s = 1, 2, ..., S and get ȳexc.

4. ȳinc is known, compute ȳ from (6).
5. Repeat 1-4 steps D times and get distribution of ȳ
6. Find mean, median, other descriptive statistics of this

distribution

Any function Q(y) can be used instead of ȳ.



Finite population mean, conjugate prior
A basic model for a single continuous survey outcome with simple
random sampling is

[yi|θ, σ2] ∼ N (θ, σ2)
g(θ) ∼ const.

An improper uniform prior for the mean θ is assigned.
I) Assume the variance σ2 to be known. Then the posterior

g(θ|y) ∼ N (ȳs, σ
2/N)

g(ȳ|yinc) ∼ N (ȳs, (1− n/N)σ2/n)

The Bayesian inference coincides with the design-based inference.
II) The variance σ2 is unknown, prior g(θ, σ2) ∼ 1/σ2

g(ȳ|yinc) ∼ tn−1(ȳs, (1− n/N)s2/n)



Continuation

III) Normal prior g(θ) ∼ N (m, v2) with known variance v2. Then
the posterior of the parameter

g(θ|y) ∼ N (m′, v′2),

m′ = σ2

σ2 + v2 ×m+ v2

σ2 + v2 × y,

1
v′2

= 1
v2 + 1

σ2

IV) For non-normal prior the posterior for mean θ is not normal.



Stratified SRS and conjugate prior
N size population divided into H strata of size Nh. SRS of size nh

drawn independently in each stratum, h = 1, 2, ...,H. This design
is ignorable given H vectors z1, z2, ..., zH with zh = (z1h, ..., znh)
and

zih =
{

1 if unit i is in stratum h,

0 otherwise, i = 1, ..., n.
A natural analysis:
• to model the distributions of the measurements yi within each

stratum h in terms of parameters θh

• to perform Bayesian inference on all the sets of parameters
θ1, ..., θH .

A hierarchical model can be assigned to the θh’s.
The finite population inferences can be obtained by weighting the
inferences from the separate strata.
For example, the population mean ȳ is written in terms of
individual stratum means ȳh, as ȳ =

∑H
h=1 ȳhNh/N .

The finite population quantities ȳh can be simulated given the
simulated parameters θh for each stratum.



Stratified SRS and conjugate prior
The model/likelihood:

[yi|zih = h, {θh, σ
2
h}] ∼ N (θh, σ

2
h)

Let σ2
h are known and flat prior on the stratum means is assigned:

g(θh|z) ∼ const

Bayesian analysis similar to SRS (I) leads to

[ȳ|z, yinc, {σ2
h}] ∼ N (ȳst, σ

2
st),

The finite population parameters

ȳst =
H∑

h=1
Phȳsh, Ph = Nh/N, ȳsh = sample mean in stratum h,

σ2
st =

H∑
h=1

P 2
h (1− nh/Nh)σ2

h/nh.



Two-stage sampling
Suppose the population is divided into C clusters. Two-stage
sampling:
• SRS of c from C clusters selected,
• nc units from Nc units in each sampled cluster selected.

The inclusion mechanism is ignorable conditional on cluster
information, but model needs to account for within cluster
correlation in the population.
Let yic =outcome for unit i in cluster c, i = 1, ..., Nc; c = 1, ..., C.
A normal model is

[yic|θc, σ
2] ∼ N (θc, σ

2), [θc|µ, φ] ∼ N (µ, φ), µ ∼ , φ ∼ .

A flat prior g(θc) = const. cannot be assigned to the cluster
means, because only a subset of clusters is sampled;
the uniform prior does not allow information from sampled clusters
to predict means for non-sampled clusters.



Unequal selection probabilities

Independent sampling with unequal inclusion probabilities for
elements.

The design is ignorable conditionally on the variables z determining
the sampling probabilities, which are known for the general
population.

The critical step then in Bayesian modelling is formulating the
conditional distribution of y given z.



Multiple imputation for item nonresponse

Assume missing at random (MAR) mechanism for a variable y.
In order to make multiple imputation in Bayesian way do the
following:
• Impute draws, not means, from the posterior predictive
distribution of the missing values;
• Create D > 1 different filled in data sets with different values
imputed; Estimate the parameters needed.
• Average the estimates over multiply imputed data sets.



MCMC computations for multiple imputation
Let obs, miss means observed and missed values, correspondingly.
y = (yobs, ymiss)
Ignoring the missingness model, the posterior distribution can be
written:

g(θ|yobs) ∝ g(θ)f(yobs|θ),

f(yobs|θ) =
∫
f(y|θ)dymiss

A general algorithm of data augmentation is used.
At the step t+ 1 the algorithm draws ymiss and θ by alternating
the following steps:

[y(d,t+1)
miss |yobs, θ

(d,t)] ∼ f(ymiss|yobs, θ
(d,t))

[θ(d,t+1)|y(d,t+1)
miss ] ∼ g(θ|yobs, y

(d,t+1)
miss )

As t tends to infinity, this sequence converges to a draw from the
joint posterior distribution of (ymiss, θ), as required.
This is an application of the Gibbs sampler used for estimation of
the multi-parameter models.
R package mice.



Survey statistics and Bayesian inference

I Design-based statistics works well for large samples
I Model-based Bayesian inference works well for small samples

and large samples
I Bayesian inference is common for SAE, missing data

imputation, editing, outlier adjustment
I

Little :


n large : design− based inference
n0 = ”point of inferential schizophrenia”
n small : model− based inference

Daniel Thorburn (Kyiv, 2009):
Always use Bayesian methods!
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