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The	decomposi,on	lemma,	states	that	(KnoLnerus,	2003,	p.	87):	

	

It	 can	 be	 seen	 that	 the	 HT	 es4mator	 can	 be	 more	 efficient	 by	 se+ng	 the	 first-order	
inclusion	 probabili4es	 in	 such	 a	 way	 that	 yk/πk	 is	 approximately	 constant	 and/or	 by	
defining	 a	 design	p(s)	 that	 increases	 the	 expected	within	 sample	 variance.	 The	 intui4ve	
explana4on	 for	 this	 is	 that	 if	 a	 sample	 s	 contains	 as	much	 informa4on	 as	 possible,	 the	
uncertainty	 in	 the	 es4ma4on	 process	 is	 clearly	 reduced	 to	 zero.	 This	 considera4on	
suggests	that	we	should	find	a	rule	that	makes	the	probability	p(s)	of	selec4ng	a	sample	s	
propor4onal,	 or	 more	 than	 propor4onal,	 to	 its	 variance	 S2.	 This	 variance	 is	 unknown,	
because	it	is	rela4ve	to	the	target,	unobserved	variable	y.	Thus,	this	is	a	purely	theore4cal	
topic	unless	we	can	find	auxiliary	informa4on	for	s.	

When	dealing	with	spa4ally	distributed	popula4ons,	a	promising	candidate	for	this	rule	is	
the	distance	between	units,	as	evidenced	 in	spa4al	 interpola4on	 literature	 (Ripley	1981,	
Cressie	 1993).	 This	 is	 because	 it	 is	 o\en	 highly	 related	 to	 the	 variance	 of	 variables	
observed	on	a	set	of	geo-referenced	units.			
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• Balanced	Sampling	by	means	of	Simulated	Annealing	
	
•  Spa4ally	Balanced	Sampling	Propor4onal	to	the	Within	
Sample	Distance	

	
• Doubly	Balanced	Sampling	by	means	of	Constrained	
Simulated	Annealing	
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We	propose	an	efficient	algorithm	to	select	balanced	samples	by	
using	a	MCMC	method,	such	as	Simulated	Annealing	(SA).	
SA	is	a	stochas4c	op4miza4on	method	proposed	by	Kirkpatrick	et	
al.	(1983)	and	Černý	(1985)	for	finding	a	global	minimum	of	a	
func4on.	The	method	is	a	generaliza4on	of	the	Metropolis-
Has4ngs	algorithm	(Metropolis	et	al.	1953)	in	the	op4miza4on	
context	and	it	represents	one	of	the	most	popular	and	used	
op4miza4on	strategies	to	solve	complex	combinatorial	problems.	
The	SA	algorithm	is	an	itera4ve	procedure	where	each	step	
consists	in	running	a	non-homogeneous	Markov-Chain,	with	the	
temperature	T	being	reduced	at	each	step.	
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The	 proposed	 algorithm	 can	 be	 summarized	 as	 follows.	
The	procedure	starts	at	 itera4on	 t=0,	with	an	 ini4al	point	
s(0),	 randomly	 selected	 from	 according	 to	 a	 SRS	 with	
constant	inclusion	probabili4es.	In	a	generic	itera4on	t	the	
elements	of	s(t)	are	updated	in	the	following	steps:	
1. select	at	random	two	units	included	and	not	included	in	
the	 sample	 in	 the	 previous	 itera4on,	 say	 i	 and	 j.	
Respec4vely	 among	 the	 units	 within	 the	 sample,	 and	
another	among	the	units	outside	the	sample;	

2. denote	with	 	 	 	 	 	 	 	 	 the	sample	where	 the	units	 in	 the	
posi4on	 i	and	 j	exchange	their	status.	Randomly	decide	
whether	or	not	to	adopt	this	sample:	

*s(t )
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3.  repeat	steps	(1)	and	(2)	mq	4mes	(in	our	applica4on	and	simula4ons	

we	used	m	and	q	constantly	equal	respec4vely	to	N	and	10).	
The	algorithm	is	very	simple	to	be	implemented	and	extremely	flexible	
by	simply	modifying	the	criteria	used	in	the	first	step	to	select	the	two	
candidate	units	i	and	j.	
T	 is	 the	 temperature	 that	 decreases	 with	 the	 augmen4ng	 of	 the	
itera4ons,	 i.e.	 at	 the	 beginning	 there	 is	 a	 high	 probability	 to	 accept	
worsenings	 of	 the	 objec4ve	 func4on;	 at	 the	 end,	 when	 t→0	 only	
reduc4ons	of	the	objec4ve	func4on	are	accepted.	
D(s)	is	the	maximum	percentage	difference		
(among	 the	 j	 covariates)	 that	 we	 have	 in	 the	 linear	 constraints	 for	
sample	s.	
	

s(t+1) =
*s(t )     with probability p =min 1, exp{−[D(*s(t ) )−D(s(t ) )] /T}{ }
s(t )      otherwise

⎧
⎨
⎪

⎩⎪

dkxkj
k∈s
∑ − tx j
⎛

⎝
⎜

⎞

⎠
⎟ / tx j



R.	Benede+,	F.	Piersimoni,	F.	Pantalone	 BaNoCoSS	2019	 7	

We	 analize	 six	 experimental	 situa4ons,	 in	 which	 values	 are	
generated	 using	 both	 an	 exponen4al	 variable	 and	 a	 uniform	
variable.	 For	 each	 situa4on	 a	 set	 of	 500	 independent	 balanced	
samples	with	 equal	 probably	 and	with	 unequal	 probability	 have	
been	selected	for	sampling	rates	equal	to	0.01,	0.05	and	0.1.		
The	unequal	inclusion	probabili4es	are	generated	by	using	both	a	
uniform	variable	and	an	exponen4al	variable.	The	comparison	has	
been	 implemented	 between	 Cube	 method	 in	 its	 fast	
implementa4on	 (Chauvet	 and	 Tillé	 2006)	 and	 the	 proposed	
algorithm.	

Evalua4on	the	respect	of	the	target	inclusion	probabili4es	
and	quality	of	balancing	
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Distribu,on	of	
the	differences	
between	the	
inclusion	

probabili,es	
and	frequencies	

when	the	
sampling	design	
is	a	balanced	

sampling	design	
with	equal	
probability	
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Accuracy	of	the	inclusion	probabili,es	

N	
Number	of	
constrains		

n/N=0.01	 n/N=0.05	 n/N=0.1	

		 		 Cube	 SA	 Cube	 SA	 Cube		 SA	
		 		 Equal	Probability	Sampling		

5000	
2	 0,196	 0,193	 0,196	 0,190	 0,180	 0,177	
3	 0,201	 0,196	 0,194	 0,191	 0,178	 0,188	
5	 0,199	 0,194	 0,184	 0,190	 0,182	 0,179	

10000	
2	 0,195	 0,199	 0,195	 0,185	 0,179	 0,177	
3	 0,198	 0,200	 0,192	 0,194	 0,182	 0,181	
5	 0,201	 0,199	 0,193	 0,185	 0,178	 0,184	

		 		 Unequal	Probability	Sampling:	Uniform		

5000	
2	 0,205	 0,222	 0,183	 0,208	 0,183	 0,194	
3	 0,195	 0,212	 0,189	 0,198	 0,174	 0,186	
5	 0,203	 0,219	 0,192	 0,207	 0,178	 0,191	

10000	
2	 0,197	 0,210	 0,187	 0,194	 0,180	 0,186	
3	 0,196	 0,201	 0,187	 0,200	 0,188	 0,187	
5	 0,199	 0,207	 0,192	 0,197	 0,178	 0,192	

		 		 Unequal	Probability	Sampling:	ExponenHal	

5000	
2	 0,203	 0,225	 0,195	 0,216	 0,175	 0,207	
3	 0,203	 0,234	 0,188	 0,210	 0,173	 0,210	
5	 0,197	 0,236	 0,186	 0,214	 0,179	 0,206	

		
10000	

		

2	 0,192	 0,213	 0,186	 0,208	 0,183	 0,192	
3	 0,199	 0,216	 0,190	 0,205	 0,182	 0,194	
5	 0,199	 0,215	 0,191	 0,204	 0,186	 	0,198	
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Efficiency	of	the	balancing	
	 	 Uniform ExponenHal	 
	 	 Equal	Probability	 Unequal	Probability Equal	Probability	 Unequal	Probability 
N n Cube SA Cube SA Cube SA Cube SA 
2,000 100 0.92 0.67 0.60 0.75 1.83 0.70 0.96 0.56 
2,000 200 0.42 0.73 0.27 0.81 1.04 0.80 0.39 0.74 
2,000 300 0.33 0.87 0.22 0.72 0.72 0.78 0.25 0.86 
5,000 100 0.72 0.76 0.48 0.70 1.87 0.76 0.81 0.61 
5,000 200 0.38 0.92 0.25 0.78 1.45 0.73 0.44 0.71 
5,000 300 0.25 0.83 0.20 0.86 0.66 0.81 0.21 0.86 
10,000 100 0.84 0.81 0.55 0.61 1.61 0.71 0.93 0.66 
10,000 200 0.45 0.74 0.33 0.85 0.75 0.79 0.31 0.80 
10,000 300 0.25 0.90 0.18 0.86 0.66 0.69 0.32 0.80 

50,000 1,000 0.06 0.91 0.08 0.87 0.17 0.84 0.10 0.87 

50,000 2,000 0.04 0.92 0.03 0.88 0.11 0.92 0.05 0.93 

50,000 3,000 0.03 0.83 0.02 0.68 0.06 0.96 0.04 0.94 

50,000 4,000 0.03 0.87 0.01 0.81 0.04 0.95 0.02 0.88 

50,000 5,000 0.02 0.81 0.02 0.73 0.03 0.85 0.01 0.85 

100,000 1,000 0.10 0.95 0.07 0.96 0.23 0.89 0.06 0.92 

100,000 2,000 0.05 0.93 0.03 0.68 0.10 0.90 0.03 0.93 

100,000 3,000 0.03 0.90 0.01 0.89 0.06 0.95 0.02 0.93 

100,000 4,000 0.02 0.95 0.01 0.76 0.05 0.97 0.02 0.83 

100,000 5,000 0.02 0.94 0.01 0.71 0.03 0.95 0.02 0.85 
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•  The	proposed	sampling	algorithm	to	select	samples	with	
fixed	size	for	the	es4ma4on	domains	can	be	applied	both	
with	equal	and	with	unequal	probabili4es	sampling.		
•  The	method	may	be	easily	extended	to	every	methods	
that	use	auxiliary	informa4on	for	the	sampling	design.	
•  The	simula4on	studies	show	a	big	improvement	in	the	
efficiency	of	the	proposed	algorithm.		
•  The	simula4on	analysis	shows	good	performances	in	the	
quality	of	balancing,	which	is	uniformly	the	same	for	all	
the	considered	situa4ons,	and	in	the	respect	of	the	known	
inclusion	probability,	where	there	is	no	fundamental	
difference	between	the	two	algorithms.	
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We	 propose	 a	 sampling	 algorithm	 that	 has	 the	 aim	 to	 select	
spa4ally	 balanced	 sampled.	 The	 design	 will	 assign	 higher	
probabili4es	 to	 samples	 with	 higher	 variance	 and,	 thus,	 with	
higher	distance.		
Such	 a	 design	 p(S)	 can	 be	 obtained	 by	 se+ng	 each	 p(s)=M(Ds)/
ΣsM(Ds)	propor4onal	to	some	synthe4c	index	M(Ds)	of	the	matrix	
Ds,	observed	within	each	possible	sample.	
Note	 that	 the	 most	 common	 sample	 selec4on	 algorithms	 (for	 a	
review,	see	Tillé	2006)	usually	do	not	try	to	find	a	suitable	choice	
for	the	probability	p(S)	of	the	sampling	design,	but	its	respect	is	at	
the	most	verified	only	a	posteriori.	
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!

(a)	Spa4al	distribu4on	of	a	popula4on	of	size	N=21,	the	radius	of	each	circle	
is	propor4onal	to	the	target	variable	y.	(b)	ScaLerplot	of	the	spa4al	balance	
index	and	of	the	average	of	the	standardized	distance	matrix	ds	within	any	
possible	sample	of	size	n=6.		
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Gibbs-sampling	was	suggested	as	an	efficient	algorithm	to	draw	a	fixed	size	sample	from	a	
mul4variate	 Bernoulli	 design	 (Traat	 et	 al.,	 2004).	 The	 proposed	 algorithm	 can	 be	
summarized	 as	 follows.	 The	 procedure	 starts	 at	 itera4on	 t=0,	with	 an	 ini4al	 point	 s(0),	
randomly	 selected	 from	 according	 to	 a	 SRS	 with	 constant	 inclusion	 probabili4es.	 In	 a	
generic	itera4on	t	the	elements	of	s(t)	are	updated	in	the	following	steps:	

1.  select	at	 random	two	units	 included	and	not	 included	 in	 the	sample	 in	 the	previous	
itera4on,	 say	 i	 and	 j.	 Respec4vely	 among	 the	 units	within	 the	 sample,	 and	 another	
among	the	units	outside	the	sample;	

2.  denote	with	 	 	 	 	 	 	 	 	the	sample	where	the	units	in	the	posi4on	i	and	j	exchange	their	
status.	Randomly	decide	whether	or	not	to	adopt	this	sample:	

3	repeat	steps	(1)	and	(2)	mq	4mes	(in	our	applica4on	and	simula4ons	we	used	
m	and	q	constantly	equal	respec4vely	to	N	and	10).	

The	 algorithm	 is	 very	 simple	 to	 be	 implemented	 and	 extremely	 flexible	 by	
simply	modifying	the	criteria	used	in	the	first	step	to	select	the	two	candidate	
units	i	and	j	or	by	changing	the	index	M(Ds)	or	the	parameter	β.	

	

s(t+1) =
*s(t )     with probability p =min 1,

M D*s( t+1)( )
M D

s( t+1)( )
!

"
#
#

$

%
&
&

β'
(
)

*)

+
,
)

-)

s(t )      otherwise

'

(
))

*
)
)

*s(t )
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M1 Ds( ) = dij
j;sj=1
∑

i;si=1
∑  

M0 Ds( ) = dij
j≠i;sj=1
∏

i;si=1
∏

M−∞ Ds( ) = min
i;si=1, j≠i;sj=1

dij{ }  

M1,i Ds( ) = dij
j;sj=1
∑  

The	 parameter	 β	 plays	 an	 important	 role	 in	 the	 design	 as	 it	 controls	 our	
requirements	on	the	within	distance	of	the	selected	samples	se+ng	the	p(s)	
as	more	 than	propor4onal	 to	 the	distance	as	we	need.	 In	 addi4on,	we	also	
found	very	useful	to	standardize	the	distance	matrix	to	fixed	row	totals	and,	
for	the	symmetry,	column	totals.	
However,	no4ce	that	an	algorithm	to	select	samples	with	fixed	πi,j	has	been	
proposed	by	Bondesson	(2012).	
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When	we	use	M1(Ds):	

	
π i =

n− 2
N − 2

+ 2 N − n
N − 2

di0 π ij =
n− 2( ) n−3( )
N − 2( ) N −3( )

+ 2
n− 2( ) N − n( )
N − 2( ) N −3( )

di0 + d0 j( )+

        + 2
n− 2( ) n−3( )+ N −3( ) N − 2n+ 2( )

N − 2( ) N −3( )
dij

When	we	use	M0(Ds)	(empirical):	

	
π i = k1 di0( )k2 π ij = k3 di0d0 j( )

k4 dij( )
k5

	

When	we	use	M1(Ds)β	(empirical):	

	 log
π i

1−π i

"

#
$

%

&
'= k1 + k2di0 +εi log

π ij

1−π ij

"

#
$$

%

&
''= k3 + k4 di0 + d0 j( )+ k5dij +εij
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Es4ma4on,	 and	 specifically	 variance	 es4ma4on,	 can	 be	
problema4c	for	some	sampling	schemes.	This	is	par4cularly	
the	case	for	most	sequen4al	sampling	schemes	such	as	the	
SCPS	scheme.	Unfortunately,	explicit	deriva4ons	of	πk	 	and	
πkl	 	for	each	unit	and	pair	of	units	in	the	popula4on	can	be	
prohibi4ve	for	most	summary	distance	indexes.		
M	 samples	 have	 been	 independently	 selected	 from	 the	
popula4on	frame	by	repea4ng	the	same	algorithm	used	to	
select	 s.	 An	 es4mator	 of	πk	 and	 of	πkl	that	will	 always	 be	
posi4ve	is	(FaLorini	2006;	2009):		
π̂ k =

Fk +1
M +1

, k ∈U π̂ kl =
Fkl +1
M +1

, k ≠ l ∈U
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Stevens	 provided	 exact	 expressions	 for	 the	 πkl	 in	 a	 par4cular	 case	 of	
GRTS.	 However,	 these	 expressions	 unfortunately	 prevent	 the	 proper	
use	 of	 variance	 es4mators	 based	 on	 the	 HT	 or	 Yates-Grundy-Sen	
es4mators	because	they	tend	to	be	unstable	if	some	πkl	 	are	very	close	
to	 zero.	 Steven	 and	 Olsen	 (2003)	 proposed	 a	 variance	 es4mator	 that	
approximates	 the	 variance	 by	 averaging	 several	 contrasts	 over	 a	 local	
neighborhood	of	each	sample	point	:	
	
	
Where	N(k)	is	a	local	neighborhood	of	unit	k.	The	wdkls	are	weights	that	
decrease	 as	 the	 distance	 between	 unit	 k	 and	 l	 increases,	 and	 are	
constrained	in	such	a	way	that		

V̂NBH t̂HT ,y( ) = wdkl
yk
π k

− wdkt
yt
π tt∈N (k )

∑
#

$
%%

&

'
((

l∈N (k )
∑

k∈s
∑

2

wdkl =k∑ wdkl =l∑ 1
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A	 special	 case	 of	 this	 variance	 es4mator	 is	 when	 con4nuous	 auxiliary	
variables	 are	 used	 and	 no	 equal	 distances	 exist.	 Then,	 there	 are	 only	
two	units	 in	 each	 local	 neighbourhood,	 it	 simplifies	 to	 (Grafström	and	
Schelin,	2014):	
	
	
	
Where	 c(k)	 is	 the	 nearest	 neighbour	 to	 k	 in	 the	 sample.	 A	 similar	
es4mator	is	recommended	by	Wolter	(2007,	p.	336),	as	one	of	the	best	
general-purpose	variance	es4mators	for	systema4c	sampling.		
	

V̂NBH t̂HT ,y( ) = 12
yk
π k

−
yc(k )
π c(k )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

k∈s
∑
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10,000	samples	of	size	4	from	a	popula4on	of	16	units	posi4oned	on	regular	
4x4	grid.	Distribu4on	of	the	samples	for	different	values	of	the	exponent	β	of	
the	 average	 euclidean	 distance	 (le\);	 trend	 of	 the	 average	 and	 standard	
devia4on	of	the	within	sample	euclidean	distance	for	different	values	of	the	
exponent	 (center);	 expected	 and	 observed	 frequency	 for	 the	 quan4les	
p=0.05	for	the	samples	propor4onal	to	the	distance.		
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ScaLerplot	of	the	es4mated	inclusion	probabili4es	with	respect	to:	(a)	the	sum	
of	 logarithms	 of	 the	 distances	 when	 a	 PWD	 design	 is	 used,	 the	 sum	 of	 the	
distances	when	we	used	the	design	(b)	SWD10	(c)	SWD20	and	(d)	SWD30.	

!
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Design Type k1 k2 R2 
PWD Double Log exp(38.18) 0.03609 0.928 
SWD10 Logistic -7.404 636.111 0.974 
SWD20 Logistic -10.834 994.789 0.949 
SWD30 Logistic -12.918 1210.361 0.917 
SWD40 Logistic -13.918 1310.390 0.881 
SWD50 Logistic -14.416 1358.785 0.848 

 Design Type k3 k4 k5 R2 
PWD Double Log exp(78.57) 0.4618 0.03514 0.892 
SWD10 Logistic -13.042 1478.208 496.946 0.974 
SWD20 Logistic -18.258 2550.393 740.002 0.933 

 

Regression	parameters	of	the	models	for	the	πi	and	the	πij	es4mated	on	
the	EMAP	data	set	for	different	designs.	
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Coefficient	of	 varia4on	of	 the	es4mated	first	order	 inclusion	probabili4es	when	
we	use	a	distance	matrix	standardized	to	constant	row	and	column	totals	for	the	
SWD	or	constant	row	and	column	products	for	the	PWD.	

PWD SWD10 SWD20 SWD30 SWD40 SWD50 
0.1160 0.0074 0.0122 0.0169 0.0220 0.0281 

 Mean	and	standard	devia4on	of	the	index	of	spa4al	balance	for	different	designs	
and	for	the	PWD	and	the	SWD	for	standardized	and	not	standardized	distance	
matrix.	

   SWD     
D  PWD b=10 b=20 b=30 b=40 b=50 GRTS SCPS LPM1 LPM2 

NotSTD µ 0.125 0.237 0.168 0.138 0.119 0.106 0.407 0.192 0.182 0.189 
NotSTD σ 0.046 0.087 0.068 0.062 0.057 0.054 0.146 0.062 0.050 0.060 
STD µ 0.189 0.287 0.259 0.243 0.232 0.223 ------- ------ ------- ------- 
STD σ 0.057 0.091 0.081 0.074 0.070 0.068 ------- ------ ------- ------- 
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1.  The	first	and	second	order	probabili4es	are	known	when	the	index	is	the	
average	of	the	within	distances	

2.  The	second	order	are	never	equal	to	0	so	the	H-T	variance	es4ma4on	is	
feasible	

3.  To	select	a	stra4fied	sample	propor4onal	to	M(Ds)	by	simply	star4ng	with	a	
stra4fied	SRS	with	fixed	sizes	nh	in	each	stratum	h	and	then	selec4ng	the	
candidate	j	not	among	all	the	popula4on	units	but	within	the	same	stratum	
of	the	candidate	i.	

4.  We	can	coordinate	the	sample	selec4on	between	two	or	more	different	
surveys,	or	the	same	survey	but	in	different	4me,	periods	or	phases	of	the	
survey.	We	can	simply	start	with	the	previously	selected	sample	and	by	
restric4ng	the	selec4on	of	the	candidate	j	within	all	the	units	which	are	not	
selected	in	the	sample	and	that	were	not	selected	in	other	occasions	and	let	
the	procedure	run	un4l	the	required	number	of	units	are	replaced	from	the	
original	sample.	
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Where	 λ	 is	 a	 penalty	 that	 starts	 from	 0	 and	 increases	 with	 the	 number	 of	
itera4ons.	

s(t+1) =
*s(t )     with probability p =min 1,
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Where	λ	is	a	tuning	parameter	of	a	convex	combina4on	of	the	obj.	func.	and	of	
the	 a	 penalty	 that	 starts	 from	 0	 and	 increases	 to	 1	 with	 the	 number	 of	
itera4ons.	

s(t+1) =
*s(t )     with probability p =min 1, (1−λ (t ) )
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The	algorithm	starts	by	randomly	selec4ng	a	unit	k.	Then,	at	every	step	t<n,	
the	algorithm	updates	the	selec4on	probabili4es	of	any	other	unit	 (l)	of	 the	
popula4on	according	to	the	rule	
	

	

	
	

Where	dkl	 is	a	measure	of	distance	between	unit	k	and	 l	and	is	standardized	
by	row	and	columns	products	(log	of	row	and	column	sums).	

This	algorithm	require	only	n	steps	so	 it	 is	very	quick.	 It	show	empirically	to	
have	 the	 same	 πl	of	 the	 PWD	 (thus	 to	 fix	 constant	 πl	 the	 distance	 matrix	
should	be	standardized).	

π l
(t ) =

π l
(t−1)dkl
π l
(t−1)dkll=1..N∑
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n=10,	%rota4on	=	40	%,	bal.	Ind.	1	
=	0.116,	bal.	Ind.	2	=	0.082	

n=10,	%rota4on	=	70	%,	bal.	Ind.	
1	=	0.116,	bal.	Ind.	2	=	0.	139	
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Design: 2 Stage – 1° systema2c or TSS - 2° any design for 
finite popula2ons (point transect sampling)
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π i =
Li
Li∑
n

π ij = f (dij )
where	f	()	is	a	
monotone	increasing	
func4on		

P(S)∝M(dij )
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we	 can	 reduce	 the	 randomizaHon	 either	 by	 increasing	 the	 p(s)	 for	
samples	with	high	variance	or	 restricHng	 the	 support	 (balancing),	 is	 it	 a	
reasonable	 pracHce	 ?	 How	 far	 we	 can	 go	 on	 this	 line	 ?	 The	 limit	 is	 an	
opHmal	(purposive)	sample	(i.e.	back	to	20	years	ago)	
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