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Background

The decomposition lemma, states that (Knottnerus, 2003, p. 87):

o =VS(§S)+nT_1ES(S§,S)

It can be seen that the HT estimator can be more efficient by setting the first-order
inclusion probabilities in such a way that y,/m, is approximately constant and/or by
defining a design p(s) that increases the expected within sample variance. The intuitive
explanation for this is that if a sample s contains as much information as possible, the
uncertainty in the estimation process is clearly reduced to zero. This consideration
suggests that we should find a rule that makes the probability p(s) of selecting a sample s
proportional, or more than proportional, to its variance S2. This variance is unknown,
because it is relative to the target, unobserved variable y. Thus, this is a purely theoretical
topic unless we can find auxiliary information for s.

When dealing with spatially distributed populations, a promising candidate for this rule is
the distance between units, as evidenced in spatial interpolation literature (Ripley 1981,
Cressie 1993). This is because it is often highly related to the variance of variables

observed on a set of geo-referenced units.
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Some proposals

e Balanced Sampling by means of Simulated Annealing

 Spatially Balanced Sampling Proportional to the Within
Sample Distance

* Doubly Balanced Sampling by means of Constrained
Simulated Annealing
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Balanced Sampling by means of Simulated

Annealing

We propose an efficient algorithm to select balanced samples by
using a MCMC method, such as Simulated Annealing (SA).

SA is a stochastic optimization method proposed by Kirkpatrick et
al. (1983) and Cerny (1985) for finding a global minimum of a
function. The method is a generalization of the Metropolis-
Hastings algorithm (Metropolis et al. 1953) in the optimization
context and it represents one of the most popular and used
optimization strategies to solve complex combinatorial problems.

The SA algorithm is an iterative procedure where each step
consists in running a non-homogeneous Markov-Chain, with the
temperature T being reduced at each step.
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Selection Algorithm: Balanced Sampling

The proposed algorithm can be summarized as follows.
The procedure starts at iteration t=0, with an initial point
s(0), randomly selected from according to a SRS with
constant inclusion probabilities. In a generic iteration t the
elements of s(t) are updated in the following steps:

1. select at random two units included and not included in
the sample in the previous iteration, say /i and j.
Respectively among the units within the sample, and

another among the units outside the sample;

2. denote with s the sample where the units in the

position i and j exchange their status. Randomly decide
whether or not to adopt this sample:
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Selection Algorithm

(1) s with probability p = min{l,exp{—[ D( s = D(s'™]/ T}}
S = <

s otherwise

3. repeat¥steps (1) and (2) mq times (in our application and simulations
we used m and g constantly equal respectively to N and 10).

The algorithm is very simple to be implemented and extremely flexible
by simply modifying the criteria used in the first step to select the two
candidate units i and j.

T is the temperature that decreases with the augmenting of the
iterations, i.e. at the beginning there is a high probability to accept
worsenings of the objective function; at the end, when t->0 only
reductions of the objective function are accepted.

D(s) is the maximum percentage difference (Edkxkj -1, |/1,
kEs

(among the j covariates) that we have in the linear constraints for
sample s.
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A Simulation Experiment

Evaluation the respect of the target inclusion probabilities
and quality of balancing

We analize six experimental situations, in which values are
generated using both an exponential variable and a uniform
variable. For each situation a set of 500 independent balanced
samples with equal probably and with unequal probability have
been selected for sampling rates equal to 0.01, 0.05 and 0.1.

The unequal inclusion probabilities are generated by using both a
uniform variable and an exponential variable. The comparison has
been implemented between Cube method in its fast
implementation (Chauvet and Tillé 2006) and the proposed
algorithm.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Distribution of
the differences
between the
inclusion
probabilities
and frequencies
when the
sampling design
is a balanced
sampling design
with equal
probability
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A Simulation Experiment
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A Simulation Experiment

Accuracy of the inclusion probabilities

Number of n/N=0.01 n/N=0.05 n/N=0.1
N constrains
Cube | SA Cube | SA Cube R
Equal Probability Sampling
2 0,196 0,193 0,196 0,190 0,180 0,177
5000 3 0,201 0,196 0,194 0,191 0,178 0,188
5 0,199 0,194 0,184 0,190 0,182 0,179
2 0,195 0,199 0,195 0,185 0,179 0,177
10000 3 0,198 0,200 0,192 0,194 0,182 0,181
5 0,201 0,199 0,193 0,185 0,178 0,184
Unegqual Probability Sampling: Uniform
2 0,205 0,222 0,183 0,208 0,183 0,194
5000 3 0,195 0,212 0,189 0,198 0,174 0,186
5 0,203 0,219 0,192 0,207 0,178 0,191
2 0,197 0,210 0,187 0,194 0,180 0,186
10000 3 0,196 0,201 0,187 0,200 0,188 0,187
5 0,199 0,207 0,192 0,197 0,178 0,192
Unequal Probability Sampling: Exponential
2 0,203 0,225 0,195 0,216 0,175 0,207
5000 3 0,203 0,234 0,188 0,210 0,173 0,210
5 0,197 0,236 0,186 0,214 0,179 0,206
2 0,192 0,213 0,186 0,208 0,183 0,192
10000 3 0,199 0,216 0,190 0,205 0,182 0,194
5 0,199 0,215 0,191 0,204 0,186 0,198
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A Simulation Experiment

Efficiency of the balancing

Uniform Exponential
Equal Probability Unequal Probability Equal Probability Unequal Probability

N n Cube SA Cube SA Cube SA Cube SA
2,000 100 0.92 0.67 0.60 0.75 1.83 0.70 0.96 0.56
2,000 200 0.42 0.73 0.27 0.81 1.04 0.80 0.39 0.74
2,000 300 0.33 0.87 0.22 0.72 0.72 0.78 0.25 0.86
5,000 100 0.72 0.76 0.48 0.70 1.87 0.76 0.81 0.61
5,000 200 0.38 0.92 0.25 0.78 1.45 0.73 0.44 0.71
5,000 300 0.25 0.83 0.20 0.86 0.66 0.81 0.21 0.86
10,000 100, 0.84 0.81 0.55 0.61 1.61 0.71 0.93 0.66
10,000 200 0.45 0.74 0.33 0.85 0.75 0.79 0.31 0.80
10,000 300 0.25 0.90 0.18 0.86 0.66 0.69 0.32 0.80
50,000 1,000 0.06 0.91 0.08 0.87 0.17 0.84 0.10 0.87
50,000 2,000 0.04 0.92 0.03 0.88 0.11 0.92 0.05 0.93
50,000 3,000 0.03 0.83 0.02 0.68 0.06 0.96 0.04 0.94
50,000 4,000 0.03 0.87 0.01 0.81 0.04 0.95 0.02 0.88
50,000 5,000 0.02 0.81 0.02 0.73 0.03 0.85 0.01 0.85
100,000 1,000 0.10 0.95 0.07 0.96 0.23 0.89 0.06 0.92
100,000 2,000 0.05 0.93 0.03 0.68 0.10 0.90 0.03 0.93
100,000 3,000 0.03 0.90 0.01 0.89 0.06 0.95 0.02 0.93
100,000 4,000 0.02 0.95 0.01 0.76 0.05 0.97 0.02 0.83
100,000 5,000 0.02 0.94 0.01 0.71 0.03 0.95 0.02 0.85
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* The proposed sampling algorithm to select samples with
fixed size for the estimation domains can be applied both
with equal and with unequal probabilities sampling.

* The method may be easily extended to every methods
that use auxiliary information for the sampling design.

* The simulation studies show a big improvement in the
efficiency of the proposed algorithm.

* The simulation analysis shows good performances in the
quality of balancing, which is uniformly the same for all
the considered situations, and in the respect of the known
inclusion probability, where there is no fundamental
difference between the two algorithms.
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SBS Proportional to the Within Sample Distance

We propose a sampling algorithm that has the aim to select
spatially balanced sampled. The design will assign higher
probabilities to samples with higher variance and, thus, with
higher distance.

Such a design p(S) can be obtained by setting each p(s)=M(D,)/
2 M(D,) proportional to some synthetic index M(D,) of the matrix
D,, observed within each possible sample.

Note that the most common sample selection algorithms (for a
review, see Tillé 2006) usually do not try to find a suitable choice
for the probability p(S) of the sampling design, but its respect is at
the most verified only a posteriori.
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SBS Proportional to the Within Sample Distance
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Spatial Balance

(a) Spatial distribution of a population of size N=21, the radius of each circle
is proportional to the target variable y. (b) Scatterplot of the spatial balance
index and of the average of the standardized distance matrix d, within any

possible sample of size n=6.
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SBS Proportional to the Within Sample Distance

Gibbs-sampling was suggested as an efficient algorithm to draw a fixed size sample from a
multivariate Bernoulli design (Traat et al., 2004). The proposed algorithm can be
summarized as follows. The procedure starts at iteration t=0, with an initial point s(0),
randomly selected from according to a SRS with constant inclusion probabilities. In a
generic iteration t the elements of s(t) are updated in the following steps:

1. select at random two units included and not included in the sample in the previous
iteration, say i and j. Respectively among the units within the sample, and another
among the units outside the sample;

%k
2. denote with S(t) the sample where the units in the position i and j exchange their

status. Randomly decide whether or not to adopt this sample:
B
M(D. .)

M(D,.,)

(1) . o o
§+D _ s with probability p = min41,

s otherwise

3 repeat steps (1) and (2) mq times (in our application and simulations we used
m and g constantly equal respectively to N and 10).

The algorithm is very simple to be implemented and extremely flexible by
simply modifying the criteria used in the first step to select the two candidate
units i and j or by changing the index M(Ds) or the parameter f3.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



SBS Proportional to the Within Sample Distance

M,(D)=Y Y d, M, (D,)= 2 d,

l;sl=1 _];SJ=1

MO(Ds)=H H d;

iys;=1 ]#l;sj=1

M_ (D)= min {d,}

i;s,-=1,j¢i;sj=1

The parameter f plays an important role in the design as it controls our
requirements on the within distance of the selected samples setting the p(s)
as more than proportional to the distance as we need. In addition, we also
found very useful to standardize the distance matrix to fixed row totals and,
for the symmetry, column totals.

However, notice that an algorithm to select samples with fixed r;; has been
proposed by Bondesson (2012).
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SBS Proportional to the Within Sample Distance

Inclusion Probabilities

When we use M,(D,):
n-2 _N-n _(n=2)(n-3)  (n=2)(N-n)

i e N

When we use M,(Ds) (empirical): (N — 2)(N — 3) y

;= ki (diO )k2 T = ks (diOdOj )k4 (dif )kS

When we use M, (D,)? (empirical):

log( dd ) k +k,d, +¢, log(

1 i )=k3+k4(a’i0+d0j)+k5dl.j+gij

i
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SBS Proportional to the Within Sample Distance

Estimation and Variance Estimation

Estimation, and specifically variance estimation, can be
problematic for some sampling schemes. This is particularly
the case for most sequential sampling schemes such as the
SCPS scheme. Unfortunately, explicit derivations of i1, and
n,, for each unit and pair of units in the population can be
prohibitive for most summary distance indexes.

M samples have been independently selected from the
population frame by repeating the same algorithm used to
select s. An estimator of i, and of i, that will always be

positive is (Fattorini 2006; 2009):

F,+1 keU JTkz=Fkl+1

j'L’ =
M1 M +1

k=leU
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SBS Proportional to the Within Sample Distance

Estimation and Variance Estimation

Stevens provided exact expressions for the m, in a particular case of
GRTS. However, these expressions unfortunately prevent the proper
use of variance estimators based on the HT or Yates-Grundy-Sen
estimators because they tend to be unstable if some m,, are very close
to zero. Steven and Olsen (2003) proposed a variance estimator that
approximates the variance by averaging several contrasts over a local
neighborhood of each sample point :

2
‘7NBH (i\HT,y) - E E wd,, (% - E wd,, L)

kEs IEN (k) k€N TT,
Where N(k) is a local neighborhood of unit k. The wd, s are weights that
decrease as the distance between unit k and [ increases, and are
constrained in such a way that Edekl =Elwdkl =1
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SBS Proportional to the Within Sample Distance

Estimation and Variance Estimation

A special case of this variance estimator is when continuous auxiliary
variables are used and no equal distances exist. Then, there are only
two units in each local neighbourhood, it simplifies to (Grafstrom and
Schelin, 2014):

2
ol

kEs nk jTC(k)

Where c(k) is the nearest neighbour to k in the sample. A similar
estimator is recommended by Wolter (2007, p. 336), as one of the best
general-purpose variance estimators for systematic sampling.
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SBS Proportional to the Within Sample Distance

Estimation and Variance Estimation

* Benedetti, R. Espa, G. and Taufer, E. (2017) "Model-based variance
estimation in non-measurable spatial designs”, Journal of Statistical
Planning and Inference 181, 52-61

e Fattorini L (2006). Applying the Horvitz—Thompson criterion in
complex designs: a computer-intensive perspective for estimating
inclusion probabilities. Biometrika, 93: 269-278.

e Grafstrom, A., and Schelin, L. (2014). How to select representative
samples. Scandinavian Journal of Statistics, 41, 2, 277-290.

e Stevens DL Jr, Olsen AR (2003). Variance estimation for spatially
balanced samples of environmental resources. Environmetrics, 14:
593-610.
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SBS Proportional to the Within Sample Distance

A simulation experiment
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SBS Proportional to the Within Sample Distance

A simulation experiment

Scatterplot of the estimated inclusion probabilities with respect to: (a) the sum
of logarithms of the distances when a PWD design is used, the sum of the
distances when we used the design (b) SWD10 (c) SWD20 and (d) SWD30.
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SBS Proportional to the Within Sample Distance

A simulation experiment

Regression parameters of the models for the m; and the m; estimated on
the EMAP data set for different designs.

k1 k2 R2
exp(38.18) 0.03609 0.928
-7.404 636.111 0.974

Design
PWD
SWD10

Type
Double Log
Logistic

SWD20
SWD30
SWD40
SWD50

Logistic
Logistic
Logistic
Logistic

-10.834 994.789 0.949
-12.918 1210.361 0.917
-13.918 1310.390 0.881
-14.416 1358.785 0.848

k3 k4 k5 R2

exp(78.57) 0.4618  0.03514 0.892
-13.042 1478.208 496.946 0.974
-18.258 2550.393 740.002 0.933

Design
PWD

SWD10
SWD20

Type
Double Log
Logistic
Logistic
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SBS Proportional to the Within Sample Distance

A simulation experiment

Coefficient of variation of the estimated first order inclusion probabilities when
we use a distance matrix standardized to constant row and column totals for the
SWD or constant row and column products for the PWD.

PWD SWD10 SWD20 SWD30 SWD40 SWD50

0.1160 0.0074 0.0122 0.0169 0.0220 0.0281

Mean and standard deviation of the index of spatial balance for different designs
and for the PWD and the SWD for standardized and not standardized distance

matrix.
SWD
D PWD b=10 b=20 b=30 b=40 b=50 GRTS SCPS LPM1 LPM2
NotSTD u| 0.125 0.237 0.168 0.138 0.119 0.106 0.407 0.192 0.182 0.189
NotSTD || 0.046 0.087 0.068 0.062 0.057 0.054 0.146 0.062 0.050 0.060
STD u| 0.189 0.287 0.259 0.243 0.232 0.223 ------- ==mmo= cccmcee coeeeee
STD o ! 0.057 0.091 0.081 0.074 0.070 0.068 --=--== —cccmm cmmmee cmmem
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SBS Proportional to the Within Sample Distance

1. The first and second order probabilities are known when the index is the
average of the within distances

2. The second order are never equal to 0 so the H-T variance estimation is
feasible

3. To select a stratified sample proportional to M(D,) by simply starting with a
stratified SRS with fixed sizes n, in each stratum h and then selecting the
candidate j not among all the population units but within the same stratum
of the candidate i.

4. We can coordinate the sample selection between two or more different
surveys, or the same survey but in different time, periods or phases of the
survey. We can simply start with the previously selected sample and by
restricting the selection of the candidate j within all the units which are not
selected in the sample and that were not selected in other occasions and let
the procedure run until the required number of units are replaced from the
original sample.
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Doubly SBS Proportional to the Within Sample

Distance

ﬂ )
% M D* 1+l
s with probability p = min11, ( ’ )) +)L(’)(2dkxk.—t ) '
(t+1) _ M D J X
\) y ( s(”l)) kEs
s otherwise
Where A is a penalty that starts from 0 and increases with the number of
iterations.
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Doubly SBS Proportional to the Within Sample

Distance

B

(t+1) _
A = kEs

s with probability p = min{l,(1 -2y

+ A" (E dyxy —t, )}

M(D. .,
()

M(D,..)
B otherwise
Where A is a tuning parameter of a convex combination of the obj. func. and of

the a penalty that starts from 0 and increases to 1 with the number of
iterations.

3T/4

T/4
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A Very Simple and Quick Draw-By-Draw

Heuristic

The algorithm starts by randomly selecting a unit k. Then, at every step t<n,
the algorithm updates the selection probabilities of any other unit (/) of the
population according to the rule

(t-1)7
70 = T, dy,
[ (t=1) 7
l=1..Nﬂl kl

Where d,, is a measure of distance between unit k and / and is standardized
by row and columns products (log of row and column sums).

This algorithm require only n steps so it is very quick. It show empirically to
have the same s, of the PWD (thus to fix constant s, the distance matrix
should be standardized).
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A Very Simple and Quick Draw-By-Draw
Heuristic
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Agenda: Sampling from continuous spatial
populations (with R.L. Chambers)

Design: 2 Stage — 1° systematic or TSS - 2° any design for
finite populations (point transect sampling)

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Agenda: Spatially Balanced Samples of Oblique
Line Transects (with R.L. Chambers)

where f() is a
monotone increasing
function

P($)x M(d,)

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019




We have some doubts about what we are doing
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we can reduce the randomization either by increasing the p(s) for
samples with high variance or restricting the support (balancing), is it a
reasonable practice ? How far we can go on this line ? The limit is an
optimal (purposive) sample (i.e. back to 20 years ago)

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019
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Thank you for your attention!
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