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Jaroslav Hájek (1926-1974) 

Important contributions in statistics: 

 

Representative strategy à la Hájek  
 

Hájek J. (1959) Optimum strategy and other problems in probability 

sampling, Casopis pro Pestováni Matematiky, 84, 387–423.  

 

Hájek estimator of population mean under unequal probability 

sampling 
 

Hájek J. (1971) Comment on “An essay on the logical foundations of 

survey sampling” by Basu, D. In Godambe V.P. and Sprott D.A. (eds.) 

Foundations of Statistical Inference, p. 236. Holt, Rinehart and 

Winston. 

3 



Motivation 

METRON - International Journal of Statistics 

2011, vol. LXIX, n. 1, pp. 45-65 

MATTI LANGEL – YVES TILLÉ 
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Representative strategy  
in the spirit of Jaroslav Hájek (1959, 1981) 

Strategy:  

 a couple of sampling design and estimation design  
 

Representative strategy: 

 strategy that estimates the totals of auxiliary  

 variables exactly (without error) 
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It is obvious that a representative strategy can be constructed  

o under the sampling design  

o under the estimation design  

o under both the sampling and estimation designs 
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For sampling design, ( , ,..., )  denotes the auxiliary 

data vector for unit  in population {1,..., ,..., } 

For estimation design, let ( , ,..., )  be another 

auxiliary data vecto
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Strategy 1: Horvitz-Thompson estimation 

for a balanced probability sample 
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Strategy 2: Calibration estimation for a 

(generic) probability sample 
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Remarks  

In practical applications, the availability & share of labour between 

the auxiliary z-data (sampling phase) and auxiliary x-data 

(estimation phase) becomes an issue 

 

Balanced sampling: z-data are needed at the sampling unit level 

 

Calibration estimation: x-data are needed either at an aggregate 

level or at the unit level, depending on the calibration method 
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Basic developments 

Sampling design: The CUBE method 

Deville and Tillé (2004) Efficient balanced sampling: The cube method 

(Biometrika). 

Penalization: 

Breidt and Chauvet (2012) Penalized balanced sampling (Biometrika).  
 

Estimation design: Calibration 

Deville and Särndal (1992). Calibration estimators in survey sampling 

(JASA). 

Penalization: 

Guggemos and Tillé (2010) Penalized calibration in survey sampling: 

Design-based estimation assisted by mixed models (Journal of 

Statistical Planning and Inference). 
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Example 1: Deville & Tillé (2004) 
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...contd. 
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1 2 6
Strategies for the 6 target variables y
 

a  Non-balanced sampling and HT estimation

b Balanced sampling and HT

c  Non-balanced sampling and CAL estimation
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Results on accuracy 
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Table1 Estimators of population total: Monte Carlo  
MSE relative to the MSE for non-balanced sampling  
with HT estimator 
 

Target  
variable 

Horvitz-Thompson Calibration 

Non- 
balanced 
samples 

Balanced 
samples 

Non- 
balanced 
samples 

Balanced 
samples 

1
y  1 0.90 0.82 0.76 

2
y  1 0.91 1.02 0.87 

3
y  1 0.80 0.92 0.82 

4
y  1 0.21 0.11 0.11 

5
y  1 0.15 0.21 0.08 

6
y  1 0.26 0.15 0.14 

Extracted from Deville & Tillé (2004) p. 909 Table 1 

 



Analysis 
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Table 2 Correlation of auxiliary  
variables with target variables 
in the population and R square 
for regression model (N=280) 
 

Auxiliary 
variables 

Target variables 

1
y  

2
y  

3
y  

4
y  

5
y  

6
y  

1
z  - 0.99 0.63 0.87 0.89 - 

2
z  - 0.99 0.65 0.85 0.90 - 

3
z  - - - - - - 

4
z  - 0.99 0.64 0.85 0.90 - 

2R  - 0.99 0.42 0.76 0.81 - 

-  no data 

 

Target 
variable y   

Balancing 
& HT 

Balancing 
& CAL 

1
y  0.90 0.76 

2
y  0.91 0.87 

3
y  0.80 0.82 

4
y  0.21 0.11 

5
y  0.15 0.08 

6
y  0.26 0.14 

 

Correlation of aux. var. z 

 
1

z  
2

z  
3

z  
4

z  

1
z  1.00 0.99 - 0.98 

2
z  0.99 1.00 - 0.99 

3
z  - - 1.00 - 

4
z  0.98 0.99  1.00 



COMMENT: Interesting empirical exploration on the interplay between balanced 

sampling and calibration estimation by simulation experiments using real survey 

data 
 

Several strategies are applied by combining balanced and non-balanced 

sampling and Horvitz-Thompson and calibration estimators 

 

www.statisticsjournal.lt 
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Remarks 

The previous representative design-based strategies were  

model-free because statistical models did not play an explicit role  
 

Model-assisted methods in representative design-based strategies: 
 

o Balanced sampling 

 Penalized balanced sampling (Breidt & Chauvet 2012) 
  

o Calibration estimation 

 Penalized calibration (Guggemos & Tillé 2010) 

 Generalized calibration (Deville 2000) 

 Model calibration (Wu & Sitter 2001) 
 

o Calibration in small domain estimation 

 Model-assisted calibration (Lehtonen & Veijanen 2012, 2016) 

 Multiple model calibration (Montanari & Ranalli 2009) 

 Two-level hybrid calibration (Lehtonen & Veijanen 2017) 
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Example 2: Breidt & Chauvet (2012) 

Linear mixed modeling in penalized balanced sampling by relaxing 

some balance constraints  
 

Analogous to the use of penalization at the estimation stage 

(Guggemos & Tillé 2010) for reducing some calibration constraints 
 

 

Why? 

Ordinary balanced samples may reduce the need for calibration 

weighting in the estimation phase (Deville & Tillé example) 
 

Penalized balanced samples may reduce the need for linear mixed 

modeling (penalized calibration) in the estimation phase 
 

Gain: 

HT estimators for penalized balanced samples will be efficient for 

target variables well approximated by a linear mixed model 
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Breidt & Chauvet contd. 
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Results on accuracy 
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Table 3 RMSE of strategies relative to the RMSE of HT 
estimator of total under penalized balanced sampling 

Sampling 
Penalized 
balanced 
sampling 

Balanced 
sampling 

Simple 
random 

sampling 

Estimation HT LMM HT LMM LMM 

1 1 1
:Strategy (x x ) for y  

Linear 
2

( )m  1 1.00 1.00 1.00 1.07 

Exponential
6

( )m  1 1.00 1.00 0.99 1.07 

1 2 2
:Strategy (x x ) for y  

Linear 
2

( )m  1 0.66 0.99 0.66 0.66 

Exponential
6

( )m  1 0.84 1.00 0.83 0.88 

Extracted from Table 1 in Breidt & Chauvet (2010) p. 953 

 



Example 3: Lehtonen & Veijanen (2019) 

Design-based simulation experiment for finite population generated by 

a linear mixed model with random intercepts and slopes 
 

Population: 1 million units and 40 unplanned domains  

Estimation of domain totals                                            
 

with direct and indirect Hájek and Horvitz-Thompson estimators 
 

Auxiliary data vector                                       

utilized in the estimation phase 
 

Strategy: SRSWOR & model-free and model-assisted estimators 
 

Assisting model: Linear mixed model 
 

Monte Carlo experiments 

 K = 10,000 SRSWOR samples of n = 2000 units  
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HT and Hájek estimators for domain totals 
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Calibration vectors for model-free calibration 
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Calibration vectors for model-assisted 
calibration 

25 

Calibration equations for MC 

 

 

  

  

 ˆ ˆ   ,  1,...,40            

Calibration vectors

ˆMC-HT:     (1, ) , , 1,...,40  

ˆMC-HA:     , , 1,...,40  

Assisting model

Linear mixed model with domain-specific

d d

dk k k

k s k U

k k d

k k d

w y y d

y k U d

y k U d

z

z

            

    



0 0 1 1 2 2 3 3

1 2 3

 random intercepts

   ( ) , 

Predictions

ˆˆ ˆ    with (1, , , ) ,  

ˆ  calculated for all   

NOTE: Estimators are of  type

k k d d k k k k d

k k d k k k k d

k d

y u u x x x k U

y u x x x k U

y k U

x β

x β x

indirect

 

 

 



Accuracy of estimators 
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Results on accuracy  
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Table 4 Median RRMSE (%) of design-based direct HT and Hájek  
estimators for totals for 40 domains in three domain sample size classes 
in a simulation experiment of 10,000 SRSWOR samples of 2000 units 
from a synthetic population of one million units. 

 

Expected domain sample size 

All Minor  

12 

Medium  

40 

Major  

122 

 

Horvitz-Thompson 


ˆ

d
dHT k kk s
t a y  

29.00 15.77 8.79 15.80 

Hájek  





 



ˆ d

d

k kk s

dHA d
kk s

a y
t N

a

 

4.60 1.85 0.91 1.96 

Extracted from Lehtonen & Veijanen (2019) 
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Table 5 Median RRMSE (%) of design-based direct and indirect HT and Hájek   
type calibration estimators for totals for 40 domains in three domain sample size 
classes in a simulation experiment of 10,000 SRSWOR samples of 2000 units 
from a synthetic population of one million units. 

 

Expected domain sample size 

All Minor  

12 

Medium  

40 

Major  

122 

Model-free calibration MFC 

Calibration vectors 
1 2 3(1, , , )  k k k kx x x z  and   1 2 3( , , )  k k k kx x xz  

MFC-HT 8.82 1.62 0.78 1.72 

MFC-HA 6.39 1.89 0.91 1.98 

Model-assisted calibration MC 

Model: , , 1,...,k k d k dy u k U d D    x β  

Model vector 
1 2 3(1, , , )  k k k kx x x x Calibration vectors ˆ(1, )k ky z  and  ˆ

k kyz  

MC-HT 4.29 1.58 0.78 1.67 

MC-HA 4.53 1.85 0.91 1.96 

Extracted from Lehtonen & Veijanen (2019) 

 



Problems of practical concern in model-free calibration: 

 Possible large variation of weights 

 Weights smaller than one, negative weights 

 Positive but extremely small weights 

To what extent can model-assisted calibration methods help? 

Any differences between HT type vs. Hájek type methods? 

Small simulation experiment: 

 100 SRSWOR samples of size 2,000 elements from U  

Results: Distribution of weights by domain size 
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Fig. 1 Distribution of weights by domain size class in simulation 
experiment of 100 SRSWOR samples from population U 
Upper panel: HT type estimators, lower: Hájek type estimators 

  

  
 



Discussion 

Can strategies that combine balanced sampling and calibration 

estimation extend effectively the use of auxiliary data in 

 survey strategies? What are the benefits / drawbacks? 

These combined strategies may (or, may not) offer an interesting 

framework:  

o for methodological research 

o for experimentation in practical applications 

o In what areas in particular? 
 

A special interest is in strategies for sampling and estimation phases 

that involve approaches connected to GLMM type modelling 

A challenging framework is provided by small domain estimation 
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