

Ħ T SE SE Ħ TARTU ÜLIKOO

An Alternative Nonresponse Adjustment **Estimator**

Nonresponse is difficult

Imbi Traat **UNIVERSITY OF TARTU**

June 16-20, 2019

Why nonresponse is difficult?

 $r \subset s \subset U$

 θ_k -response probability unknown

 π_k - inclusion probability known

Much research No generally holding principles

Well-established design-based theory

Full response

Horvitz-Thompson (1952)

$$\widehat{Y}_{HT} = \sum_{s} d_k y_k, \qquad d_k = 1/\pi_k$$

• Design-consistent, unbiased under any design, and any y-variable

Deville and Särndal (1992)

Calibration estimator $\hat{Y}_{CAL} = \sum_{s} d_k g_k y_k$ is

under any design and any y-variable

- asymptotically design-consistent
- approximately unbiased
- with different distance functions asymptotically equivalent
 - all lead to the calibration estimator based on the lineaar method

Nonresponse

$y_k \in s$ not observed for each k

 \hat{Y}_{HT} and \hat{Y}_{CAL} not possible

Särndal and Lundström (2005): Book of history and current state of the art for nonresponse

Haziza & Lesage (2016): Common approaches

- 1) Nonresponse propensity weighting (double expansion, 2phase)
- 2) Two-step approach: 1)+calibration
- 3) One-step approach: nonresponse calibration weighting

Nonresponse

Many additional requirements

Little & Vartivarian (2005), Beaumont (2005)

- x_k for estimating response probabilities has to be related to both
 - Response indicator
 - Study variable y_k
- If not related to y_k then will not decrease nonresponse bias

Haziza & Lesage (2016)

- Choice of calibration function has strong effect
- Inappropriate calibration function may lead to biased estimator
 - even in the presence of high association between x_k and y_k
 - sometimes with bias larger than that of unadjusted estimator.

Nonresponse

Many additional requirements

Brick (2013): modelling assumes MAR response Rubin (1976) MAR: $P(I_k = 1|y_k, x_k) = P(I_k = 1|x_k)$

Results do not hold for NMAR (non-ignorable, informative) response

Brick (2013): NMAR response cannot be distinguished from MAR response based on observed data.

Nonresponse balance measures

Improvements over simple response rates

- R-indicator (Schouten et al. 2009)
- Imbalance indicator (Särndal 2011)

NB! Measures with respect to x-vector

- Balnaced with respect to x, may be unbalanced regarding y
- Many y-variables in a survey

Known and unknown estimators from regression perspective

Target: $\bar{y}_s = \sum_{k \in s} d_k y_k / \sum_{k \in s} d_k$ (unbiased for population mean)

Notation

 $\mathbf{x}_{k} : J \times 1$ $\exists \mu, \, \mu' \mathbf{x}_{k} = 1, \, \forall k,$ $P = \sum_{k \in r} d_{k} \, / \sum_{k \in s} d_{k} \text{-response rate}$

$$\overline{\mathbf{x}}_{r} = \frac{\sum_{k \in r} d_{k} \mathbf{x}_{k}}{\sum_{k \in r} d_{k}}, \ \overline{\mathbf{x}}_{s} = \frac{\sum_{k \in s} d_{k} \mathbf{x}_{k}}{\sum_{k \in s} d_{k}}$$
$$\Sigma_{r} = \sum_{k \in r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}' / \sum_{k \in r} d_{k}, \ \Sigma_{s} = \sum_{k \in s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}' / \sum_{k \in s} d_{k}.$$

Regression perspective - Response variable is predicted by $b'x_k$ (fitted value), where *b* by WLSQ

I. Estimating response probability θ_k

Regressing I_k (response indicator) on $b'x_k$ gives $b' = P \bar{x}'_r \Sigma_s^{-1}$,

and the fitted value

$$\hat{\theta}_k = P \,\overline{\mathbf{x}}_r' \, \Sigma_s^{-1} \mathbf{x}_k = P f_k,$$

where

$$f_k = \overline{\mathbf{x}}_r' \Sigma_s^{-1} \mathbf{x}_k$$

Double-expansion estimator

$$\overline{y}_{2\text{fh}} = \frac{\sum_{k \in r} d_k y_k / \hat{\theta}_k}{\sum_{k \in s} d_k} = \frac{\sum_{k \in r} d_k y_k / f_k}{\sum_{k \in r} d_k}$$

Using fitted values for y_k

Regressing y_k on x_k in s gives coefficient vector

$$b'_{s} = \frac{\sum_{k \in s} d_{k} y_{k} \mathbf{x}'_{k}}{\sum_{k \in s} d_{k}} \Sigma_{s}^{-1}$$

Not computable

Replacing means in *s* by means in *r*:

- I. In both factors calibration estimator
- II. Only in first factor \longrightarrow f-estimator

Replacing means in both factors

$$b'_{s} = \frac{\sum_{k \in s} d_{k} y_{k} x'_{k}}{\sum_{k \in s} d_{k}} \Sigma_{s}^{-1} \longrightarrow b'_{r} = \frac{\sum_{k \in r} d_{k} y_{k} x'_{k}}{\sum_{k \in r} d_{k}} \Sigma_{r}^{-1}$$

The respective fitted values $\hat{y}_k = b'_r \mathbf{x}_k$

Mean of fitted values in s is calibration estimator

$$\frac{\sum_{k \in s} d_k b'_r x_k}{\sum_{k \in s} d_k} = b'_r \overline{x}_s = \frac{\sum_{k \in r} d_k y_k x'_k}{\sum_{k \in r} d_k} \sum_{r=1}^{r-1} \overline{x}_s = \frac{\sum_{k \in r} d_k y_k g_k}{\sum_{k \in r} d_k} = \overline{y}_{CAL},$$
where calibration weight
$$g_k = x'_k \sum_{r=1}^{r-1} \overline{x}_s$$

Check calibration property

Replacing mean in the first factor

$$b'_{s} = \frac{\sum_{k \in s} d_{k} y_{k} x'_{k}}{\sum_{k \in s} d_{k}} \Sigma_{s}^{-1} \longrightarrow b'_{sr} = \frac{\sum_{k \in r} d_{k} y_{k} x'_{k}}{\sum_{k \in r} d_{k}} \Sigma_{s}^{-1}$$

The respective fitted values $\hat{y}_k = b'_{sr} \mathbf{x}_k$ Mean of fitted values in *r* is f-estimator:

$$\frac{\sum_{k \in r} d_k b'_{Sr} \mathbf{x}_k}{\sum_{k \in r} d_k} = b'_{Sr} \bar{\mathbf{x}}_r = \frac{\sum_{k \in r} d_k y_k \mathbf{x}'_k}{\sum_{k \in r} d_k} \Sigma_S^{-1} \bar{\mathbf{x}}_r = \frac{\sum_{k \in r} d_k y_k f_k}{\sum_{k \in r} d_k} = \bar{y}_f,$$
where calibration weight
$$f_k = \mathbf{x}'_k \Sigma_S^{-1} \bar{\mathbf{x}}_r$$

Strange! Compare with $\bar{y}_{2\text{fh}}$

Scaled f-estimator

Särndal et al. (2018):

Mean of g-weights in *r*.

$$\frac{\sum_{k \in r} d_k g_k}{\sum_{k \in r} d_k} = \frac{\sum_{k \in r} d_k x'_k \Sigma_r^{-1} \overline{x}_s}{\sum_{k \in r} d_k} = \overline{x}'_r \Sigma_r^{-1} \overline{x}_s = 1 \text{ (μ property)}$$
Mean of f-weights in *r*.
$$\sum_{k \in r} d_k f_k = \sum_{k \in r} d_k x'_k \Sigma_s^{-1} \overline{x}_r$$

$$\frac{\sum_{k\in r} a_k J_k}{\sum_{k\in r} d_k} = \frac{\sum_{k\in r} a_k x_k \Sigma_s^{-1} x_r}{\sum_{k\in r} d_k} = \overline{x}_r' \Sigma_s^{-1} \overline{x}_r = 1 + Q_s \ge 1,$$

where $Q_s = (\bar{\mathbf{x}}_r - \bar{\mathbf{x}}_s)' \Sigma_s^{-1} (\bar{\mathbf{x}}_r - \bar{\mathbf{x}}_s)$ – imbalance measure Scaled f-estimator: $\bar{y}_{SCf} = \frac{\sum_{k \in r} d_k y_k f_k}{(1+Q_s) \sum_{k \in r} d_k}$

Estimators for a mean

Simple (UNW) $\bar{y}_r = \sum_{k \in r} d_k y_k / \sum_{k \in r} d_k$ Calibration $\overline{y}_{CAL} = \sum_{k \in r} d_k g_k y_k / \sum_{k \in r} d_k$ f-estimator $\overline{y}_f = \sum_{k \in r} d_k f_k y_k / \sum_{k \in r} d_k$ SCf-estimator $\overline{y}_{SCf} = \frac{\sum_{k \in r} d_k f_k y_k}{(1+Q_S) \sum_{k \in r} d_k}$ Unbiased $\bar{y}_{UNB} = \frac{\sum_{k \in r} d_k y_k / \theta_k}{\sum_{k \in s} d_k}$ 2-ph $\bar{y}_{2ph} = \frac{\sum_{k \in r} d_k y_k / f_k}{\sum_{k \in r} d_k}$ θ_k - resp. probability

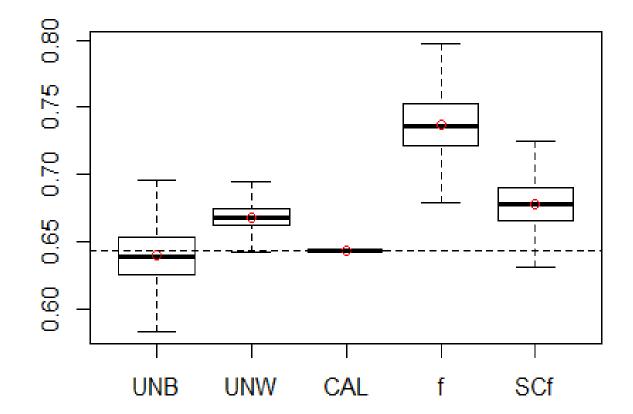
Set-up

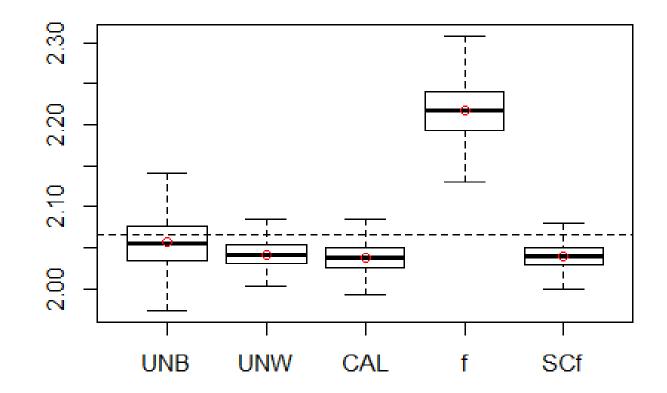
Real data of Estonian HH survey n = 1000, m = 600 $logit(\theta) = 5 - HD_sex + 2HD_active - 0.0003H_income$

summary(theta) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.6 10⁻⁶ 0.415 0.685 0.600 0.846 0.871

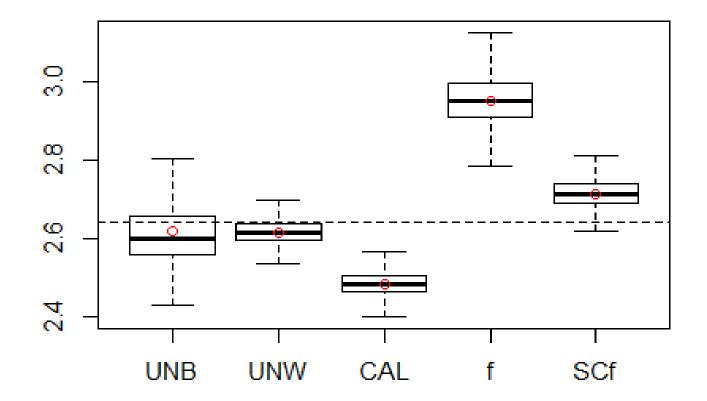
x-vector of dim. 4 $HD_sex \times HD_active$ s fixed, 1000 repetitions of r Want to be close to sample mean \overline{y}_s



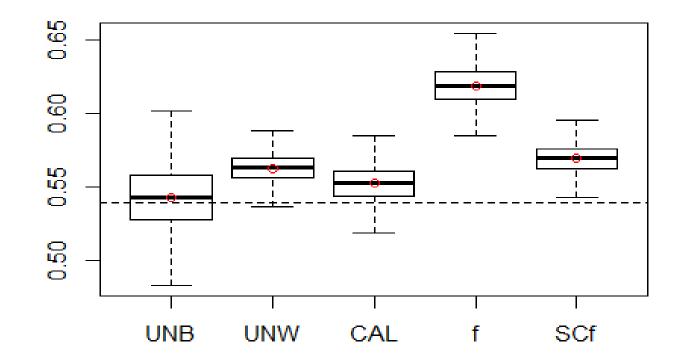




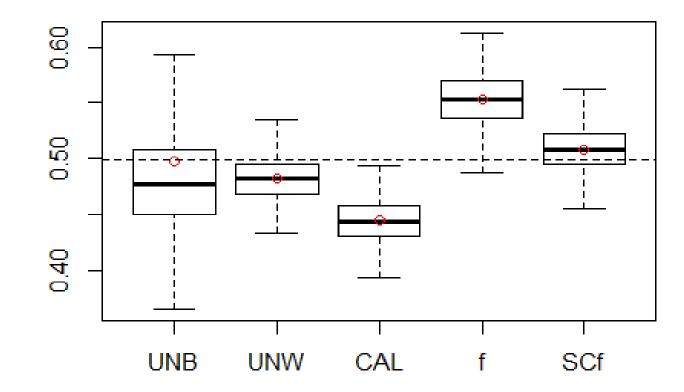
Study variable H_size



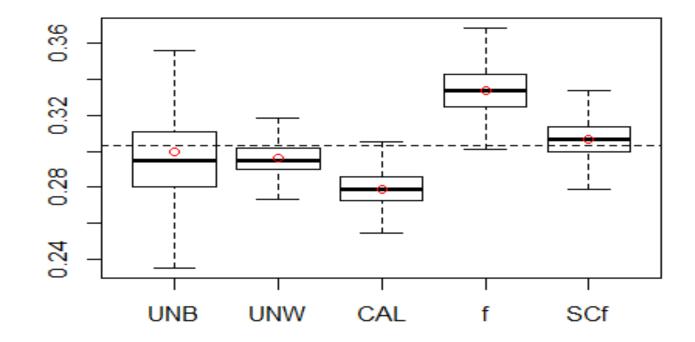
Study variable HD_educ2



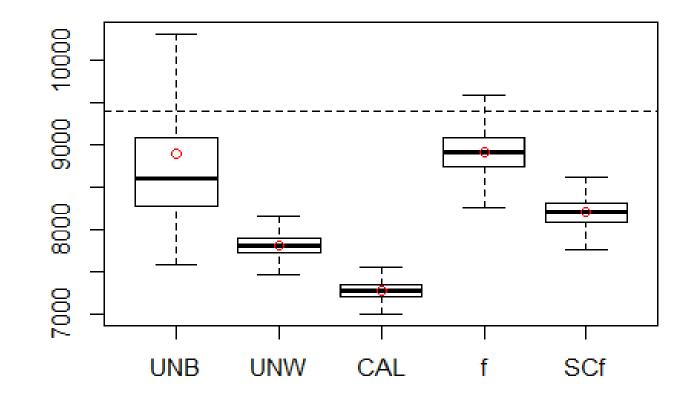
Study variable No_of_Children



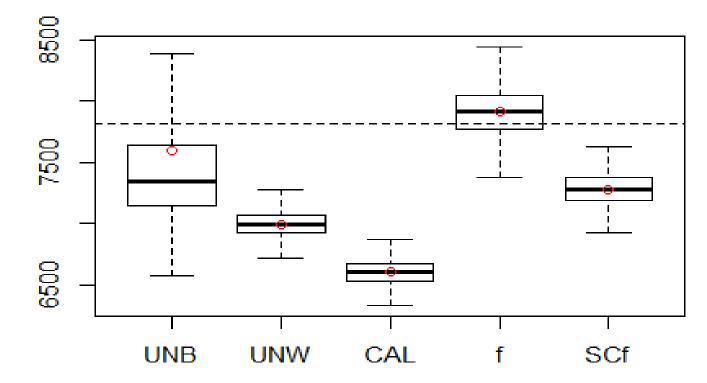
Study variable With_Children



Study variable H_income



Study variable H_expenditure



Absolute Relative Bias - ARB

$$ARB = \frac{|E_{rep}\bar{\bar{y}} - \bar{y}_s|}{\bar{y}_s},$$

where

 $\hat{\overline{y}}$ - our estimator of sample mean \overline{y}_s

Absolute Relative bias

	UNB	UNW	CAL	f	SCf
HD_active	0.0047	0.0394	0.0000	0.1466	0.0542
HD_sex	0.0033	0.2902	0.0000	0.4923	0.5325
HD_educ	0.0038	0.0111	0.0129	0.0737	0.0125
H_size	0.0078	0.0092	0.0589	0.1177	0.0281
No_of_Children	0.0036	0.0348	0.1101	0.1078	0.0185
HD_educ1	0.0036	0.0077	0.0262	0.0692	0.0167
HD_educ2	0.0076	0.0443	0.0252	0.1492	0.0569
HD_educ3	0.0143	0.0851	0.0721	0.0258	0.1039
With_Children	0.0098	0.0233	0.0786	0.1009	0.0120
H_big	0.0021	0.0059	0.0565	0.1461	0.0540
H_income	0.0525	0.1691	0.2260	0.0506	0.1270
H_transfer	0.0239	0.1135	0.1296	0.0122	0.0917
H_expenditure	0.0277	0.1047	0.1551	0.0127	0.0682

Average ARB for entire survey

Average over all 11 study variables (2 first were neglected)

UNBUNWCALfSCf0.01420.05530.08650.07870.0536

Conclusions

- No uniformly best (unbiased) estimator
 - for all study variables
 - for all response mechanisms

Particular study – NMAR response

- One-step calibration was good only under 1:1, or very strong, relationship between y and x
- SCf was best for the entire survey
- UNW was te second best
- f-estimator was good for the income-related study variables
- Here CAL was the worst

Conclusions

Nonresponse is difficult

Due to missingness it is not possible to

- Evaluate whether response is NMAR or MAR
- Test which estimator is best for particular study variable

References

Beaumont (2005). Survey Methodology, 31, 227-231 Brick (2013). Journal of Official Statistics, 29, 329-353 Deville and Särndal (1992). J. of American Statistical Association, 87, 376-382 Haziza & Lesage (2016). Journal of Official Statistics, 32, 129-145 Horvitz-Thompson (1952). J. of American. Statistical Association, 47, 663-685 Little & Vartivarian (2005). Survey Methodology, 31, 161-168 Rubin (1976). Biometrika, 63, 581-592 Särndal and Lundström (2005). Estimation in Surveys with Nonresponse. Wiley Särndal (2011). Journal of Official Statistics, 27, 1-21 Särndal, Traat, Lumiste (2018). Statistics in Transition, 19, 183-200 Schouten, Cobben, Betlehem (2009). Survey Methodology, 35,101-113

Thank you!

