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Spatially Balanced Sampling

Agricultural and environmental surveys

In agricultural and environmental surveys the main feature of
the population is to be geo-referenced.

4

In these circumstances, usually the units exhibit spatial
dependence between them.

4

Therefore, it is important to consider the spatial distribution of
the units as information for selecting samples.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: Set-up

* Finite population U ={1,...,N}.
 Set of g auxiliary variables, X = {xl,...,xq}.

 Set of h coordinates, commonly obtained by the geo-
coding of each unit and usually with h =2, C={c,,...,c,}.

* Response variable y..
* Target of inference t, = 2, < V-

From the matrix C it is always possible derive, according to
any distance function, a matrix that specifies how far all the
pairs of units in the populationare D, ={d,;; i = 1,....N, j = 1,
..,N}L

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: Set-up

A finite population is a collection of a finite number of identifiable
objects or units.

U = {1,2,...,k,...,N}

A sampling design, p(s), is a probability distribution on Q
(collection of all possible samples ) that satisfies:

p(s) =0, all s €Q,
Y p(s)=1
Q

where s is the outcome of a random variable S.
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Spatially Balanced Sampling: Set-up

First-order inclusion probability:

m, =Pr(k€S)=Pr(l, =1)= E p(s)

sk

Second-order inclusion probability:

mw, =Pk &I ES)=Pr(I I =1)= E p(s)

sa3k&l
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Spatially Balanced Sampling: Set-up

HT estimator for the population total 7 = EUyk is:

The estimator tHT is unbiased for = EUyk

~No
X

An unbiased estimator of VHT(fHT) is given by:

N—’

Vir (L) = E ESAkl)v/k)v/l where Akl - Akl /nkl
represents the expanded A value, for all k,/ €U . Alternatively

AGRED 1(% M)ykyl
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Spatially Balanced Sampling: Set-up

Alternative formula for the variance of estimator 7,
obtained when p(s) is a fixed size sampling design

Yates and Grundy (1953), and Sen (1953):

. n 1 -
VYGS(tHT) - VarYGS(tHT) - _EEEUAkl(yk B y1)2
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Spatially Balanced Sampling: Model-Based

In the design-based approach, the uncertainty is ensured by p(s), while in the
superpopulation approach, the randomness is provided from the model §. For
this reason, this approach is also called model-based survey sampling.

Using the superpopulation approach, we estimate the population total as
follows. The population total, t, can be decomposed into:

t=zsyk+zgyk=tys+tyg

In other words, the population total is the sum of the sample total fy and the

corresponding non-sample total ty_ . Obviously, after the sample has been

drawn, the sum of the sample total ty is known, and the estimation problem is

N

reduced to predicting f given ¢ . Given the superpopulation model §, the aim
Vs Vg
is to choose the best predictorfy_ of fy_ , and a sample s, so that we minimize the

sample error, [—t= fy_ -1

N yS

R. Benedetti & F. Piersimoni Concepts




Spatially Balanced Sampling: Model-Based

/N

The best predictor 7 is the member of the acceptable predictors that has the
smallest value of Eg (f — t)2 ‘S . Besides, we aim to choose s that minimizes
E, [(f _ t)z ‘S] across the set of all possible s that are practical and satisfy the
resource constraints. The optimal predictor ( ¢ ) and optimal sample (s)

constitute the optimal strategy for t under the assumed superpopulation model €.
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Spatially Balanced Sampling: Model-Based

Consider an un-sampled location z,. The main aim of geostatistics is to predict y(z,).
It would seem reasonable to estimate y(z,) using a weighted average of the values
at observed locations y(z)), i=1,2,..,n, with weights given by some decreasing
function of the distance between the unobserved and observed sites. So, the
predictor of y(z,) can be defined as:

H(z) =3 2x(z,)

A simple and popular spatial prediction method is kriging. This method uses a
model of spatial continuity, or dependence.

The main purpose of kriging is to optimally determine the weights A.. A
predictor is defined by first constructing a function that measures the loss
sustained by using j(z,) as a predictor of y(z,). The squared loss function is
most often used in practical applications.

Generally, the theory aims at finding estimators that minimize the average loss.

In this case, the loss can be expressed in terms of the mean squared prediction
error (MSPE) as:

R. Benedetti & F. Piersimoni Concepts




Spatially Balanced Sampling: Model-Based

E[y(z,) - 3(z,)]

Kriging computes the best linear unbiased predictor (BLUP), j(z,) , based on a
stochastic model of the spatial dependence defined by the expectation, u(z),
and covariance function, C(h), of the random field.
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Spatially Balanced Sampling: Model-Based

Consider a continuous variable. A spatial model that satisfies the first-order
Markov property

Pr{y(zi)‘y(zj),j ED, | = i} _ Pr{y(zi)‘y(zj),j EN(i), j = i}

is the auto-normal or conditional autoregressive model (CAR, Besag 1974 ). It
assumes that the conditional density functions of each random variable with
respect to the others is Gaussian and can be expressed as:

Pledble )] - Pledble ) svs - -

= (27101.2 )_1/2 exp {— 2(175

where p = E(}/(z/.)) ,and ¢, denote spatial dependence parameters that

are only non-zero if z.e M7 .
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Spatially Balanced Sampling: Model-Based

From these definitions it follows that:

E[y(zi)‘y(zj),j eEN(), ] = i] = Uu, +;cl.j(y(zj)—uj)

and:

Var [y(zi)‘y(zj),j EN(),j= i] = Giz




Spatially Balanced Sampling: Model-Based

Let ¢« N(O,ozl) , Where g(d.) is the variable associated with site z. A random
field is said to be Gaussian SAR (Whittle 1954) if:

¥(z) = 1+ Db [9(z) -] +e(z,)

i=j
where b;=0. In a matrix notation model, the above equation can be written
as:

(I-B)(y-u)=¢
If Var(e)=o’l Y is multivariate normal such that:

y o MWV(u,02 [(I -B)'d-B")" ])
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Spatially Balanced Sampling

Some thoughts about X and C in spatial surveys.

* |If Uis a list of regularly or irregularly shaped polygons defined
ad hoc, Cis always available and X can be constructed
summarizing within each polygon a classification of remotely
sensed data (unless an overlay of C with a cadaster is possible).

* |If Uis a list of points, X can be only represented by a design
matrix of codes of a land use classification of remotely sensed

data.

* If Uis a list of economic or social units, Cis rarely obtainable (it
depends on the availability of accurate cadastral maps) and
should be made by a map of polygons representing parcels of
land used by each holding, while X is usually filled with
administrative data sources.
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Spatially Balanced Sampling

Consider the two following samples obtained by SRSWOR

The p(s) of these two samples are exactly the same, p(S) = 1/C(N,n)
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Spatially Balanced Sampling

Spatially Balanced Samples
How to take into account the spatial information while designing

a sample?

Spatially balanced samples: samples well-spread over the
population of interest. In this way, it could be possible capture
the spatial heterogeneity of the population.

Some theoretical motivations:

* Yates-Grundy-Sen formulation of the HT variance.
* Anticipated Variance.

* Lemma decomposition.
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Spatially Balanced Sampling: motivation A

The variogram (or semi variogram) y,(h) whose shape is a valuable
information to choose on how and to what extent the variance of y is or not a
function of the distance between the statistical units.

1
* Yates-Grundy-Sen formulation of the HT variance: nij
2
Yy
( HT) =__2 2(” Elﬂf)
zEU]EU jT ﬂ:
>h
Semivariogram Range
1 Y(h) j
S Var[y(@-y(z+ )] = () —>
L
Nugget T Distance (h)
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Spatially Balanced Sampling: motivation B

We wish to derive a model that relates each y, with the X observed in past
surveys or other data sources. We assume that our prior knowledge on the
finite population can be viewed as if it were a sample from an infinite
superpopulation and that a model & defines its characteristics. To design a
survey, we should thus search for the optimal anticipated variance (AV) of the
estimator of the population total. This can be defined as the variance of the
random variable (# — %) under both the design and the model

~ ~ 2 ~ 2
AV (i -1)=E, {E [(t ~1) ]} - [Eg {E (7- t)}]
A typical assumption is a linear model that relates a target y and an auxiliary x

Ve =X, B+e,
E.(g)=0

)=0

Ve(&) =0,
E.(g8)=0,0p0, k=l
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Spatially Balanced Sampling: motivation B

Anticipated Variance

X; is a vector of auxiliary variables, [ is a vector of
coefficient regression, p; is the autocorrelation
coefficient and E,, Var,, and Cov,, denote,

respectively, expectation, variance and covariance
with respect to the model.

The Anticipated Variance (Isaki and Fuller 1982) of

HT estimator under the model is (Grafstrom and Tille
2013)

i -
AV(?HT—t)=ES (E&_Exk) i +220k01pkl”kl_”k”z

kEs kEs IEs ﬂ:kﬂ:l
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Spatially Balanced Sampling: motivation B

Uncertainty can be splitted into two terms:

2
E. Xi_ Exi)'ﬁ] can be reduced through the use of

balanced sampling (Deville and Tille 2004)

2. Y oo Ty~ be reduced exploiti ial
. 0.0, can be reduced exploiting spatia

i,jeu ﬂinj

information —> if p; decrease with respect to distance
between units, then selecting units far apart reduces this
term
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Spatially Balanced Sampling: motivation C

The decomposition lemma
states that (Knottnerus, 2003, p. 87):

o =VS(§S)+nT_IES(S§,S)

It can be seen that the HT estimator can be more efficient by setting the first-order
inclusion probabilities in such a way that y,/mt, is approximately constant and/or by
defining a design p(s) that increases the expected within sample variance. The
intuitive explanation for this is that if a sample s contains as much information as
possible, the uncertainty in the estimation process is clearly reduced to zero. This
consideration suggests that we should find a rule that makes the probability p(s) of
selecting a sample s proportional, or more than proportional, to its variance S2.
This variance is unknown, because it is relative to the target, unobserved variable
y. Thus, this is a purely theoretical topic unless we can find auxiliary information for

S.
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Spatially Balanced Sampling: motivation C

Decomposition Lemma

This consideration suggests that we should find a rule that
makes the probability p(s) of selecting a sample s
proportional, or more than proportional, to its variance S2.
This variance is unknown, because it is relative to the target,
unobserved variable y. Thus, this is a purely theoretical topic
unless we can find auxiliary information for s.

When dealing with spatially distributed populations, a
promising candidate for this rule is the distance between
units, as evidenced in spatial interpolation literature (Ripley
1981, Cressie 1993). This is because it is often highly related
to the variance of variables observed on a set of geo-
referenced units.
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Spatially Balanced Sampling: practical

motivations

There could be a lot of different reasons why it is appropriate to
select samples which are spatially well distributed:

1. vy has a linear or monotone spatial trend,

2. there is spatial autocorrelation, i.e. close units have data
more similar than distant units;

3. the y shows to follow zones of local stationarity of the mean
and/or of the variance, i.e. a spatial stratification exists in
observed phenomenon;

4. the units of the population have a spatial pattern which can
be clustered, i.e. the intensity of the units varies across the
study region.
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The Index of Spatial Balance

The Voronoi polygon for unit k of a generic sample s includes all the
population units closer to k than to any other unit in the sample. Let

W= a
k icvP(k)

be the sum of the inclusion probabilities of the units in the k-th
Voronoi polygon VP(k). Then, for any sample unit, we will have an
expected value E(v,)=1. Additionally, all the v,s should be close to 1
for a spatially balanced sample (Steven and Olsen 2004). Thus, the
index V(v,) (the variance of the v,) can be used as a measure of the
spatial balance of a sample. Obviously, a lower value of V(v,) implies
a good spatially balanced sample.
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Spatially Balanced Sampling

Thank you for your attention!
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