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Important contributions In statistics:

Representative strategy a la Hajek

Hajek J. (1959) Optimum strategy and other problems in probability
sampling, Casopis pro Pestovani Matematiky, 84, 387—-423.

Hajek estimator of population mean under unequal probability
sampling

Hajek J. (1971) Comment on “An essay on the logical foundations of
survey sampling” by Basu, D. In Godambe V.P. and Sprott D.A. (eds.)

Foundations of Statistical Inference, p. 236. Holt, Rinehart and
Winston.



i Motivation

METRON - International Journal of Statistics
2011, vol. LXIX, n. 1, pp. 45-65
MATTI LANGEL — YVES TILLE
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REPRESENTATIVENESS
3.1. A polysemic term

The 1dea and concept of representativeness was already used in Kiaer’s
work (Kiaer, 1896, 1899, 1903, 1905). Because the idea of a representative
sample 1s reassuring for an uninitiated audience as it provides an illusion of
scientific validity, 1t has been an important notion in sampling ever since.
However, the multplicity of definitions to which it can be associated has been
at the core of many debates and misunderstandings in the history of sampling.
Thus, the term 1s much less used 1n modern survey sampling literature and in
our opinion It 1s a term best to avoid in survey methodology.



. Representative strategy
Wi\ in the spirit of Jaroslav Hajek (1959, 1981)

Strategy:
a couple of sampling design and estimation design

Representative strategy:
strategy that estimates the totals of auxiliary
variables exactly (without error)

Letz, =(z,,Z,....,Z,, ) be our auxiliary data vector for unit k e U
In population U ={1,...,k,...,N}

Define weights w, for k e U such that
the representativeness equations

kekuZk - ZkeU Zk

are fulfilled, where s denotes a sample from U



3. Options

It is obvious that a representative strategy can be constructed
o under the sampling design
O under the estimation design

o under both the sampling and estimation designs

For sampling design, z, =(z,,z,,...,Z,, ) denotes the auxiliary
data vector for unit k in population U ={1,...,k,...,N}

For estimation design, let X, = (X, ,X,,.--, X, )" be another
auxiliary data vector for unitk in U

z-vectors and x-vectors may be separate or overlapping vectors



Strategy 1: Horvitz-Thompson estimation
"W for a balanced probability sample

Representativeness through the sampling design
Auxiliary data are incorporated in the sampling procedure

Deville and Tillé (2004), Tillé (2011)

Sampling design : Compute inclusion probabilities 7, that satisfy
the balancing equations for any sample s:

Zkeszk /ﬂ.k ~ ZkeU Zk

Estimation design: Horvitz-Thompson estimator

~

Ly = Zkesakyk
where a, =1/ 7, are design weights

The sampling design is balanced on the auxiliary z-variables



- Strategy 2: Calibration estimation for a

S (generic) probability sample

.
-

Representativeness through the estimation design
Auxiliary data are incorporated in the estimation procedure

Deville & Sarndal (1992), Séarndal (2007)

Compute adjustment factors g, that satisfy
the calibration equations for the given probability sample s

Zkesgkxk /7Z-k - ZkeU Xk

Estimation design: Model-free calibration estimator

n

e = Zkeswkyk
where w, =g, / z, are calibration weights

The estimation design is balanced on the auxiliary x-variables



wi. Remarks
In practical applications, the availability & share of labour between

the auxiliary z-data (sampling phase) and auxiliary x-data
(estimation phase) becomes an issue

Balanced sampling: z-data are needed at the sampling unit level

Calibration estimation: x-data are needed either at an aggregate
level or at the unit level, depending on the calibration method



wi). Basic developments

N

Sampling design: The CUBE method

Deville and Tillé (2004) Efficient balanced sampling: The cube method
(Biometrika).

Penalization:
Breidt and Chauvet (2012) Penalized balanced sampling (Biometrika).

Estimation design: Calibration

Deville and Sarndal (1992). Calibration estimators in survey sampling
(JASA).

Penalization:

Guggemos and Tillé (2010) Penalized calibration in survey sampling:
Design-based estimation assisted by mixed models (Journal of
Statistical Planning and Inference).
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Ry - Example 1: Deville & Tillé (2004)

R
|

U={1...k,...,N} real population (MU284), N = 280
z, =(24.,2,.,24.,2,.), k €U auxiliary data vector

for both sample balancing and calibration estimation
a, =1/ r, design weights

w, =g,a, calibration weights
HT estimators of totals of y ;: fHT (y,)= zkesakyjk, ]=1...,6
Calibration estimators fCAL(yj) = Zkeswkyjk =t (y;)+(t, - fHTZ)'Bj

Y ik

kes

-1
!
where B =( kesakzkzk)

Simulation experiments
K =1000 fixed-size samples from U, n = 20
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Strategies for the 6 target variables y,,y.,...,Y,

a) Non-balanced sampling and HT estimation
b) Balanced sampling and HT

c) Non-balanced sampling and CAL estimation
d) Balanced sampling and CAL

NOTE: Actually, sampling in a) and c) is with balancing
with CUBE but on a single variable (z,)
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o Results on accuracy

Tablel Estimators of population total: Monte Carlo
MSE relative to the MSE for non-balanced sampling
with HT estimator

Horvitz-Thompson Calibration
Target Non- Non-
variable | balanced | B3¢0 | pajanceq | Balanced
samples samples
Y. 1 0.90 0.82 0.76
Y, 1 0.91 1.02 0.87
Y, 1 0.80 0.92 0.82
Y, 1 0.21 0.11 0.11
Ys 1 0.15 0.21 0.08
Ye 1 0.26 0.15 0.14

Extracted from Deville & Tillé (2004) p. 909 Table 1
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. Analysis

Table 2 Correlation of auxiliary
variables with target variables
in the population and R square
for regression model (N=280)

Target |Balancing |Balancing

variabley| &HT & CAL
Y1 0.90 0.76
Y, 0.91 0.87
Y3 0.80 0.82
Y, 0.21 0.11
Ys 0.15 0.08
Yo 0.26 0.14

Correlation of aux. var. z
Z Z, Z, Z,

z,11.00{0.99| - |0.98

z,10.99|1.00f - [0.99

z, | - - |1.00| -

z,10.98(0.99 1.00

Auxiliary Target variables
variables Vol Yo | Vs | Va | Ye | Vs
z, - 10.99(0.63|0.87(0.89| -
Z, - 10.99/0.65|0.85|0.90| -
Z, . - - - -
z, - 10.99(0.64|0.85[{0.90| -
R? - 10.99/0.42|0.76|0.81| -
- no data
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APPLICATION OF BALANCED SAMPLING, NON-RESPONSE AND
CALIBRATED ESTIMATOR

Ieva Dirdaité!, Danuté Krapavickaité?

I'Pandaconnect, UAB. Address: Saulétekio al. 15, Vilnius, 10224, Lithuania
2Vilnius Gediminas Technical University. Address: Saulétekio al. 11, Vilnius, 10223, Lithuania

E-mail: !dirdaite.ievaG@gmail.com, 2danute krapavickaite@vgtu.lt

COMMENT: Interesting empirical exploration on the interplay between balanced
sampling and calibration estimation by simulation experiments using real survey
data

Several strategies are applied by combining balanced and non-balanced
sampling and Horvitz-Thompson and calibration estimators
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Remarks

L )

The previous representative design-based strategies were
model-free because statistical models did not play an explicit role

Model-assisted methods in representative design-based strategies:

o Balanced sampling
Penalized balanced sampling (Breidt & Chauvet 2012)

o Calibration estimation
Penalized calibration (Guggemos & Tillé 2010)
Generalized calibration (Deville 2000)
Model calibration (Wu & Sitter 2001)

o Calibration in small domain estimation
Model-assisted calibration (Lehtonen & Veijanen 2012, 2016)
Multiple model calibration (Montanari & Ranalli 2009)
Two-level hybrid calibration (Lehtonen & Veijanen 2017)
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. Example 2: Breidt & Chauvet (2012)

= . Sy
.,
)

N

Linear mixed modeling in penalized balanced sampling by relaxing
some balance constraints

Analogous to the use of penalization at the estimation stage
(Guggemos & Tille 2010) for reducing some calibration constraints

Why?
Ordinary balanced samples may reduce the need for calibration
weighting in the estimation phase (Deville & Tillé example)

Penalized balanced samples may reduce the need for linear mixed
modeling (penalized calibration) in the estimation phase

Gain:
HT estimators for penalized balanced samples will be efficient for
target variables well approximated by a linear mixed model

Y, =XB+zu+¢,keU
where B are fixed effects and u are random effects
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4. Breidt & Chauvet contd.

Monte Carlo study including balanced sampling guided
by a penalized spline expressed as a linear mixed model
Generated artificial population of N =1000

Auxiliary variable x,, =(1 +z,)™, z, lognormal
X,, =@ +2,)", z, lognormal, independent of z,
Target variables y, and y,

Linear model m, =1+ 2(x -0.5), Exponential model m, = exp(-8x)

Sampling designs defined by X,
Estimation designs for y, defined by x, and fory, by x,

Strategy (x,: X,) X, for sampling design & estimation design
Strategy (X, :X,) X, for sampling design and x, for estimation design

Simulation experiments: K = 5000 simulated samples of size n =100
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ai. Results on accuracy

Table 3 RMSE of strategies relative to the RMSE of HT
estimator of total under penalized balanced sampling

Penalized Simple
. Balanced
Sampling balanced : random
: sampling :
sampling sampling
Estimation HT | LMM HT LMM LMM
Strategy (X, : x,) fory,
Linear (m,) 1 1.00 1.00 1.00 1.07
Exponential (m,) 1 1.00 1.00 0.99 1.07
Strategy (X, : X,) fory,
Linear (m,) 1 0.66 0.99 0.66 0.66
Exponential (mj) 1 0.84 | 1.00 0.83 0.88

Extracted from Table 1 in Breidt & Chauvet (2010) p. 953
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Example 3: Lehtonen & Veijanen (2019)

N
|

Design-based simulation experiment for finite population generated by
a linear mixed model with random intercepts and slopes

Population: 1 million units and 40 unplanned domains
Estimation of domain totals t, => " v,, d=1..,40

with direct and indirect Hajek and Horvitz-Thompson estimators

Aucxiliary data vector x, =(x,,X,.,X%, ), keU,, d =1,...,40
utilized in the estimation phase

Strategy: SRSWOR & model-free and model-assisted estimators
Assisting model: Linear mixed model

Monte Carlo experiments
K =10,000 SRSWOR samples of n = 2000 units
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Wil HT and Hajek estimators for domain totals

Rt

T INGN

-
\

Direct expansion type estimators

n

HT estimators t,. =, _ay,, d=1..,40

. Zkesd akyk

Hajek estimators t, , =N, x
Zkesd ak

where a, =1/ z, are design weights

, d=1...,40

Direct and indirect calibration estimators

HT type calibration estimators ty, . =D, W.Y,, d=1...,40
Hajek type calibration estimators

de yk

~

t

kESd

dCAL-HA — Nd X W
dk

kesy

where W, = J,.a, are method-specific calibration weights
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w3 Calibration vectors for model-free calibration

Calibration equations for MFC
D WX, =D X, d=1..,40

kESd kEUd

w, calibration weight for element k in domain d

Calibration vectors
MFC-HT: X, = QX X, %5,.)s KeU,, d =1...,40
MFC-HA: X, = (X, X, X5.), keU,, d=1...,40

NOTE: Domalin estimators are of direct type
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~ Calibration vectors for model-assisted
wh. calibration

L NG

-\
N :53\\

Calibration equations for MC

D WY =D Y, d=1..,40

kes, keU,
Calibration vectors
MC-HT: z =(Q1y,), keU, d=1...,40
MC-HA: z =y, keU, d=1..,40
Assisting model
Linear mixed model with domain-specific random intercepts
Y =X B +Ug = (L +Ugg) + BiXy + BoXo + BaXy + &0 K €Uy
Predictions
Y, = X B+, with X, = (1 Xy, X, X5, )s K €U,
y, calculated for all k e U,
NOTE: Estimators are of indirect type
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“ Accuracy of estimators

Relative root mean squared error (RRMSE)

RRMSE(t,) = \/%Z(fd(si)—td)z /t,, d=1..,D

i=1

where

fd (s;) estimate from sample s, for domain d
t, known parameter value in domain d
K number of simulated samples

NOTE: MFC and MC: Nearly design unbiased
Largest ARB(t,) < 0.2%
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Results on accuracy

Table 4 Median RRMSE (%) of design-based direct HT and Hajek
estimators for totals for 40 domains in three domain sample size classes
in a simulation experiment of 10,000 SRSWOR samples of 2000 units

from a synthetic population of one million units.

Expected domain sample size
Minor Medium Major All

12 40 122
Horvitz-Thompson
. 29.00 15.77 8.79 15.80
Lynr = Zkesd A4 Yy
Hajek
~ Zkesd akyk
tin = 3 4.60 1.85 0.91 1.96

kesd

Extracted from Lehtonen & Veijanen (2019)
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Table 5 Median RRMSE (%) of design-based direct and indirect HT and Hajek

type calibration estimators for totals for 40 domains in three domain sample size

classes in a simulation experiment of 10,000 SRSWOR samples of 2000 units
from a synthetic population of one million units.

Expected domain sample size

Minor Medium Major All
12 40 122

Model-free calibration MFC
Calibration vectors z, = (1, X, , X5, X5, ) and z, = (Xy, X X5, )’
MFC-HT 8.82 1.62 0.78 1.72
MFC-HA 6.39 1.89 0.91 1.98
Model-assisted calibration MC
Model: y_=x;B+u, +¢, keU,, d=1...D
Model vector x, = (1, X, ,X,.,X5.) Calibration vectors z, =(1,y,) and z, =y,
MC-HT 4.29 1.58 0.78 1.67
MC-HA 4.53 1.85 0.91 1.96

Extracted from Lehtonen & Veijanen (2019)
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. Distribution of calibrated weights

Problems of practical concern in model-free calibration:
Possible large variation of weights
Weights smaller than one, negative weights
Positive but extremely small weights

To what extent can model-assisted calibration methods help?

Any differences between HT type vs. Hajek type methods?

Small simulation experiment:
100 SRSWOR samples of size 2,000 elements from U

Results: Distribution of weights by domain size

HT weights: w ., =W,

. . W
Comparable Hajek weights: w,,, =N, x di
s, W
€Sy
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Fig. 1 Distribution of weights by domain size class in simulation
experiment of 100 SRSWOR samples from population U
Upper panel: HT type estimators, lower: Hajek type estimators
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wi Discussion

Can strategies that combine balanced sampling and calibration
estimation extend effectively the use of auxiliary data in
survey strategies? What are the benefits / drawbacks?

These combined strategies may (or, may not) offer an interesting
framework:

o for methodological research
o for experimentation in practical applications
o Inwhat areas in particular?

A special interest is in strategies for sampling and estimation phases
that involve approaches connected to GLMM type modelling

A challenging framework is provided by small domain estimation
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