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Agricultural	and	environmental	surveys	
	

In	agricultural	and	environmental	surveys	the	main	feature	of	
the	popula:on	is	to	be	geo-referenced.	
	
	
In	these	circumstances,	usually	the	units	exhibit	spa:al	
dependence	between	them.	
	
	
Therefore,	it	is	important	to	consider	the	spa:al	distribu:on	of	
the	units	as	informa:on	for	selec:ng	samples.	
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•  Finite	popula:on	U	=	{1,…,N}.	
•  Set	of	q	auxiliary	variables,	X	=	{x1,…,xq}.	
•  Set	of	h	coordinates,	commonly	obtained	by	the	geo-
coding	of	each	unit	and	usually	with	h	=	2,	C	=	{c1,...,ch}.	
•  Response	variable	yi.	
•  Target	of	inference	ty	=	Σi	∈	Uyi.		
	
From	the	matrix	C	it	is	always	possible	derive,	according	to	
any	distance	func:on,	a	matrix	that	specifies	how	far	all	the	
pairs	of	units	in	the	popula:on	are	DU	=	{dkl	;	i	=	1,…,N,	j	=	1,
…,N}.						
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A	finite	popula:on	is	a	collec:on	of	a	finite	number	of	iden:fiable	
objects	or	units.	
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U = 1,2,..., k,..., N{ }
A	sampling	design,	p(s),	is	a	probability	distribu:on	on	Ω	
(collec:on	of	all	possible	samples	)	that	sa:sfies:		

  

p(s) ≥ 0,  all  s ∈Ω,
p(s)

Ω
∑ = 1

where	s	is	the	outcome	of	a	random	variable	S.		



First-order	inclusion	probability:	
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Second-order	inclusion	probability:	

  
π k = Pr(k ∈S ) = Pr(Ik = 1) = p(s)

s∍k
∑

  
π kl = Pr(k & l ∈S ) = Pr(Ik Il = 1) = p(s)

s∍k&l
∑



HT	es:mator	for	the	popula:on	total																							is:	
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The	es:mator													is	unbiased	for				

 
t = ykU∑

  t̂HT  
t = ykU∑

An	unbiased	es:mator	of		
  VHT (t̂HT ) is	given	by:		

   
V̂HT (t̂HT ) =

⌣
Δkl
⌣yk
⌣yls∑∑

  
V̂HT (t̂HT ) = 1

π kl

π kl − π kπ l

π kπ l

#

$%
&

'(s∑∑ yk yl

   
⌣
Δkl = Δkl / π klwhere		

represents	the	expanded	Δ	value,	for	all		  k, l ∈U .	Alterna:vely		
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Alterna:ve	formula	for	the	variance	of	es:mator		
obtained	when	p(s)	is	a	fixed	size	sampling	design		
Yates	and	Grundy	(1953),	and	Sen	(1953):		

   
VYGS (t̂HT ) = VarYGS (t̂HT ) = − 1

2
Δkl
⌣yk −
⌣yl( )U∑

2
∑
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In	the	design-based	approach,	the	uncertainty	is	ensured	by	p(s),	while	in	the	
superpopula:on	approach,	the	randomness	is	provided	from	the	model	ξ.	For	
this	reason,	this	approach	is	also	called	model-based	survey	sampling.	
Using	the	superpopula:on	approach,	we	es:mate	the	popula:on	total	as	
follows.	The	popula:on	total,	t,	can	be	decomposed	into:		

 
t = yks∑ + yks∑ = tys

+ tys

In	other	words,	the	popula:on	total	is	the	sum	of	the	sample	total										and	the	

corresponding	non-sample	total								.	Obviously,	aber	the	sample	has	been	

drawn,	the	sum	of	the	sample	total						is	known,	and	the	es:ma:on	problem	is	

reduced	to	predic:ng							given								.	Given	the	superpopula:on	model	ξ,	the	aim	

is	to	choose	the	best	predictor							of							,	and	a	sample	s,	so	that	we	minimize	the	

sample	error,																																			.		

 
tys

 
tys

 
tys

 
tys  

tys

  
t̂ ys  

tys

  
t̂ − t = t̂ ys

− tys
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The	best	predictor								is	the	member	of	the	acceptable	predictors	that	has	the	

smallest	value	of																																				.	Besides,	we	aim	to	choose	s	that	minimizes	

																																across	the	set	of	all	possible	s	that	are	prac:cal	and	sa:sfy	the	

resource	constraints.	The	op:mal	predictor	(								)	and	op:mal	sample	(s)	

cons:tute	the	op:mal	strategy	for	t	under	the	assumed	superpopula:on	model	ξ.	

  t̂
Eξ t̂ − t( )

2
s"

#$
%
&'

  
E
ξ

t̂ − t( )2
s#

$%
&
'(

t̂
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Consider	an	un-sampled	loca:on	z0.	The	main	aim	of	geosta:s:cs	is	to	predict	y(z0).	
It	would	seem	reasonable	to	es:mate	y(z0)	using	a	weighted	average	of	the	values	
at	observed	loca:ons	y(zi),	i=1,2,..,n,	with	weights	given	by	some	decreasing	
func:on	of	the	distance	between	the	unobserved	and	observed	sites.	So,	the	
predictor	of	y(z0)	can	be	defined	as:		

   
ŷ(z0 ) = λi y(zi )i∑
A	simple	and	popular	spa:al	predic:on	method	is	kriging.	This	method	uses	a	
model	of	spa:al	con:nuity,	or	dependence.		
The	main	purpose	of	kriging	is	to	op:mally	determine	the	weights	λi.	A	
predictor	is	defined	by	first	construc:ng	a	func:on	that	measures	the	loss	
sustained	by	using													as	a	predictor	of	y(z0).	The	squared	loss	func:on	is	
most	oben	used	in	prac:cal	applica:ons.	
Generally,	the	theory	aims	at	finding	es:mators	that	minimize	the	average	loss.	
In	this	case,	the	loss	can	be	expressed	in	terms	of	the	mean	squared	predic:on	
error	(MSPE)	as:		

   ŷ(z0 )
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E y(z0 ) − ŷ(z0 )"# $%

2

Kriging	computes	the	best	linear	unbiased	predictor	(BLUP),													,	based	on	a	
stochas:c	model	of	the	spa:al	dependence	defined	by	the	expecta:on,	μ(z),	
and	covariance	func:on,	C(h),	of	the	random	field.		
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Consider	a	con:nuous	variable.	A	spa:al	model	that	sa:sfies	the	first-order	
Markov	property		
	
	
	
is	the	auto-normal	or	condi:onal	autoregressive	model	(CAR,	Besag	1974	).	It	
assumes	that	the	condi:onal	density	func:ons	of	each	random	variable	with	
respect	to	the	others	is	Gaussian	and	can	be	expressed	as:	

   
Pr y zi( ) y z j( ) , j ∈D, j ≠ i{ } = Pr y zi( ) y z j( ) , j ∈N (i), j ≠ i{ }

   

f y zi( ) y z j( )!
"#

$
%&
= f y zi( ) y z j( ) , j ∈N (i), j ≠ i!

"#
$
%&
=

= 2πσ i
2( )−1/2

exp −
1

2σ i
2

y zi( ) − µi − cij y z j( ) − µ j( )
i≠ j
∑

!

"
#

$

%
&

2-
.
/

0/

1
2
/

3/

where																											,	and												denote	spa:al	dependence	parameters	that	

are	only	non-zero	if																						.		
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From	these	defini:ons	it	follows	that:	

   
E y zi( ) y z j( ) , j ∈N (i), j ≠ i#
$%

&
'(
= µi + cij y z j( ) − µ j( )

i≠ j
∑

and:		

   
Var y zi( ) y z j( ) , j ∈N (i), j ≠ i#

$%
&
'(
= σ i

2
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Let																									,	where	ε(di)	is	the	variable	associated	with	site	zi.	A	random	
field	is	said	to	be	Gaussian	SAR	(Whiole	1954)	if:	

   
 ε ∝ N 0,σ 2I( )

   
y(zi ) = µi + bij y(z j ) − µ j

"
#

$
% + ε

i≠ j
∑ (zi )

where	bii=0.	In	a	matrix	nota:on	model,	the	above	equa:on	can	be	wrioen	
as:	

  (I − B)(y − µ) = ε

If																											Y	is	mul:variate	normal	such	that:	

   
y ∝ MVN µ,σ 2 (I − B)−1(I − Bt )−1$% &'( )

   Var(ε) = σ 2I
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Some	thoughts	about	X	and	C	in	spaMal	surveys.	
	
•  If	U	is	a	list	of	regularly	or	irregularly	shaped	polygons	defined	
ad	hoc,	C	is	always	available	and	X	can	be	constructed	
summarizing	within	each	polygon	a	classifica:on	of	remotely	
sensed	data	(unless	an	overlay	of	C	with	a	cadaster	is	possible).	
•  If	U	is	a	list	of	points,	X	can	be	only	represented	by	a	design	
matrix	of	codes	of	a	land	use	classifica:on	of	remotely	sensed	
data.	
•  If	U	is	a	list	of	economic	or	social	units,	C	is	rarely	obtainable	(it	
depends	on	the	availability	of	accurate	cadastral	maps)	and	
should	be	made	by	a	map	of	polygons	represen:ng	parcels	of	
land	used	by	each	holding,	while	X	is	usually	filled	with	
administra:ve	data	sources.		
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Consider	the	two	following	samples	obtained	by	SRSWOR	
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The	p(s)	of	these	two	samples	are	exactly	the	same,	p(S)	=	1/C(N,n)	



SpaMally	Balanced	Samples	
How	to	take	into	account	the	spa:al	informa:on	while	designing	
a	sample?	
	

	
SpaMally	balanced	samples:	samples	well-spread	over	the	
popula:on	of	interest.	In	this	way,	it	could	be	possible	capture	
the	spa:al	heterogeneity	of	the	popula:on.	
	
Some	theore:cal	mo:va:ons:	
•  Yates-Grundy-Sen	formula:on	of	the	HT	variance.	
•  An:cipated	Variance.	
•  Lemma	decomposi:on.	
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The	 variogram	 (or	 semi	 variogram)	 γy(h)	 whose	 shape	 is	 a	 valuable	
informa:on	to	choose	on	how	and	to	what	extent	the	variance	of	y	is	or	not	a	
func:on	of	the	distance	between	the	sta:s:cal	units.	
•  Yates-Grundy-Sen	formula:on	of	the	HT	variance:	

Semivariogram	

V ŶHT( ) = − 12 π ij −π iπ j( ) yi
π i
−
y j
π j

"

#
$
$

%

&
'
'

j∈U
∑

i∈U
∑

2

1
2
Var y(z)− y(z+h)[ ] = γ (h)
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We	wish	 to	derive	a	model	 that	 relates	each	yv	with	 the	X	observed	 in	past	
surveys	or	other	data	 sources.	We	assume	that	our	prior	knowledge	on	 the	
finite	 popula:on	 can	 be	 viewed	 as	 if	 it	 were	 a	 sample	 from	 an	 infinite	
superpopula:on	 and	 that	 a	model	ξ	 defines	 its	 characteris:cs.	 To	 design	 a	
survey,	we	should	thus	search	for	the	op:mal	an:cipated	variance	(AV)	of	the	
es:mator	of	the	popula:on	total.	This	can	be	defined	as	the	variance	of	the	
random	variable	(								)	under	both	the	design	and	the	model	

	
	

A	typical	assump:on	is	a	linear	model	that	relates	a	target	y	and	an	auxiliary	x	

	

t̂ − t
AV t̂ − t( ) = Eξ Es t̂ − t( )

2"
#$

%
&'{ }− Eξ Es t̂ − t( ){ }"

#
%
&
2

yk = xk
tβ+εk

Eξ εk( ) = 0

Vξ εk( ) =σ k
2

Eξ εkεl( ) =σ kσ lρkl    k ≠ l

#

$

%
%%

&

%
%
%



An)cipated	Variance	
xi	is	a	vector	of	auxiliary	variables,	𝛽		is	a	vector	of	
coefficient	regression,	𝜌ij	is	the	autocorrela:on	ij	is	the	autocorrela:on	
coefficient	and	Em,	Varm	and	Covm	denote,	
respec:vely,	expecta:on,	variance	and	covariance	
with	respect	to	the	model.	
The	An:cipated	Variance	(Isaki	and	Fuller	1982)	of	
HT	es:mator	under	the	model	is	(Grafstrom	and	Tillè	
2013)	
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AV t̂HT − t( ) = Es
xk
π kk∈s

∑ − xk
k∈U
∑

⎛

⎝
⎜

⎞

⎠
⎟

T

β
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ σ kσ lρkl
π kl −π kπ l

π kπ ll∈s
∑

k∈s
∑
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Uncertainty	can	be	splioed	into	two	terms:	
	
1.																																												can	be	reduced	through	the	use	of		
	
			balanced	sampling	(Deville	and	Tillè	2004)	
	
2.																																											can	be	reduced	exploi:ng	spa:al		
	
			informa:on												if	ρij	decrease	with	respect	to	distance	
between	units,	then	selec:ng	units	far	apart	reduces	this	
term	

€ 

Es
xi
π i

− xi
i∈U
∑

i∈S
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 'β

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

€ 

σ iσ jρij
π ij −π iπ j

π iπ ji, j∈U
∑
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The	decomposiMon	lemma	
states	that	(Knoonerus,	2003,	p.	87):	

	
It	can	be	seen	that	the	HT	es:mator	can	be	more	efficient	by	se1ng	the	first-order	
inclusion	probabili:es	in	such	a	way	that	yk/πk	is	approximately	constant	and/or	by	
defining	 a	 design	 p(s)	 that	 increases	 the	 expected	 within	 sample	 variance.	 The	
intui:ve	explana:on	for	this	is	that	if	a	sample	s	contains	as	much	informa:on	as	
possible,	the	uncertainty	in	the	es:ma:on	process	is	clearly	reduced	to	zero.	This	
considera:on	suggests	that	we	should	find	a	rule	that	makes	the	probability	p(s)	of	
selec:ng	 a	 sample	 s	 propor:onal,	 or	more	 than	 propor:onal,	 to	 its	 variance	 S2.	
This	variance	is	unknown,	because	it	is	rela:ve	to	the	target,	unobserved	variable	
y.	Thus,	this	is	a	purely	theore:cal	topic	unless	we	can	find	auxiliary	informa:on	for	
s.	

σ ⌣y
2 =Vs

⌣ys( )+ n−1n Es S⌣y,s
2( )



Decomposi)on	Lemma	
This	 considera:on	 suggests	 that	 we	 should	 find	 a	 rule	 that	
makes	 the	 probability	 p(s)	 of	 selec:ng	 a	 sample	 s	
propor:onal,	 or	 more	 than	 propor:onal,	 to	 its	 variance	 S2.	
This	variance	is	unknown,	because	it	 is	rela:ve	to	the	target,	
unobserved	variable	y.	Thus,	this	is	a	purely	theore:cal	topic	
unless	we	can	find	auxiliary	informa:on	for	s.	
When	 dealing	 with	 spa:ally	 distributed	 popula:ons,	 a	
promising	 candidate	 for	 this	 rule	 is	 the	 distance	 between	
units,	 as	 evidenced	 in	 spa:al	 interpola:on	 literature	 (Ripley	
1981,	Cressie	1993).	This	 is	because	 it	 is	oben	highly	 related	
to	 the	 variance	 of	 variables	 observed	 on	 a	 set	 of	 geo-
referenced	units.			
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There	could	be	a	lot	of	different	reasons	why	it	is	appropriate	to	
select	samples	which	are	spa:ally	well	distributed:	
1.  y	has	a	linear	or	monotone	spa:al	trend;	
2.  there	 is	 spa:al	 autocorrela:on,	 i.e.	 close	 units	 have	 data	

more	similar	than	distant	units;	
3.  the	y	shows	to	follow	zones	of	local	sta:onarity	of	the	mean	

and/or	 of	 the	 variance,	 i.e.	 a	 spa:al	 stra:fica:on	 exists	 in	
observed	phenomenon;	

4.  the	units	of	the	popula:on	have	a	spa:al	paoern	which	can	
be	clustered,	 i.e.	 the	 intensity	of	 the	units	varies	across	the	
study	region.		
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The	Voronoi	polygon	for	unit	k	of	a	generic	sample	s	includes	all	the	
popula:on	units	closer	to	k	than	to	any	other	unit	in	the	sample.	Let			
	
be	 the	 sum	 of	 the	 inclusion	 probabili:es	 of	 the	 units	 in	 the	 k-th	
Voronoi	 polygon	VP(k).	 Then,	 for	 any	 sample	 unit,	we	will	 have	 an	
expected	value	E(vk)=1.	Addi:onally,	all	the	vks	should	be	close	to	1	
for	 a	 spa:ally	 balanced	 sample	 (Steven	 and	Olsen	2004).	 Thus,	 the	
index	V(vk)	(the	variance	of	the	vk)	can	be	used	as	a	measure	of	the	
spaMal	balance	of	a	sample.	Obviously,	a	lower	value	of	V(vk)	implies	
a	good	spa:ally	balanced	sample.		

vk = π ii∈VP(k )∑

V vk( ) =
vk −1( )2

k∈s∑
n
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